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Abstract. This paper investigates the power of Probabilistic Büchi Automata
(PBA) when the threshold probability of acceptance is non-extremal, i.e., is a
value strictly between 0 and 1. Many practical randomized algorithms are de-
signed to work under non-extremal threshold probabilities and thus it is important
to study power of PBAs for such cases.
The paper presents a number of surprising expressiveness and decidability results
for PBAs when the threshold probability is non-extremal. Some of these results
sharply contrast with the results for extremal threshold probabilities. The paper
also presents results for Hierarchical PBAs and for an interesting subclass of them
called simple PBAs.

1 Introduction

Probabilistic Büchi Automata (PBA), introduced in [2] to model open, reactive prob-
abilistic systems, are finite state machines that process input strings of infinite length
like Büchi automata. However, unlike Büchi automata, they have probabilistic transi-
tions. The semantics of such machines is defined as follows. A run on an input word is
considered to be accepting if it satisfies the Büchi acceptance condition. The collection
of all accepting runs on any input is known to be measurable [14, 2]. For any given ac-
ceptance threshold x, the language L>x(B) (L≥x(B)) of a PBA B is defined to be the
set of all inputs for which the above measure is > x (≥ x).

In a series of papers [2, 1, 9, 4], researchers have studied the behavior of PBAs when
the acceptance threshold x is either 0 or 1, delineating the expressive power of such
machines and establishing the precise complexity of various decision problems. While
extremal thresholds (of 0 and 1) are important for studying randomized algorithms and
protocols, in many practical scenarios only algorithms with non-extremal thresholds can
solve the problem — consensus in synchronized distributed systems [15], and semantic
security [8], being a couple of examples. Thus, studying PBAs under non-extremal
thresholds, which is the focus of this paper, is important.

We begin by observing that for non-extremal thresholds x ∈ (0, 1), the actual value
of x itself is not important: for every PBA B, one can efficiently construct another PBA
B′ such that L>x(B) = L> 1

2
(B′) (or L≥x(B) = L≥ 1

2
(B′)). Thus, we consider the

acceptance threshold to be always 1
2 . Our results on the decidability of the emptiness

and universality decision problems are summarized in Figure 1.
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A few salient points about our results on decision problems are as follows. Typically,
solving decision problems for automata with non-extremal thresholds is harder than for
those with extremal thresholds, as is borne out by similar results for probabilistic finite
automata [11, 6] and for finite state probabilistic monitors [3]. Interestingly, this obser-
vation does not hold for checking emptiness of L>0(B) for a given PBA B, but holds
for other problems. More specifically, for a given PBA B, the problems of checking
emptiness of L> 1

2
(B) and emptiness of L>0(B) have the same level of undecidability;

both of them are Σ0
2-complete. On the other hand, the problems of checking emptiness

and universality of L≥ 1
2
(B) are Π1

1-complete and co-R.E.-complete, respectively, as
opposed to both being PSPACE-complete for L=1(B). The universality problem for
L> 1

2
(B) is Π1

1-complete as opposed to being Σ0
2-complete for L>0(B).

Previously, we [4] had introduced a syntactic subclass of PBAs called hierarchical
PBAs (HPBA) as an expressively less powerful, but computationally more tractable
fragment of PBAs. With extremal thresholds, the emptiness and universality problems
are efficiently decidable — emptiness and universality of L>0(B) are NL-complete and
PSPACE-complete, respectively, while for L=1(B) they are PSPACE-complete and
NL-complete, when B is an HPBA. Considering non-extremal acceptance thresholds,
these decision problems not only become undecidable, but are as difficult as in the case
general PBAs. The only exception to this is the case of checking emptiness of L> 1

2
(B)

which is co-R.E.-complete when B is an HPBA and is Σ0
2-complete for general PBAs.

This upper bound of co-R.E. in this case is established by observing that for an HPBA
B, L> 1

2
(B) is non-empty if and only if there is an ultimately periodic word in L> 1

2
(B);

this observation may be of independent interest.

Next, our undecidability proofs for these various decision problems rely on Condon
and Lipton’s [6] ideas, used to show the undecidability of the emptiness problem of
probabilistic finite automata. However, in order to obtain lower bounds for HPBAs and
obtain “hierarchical” machines, we modify the original reduction by Condon and Lip-
ton, and we believe our modification yields a conceptually simpler proof of the undecid-
ability of the emptiness problem for probabilistic finite automata. In order, to prove the
undecidability result, Condon and Lipton do the following. Given a 2-counter machine
M , they construct a probabilistic finite automataAM whose inputs are computations of
M , such that a correct halting computation of M , repeated sufficiently many times, is
accepted byAM with high probability (> 1

2 ) and all other inputs are rejected with high
probability. Thus, L> 1

2
(AM ) is non-empty iff M has a halting computation. Now, in

order to carry out this reduction, the automaton AM “checks” every pair of successive
configurations in the input for correctness, and maintains a variety of bounded coun-
ters to ensure that the asymptotic probability of acceptance has the desired properties.
We observe that if the automaton only “checks” one pair of successive configurations
(where the pair to be checked is chosen randomly) the reduction still works, yielding a
“simpler” automaton construction and a simpler analysis of the assymptotics. However,
one casualty of our simpler proof is the following — while we can show that the empti-
ness problem of probabilistic finite automata is undecidable, the Condon-Lipton proof
establishes a stronger fact, namely, that the problem remains undecidable even under
the promise that the acceptance probability of every input is bounded away from 1

2 .
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Our next set of results pertain to the expressiveness of PBAs and HPBAs with non-
extremal acceptance thresholds. Let L(PBA>0) be the collection of all languages rec-
ognized by PBAs with threshold 0, L(PBA=1) be those recognized with threshold 1,
L(PBA>

1
2 ) be those recognized with a strict threshold of 1

2 , and L(PBA≥
1
2 ) be those

recognized with a non-strict threshold of 1
2 . Results in [1, 4] establish that L(PBA>0)

is closed under complementation, L(PBA=1) is not closed under complementation,
and L(PBA>0) is the Boolean closure of L(PBA=1). Observations in [4] already im-
ply that L(PBA≥

1
2 ) is not closed under complementation. Moreover, the complexity

results of the decision problems in Theorem 1 imply that if L(PBA>
1
2 ) were comple-

mentable, the procedure would not be recursive. We establish that, in fact, L(PBA>
1
2 )

is not closed under complementation, and therefore cannot be the Boolean closure of
L(PBA≥

1
2 ). We also show that even though L(PBA≥

1
2 ) is a topologically simpler

class of languages than L(PBA>
1
2 ), it is not contained in L(PBA>

1
2 ); in fact, the

two sets L(PBA>
1
2 ) and L(PBA≥

1
2 ) are incomparable. The classes L(HPBA>0),

L(HPBA=1), L(HPBA>
1
2 ), and L(HPBA≥

1
2 ) can be analogously defined for HP-

BAs. It was shown in [4] that HPBAs with extremal thresholds correspond to regular
languages — L(HPBA=1) is exactly the set of deterministic ω-regular languages, while
L(HPBA>0) is exactly the set of ω-regular languages. With non-extremal thresholds,
HPBAs can recognize non-regular languages. In addition, the observations about PBA
expressiveness extend to HPBAs: L(HPBA>

1
2 ) and L(HPBA≥

1
2 ) are not closed under

complementation and they are incomparable.
Our motivation in considering HPBAs in [4] was that with extremal thresholds, they

were a “regular”, tractable subclass of PBAs. However, as observed in the preceding
paragraphs, many of these nice properties of HPBAs are lost when considering non-
extremal thresholds. Therefore we consider a syntactic subclass of HPBAs that we call
simple PBAs (SPBA). In simple PBAs, the states are partitioned into two sets. The initial
and final states belong to the first partition, and the transitions out of states in the first
partition are such that at most one successor belongs to the first partition. Transitions
from states in the second partition all remain within the second partition. We show
that emptiness and universality problems for such machines is tractable, and that the
collection of languages recognized by simple PBAs with strict and non-strict thresholds
is exactly the class of deterministic ω-regular languages.

The rest of the paper is organized as follows. Section 2 contains some preliminaries.
Section 3 contains some examples motivating HPBAs. Section 4 contains the undecid-
ability results for emptiness and universality of of PBAs and HPBAs. Section 5 contains
our expressiveness results. Section 6 contains our results on simple PBAs and we con-
clude in Section 7. The missing proofs can be found in [5].

2 Preliminaries

We assume that the reader is familiar with arithmetical and analytical hierarchies. We
also assume that the reader is familiar with Büchi automata and ω-regular languages.

The set of natural numbers will be denoted by N, the closed unit interval by [0, 1]
and the open unit interval by (0, 1). The power-set of a set X will be denoted by 2X .
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Sequences. Given a finite set S, |S| denotes the cardinality of S. Given a sequence
(finite or infinite) κ = s0s1 . . . over S, |κ| will denote the length of the sequence (for
infinite sequence |κ| will be ω), and κ[i] will denote the ith element si of the sequence.
As usual S∗ will denote the set of all finite sequences/strings/words over S, S+ will de-
note the set of all finite non-empty sequences/strings/words over S and Sω will denote
the set of all infinite sequences/strings/words over S. Given η ∈ S∗ and κ ∈ S∗∪Sω , ηκ
is the sequence obtained by concatenating the two sequences in order. Given L1 ⊆ Σ∗

and L2 ⊆ Σω , the set L1L2 is defined to be {ηκ | η ∈ L1 and κ ∈ L2}. Given natural
numbers i, j ≤ |κ|, κ[i : j] is the finite sequence si, . . . sj and κ[i : ∞] is the infi-
nite sequence si, si+1 . . ., where sk = κ[k]. The set of finite prefixes of κ is the set
Pref (κ) = {κ[0, j] | j ∈ N, j ≤ |κ|}.

Languages of infinite words. A language L of infinite words over a finite alphabet Σ
is a subset of Σω. (Please note we restrict only to finite alphabets.) A language L is said
to be a safety language if L is prefix-closed, i.e., if for every infinite string α, if every
prefix of α is a prefix of some string in L, then α itself is in L.

Probabilistic Büchi Automaton (PBA). We recall the definition of PBA given in [2].
Informally, a PBA is like a finite-state deterministic Büchi automaton except that the
transition function from a state on a given input is described as a probability distribution
which determines the probability of the next state. PBAs generalize the probabilistic
finite automata (PFAs) [12, 13, 11] on finite input strings to infinite input strings.

Definition 1. A finite state probabilistic Büchi automata (PBA) over a finite alphabet
Σ is a tuple B = (Q, qs, Qf , δ) where Q is a finite set of states, qs ∈ Q is the initial
state, Qf ⊆ Q is the set of accepting/final states, and δ : Q × Σ × Q → [0, 1] is the
transition relation such that for all q ∈ Q and a ∈ Σ, δ(q, a, q′) is a rational number
and

∑
q′∈Q δ(q, a, q

′) = 1.

Notation: The transition function δ of PBA B on input a can be seen as a square matrix
δa of order |Q|with the rows labeled by “current” state, columns labeled by “next state”
and the entry δa(q, q′) equal to δ(q, a, q′). Given a word u = a0a1 . . . an ∈ Σ+, δu is
the matrix product δa0δa1 . . . δan . For an empty word ε ∈ Σ∗ we take δε to be the
identity matrix. Finally for any Q0 ⊆ Q, we say that δu(q,Q0) =

∑
q′∈Q0

δu(q, q
′).

Given a state q ∈ Q and a word u ∈ Σ+, post(q, u) = {q′ | δu(q, q′) > 0}.

Intuitively, the PBA starts in the initial state qs and if after reading a0, a1 . . . , ai
results in state q, then it moves to state q′ with probability δai+1(q, q

′) on symbol ai+1.
Given a word α ∈ Σω , the PBA B can be thought of as an infinite state Markov chain
which gives rise to the standard σ-algebra on Qω defined using cylinders and the stan-
dard probability measure on Markov chains [14, 10]. We shall henceforth denote the
σ-algebra as FB,α and the probability measure as µB,α.

A run of the PBAB is an infinite sequence ρ ∈ Qω . A run ρ is accepting if ρ[i] ∈ Qf
for infinitely many i. A run ρ is said to be rejecting if it is not accepting. The set of
accepting runs and the set of rejecting runs are measurable [14]. Given a word α, the
measure of the set of accepting runs is said to be the probability of accepting α and is
henceforth denoted by µaccB, α; and the measure of the set of rejecting runs is said to be
the probability of rejecting α and is henceforth denoted by µrejB, α.
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Hierarchical PBA. Intuitively, a hierarchical PBA is a PBA such that the set of its
states can be stratified into (totally) ordered levels. From a state q, for each letter a, the
machine can transition with non-zero probability to at most one state in the same level
as q, and all other probabilistic successors belong to a higher level.

Definition 2. Given a natural number k, a PBA B = (Q, qs, Q, δ) over an alphabet
Σ is said to be a k-level hierarchical PBA (k-PBA) if there is a function rk : Q →
{0, 1, . . . , k} such that the following holds.

Given j ∈ {0, 1, . . . , k}, let Qj = {q ∈ Q | rk(Q) = j}. For every q ∈ Q and
a ∈ Σ, if j0 = rk(q) then post(q, a) ⊆ ∪j0≤`≤kQ` and |post(q, a)∩Qj0 | ≤ 1.

The function rk is said to be a compatible ranking function of B and for q ∈ Q the
natural number rk(q) is said to be the rank or level of q. B is said to be a hierarchical
PBA (HPBA) if B is k-hierarchical for some k.

Language recognized by a PBA. Given rational x ∈ [0, 1] and a PBA B on alphabet
Σ, we can define two languages: 4

– L>x(B) = {α ∈ Σω | µaccB, α > x}, and
– L≥x(B) = {α ∈ Σω | µaccB, α ≥ x}.

The exact value of x is not important thanks to the following proposition.

Proposition 1. For any PBA (respectively, HPBA) B, rational x ∈ [0, 1) and rational
y ∈ (0, 1), there is a PBA (respectively, HPBA) B′ constructible in polynomial time
such that L>x(B) = L>y(B′). Furthermore, for any rational r ∈ (0, 1] and rational
s ∈ (0, 1), there is a PBA (respectively, HPBA) B′ constructible in polynomial time
such that L≥r(B) = L≥s(B′).

This gives rise to the following classes of languages of infinite words.

Definition 3. Given a finite alphabet Σ, L(PBA>0) = {L ⊆ Σω | ∃PBA B. L =

L>0(B)}, L(PBA=1) = {L ⊆ Σω | ∃PBA B. L = L=1(B)}, L(PBA>
1
2 ) = {L ⊆

Σω | ∃PBA B. L = L> 1
2
(B)} and L(PBA≥

1
2 ) = {L ⊆ Σω | ∃PBA B. L = L≥ 1

2
(B)}.

The classes L(PBA>0) and L(PBA=1) have been studied extensively in [2, 1, 9, 4].
We restrict our attention here to the classes L(PBA>

1
2 ) and L(PBA≥

1
2 ). For hierar-

chical PBAs we can define classes analogous to L(PBA>0), L(PBA=1), L(PBA>
1
2 )

and L(PBA≥
1
2 ); and we will call them L(HPBA>0), L(HPBA=1), L(HPBA>

1
2 ) and

L(HPBA≥
1
2 ) respectively.

4 One does not need to explicitly consider L<x(B) and L≤x(B) since L<x(B) = Σω \L≥x(B)
and L≤x(B) = Σω \ L>x(B).
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Freivalds’ game. Freivalds’ game is a probabilistic game first presented in [7] and later
used in [6] to show that checking emptiness of a PFA with non-extremal thresholds is
undecidable. The game allows one to check using finite bounded memory whether two
input sequences ai and bj , where i, j > 0, are of equal length.

The game on input ai, bj is as follows. While processing ai, (a.1) Toss 2i fair coins
and note if all of them turned heads. (a.2) Toss a separate set of i fair coins and note if
all of them turned heads. (a.3) Toss yet another set of i fair coins and note if all of them
turned heads.

While processing bj , (b.1) Toss 2j fair coins and note if all of them turned heads. (b.2)
Toss a separate set of j fair coins and note if all of them turned heads. (b.3) Toss yet
another set of j fair coins and note if all of them turned heads.

Let A be the event that either all coins in (a.1) or (b.1) turns up heads, and B be the
event that either all coins in (a.2) and (b.2) turn up heads or all coins in (a.3) and (b.3)
turn up heads. The outcome of the game is said to be (a) Acc if B happens and A
does not, (b) Rej if A happens and B does not, (c) AllHeads if all the coins tosses
(in (a.1),(a.2),(a.3),(b.1),(b.2), and (b.3)) all result in heads, and (d) neither if none of
the above cases hold.5 The following observation holds about the probability of these
outcomes.

Proposition 2. Pr(Acc) ≥ Pr(AllHeads). If i = j then Pr(Rej ) = Pr(Acc). If
i 6= j, Pr(Rej )− Pr(Acc) > 3Pr(AllHeads).

Remark 1. In order to play the game on input ak, b`, we need to keep track of the
following pieces of information. While processing the as we need to remember 3 bits,
r1, r2, and r3, where ri records whether any of the coins tossed in (a.i) resulted in
tails. Then while processing the bs we need to 6 bits of information — the first 3 bits
to remember the results of the experiments conducted while processing the as, and the
second set of 3 bits s1, s2, and s3 to remember if any of the coins tossed in (b.i) resulted
in tails. Thus, implementing it as a finite state machine requires 23 + 26 = 72 states.
Initially, all the bits being recorded are 0, denoting that we have not seen any tails in any
of the trials. Next observe that once one of these bits (say ri) changes to 1, it will never
switch back to 0. While processing the sequence of as, we will first (possibly) change
the settings for the ris and then change the sis when processing the bs. Thus, this game
can be played using a finite state machine with a hierarchical structure, where the rank
of a state, records the number of ris that are 1 and the number of sis that are 1, giving
us 8 levels.

3 Examples

Example 1. (Recognizing non-ω-regular languages). Several example of PBAs rec-
ognizing non-ω-regular languages with non-extremal thresholds have been constructed
in literature [2, 1, 9, 4, 4]. Herein, we give yet another example, which exploits the
Freivalds’ game [7] described in Section 2.

5 The original Freivalds’ game only considers the outcomes Acc and Rej . However, for our
purposes the outcome AllHeads shall prove to be useful.
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Let Σ = {0,1,#} and consider the language L = {0n1n#α | n > 0, α ∈ Σω}.
L is a standard example of a non-ω-regular language. We will construct a PBA B such
that L> 1

2
(B) = L.

B is constructed as follows. It has two special absorbing states qa and qr. qa is also
the only accepting state of B. B proceeds as follows. When the first letter is input, B
checks if it is 0 or not. If the letter is not 0, i.e., it is either 1 or #, then B moves to qr
with probability 1 and thus the input is rejected with probability 1. If the input is 0, then
B starts playing the Freivalds’ game in order to check if the rest of the input contains
a finite sequence of 0s followed by a sequence of 1s of the same length and which is
followed by #. As long as B continues seeing input 0, B tosses coins according to (a.1),
(a.2) and (a.3) of the Freivalds’ game. If B encounters an input different from 0, then it
proceeds as follows. If the input is # then B transitions to qr with probability 1. If the
input is 1, then B tosses coins according (b.1), (b.2) and (b.3) of the Freivalds’ game
as long as B continues seeing 1. If B encounters input 0 then B transitions to qr with
probability 1. If B encounters input #; then the transition is defined according to result
of Freivalds’ game as follows.

– Freivalds’ game results in event Acc: B transitions to qa with probability 1.
– Freivalds’ game results in event Rej : B transitions to qr with probability 1.
– Freivalds’ game results in event AllHeads: B transitions to qa with probability 1.
– In all other cases, B transitions to qa and qr with probability 1

2 .

It is easy to see that B is the required PBA. Infact, observations in Remark 1 imply that
B can be taken to be a HPBA.

Example 2. (Multi-threaded systems and bounded context switching). Consider a
system consisting of k finite state processes. The system takes inputs and changes states.
At each point, one and only one process is active. At each point, the system may prob-
abilistically context switch making a new process active. Otherwise, the behavior of the
system is deterministic. One may want to check that on every input, the system satisfies
a property specified by a deterministic Büchi automaton with probability ≥ threshold
value. If the system is modeled as probabilistic automata A and the specification by
Spec, then by taking the synchronous cross-product of the automaton and specification,
we can obtain a PBA B such that the probability of system satisfying the specification
on input α is exactly the probability of B accepting α, thus turning the verification ques-
tion into a problem of deciding universality of a PBA with a non-extremal threshold. If
we bound the number of context switches, then the PBA can be taken to be a HPBA.

Remark 2. Bounding the number of context switches is a technique used to make analy-
sis of multithreaded recursive programs tractable. Our results in [4] imply that this tech-
nique will also be useful for verification of probabilistic systems with extremal thresh-
olds. However, our results in this paper would mean that bounding context switches
might not be sufficient for non-extremal thresholds.

4 Decision problems

Given a PBA B, the problem of checking whether L>0(B) is empty (or universal) was
shown to be undecidable in [1] and was later proved to be Σ0

2 complete in [4]. The prob-
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Emptiness Universality
L(PBA> 1

2 ) Σ0
2-complete Π1

1-complete
L(HPBA> 1

2 ) co-R.E.-complete Π1
1-complete

L(PBA≥ 1
2 ) Π1

1-complete co-R.E.-complete
L(HPBA≥ 1

2 ) Π1
1-complete co-R.E.-complete

Fig. 1. Hardness of decision problems

lem of checking whether L=1(B) is empty (or universal) was shown to be PSPACE-
complete in [4] (the emptiness problem was shown to be in EXPTIME in [1]). All the
above problems become decidable when we restrict B to be hierarchical.

Although the decidability of checking whether L> 1
2
(B) is empty (or universal) has

not been studied explicitly in literature, undecidability of the emptiness (and universal-
ity) problems for PFAs when the acceptance threshold is 1

2 implies the undecidability
of checking the emptiness (and universality) of L> 1

2
(B). Similarly, checking empti-

ness/universality of the language L≥ 1
2
(B) is also undecidable. Rather surprisingly, the

undecidability result continues to hold even if B is hierarchical. Our results on hardness
of decidability are summarized in Figure 1. We begin by establishing the lower bounds.

Lemma 1. Given a hierarchical PBAB on alphabetΣ, the problem of checkingL> 1
2
(B) =

∅ is co-R.E.-hard, checking L> 1
2
(B) = Σω is Π1

1-hard, checking L≥ 1
2
(B) = ∅ is Π1

1-
hard and checking L≥ 1

2
(B) = Σω is co-R.E.-hard.

Proof. We prove the co-R.E.-hardness of checking the emptiness ofL> 1
2
(B). The other

lower bound proofs are obtained by modifying this construction and can be found in [5].
The hardness result will reduce the halting problem of deterministic 2-counter ma-

chines to the non-emptiness problem of HPBAs with strict acceptance thresholds. We
begin by outlining the broad ideas behind the construction. Let T be deterministic 2-
counter machine with control states Q and a special halting state qh. We will also as-
sume, without loss of generality, that each transition of T changes at most one counter
and the initial counter values are 0. Recall that a configuration of such a machine is of
the form (q, ai+1, bj+1), where q ∈ Q is the current control state, and ai (bj) is the
unary representation of the value stored in the first counter (second counter, respec-
tively). The input alphabet of the HPBA BT that we will construct will will consist of
the set Q as well as 5 symbols- “, ”, “(”, “)”, a and b. The HPBA BT will have the
following property: if ρ = σ1σ2 · · ·σn is a halting computation of T then B will accept
the word ρσωn with probability > 1

2 ; if ρ = σ1σ2 · · · is a non-halting computation of T
then BT will accept ρ with probability 1

2 ; and if ρ ∈ Σω is an encoding of an invalid
computation (i.e., if ρ is not of the right format or has incorrect transitions) and no pre-
fix of ρ is a valid halting computation of T then BT will accept ρ with probability < 1

2 .
Given this property we will be able to conclude that T halts iff L> 1

2
(BT ) is non-empty,

thus demonstrating the co-R.E.-hardness of the emptiness problem.
In order to construct a HPBA BT with the above properties, BT must be able to

check if there is a finite prefix α of input ρ ∈ Σω that encodes a valid halting computa-
tion of T . This requires checking the following properties. (1) α is of the right format,
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i.e., it is a sequence of tuples of the form (q, ai, bj). (2) The first configuration is the
initial configuration. (3) Successive configurations in the sequence follow because of a
valid transition of T . (4) In the last configuration, T is in the halting state qh.

Observe that checking properties (1), (2) and (4) can be easily accomplished using
only finite memory. On the other hand checking (3) requires checking that the counters
are updated correctly which cannot be done deterministically using finite memory. In-
stead it will be checked using Freivalds game described in Section 2. This check will
indeed be similar to the one used in the construction of Example 1, where it is used to
check that every valid input must start with a number of 0s followed an equal number
of 1s followed by a #. In order to check properties (1), (2), (3), and (4) above for an
input ρ, BT proceeds in “phases” that are informally outlined here.

– BT reads the first symbol of ρ. If this first symbol is not “(”, then ρ is not of the
right format and so BT will move to the “reject” phase. Otherwise, BT will choose
(probabilistically) to do one of the following: (a) Move to “check initial” phase to
check if the first few symbol encode the initial configuration; (b) Move to “check
transition” phase to check if the second configuration follows from the first; (c)
Move to “continue” phase to ignore the first configuration and possibly check some
subsequent configuration.

– Check initial phase: Check if the first few symbols encode the initial configuration.
If they do move to “accept” phase, and if not move to “reject” phase.

– Continue phase: Probabilistically choose to (a) ignore input and move to accept
phase; (b) ignore input and move to reject phase; (c) ignore input and stay in con-
tinue phase; or (d) if current symbol is the beginning of a configuration (i.e., “(”)
then move to check transition phase to check if the next two configurations corre-
spond to a valid transition.

– Check Transition phase: Check if there is a prefix of the form (q1, a
i1 , bj1)(q2, a

i2 , bj2)
and if the configurations encoded correspond to a valid transition by playing the
Freivalds game. Also check if q2 is a halting state. Based on these checks move
(probabilistically) to accept phase or reject phase.

– Accept phase: Ignore the input as it has been deemed to be accepted.
– Reject phase: Ignore the input as it has been deemed to be rejected.

Observe that the above phases can be linearly ordered and so can be implemented using
a hierarchical control structure. When we spell out the details of each phase, it will also
be clear that each of the checks within a phase can be implemented within a hierarchical
PBA. The probability with which different options are chosen within a phase will be set
to ensure that on a prefix α of ρ the following properties hold: (a) if α is the prefix of
a valid computation that has not yet reached the halting state, then the probability of
reaching the accept phase is the same as the probability of reaching the reject phase, (b)
if α is not a valid computation (and no prefix of alpha is a valid halting computation)
then the probability of reaching the reject phase is greater than the probability of reach-
ing the accept phase, and (c) if α is a valid halting computation then the probability of
reaching the accept phase is greater than the probability of reaching the reject phase.
Observe that these conditions will ensure the correctness of our reduction.

Having outlined the intuitions behind the reduction, we now give the details includ-
ing the probability of the various transitions. From the initial state, BT on input “(” will
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move to check initial phase with probability 2
3 , move to check transition phase with

probability 1
6 and move to continue phase with probability 1

6 . On all other inputs, BT
moves to the reject phase with probability 1 from the initial state.

Check initial phase. Observe that the check initial phase can be carried out by a deter-
ministic finite state machine. If an error is discovered, the BT moves to the reject phase
with probability 1. On the other hand, if no error is found, then BT moves to accept
phase and reject phase with probability 1

2 .

Continue phase. The continue phase is implemented by a single state qcont. On input
symbol “(” (denoting the start of a configuration), BT stays in continue phase with
probability 1

4 , moves to accept phase with probability 1
4 , moves to reject phase with

probability 1
4 , and moves to check transition phase with probability 1

4 . On all other
input symbols, it moves to accept phase (and reject phase) with probability 15

32 , and
stays in qcont with probability 1

16 .

Accept and Reject phases. Since in these phases the input is ignored, the accept phase
consists of a single absorbing state qa, and the reject state consists of a single absorbing
state qr. The state qa (for the accept phase) is the unique accepting state of the machine.

Check transition phase. This is the most interesting part of BT that requires checking
if there is a prefix of the remaining input of the form (q1, a

i1 , bj1)(q2, a
i2 , bj2), where

(q1, a
i1 , bj1) and (q2, a

i2 , bj2) are successive configurations of correct computational
step of T . BT must check for “formatting” errors and that q2 is right next control state
— these can be accomplished by a deterministic finite state machine. The difficulty is in
checking that the counter values are correct. For this, BT plays the Freivalds game (see
Section 2)that checks if i = j in an input ai, aj . So to check the correctness of counter
values, BT plays two Freivalds games; if i2 (j2) is supposed to be the increment of i1
(j1) then we play on ai1+1, ai2 (bj1+1, bj2 ); if it follows by a decrement then the game
is played on ai1 , ai2+1 (bj1 , bj2+1) and if the counter values are unchanged then the
game is played on ai1 , ai2 (bj1 , bj2 ). The Freivalds game has 4 possible outcomes: Acc,
Rej , AllHeads , and neither . After playing the two games, if both result in Acc then
BT moves to accept phase with probability 1, and if both result in Rej then move to
reject phase with probability 1. If neither of the above cases hold then BT ’s transitions
depend on whether q2 is the halting state. If q2 is the halting state and if both games have
outcome AllHeads , BT moves to accept phase with probability 1. In all other cases, BT
moves to accept and reject phase with probability 1

2 .
From the construction of BT it is easy to see that it is an HPBA. Furthermore, it is

easy to see that if T has a halting computation σ1σ2...σn then BT will accept the word
σ1σ2...σnσ

ω
n with probability > 1

2 . If T has a non-halting computation σ1σ.... then the
word σ1σ2... is accepted with probability = 1

2 . Now the co-R.E.-hardness of emptiness
checking follows from the observation below.

Claim. If α ∈ Σw does not represent a valid computation of T and no prefix of α is a
valid halting computation then BT accepts α with probability < 1

2 .

Proof of the claim: If α satisfies the premise of the above claim then one the following
things must happen — (1) The initial configuration is not correct, (2) α has a prefix
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σ0σ1 . . . σnu where σi is of the form (q, a`i , b`
′
i) and u is incorrectly formatted, i.e.

either u = w1)w2 where w1 does not contain “)” and w1 in not contained in the set
{(q, ar, bs | q is a control state of T, r, s ≥ 1} or u has a prefix w that does not contain
“)” and w itself is not contained in Pref {(q, ar, bs | q is a control state of T, r, s ≥ 1},
(3) α has a finite prefix σ0σ1 . . . σn where σi is of the form (q, a`i , b`

′
i) and one of the

following happens: a) control states in two consecutive configurations σj , σj+1 are not
in accordance with the transition function of T , or b) counter values in two consecutive
configurations σj , σj+1 are not in accordance with the transition function of T , (4)
α ∈ Σ∗aω or α ∈ Σ∗bω .

We consider here the most interesting case when α has a finite prefix σ0σ1 . . . σn
where σi is of the form (q, a`i , b`i) and the first error in α is that the counter values
in two consecutive configurations σj , σj+1 are not in accordance with the transition
function of T. Let j0 be the first j such that the counter values in σj0 , σj0+1 are not in
accordance with the transition function of T. We will assume that j0 is > 0. The case
when j0 is 0 is similarly handled. Let σj0 be (q1, a

r1 , bs1) and σj0+1 be (q2, a
r2 , bs2).

Consider the event CheckBeforej0 in which BT either moves to the check initial phase
or moves to the check transition phase before σj0 . Note that the probability of BT
accepting α given that CheckBeforej0 happens is exactly 1

2 .
Let Check j0 be the event that BT moves to the check transition phase upon en-

countering σj0 , Check j0+1 be the event that BT moves to the check transition phase on
encountering σj0+1 and CheckAfter j0+1 be the event that BT moves to the check tran-
sition phase sometime after σj0+1. The claim follows from the following observations.

– Given the event Check j0 happens, the probability of BT transitioning to qr is
bounded away from the probability ofBT transitioning to qa by at least 2

24r1+4s1+4r2+4s2+4 .
This follows from Proposition 2.

– Given the event Check j0+1 happens, the difference in probability of BT transition-
ing to qa and the probability of BT transitioning to qr is ≤ 1

24r2+4s2
.

– This implies that given that the event CheckBeforej0 does not happen, the differ-
ence in the probability of BT transitioning to qr and probability of BT transitioning
to qa is> 1

4 (
2

24r1+4s1+4s1+4s2+4− 1
24r1+4s1+17

1
24r2+4s2

− 1
24r1+24s1+24r2+24s2+33

) > 0.
ut

Observe that since HPBAs are special PBAs, the lower bounds in Lemma 1 estab-
lished for HPBAs apply also to general PBAs. In addition, for general PBA, the Σ0

2-
hardness of checking emptiness of L>0(B) [4] coupled with Proposition 1, establishes
the Σ0

2-hardness of checking the emptiness of L> 1
2
(B). The lower bounds implied by

Lemma 1 and the preceding arguments in this paragraph are in fact tight. The most in-
teresting case is the co-R.E. decision procedure for checking the emptiness of L> 1

2
(B)

for HPBAs B, which is a consequence of the proof of the fact that for a HPBA B,
L> 1

2
(B) 6= ∅ iff L> 1

2
(B) contains an ultimately periodic word. This property is not

true for general PBAs (see [1]). This property is also not true for the case L≥ 1
2
(B) even

if we take B to be hierarchical. However, we can show that L≥ 1
2

is not universal, then
its complement Σω \ L≥ 1

2
(B) must contain an ultimately periodic word (even in the

case B is not hierarchical).
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Lemma 2. If B is a HPBA onΣ and L> 1
2
(B) 6= ∅ then L> 1

2
(B) contains an ultimately

periodic word. If B is a PBA (not necessarily hierarchical) on Σ and L≥ 1
2
(B) 6= Σω

then Σω \ L≥ 1
2
(B) contains an ultimately periodic word.

We are ready to establish the upper bounds of the decision problems.

Theorem 1. Given a PBA B on alphabet Σ,

– the problem of checking whether L> 1
2
(B) = ∅ is Σ0

2-complete. If B is hierarchical,
the problem of checking whether L> 1

2
(B) = ∅ is co-R.E.-complete.

– The problem of checking whether L> 1
2
(B) = Σω is Π1

1-complete. The problem
continues to Π1

1-complete even if we restrict B to the class of hierarchical PBAs.
– The problem of checking whether L≥ 1

2
(B) = ∅ is Π1

1-complete. The problem
continues to Π1

1-complete even if we restrict B to the class of hierarchical PBAs.
– The problem of checking whether L≥ 1

2
(B) = Σω is co-R.E.-complete. The prob-

lem continues to be co-R.E.-complete even if we restrict B to the class of hierar-
chical PBAs.

5 Expressiveness

Language properties of classes L(PBA>0) and L(PBA=1) have been extensively stud-
ied in [1, 4, 9]. The main results established therein are the following.

– The class L(PBA=1) strictly contains the class of all deterministic ω-regular lan-
guages [1, 9] and is a strict subset of all languages recognized by a deterministic
Büchi automata (with possibly infinite states) [4]. Therefore, L(PBA=1) is not
closed under complementation [1, 4, 9].

– The class L(PBA>0) strictly contains the class of all ω-regular languages [1, 9]
and is the Boolean closure of the class L(PBA=1) [4]. Boolean closure of a class
of languages C is the smallest class of languages which contains C and is closed
under finite unions, finite intersections and complementation. This implies that
L(PBA>0) is closed under complementation, a fact that was established in [1].
Indeed, [1] shows that the complementation is recursive.

Results of [4] immediately imply that the class L(PBA≥
1
2 ) is also a subset of

all languages recognized by a deterministic Büchi automata (with possibly infinite
states) [4] and the containment can be shown to be strict. The classes L(PBA≥

1
2 ) and

L(PBA>
1
2 ) were also shown to contain strictly the classes L(PBA=1) and L(PBA>0)

respectively [9]. Since L(PBA>
1
2 ) contains all ω-regular languages (even those not rec-

ognized by deterministic Büchi automata), L(PBA>
1
2 ) cannot be a subset of L(PBA≥

1
2 ).

The natural question that arises is whether the class L(PBA>
1
2 ) is a Boolean closure

of the class L(PBA≥
1
2 ). Observe that Theorem 1 already implies that if L(PBA>

1
2 )

were to be closed under complementation, the complementation cannot be recursive.
We will establish that L(PBA>

1
2 ) is not closed under complementation thus answering

the above question in the negative. Further, we will also show that the class L(PBA≥
1
2 )

is not even contained in L(PBA>
1
2 ). In order to establish these results, we shall need

the concept to robust PBAs.
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Robust PBAs. In the context of probabilistic automata on finite strings (PFAs), [12]
introduced the notion of isolated cutpoints. A real number x is said to be an isolated
cutpoint for a PFA A if there is an ε such that for every finite word u, the probability of
A accepting u is at least ε away from x. We extend this notion to PBAs.

Definition 4. A PBA, B on Σ, is said to be x-robust for some x ∈ (0, 1) if there is an
ε > 0 such that for any α ∈ Σω , |µaccB, α − x| > ε.

Observe first that if B is x-robust then L>x(B) = L≥x(B). It was shown in [12]
that the languages recognized by robust PFAs are regular languages over finite words.
We had extended this result for finite probabilistic monitors (FPMs) in [3]. A FPM
is a PBA in which all states except one absorbing state, called reject state, are final
states. We will demonstrate a similar result for PBAs and show that if B is x-robust
and L>x(B) is a safety language then B is ω-regular. The same result also holds if
complement of L>x(B) is a safety language. The proof essentially follows the proof of
[12] except that it depends on the assumed topological properties of L>x(B).

Proposition 3. Let B be x-robust for some x ∈ (0, 1). If either L>x(B) a safety lan-
guage or Σω \ L>x(B) is a safety language, then L>x(B) is ω-regular.

Lemma 3. There is a language L ∈ L(PBA≥
1
2 ) such that L /∈ L(PBA>

1
2 ). Further-

more, L(PBA>
1
2 ) is not closed under complementation.

Proof. Let Σ = {0,1}. Let num(0) be the natural number 0 and num(1) be the
natural number 1. For any word α = a0a1 . . . ∈ Σω let bin(α) be the real number∑
i∈N,i>0

num(ai)
2i+1 . Let wrd( 1√

2
) be the unique α such that bin(α) = 1√

2
.We had shown

in [3] that there is a FPMM such that L≥ 1
16
(M) = {wrd( 1√

2
)}. Let L0 = {wrd( 1√

2
)}.

L0 is a safety language but not ω-regular.
We claim that L0 is not in L(PBA>

1
2 ). We proceed by contradiction. If there is a

PBA B such that L> 1
2
(B) = L0 then µaccB,wrd( 1√

2
)
> 1

2 and for any word β 6= wrd( 1√
2
),

µaccB, β ≤ 1
2 . Clearly B is 1

2 +
µaccB, α− 1

2

2 -robust. Thus, L0 should be ω-regular by Proposi-
tion 3 which contradicts the fact that L0 is not ω-regular.

In order to see that L(PBA>
1
2 ) is not closed under complementation, consider the

PBA B obtained fromM by taking the reject state of the FPMM above as the only
accept state. It is easy to see that L> 15

16
(B) is the languageΣω \L0. But the complement

of L> 15
16
(B) is L0 which as already observed above is not in L(PBA>

1
2 ). ut

Remark 3. Note that the FPMM built in the proof above to show that L(PBA≥
1
2 ) is

not contained in L(PBA>
1
2 ) is also a HPBA. Therefore, L(HPBA≥

1
2 ) 6⊆ L(HPBA>

1
2 )

and the class L(HPBA>
1
2 ) is also not closed under complementation.

6 Simple PBAs

Unlike the case of extremal thresholds, as the results in the previous sections demon-
strate, HPBAs under non-extremal thresholds lose their “regularity” and “tractability”
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properties. In this section we introduce a special class of HPBAs that we call simple
PBAs that have many nice tractable properties even under non-extremal thresholds.

We begin by formally defining simple PBAs (SPBA). A HPBA B is called simple
if it is a 1-level HPBA and all its accepting states are at level 0, i.e., the lowest level.
Recall that in a 1-level HPBA, the level of each state is either 0 or 1. Analogous to
the class L(HPBA>

1
2 ) and L(HPBA≥

1
2 ), we can define the corresponding classes for

simple PBAs, namely, L(SPBA>
1
2 ) and L(SPBA≥

1
2 ).6

Theorem 2. L(SPBA>
1
2 ) = L(SPBA≥

1
2 ) = DetReg, where DetReg is the collection

of ω-regular languages recognized by deterministic finite state Büchi automata.

Proof. Observe that every deterministic Büchi automata is a simple PBA; the language
remains the same no matter what threshold (> 0) we choose and whether we interpret
the threshold to be strict or non-strict. Thus, one direction of the above theorem is trivial.
We now prove the other direction.

Let B = (Q, qs, Qf , δ) be a simple PBA and let x ∈ (0, 1). For a state q ∈ Q, let
rk(q) ∈ {0, 1} denote the level of q.

We show that the language L≥x(B) is a deterministic ω-regular language by con-
structing a deterministic Büchi automaton A that accepts exactly L≥x(B). The con-
struction is based upon the observation that for a finite input u, there is at most one
level 0 state q of B such that δu(qs, q) > 0. Essentially, each state of the automaton
A is either a pair of the form (q, y) where y ∈ [x, 1] and q is a level 0 state of B (i.e.,
rk(q) = 0), or is the error state error. A is constructed to satisfy the following proper-
ties. If u is a finite input and q is a level 0 state such that δu(qs, q) = y and y ≥ x, then
the automaton A goes to state (q, y) on the input u. If there is no such state q, then A
goes to state error on the input u.

Now, we give a formal definition of A. Let X = {δa(q, q′) : a ∈ Σ, 0 <
δa(q, q

′) < 1, rk(q) = rk(q′) = 0}. Essentially, X is the set of non-zero probabilities
less than 1, associated with transitions of B between level 0 states. Let Y = {y ≥ x :
y = 1 or y = p1 × p2 × ...× pm, p1, ..., pm ∈ X}. The set Y is finite. To see this, let
p = max(X). Note that p < 1. Now, let l be the maximum integer such that pl ≥ x.
It should be easy to see that each element in Y is a product of at most l numbers from
X and hence Y is bounded. Let A = (Q′, (qs, 1), F

′, δ′) be a deterministic Büchi
automaton where Q′ = (Q × Y ) ∪ {error}, F ′ = Qf × Y and δ′ is as given
below: δ′ = {((q, y), a, (q′, y′)) | a ∈ Σ, rk(q) = rk(q′) = 0, y, y′ ∈ Y, y′ =
y×δa(q, q′)}∪{((q, y), a, error) |a ∈ Σ, y ∈ Y and there is no q′ such that rk(q′) =
0 and y × δa(q, q′) ∈ Y } ∪ {(error, a, error) | a ∈ Σ}. It is not difficult to see that
L(A) = L≥x(B). Clearly, A is a deterministic Büchi automaton. To show that the
language L>x(B) is a deterministic ω-regular language, we simply modify the above
construction by defining Y to be all y > x which are products of members of X . ut

Theorem 3. Given a simple PBA B and rational x ∈ (0, 1), the following problems are
all decidable in polynomial time: determining if (a) L>x(B) = ∅, (b) L≥x(B) = ∅, (c)
L>x(B) = Σω , and (d) L≥x(B) = Σω .

6 The construction in Proposition 1 which allows one to change thresholds does not yield simple
PBAs. However, the proof of Theorem 2 allows one to switch thresholds. Theorem 3 shows
that emptiness and universality are polynomial-time decidable for every threshold value.
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7 Conclusions and further work

In this paper, we presented a number of expressiveness and decidability results for PBAs
and HPBAs when the acceptance thresholds are non-extremal. We contrasted these re-
sults with the cases when the threshold probabilities are extremal. We also considered
a subclass of HPBAs, called simple PBAs. We showed that the class of languages ac-
cepted by them under non-extremal threshold probabilities is exactly the class of deter-
ministic ω-regular languages.

For an HPBA B, checking the emptiness (and universality) of L> 1
2
(B) is undecid-

able. In contrast the same problems are decidable if B is a simple PBA. Simple PBAs
are a special class of 1-level HPBA. It would be interesting to see if the decidability
result can be extended to all 1-level HPBAs. It will also be interesting to investigate
use of simple PBAs for modeling practical systems that may fail. Investigation of other
interesting subclasses of PBAs and HPBAs, for which the emptiness and universality
problems are decidable for non-extremal threshold probabilities, are also interesting
future work.
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