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Abstract. Alternating vector addition systems are obtained by equip-
ping vector addition systems with states (VASS) with ‘fork’ rules, and
provide a natural setting for infinite-arena games played over a VASS.
Initially introduced in the study of propositional linear logic, they have
more recently gathered attention in the guise of multi-dimensional en-
ergy games for quantitative verification and synthesis.

We show that establishing who is the winner in such a game with a
state reachability objective is 2-ExpTime-complete. As a further appli-
cation, we show that the same complexity result applies to the problem
of whether a VASS is simulated by a finite-state system.

Keywords. VASS, energy game, simulation game, Pareto frontier

1. Introduction

Vector addition systems with states (VASS) allow to model systems ma-
nipulating multiple discrete resources, for instance bank accounts balances
or numbers of processes running concurrently. Extending their definition to
two-players games is both a very natural endeavour and a tricky problem:
the most immediate definition, where both players can freely update the
vector values, leads to an undecidable game even with the simplest winning
condition, namely (control) state reachability [1].

Facing this difficulty, one might expect to see a flurry of competing def-
initions for VASS games that would retain decidability through various re-
strictions. Surprisingly, this is not really the case: if there is indeed a large
number of denominations (e.g. B-VASS games [23], Z-reachability games [6],
multi-dimensional energy games [8]), Abdulla, Mayr, Sangnier, and Spros-
ton [2] noted last year that they all defined essentially the same asymmetric
class of games, where one player is restricted and cannot update the vector
values.

Our contention in this paper is that so many different people coming up
independently with the same model is not a coincidence, but a sure sign
of a fundamental idea deserving investigation in its own right. We find
further arguments in our own initial interest in such games, which comes
from the study of simulation problems between Petri nets and finite-state
systems [14, 18] where they arise naturally—Abdulla et al. [3] recently made
a similar observation. Furthermore the model was already explicitly defined
in the ’90s in the study of substructural logics [20, 15, 25], and appears
implicitly in recent proofs of complexity lower bounds in [10, 4]. We show
in this paper that determining the winner of an asymmetric VASS game
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2 J.-B. COURTOIS AND S. SCHMITZ

with a state reachability objective is 2-ExpTime-complete. We extend for
this well-known techniques by Rackoff [22] and Lipton [21] used to establish
the complexity of VASS problems, see sections 3 and 4. We also provide
refined bounds when the dimension of the problem is fixed, and show how
to compute the Pareto frontier for such games.

Perhaps more importantly than those technical contributions, we single
out in Section 2 a simple definition for alternation in VASS by way of ‘fork’
rules (following [20]), for which the complexity analyses of sections 3 and 4
are relatively easy, and establish it as a pivotal definition for VASS games.
Indeed, we relate it to energy games in Section 5 (following [2]), to Horn
fragments of affine linear logic in Section 6 (following [15]), and to regular
simulation problems for VASS in Section 7. Our lower bound improves on all
the published bounds for those problems, including the ExpSpace-hardness
of simulations between basic parallel processes and finite-state processes due
to Lasota [18]. Our upper bound applies to the simulation of Petri nets by
finite-state systems, for which only decidability was known [14].

2. Alternating VASS

VASS were originally called ‘and-branching’ counter machines by Lin-
coln, Mitchell, Scedrov, and Shankar [20], and were introduced to prove
the undecidability of propositional linear logic. Kanovich [15] later identi-
fied a fragment of linear logic, called the (!,⊕)-Horn fragment, that cap-
tures exactly alternation in VASS, and adopted a game viewpoint, see Sec-
tion 6. Alternating VASS were also instrumental in establishing the Acker-
mann-completeness of the conjunctive-implicational fragment of relevance
logic [25]. As discussed in sections 5 and 7, this class of systems has since
reappeared in other contexts, which motivates its study in earnest.

2.1. Basic Definitions. An alternating vector addition system with states
(AVASS) is syntactically a tuple A = 〈Q, d, Tu, Tf 〉 where Q is a finite set

of states, d is a dimension in N, and Tu ⊆ Q × Zd × Q and Tf ⊆ Q3

are respectively finite sets of unary and fork rules. We denote unary rules

(q,u, q1) in Tu with u in Zd by ‘q
u−→ q1’ and fork rules (q, q1, q2) in Tf by

‘q → q1 ∧ q2.’ A vector addition system with states (VASS) is an AVASS
with Tf = ∅.

2.1.1. Deduction Semantics. Given an AVASS, its semantics is defined by a

deduction system over configurations (q,v) in Q×Nd. For rules q
u−→ q1 and

q → q1 ∧ q2,

q,v

q1,v + u
(unary)

q,v

q1,v q2,v
(fork)

where ‘+’ denotes component-wise addition in Nd, and implicitly v + u has
no negative component, i.e. is in Nd. This deduction system can be employed
either top-down or bottom-up depending on the problem at hand (as with
tree automata).

When working with finite deduction trees t, we define the height h(t) of
t as the maximal length among all its branches. A (multi)-context C is
a finite tree with n distinguished leaves labelled with n distinct variables
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ALTERNATING VECTOR ADDITION SYSTEMS WITH STATES 3

x1, . . . , xn; C[t1, . . . , tn] then denotes the tree obtained by substituting for
each 1 ≤ j ≤ n the tree tj for the variable xj .

2.1.2. Game Semantics. The top-down direction of the deduction semantics
allows for potentially infinite deduction trees, and defines in a natural way
an asymmetric VASS game as defined by Kanovich [15] and later by Raskin
et al. [23]. Two players, ‘Controller’ and ‘Environment’, play over the infinite
arena Q × Nd. In a current configuration (q,v), Controller chooses among

the applicable rules in Tu ∪ Tf . In case of a unary rule q
u−→ q′, the next

configuration is (q′,v+u), where by assumption v+u ≥ 0 where ‘0’ denotes
the null vector in Nd. In case of a fork rule q → q1 ∧ q2, Environment then
chooses which branch of the deduction tree to explore, i.e. chooses between
(q1,v) and (q2,v) as the next configuration. Various winning conditions on
such plays (q0,v0), (q1,v1), . . . can then be envisioned, and correspond to
conditions that must be satisfied by all the branches of a deduction tree. As
shown by Abdulla et al. [2], such asymmetric games are closely related to
multi-dimensional energy games [8, 6], see Section 5.

2.2. Decision Problems and Complexity. We assume when deriving
complexity bounds a binary encoding of vectors in Zd. That is, letting

‖u‖∞
def
= max1≤i≤d |u(i)| denote the norm of the vector u and defining

‖Tu‖∞
def
= max(q,u,q′)∈Tu

‖u‖∞the norm of a set of unary transitions, then
the size of an AVASS 〈Q, d, Tu, Tf 〉 depends polynomially on the bitsize
log(‖Tu‖∞ + 1). Note that we can reduce in logarithmic space by stan-
dard techniques all our decision problems to work with a set of unary rules
T ′u with effects u = ei or u = −ei—where ‘ei’ is the unit vector with ‘1’ in
coordinate i and ‘0’ everywhere else—, but this comes at the expense of an
increase in the dimension by a factor of log(‖Tu‖∞ + 1).

2.2.1. Reachability. The decision problem that originally motivated the def-
inition of AVASS by Lincoln et al. [20] is reachability : given an AVASS
〈Q, d, Tu, Tf 〉 and two states qr and q` in Q, does there exist a deduction
tree with root labelled by (qr,0) and every leaf labelled by (q`,0)? Equiva-
lently, does Controller have a strategy that ensures that a play starting in
(qr,0) eventually visits (q`,0)?

This problem is easily seen to be Σ0
1-complete:

Fact 2.1 (Lincoln et al. [20]). Reachability in AVASS is undecidable.

Proof Idea. By a reduction from the halting problem in Minsky machines:

note that a zero test q
c?=0−−−→ q′ on a counter c can be emulated through a

fork q → q′ ∧ qc, where unary rules qc
−ec′−−−→ qc for all c′ 6= c allow to empty

the counters different from c, and a last unary rule qc
0−→ q` to the single

target state allows to check that c was indeed equal to zero. �

2.2.2. State Reachability. Our main problem of interest in this paper is (con-
trol) state reachability (aka leaf coverability): given as before an AVASS
〈Q, d, Tu, Tf 〉 and two states qr and q` in Q, we ask now whether there ex-
ists a deduction tree with root labelled by (qr,0) and every leaf label in
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4 J.-B. COURTOIS AND S. SCHMITZ

{q`} × Nd. Equivalently, does Controller have a strategy that ensures that
a play starting in (qr,0) eventually visits (q`,v) for some v in Nd?

We prove in this paper that state reachability is 2-ExpTime-complete,
see Theorem 3.1 and Proposition 4.1.

2.2.3. Non-Termination. A second problem of interest is non-termination:
given an AVASS 〈Q, d, Tu, Tf 〉 and an initial state qr in Q, does there exist a
deduction tree where every branch is infinite? Equivalently, does Controller
have a strategy to ensure that a play starting in (qr,0) never stops?

Brázdil, Jančar, and Kučera [6] show in the context of Z-reachability
games that this problem is ExpSpace-hard, and in (d− 1)-ExpTime when
the dimension d is fixed. Our 2-ExpTime lower bound in Proposition 4.1
is the best known lower bound for this problem, leaving a large complexity
gap.

We discuss a few other decision problems related to energy games in
Section 5 and to regular VASS simulations in Section 7.

2.3. Example. Figure 1a presents a 2-dimensional AVASS with state set
Q = {qr, q, q1, q2, q`} and a single fork rule q → q1 ∧ q2.

qr q ∧

q1

q2

q`

(0, 1)

(1, 0)

(−1, 0)

(0,−1)

(0,−1)

(−1, 0)

(a) A 2-dimensional AVASS A.

qr, 1, 0
q, 1, 1

q1, 1, 1
q`, 0, 1

q2, 1, 1
q`, 1, 0

(b) A deduction tree in A.

Figure 1. State reachability and non-termination in an AVASS.

For the state reachability problem, observe that Controller cannot ensure
reaching state q` from the initial configuration (qr, 0, 0): in configuration
(q, 0, 1), Environment can send to (q1, 0, 1) from which only (qr, 0, 0) can be
reached; in configuration (q, 1, 0) Environment can send instead to (q2, 1, 0)
with the same conclusion. However, starting instead from an initial config-
uration (qr, 1, 0) would give Controller a winning strategy described by the
deduction tree in Figure 1b.

Regarding the non-termination problem, in a similar way Controller can-
not ensure an infinite execution from (qr, 0, 0): this time Environment can
force Controller to visit q` where the system deadlocks.

3. Complexity Upper Bounds

The state reachability problem asks about the existence of a deduction
tree with root (qr,0) and leaves labels in {q`} × Nd, which describes when
using the game semantics a winning strategy for Controller. More generally,
we are interested in deduction trees with root label (q,v) and leaves in
{q`}×Nd, which we call witnesses for (q,v). Let us write A, q` . q,v if such
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ALTERNATING VECTOR ADDITION SYSTEMS WITH STATES 5

a witness exists in an AVASS A; then the state reachability problem asks
whether A, q` . qr,0.

Following Rackoff [22], the main idea to prove a 2-ExpTime upper bound
on the state reachability problem is to prove a doubly exponential upper
bound on the height of witnesses, by induction on the dimension d; see
Section 3.1. But let us first make a useful observation: if A, q` . q,v and
(q′,v′) ≥ (q,v) for the product ordering over Q × Nd, i.e. if q = q′ and
v′(i) ≥ v(i) for all 1 ≤ i ≤ d, then A, q` . q′,v′, and is moreover witnessed
by a deduction tree of the same height—indeed, this is the deduction tree
with v′−v added to all the labels. This means that the set of root labels that
ensure reaching q` is upward-closed, and since (Q × Nd,≤) is a well partial
order, it has a finite set of minimal elements called its Pareto frontier :

Pareto(A, q`)
def
= min{(q,v) ∈ Q× Nd | A, q` . q,v} . (1)

For instance, with the example AVASS of Section 2.3,

Pareto(A, q`) = {(qr, 1, 0), (qr, 0, 1), (q, 1, 1), (q1, 1, 0), (q2, 0, 1), (q`, 0, 0)} .
We use in Section 3.2 the bounds on the size of witnesses to show that

Pareto frontiers can be computed in doubly exponential time, which in turn
proves:

Theorem 3.1. State reachability in AVASS is in 2-ExpTime. It is in
ExpTime when the dimension is fixed, and in PTime when furthermore the
bitsize is fixed.

Note that the PTime bound in the case of a fixed dimension and fixed
bitsize, i.e. polynomial in |Q|, is not trivial, since it still allows for infinite
arenas. In essence it shows one can add a fixed number of counters to a
reachability game ‘for free.’

3.1. Small Witnesses. Let us fix an instance 〈A, qr, q`〉 of the state reach-

ability problem with A = 〈Q, d, Tu, Tf 〉 and write [d]
def
= {1, . . . , d} for its

set of components. For a subset I ⊆ [d] of the components of A, we
write u�I for the projection of a vector u on I, and define the projection

A�I
def
= 〈Q, |I|, Tu�I , Tf 〉 of A on I as the AVASS with unary rules Tu�I

def
=

{(q,u�I , q′) | (q,u, q′) ∈ Tu}. Let WI
def
= {(q,v) ∈ Q × N|I| | A�I , q` . q,v}

be the set of witness roots in A�I . We are interested in bounding the height
h(t) of minimal witnesses t in A�I :

HI
def
= sup

(q,v)∈WI

min{h(t) | t witnesses (q,v)} , (2)

where implicitly HI = 0 if no witness exists.
A last remark before we proceed is that, if a label (q,v) appears twice

along a branch of a witness t, i.e. if t = C[C ′[t′]] for some context C, some
non-empty context C ′ with root label (q,v), and tree t′ with root label (q,v),
then the shortening C[t′] of t, obtained by replacing C ′[t′] by t′ in t, is also
a witness.

Assume that there exists a witness for some root label (q,v). We bound
HI by induction on |I|: for the base case where I = ∅, by repeated short-
enings we see that no branch of a minimal witness can have the same state
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6 J.-B. COURTOIS AND S. SCHMITZ

q,v

≤ BI

C

q1,v1

t1

qn,vn

tn. . .

 

t = C[t1, . . . , tn]

q,v

C

q1,v1

t′1

qn,vn

t′n
. . .

t′ = C[t′1, . . . , t
′
n]

h
(C

)
≤
|Q
|·

B
|I
|

I

h
(t
′ j
)
≤

H
(

I

h
(t ′)
≤
|Q
|·

B
|I
|

I
+

H
(

I

Figure 2. Bounding the height of minimal witnesses.

twice, thus

H∅ ≤ |Q| . (3)

Consider now some non-empty set I and a minimal witness t for (q,v). We
would like to bound HI , assuming by induction hypothesis that we are able
to bound HJ for all J ( I by some value

H(I = max
J(I

HJ .

Define for this a large value

BI
def
= ‖Tu‖∞ ·H(I

and consider along each branch of t the first occurrence (starting from the
root) of a node with some vector value ≥ BI if one exists. Let n be the
number of such first occurrences in t; then t can be written as C[t1, . . . , tn]
where C is a context where all the vector values are < BI , and each tj
witnesses AI , q` . qj ,vj where vj(ij) ≥ BI for some ij in I.

(1) By repeated shortenings, we can bound the height of C by |Q| ·B|I|I .

(2) For each j, let Ij
def
= I \ {ij}. Then tj is also a witness for A�Ij , q` .

qj ,vj�Ij
, and we can replace it by a witness t′j of height at most HIj .

Then t′j also witnesses AI , q`.qj ,vj because BI bounds the maximal
total decrease that can occur along a branch of a deduction tree of
height HIj .

See Figure 2 for an illustration. Hence t′
def
= C[t′1, . . . , t

′
n] is a witness for

(q,v) and

HI ≤ h(t′) ≤ |Q| ·B|I|I +H(I = |Q| · (‖Tu‖∞ ·H(I)|I| +H(I . (4)

Combining (3) with (4), we obtain by induction over d that

H[d] ≤ (|Q| · (‖Tu‖∞ + 1) + 1)(3d)! . (5)

Observe that this bound is doubly exponential in d, but only exponential in
the bitsize log(‖Tu‖∞ + 1), and polynomial in the number of states |Q|.
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ALTERNATING VECTOR ADDITION SYSTEMS WITH STATES 7

3.2. Pareto Frontier. Equation (5) yields an algorithm in AExpSpace =
2-ExpTime to decide given (q,v) in Q×Nd whether A, q` . q,v: it suffices
to look for a minimal witness of height at most H[d], and the vector values
in such a witness are bounded by H[d] · ‖Tu‖∞.

Furthermore, as observed by Yen and Chen [26], a bound like (5) that does
not depend on the initial configuration (q,v) can be exploited to compute the
Pareto frontier: if (q,v) belongs to Pareto(A, q`), then ‖v‖∞ ≤ H[d] ·‖Tu‖∞.
Thus the Pareto frontier can be computed by running the previous algorithm
on at most |Q| · (1 +H[d] · ‖Tu‖∞)d candidates (q,v):

Proposition 3.2. Let A = 〈Q, d, Tu, Tf 〉 be an AVASS and q` be a state
in Q. Then the Pareto frontier Pareto(A, q`) can be computed in doubly
exponential time. If d is fixed it can be computed in exponential time, and
if ‖Tu‖∞ is also fixed it can be computed in polynomial time.

4. Complexity Lower Bounds

In this section, we match the 2-ExpTime upper bound of Theorem 3.1
for state reachability in AVASS (Section 4.1). Regarding the fixed dimen-
sional cases, we also show in Section 4.2 that our ExpTime upper bound is
optimal—note that the case where both the dimension and the bitsize are
fixed is trivially PTime-hard by reduction from the emptiness problem for
tree automata. These lower bounds on decision problems also entail that our
bounds in Proposition 3.2 for the complexity of computing Pareto frontiers
are optimal.

4.1. A General Lower Bound. We extend the classical ExpSpace hard-
ness proof of Lipton [21] for state reachability in VASS to the AVASS case.
Instead of reducing from the halting problem for Minsky machines with
counter valuations bounded by 22n , we reduce instead from the same prob-
lem for alternating Minsky machines.

More precisely, a Minsky machine can be defined as a VASS with addi-

tional zero-test rules Tz of the form q
i?=0−−−→ q′ for 1 ≤ i ≤ d with deduction

semantics
q,v v(i) = 0

q′,v
(zero-test)

An alternating Minsky machine 〈Q, d, Tu, Tf , Tz〉 can similarly be defined
by allowing fork rules. By adapting the usual encoding of Turing machines
into Minsky machines [12] to the alternating case, the halting problem for
alternating Minsky machines with counter values bounded by 22n is hard for
AExpSpace = 2-ExpTime. With this in mind, the necessary adaptations
of Lipton’s reduction are straightforward.

Proposition 4.1. State reachability and non-termination in AVASS are
hard for 2-ExpTime.

Proof Idea. Consider an alternating Minsky machineM = 〈Q, d, Tu, Tf , Tz〉
with vector components bounded by 22n for n

def
= |M| and a target state q`

with no applicable rule. Note that we can assume that M always termi-
nates: we can otherwise reduce to this case by constructing a padded M′
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8 J.-B. COURTOIS AND S. SCHMITZ

that first initialises an additional counter to |Q| · 2m2n the number of dis-
tinct configurations ofM and then decrements it at every step. Then state
reachability and non-termination are essentially the same, as it suffices to
add a self-loop on q`.

The main issue is to handle zero-tests using only unary rules (and forks).
Lipton’s idea to this end is to introduce complementary coordinates ī for
each coordinate i of the original machine, such that after an initialisation
phase v(i)+v(̄i) = 22n in any configuration (q,v) of the constructed AVASS.

Maintaining such an invariant is easy by encoding unary rules q
u−→ q′ by

q
u+ū−−−→ q′ where ū applies −u to the complement coordinates. Then a zero-

test q
i?=0−−−→ q′ can be replaced by a fork q → q′ ∧ qi where qi is a new

state such that a computation starting from (qi,v) eventually reaches q`
only if v(̄i) = 22n and deadlocks otherwise. The subsystem reachable from
qi is constructed by Lipton using only unary rules, just like the initialisation
subsystem, which guarantees that (qr,v) can be reached from the new initial
configuration (q′r,0) only if v(i) = 0 and v(̄i) = 22n for all 1 ≤ i ≤ d and
deadlocks otherwise.

As can be noticed in this proof sketch, some aspects of Lipton’s construc-
tion could be simplified by the use of forks, namely the somewhat delicate
handling of ‘return states’ in the subsystems. However Theorem 3.1 shows
that forks offer only limited additional computational power. �

Proposition 4.1 was implicit in the 2-ExpTime lower bound proofs of [10,
4] for similar questions. Reducing instead from AVASS would simplify these
proofs by separating the extension of Lipton’s arguments from the actual
reduction.

4.2. Fixed Dimension. Similarly to Proposition 4.1, proving an ExpTime
lower bound in the case where the dimension d is fixed is rather easy: Rosier
and Yen [24, Theorem 3.1] show indeed that the boundedness problem for
VASS of dimension d ≥ 4 is PSpace-hard by reducing from the acceptance
problem in linear bounded automata (LBA). Their proof easily extends to
the state reachability and non-termination problems for VASS, and for
AVASS by reducing instead from alternating LBA.

Proposition 4.2. State reachability and non-termination in AVASS of fixed
dimension d ≥ 4 are ExpTime-hard.

Proof Idea. Let us first fix some notation. An alternating linear bounded au-
tomaton is an alternating Turing machine A = 〈Q♦, Q�,Σ,Γ, δ, q0,`,a, F 〉
where Q♦ and Q� are two disjoint finite sets of states with union Q

def
=

Q♦ ] Q�, Σ ⊆ Γ are finite input and tape alphabets, q0 ∈ Q and F ⊆ Q
are an initial state and a set of final states, ` and a are the left and right
endmarkers in Σ, and δ is a transition relation in Q× Γ×Q× Γ× {−1, 1}.

A configuration of A is a triple (`a1 · · · ana, q, i) where a1 · · · an is a se-
quence in Γ∗, q is the current state, and 0 ≤ i ≤ n+1 is the current position
of the head. A transition (q, ai, q

′, b,m) in δ updates such a configuration to
(`a1 · · · ai−1bai+1 · · · ana, q′, i + m). Because A is linearly bounded, it can
never move left of ` nor right of a nor overwrite them. A configuration
with q in Q♦ is existential, and universal otherwise. We assume without
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ALTERNATING VECTOR ADDITION SYSTEMS WITH STATES 9

loss of generality that Γ = {0, 1} and that there are exactly two transitions
(q�, c1, q1, b1,m1) and (q�, c2, q2, b2,m2) for each state q� in Q�.

Alternation is handled as usual by seeing a computation as a finite tree
with a single successor for existential configurations and all the successors
for universal ones, and a computation is accepting if all its leaves are in
accepting states. The acceptance problem for an alternating LBA A and an
input x0 in Σ∗ asks whether there exists an accepting computation rooted
by (`x0a, q0, 0), and is complete for APSpace = ExpTime.

Consider an instance 〈A, x0〉 of the alternating LBA acceptance problem

with n
def
= |x0|. The idea behind Rosier and Yen’s reduction in the non-

alternating case is to encode a (`a1 · · · ana, q, i) of A using a 4-dimensional
vector v such that a1 · · · ai−1 is a binary representation of v(1), ai · · · an
one of v(2), and the complement sequences (1− a1) · · · (1− ai−1) and (1−
ai) · · · (1 − an) binary representations of v(3) and v(4). The current state
q and head position i are encoded in the states of the AVASS. Testing and
rewriting the current symbol and moving the head left or right can then be
performed using unary rules, relying for this on the fact that update values
exponential in n can be succinctly represented in an AVASS of polynomial
size.

It thus remains to see how LBA alternation, i.e. a pair of universal tran-
sitions (q, c1, q1, b1,m1) and (q, c2, q2, b2,m2) with q in Q� can be imple-
mented. Without entering the details of Rosier and Yen’s encoding, we
simply need the fact that there exist

• an encoding p.q: {0, 1}×{1, . . . , n} → N4 such that a rule q′
p0,iq−−−→ q′′

(resp. q′
p1,iq−−−→ q′′) can be applied in an AVASS configuration (q′,v)

if and only if v encodes an LBA configuration with ai = 0 (resp.
ai = 1), and
• states [q, i]j for j ∈ {1, 2} whose applicable rules implement transi-

tion (q, cj , qj , bj ,mj) assuming head position i.

We construct the following gadget:

[q, i]� ∧

[q, i]1 . . . apply (q, c1, q1, b1,m1)

[q, i]2 . . . apply (q, c2, q2, b2,m2)

q`

0

p1−
c
1 , iq

0

p1
− c

2
, iq

Observe that Environment cannot ‘cheat’ by attempting to force Controller
into a deadlock by forcing the application of a transition (q, cj , qj , bj ,mj)
where cj does not match the current symbol ai under the head: Controller
would punish such a move by going directly to q` the target state using the
p1−cj ,iq−−−−−→ unary rule. �
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10 J.-B. COURTOIS AND S. SCHMITZ

q

q1

q2

u1

u2

 q ∧ ⊥

q1

q2

0

u1

0

u2

Figure 3. Translation of Environment rules from energy
games to AVASS games [2].

5. Energy Games

The asymmetric game semantics described in § 2.1.2 is easily seen to be
equivalent to one-sided VASS games as defined in [23, 2]. Such a game
is played on a VASS with a partitioned state space Q = Q♦ ] Q�, where
Controller owns the states in Q♦ and can freely manipulate the current
vector value, while Environment owns the states in Q� and can only change

the current state: if q�
u−→ q′ is a rule in Tu and q� ∈ Q�, then u = 0; these

restricted Environment rules correspond to AVASS fork rules.

5.1. Multi-dimensional Energy Games. Abdulla et al. [2] have shown
the equivalence of AVASS games with the (multi-dimensional) energy games
of Brázdil et al. [6] and Chatterjee et al. [8], where the asymmetry between
Controller and Environment is not enforced in the structure of the AVASS
or in restricted unary rules for Environment: in such a game, Environment
can use arbitrary unary rules. This would lead to an undecidable state
reachability game when played on the Q × Nd arena [1], but energy games
are played instead over Q×Zd—which means that unary rules can be applied
even if they yield some negative vector components.

Asymmetry appears instead in the winning conditions for Controller. In
addition to a winning condition Win ⊆ Qω ∪ Q∗ on the sequence of states
q0, q1, . . . appearing during the play, Controller must also ensure that all the
components of the vectors v0,v1, . . . remain non-negative (positive in [6]).
Such games are motivated by the synthesis of controllers able to ensure
that quantitative values (represented by the integer vectors) are maintained
above some critical values. Figure 3 illustrates Abdulla et al.’s translation
from energy games to AVASS: state ‘⊥’ denotes a losing state ensuring that
no play that visits it can satisfy Win—typically a deadlock state.

Various regular winning conditions Win can be employed in this setting:
the simplest one is (state) reachability, i.e. Win = Q∗{q`}, which is in 2-
ExpTime by Theorem 3.1. Non-termination, i.e. Win = Qω, is shown to
be in Tower, i.e. iterated exponential time, by Brázdil et al. [6]. Finally,
parity is shown decidable by Abdulla et al. [2]. Theorem 4.1 furthermore
entails that state reachability and non-termination (and thus parity) multi-
dimensional energy games are 2-ExpTime-hard.

5.2. Unknown Initial Credit. Chatterjee et al. [8] focus on the case where
the initial credit is unknown in these decision problems: given an AVASS
〈Q, d, Tu, Tf 〉 a state qr and a winning condition Win, does there exist vr
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ALTERNATING VECTOR ADDITION SYSTEMS WITH STATES 11

in Nd such that Controller has a winning strategy from the configuration
(qr,vr)? This can be applied to decide whether Controller has a winning
finite-memory strategy in multi-dimensional mean-payoff games with un-
known initial credit [8].

This question is trivial in the case of state reachability, because it does
not depend on the update values u of unary rules:

Fact 5.1. State reachability with unknown initial credit in AVASS is PTime-
complete.

Chatterjee, Randour, and Raskin [9] show that the unknown initial credit
problem is co-NPTime-complete with parity winning conditions. In di-
mension d = 2 with fixed bitsize, Chaloupka [7] shows the problem to be
PTime-complete for the non-termination objective.

6. Horn Linear Logic

Kanovich [15] already studied asymmetric VASS games with reachability
objectives (which he called ‘vector addition games’) in 1995 and showed
that they corresponded to provability in the so-called (!,⊕)-Horn fragment
of propositional linear logic (called hereafter HLL). Among other results,
these inter-reductions allowed him to prove the undecidability of provability
in HLL (recall Fact 2.1).

In the light of the 2-ExpTime-completeness of asymmetric VASS games
with state reachability objectives shown in Theorem 3.1 and Proposition 4.1,
a natural question is then to find a corresponding formulation in linear logic.
Our answer is quite straightforward: we add structural weakening to HLL,
resulting in the (!,⊕)-Horn fragment of affine linear logic. Affine linear logic
(LLW) adds structural weakening to linear logic. Its provability problem was
first proven decidable by Kopylov [16] using extended vector addition games,
and more precisely was recently shown to be Tower-complete [19].

After defining the (!,⊕)-Horn fragment of affine linear logic in Section 6.1,
we prove in sections 6.2 and 6.3 the inter-reducibility of provability in the
(!,⊕)-Horn fragment of LLW and state reachability in AVASS, and deduce:

Theorem 6.1. Provability of (!,⊕)-Horn sequents in affine linear logic is
2-ExpTime-complete.

Note that essentially the same reductions work for provability in HLL and
reachability in AVASS; the interest of this section is mostly to introduce the
relationships between AVASS and HLL for readers not already acquainted
with linear logic.

6.1. Affine Horn Linear Logic. The (!,⊕)-Horn fragment of affine linear
logic is defined like that of linear logic, by restricting our focus to so-called
(!,⊕)-Horn sequents.

6.1.1. Syntax. We only need the connectives {⊗,(,⊕, !} of linear logic.
Positing a countable set of atomic propositions, a (!,⊕)-Horn sequent is a
triple W, !Γ ` Z where
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12 J.-B. COURTOIS AND S. SCHMITZ

• W and Z are simple products, i.e. formulæ a1 ⊗ · · · ⊗ an where the
ai’s are atomic, and
• !Γ is a set of Horn implications !(X ( Y ) and ⊕-Horn implications

!(X ( (Y1⊕· · ·⊕Ym)) where X, Y , and the Yj ’s are simple products.

6.1.2. Semantics. An informal interpretation of simple products X is to see
them as multisets of resources. A Horn implication !(X ( Y ) can then
be understood as a program which, by consuming resources X, produces
resources Y , exactly like e.g. a Petri net transition. In the case of a ⊕-Horn
implication !(X ( (Y1⊕ · · ·⊕Ym)), by consuming resources X, we produce
resources Yj for some 1 ≤ j ≤ m—but the choice of the index j is not ours,
hence the motivation for a game setting. This informal idea is developed in
full by Kanovich with Horn programs [15].

6.1.3. Proofs. Formally, the inference rules of the cut-free calculus for LLW
can be tuned to the particular case of (!,⊕)-Horn sequents—the resulting
HLLW calculus is displayed in Figure 4, where W,X, Y, Z, possibly with
subscripts, denote simple products, !Γ sets of Horn and ⊕-Horn implications,
and we work implicitly modulo associativity and commutativity of ⊗.

Z, !Γ ` Z
(init)

W, !Γ ` Z
W ⊗X, !Γ ` Z

(W)

Y ⊗W, !Γ ` Z !(X ( Y ) ∈ !Γ

X ⊗W, !Γ ` Z
(H)

W1, !Γ ` Z1 W2, !Γ ` Z2

W1 ⊗W2, !Γ ` Z1 ⊗ Z2
(R⊗)

Y1 ⊗W, !Γ ` Z · · · Ym ⊗W, !Γ ` Z !(X ( (Y1 ⊕ · · · ⊕ Ym)) ∈ !Γ

X ⊗W, !Γ ` Z
(H⊕)

Figure 4. The HLLW calculus. The greyed rule R⊗ can be
eliminated (see Lemma 6.3).

Here is how the rules of HLLW have been derived from the classical cal-
culus for LLW. For starters, in the absence of negation, we only need to
consider the intuitionistic case, see [15, Figure 1]. Then, the rules R(,
R⊕, and R! that introduce respectively (, ⊕, and ! in the consequent are
useless, since we will only ever see simple products in the consequents of
cut-free proofs of (!,⊕)-Horn sequents. The exponential rules L!, W!, and
C! can be omitted in the calculus by propagating !Γ throughout the proofs.
Because we work modulo associativity and commutativity of ⊗, we can re-
move L⊗. Finally, we distinguish two cases for L( depending on whether
we are dealing with Horn implications (see rule H) or ⊕-Horn implications
(see rule H⊕), where the latter rule also compiles in the usual L⊕ rule. All
these manipulations are straightforward, and we state without proof:

Proposition 6.2 (HLLW is sound and complete). A (!,⊕)-Horn sequent
W, !Γ ` Z is provable in LLW if and only if it is provable in HLLW.

We can further simplify HLLW by removing R⊗:
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ALTERNATING VECTOR ADDITION SYSTEMS WITH STATES 13

Lemma 6.3 (R⊗ elimination). If W, !Γ ` Z is provable in HLLW, then it
has a proof that does not use R⊗.

Proof. Consider a HLLW proof that uses R⊗ as its last step. By induction
on the sum of the heights of the proofs for its two premises, we show how
to rewrite it into a proof without R⊗.

For the base case, both premises stem from init, as in

(init)
W1, !Γ `W1

(init)
W2, !Γ `W2

(R⊗)
W1 ⊗W2, !Γ `W1 ⊗W2

This can be replaced by a simple init rule for W1 ⊗W2, !Γ `W1 ⊗W2.
For the induction step, assume the left premise results from H:

...
Y ⊗W1, !Γ ` Z1

(H)
X ⊗W1, !Γ ` Z1

...
W2, !Γ ` Z2

(R⊗)
X ⊗W1 ⊗W2, !Γ ` Z1 ⊗ Z2

Then the root of this proof can be rewritten as:
...

Y ⊗W1, !Γ ` Z1

...
W2, !Γ `W2

(R⊗)
Y ⊗W1 ⊗W2, !Γ ` Z1 ⊗ Z2

(H)
X ⊗W1 ⊗W2, !Γ ` Z1 ⊗ Z2

Applying the induction hypothesis to the proof of Y ⊗W1⊗W2, !Γ ` Z1⊗Z2

then yields an R⊗-free proof. The other cases are similar. �

It is worth noting that both Proposition 6.2 and Lemma 6.3 also hold for
HLL and (!,⊗)-Horn sequents in LL, i.e. when not using the weakening rule
(W).

6.2. From AVASS to HLLW. Given an instance 〈A, qr, q`〉 of the state
reachability problem in A = 〈Q, d, Tu, Tf 〉, we construct a (!,⊕)-Horn se-
quent W, !Γ ` Z over a set of atomic propositions Q ] {ei | 1 ≤ i ≤ d}, such
that A, q` . qr,0 if and only if W, !Γ ` Z is provable in HLLW.

Given a vector u in Zd, we define two simple products due and buc, seen
as multisets over {ei | 1 ≤ i ≤ d}, which satisfy for 1 ≤ i ≤ d

due(ei) =

{
u(i) if u(i) ≥ 0

0 otherwise,
(6)

buc(ei) =

{
0 if u(i) ≥ 0

−u(i) otherwise.
(7)

Then we define the sequent W, !Γ ` Z by

W
def
= qr (8)

Z
def
= q` (9)

!Γ
def
= {!((q ⊗ buc)( (q1 ⊗ due)) | q

u−→ q1 ∈ Tu} (10)

∪ {!(q( (q1 ⊕ q2)) | q → q1 ∧ q2 ∈ Tf} . (11)
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14 J.-B. COURTOIS AND S. SCHMITZ

q

∀!(X ( Y ) ∈ !Γ

−X

Y

q

∀!(X ( (Y1 ⊕ · · · ⊕ Ym)) ∈ !Γ

∧ ...
−X

Y1

Ym

Figure 5. Implementing HLLW proof search for a sequent
W, !Γ ` Z in an AVASS A.

We see by induction on R⊗-free proofs in HLLW and deductions on A that

A, q` . q,v iff q ⊗ dve, !Γ ` q` . (12)

Therefore, by substituting qr for q and 0 for v in (12), we obtain:

Proposition 6.4. There is a logarithmic space reduction from AVASS state
reachability to HLLW provability.

6.3. From HLLW to AVASS. We show conversely a reduction from prov-
ability in HLLW to state reachability in AVASS. We make two critical ob-
servations to this end:

(1) The HLLW calculus of Figure 4 enjoys the subformula property, i.e.
any formula that appears in rule premises are subformulæ of the
formulæ appearing in the conclusion of the same rule. Thus a proof of
a sequent W, !Γ ` Z can only use the finite set of atomic propositions
already present in W , !Γ, and Z. Let us call this set S; our goal
now is to construct an AVASS A of dimension |S| that implements
R⊗-free proof search in HLLW. Furthermore, in an R⊗-free proof
of W, !Γ ` Z, !Γ and Z are constant, and therefore it suffices to
maintain the current simple product W , which is a finite multiset in
NS .

(2) The R⊗-free HLLW calculus can be modified to apply weakenings
at the axiom level: by commuting weakenings to occur at the leaves
of HLLW proofs, we see that we can replace the two rules (init) and
(W) by a single (cover) axiom

Z ⊗X, !Γ ` Z
(cover)

while preserving the set of provable (!,⊕)-Horn sequents.

Our AVASS A = 〈Q, |S|, Tu, Tf 〉 has a main running state q, which imple-
ments proof search in HLLW using the rules and intermediate states shown

in Figure 5. Adding two states qr and q` with unary rules qr
W−→ q

Z−→ q` then
yields by induction on the height of deduction trees and proofs in HLLW
modified to use the (cover) rule that, for any X ∈ NS :

A, q` . q,X iff X, !Γ ` Z . (13)

Hence A, q` . qr,0 if and only if A, q` . q,W , if and only if W, !Γ ` Z, and
we obtain:
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ALTERNATING VECTOR ADDITION SYSTEMS WITH STATES 15

Proposition 6.5. There is a logarithmic space reduction from HLLW prov-
ability to AVASS state reachability.

7. Regular Simulations

Jančar and Moller [14] proved in 1995 that the two regular VASS simu-
lation problems VASS � FS and FS � VASS, which ask whether a VASS is
simulated by a finite-state system (FS) and vice versa, are decidable. They
relied however on well quasi orders in their proofs and no complexity upper
bounds have been published since—although Ackermann upper bounds
are derivable from [11]. Regarding lower bounds, no improvement has ap-
peared in the general case over the easy ExpSpace-hardness one can derive
by reductions from the state reachability and non-termination problems for
VASS and the lower bounds of Lipton [21] for these. However, in the particu-
lar case where we restrict ourselves to basic parallel processes (BPP) instead
of VASS, Kučera and Mayr [17] proved that FS � BPP is PSpace-hard and
BPP � FS is co-NPTime-hard, and both bounds were later improved to
ExpSpace-hardness by Lasota [18].

By presenting reductions to and from the state reachability and non-
termination problems in AVASS, we improve on all these results:

• BPP � FS and VASS � FS are both 2-ExpTime-complete by
Proposition 4.1 and Theorem 3.1, and
• FS � BPP and FS � VASS are both 2-ExpTime-hard by Proposi-

tion 4.1 and in Tower by the results of Brázdil et al. [6].

Abdulla et al. [3] independently showed similar connections between on the
one hand the (undecidable) simulation problem PDS � VASS between push-
down systems (PDS) and VASS, and on the other hand energy games played
on infinite pushdown graphs. They show that these problems become de-
cidable when the PDS has a singleton stack alphabet and the VASS is 1-
dimensional.

We conclude the section by discussing some related problems: in Sec-
tion 7.4, we show that the simulation equivalence problem FS ' BPP is
also 2-ExpTime-hard, and in Section 7.5, we show match the ExpSpace-
hardness proof of Lasota [18] for the trace inclusion problem BPP ⊆ FS by
an ExpSpace upper bound for VASS ⊆ FS.

7.1. Transition Systems and Simulations.

7.1.1. Labelled Transition Systems. Operational semantics are often defined
through labelled transition systems (LTS) S = 〈S,Σ,→〉 where S is a set
of states, Σ is a set of actions, and → ⊆ S × Σ × S is a labelled transition

relation, with elements denoted by ‘s1
a−→ s2.’ When S is finite we call S a

finite-state system (FS).
For instance, the operational semantics of a VASS V = 〈Q, d, Tu〉 along

with a labelling σ:Tu → Σ using a set of actions Σ is the LTS SV
def
= 〈Q ×

Nd,Σ,→〉 with transitions (q,v)
a−→ (q′,v + u) whenever r = q

u−→ q′ is a

unary rule in Tu with label σ(r) = a (which we write more simply q
u,a−−→ q′

in the following).
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16 J.-B. COURTOIS AND S. SCHMITZ

7.1.2. Simulations. Given two LTS 〈S1,Σ,→1〉 and 〈S2,Σ,→2〉, a simula-
tion is a relation R ⊆ S1×S2 such that, whenever (s1, s2) belongs to R then

for each action a in Σ, if there exists s′1 in S1 with s1
a−→1 s

′
1, then there also

exists s′2 in S2 such that s2
a−→2 s

′
2 and (s′1, s

′
2) is also in R. A state s1 is

simulated by a state s2, written s1 � s2, if there exists a simulation R such
that (s1, s2) is in R.

Simulations can also be characterised by two-player turn-based simulation
games between ‘Spoiler’, who wishes to disprove simulation, and ‘Duplica-
tor’, who aims to establish its existence, played over the arena S1 × S2. In

a position (s1, s2), Spoiler first chooses a transition s1
a−→1 s′1 in S1, and

Duplicator must answer with a transition s2
a−→2 s

′
2 with the same label a,

and the game then proceeds from (s′1, s
′
2). A player loses if during one of

its turns no suitable transition can be found, otherwise the play is infinite
and Duplicator wins. Then s1 � s2 if and only if Duplicator has a winning
strategy starting from (s1, s2).

Given two classes of (finitely-presented) systems A and B, the simulation
problem A � B takes as input two systems A in A and B in B with
operational semantics SA and SB, and two initial states sA from SA and sB
from SB, and asks whether sA � sB. In the following we focus on regular
VASS simulations, where one of A and B is the class of labelled VASS and
the other the class FS.

7.2. From Regular VASS Simulations to AVASS. Our two reductions
from regular VASS simulations essentially implement the simulation game
as an AVASS game. Given a finite set of actions Σ, a labelled VASS defined
by V = 〈Q, d, Tu〉 and σ:Tu → Σ, a finite-state system A = 〈S,Σ,→A〉, and
a pair of states (q0, s0) from Q×S, we construct in both cases a state space

Q′
def
= (Q× S) ] (Q× S × Σ)

for our AVASS. For convenience we allow forks of arbitrary finite arity q →
q1 ∧ · · · ∧ qr.

7.2.1. VASS � FS. We actually reduce in this case from the complement
problem VASS 6� FS to AVASS state reachability from (q0, s0). Controller
plays the role of Spoiler, owns the states in Q × S, and tries to reach the
distinguished state q`. Environment plays the role of Duplicator and owns
the states in Q× S × Σ. The rules of the AVASS are then:

(q, s)
u−→ (q′, s, a) whenever q

u,a−−→ q′ ∈ Tu (14)

(q′, s, a)→ q` ∧
∧

s
a−→As′

(q′, s′) . (15)

Observe that Spoiler has a winning strategy from (q0, s0) in the simulation
game if and only if it can force Duplicator into a deadlock, i.e. a state s

and an action a where no transition s
a−→A s′ exists. This occurs if and only

if Environment can be forced into going to q` in (15) in the AVASS game
starting from (q0, s0).

Proposition 7.1. There is a logarithmic space reduction from VASS 6� FS
to AVASS state reachability.
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ALTERNATING VECTOR ADDITION SYSTEMS WITH STATES 17

7.2.2. FS � VASS. This direction is actually a particular case of [2, The-
orem 5], who show the decidability of weak simulation by reducing it to a
parity energy game. Environment now plays the role of Spoiler and owns
the states in S × Q. Controller now plays the role of Duplicator, owns the
states in S ×Q×Σ, and attempts to force an infinite play. The rules of the
AVASS are then:

(s, q)→
∧

s
a−→As′

(s′, q, a) , (16)

(s′, q, a)
u−→ (s′, q′) whenever q

u,a−−→ q′ ∈ Tu . (17)

Then, Duplicator has a winning strategy in the simulation game from (q0, s0)
if and only if Controller has a winning strategy for non-termination in the
AVASS game starting in (q0, s0):

Proposition 7.2. There is a logarithmic space reduction from FS � VASS
to AVASS non-termination.

7.3. From AVASS to Regular VASS Simulations.

7.3.1. Basic Parallel Processes. As announced at the beginning of the sec-
tion, we prove our lower bounds on the more restricted BPP rather than
VASS. Formally, a BPP net is a Petri net N = 〈P, T,W 〉 where P and T
are finite sets of places and transitions and W : (P × T ) ∪ (T × P ) → N
is the weighted flow, where additionally for all transitions t in T there is
exactly one place p in P with W (p, t) = 1 and for all p′ 6= p, W (p′, t) = 0.
Given a labelling function σ:T → Σ, its semantics is defined by the LTS

SN
def
= 〈N|P |,Σ,→N 〉 where m

a−→N m − W (P, t) + W (t, P ) if and only if
there exists t with σ(t) = a and m ≥W (P, t). In figures we represent places
as circles, transitions as rectangles, and positive flows as arrows.

In both our reductions, we want to implement an AVASS game as a sim-
ulation game where the FS is in charge of maintaining the state information
and the BPP is in charge of maintaining the vector values. We assume we
are given an AVASS 〈Q, d, Tu, Tf 〉 in ordinary form, i.e. where the only up-
dates vectors in Tu are unit vectors, and in binary form, i.e. for each state q
of Q, either

• there is a fork q → q1 ∧ q2 (and we call q an universal state), or

• there are exactly two unary rules q
u1−→ q1 and q

u2−→ q2 with origin q
(and we call it an existential state), or
• there are no applicable rules at all (and we call it a deadlock state).

We can ensure these two conditions through logarithmic space reductions.
Our action alphabet is then defined as

Σ
def
= {∀,∃, 1, 2} ∪ {inci, deci | 1 ≤ i ≤ d} .

7.3.2. BPP � FS. We reduce AVASS state reachability to BPP 6� FS and
assume wlog. that the target state q` is a deadlock state, and even the only
deadlock state by adding rules qd → qd ∧ qd for the other deadlock states qd.
We construct a BPP net for Spoiler with places

P
def
= {run} ∪ {ci | 1 ≤ i ≤ d}
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18 J.-B. COURTOIS AND S. SCHMITZ

run

∀

ci

inci deci

1

2

∀1 ≤ i ≤ d

?
�

q

q1

q2

>

∀

∀
Σ
\ {
∀}

Σ

q′

q′1

q′2

1

2

incj

deck

Σ
\ {1, 2}

Σ \ {incj}

Σ \ {dec
k }

if q′
ej−−→ q′1 and q′

−ek−−−→ q′2 ∈ Tu

∀q→q1∧q2 ∈ Tf

Figure 6. Reducing AVASS state reachability to a simula-
tion BPP 6� FS.

q

q1

q2

∀

∀

q′
q′1

q′2

∃
1

2

incj

deck

?
�

run

∀
ci

inci deci

p1 p2

∃ ∃

>

1 2 21

a

∀1 ≤ i ≤ d

∀a ∈ Σ
if q′

ej−−→ q′1 and q′
−ek−−−→ q′2 ∈ Tu

∀q→q1∧q2 ∈ Tf

Figure 7. Reducing AVASS non-termination to a simula-
tion FS � BPP.

where run contains a single token at all times and the ci’s encode the current
vector value of the AVASS. Its transitions, labels and flows are depicted on
the left of Figure 6. Its purpose is to force Duplicator, which is playing
on the FS depicted on the right of Figure 6, into state q`. Because q` is a
deadlock state and Spoiler can always fire transitions (e.g. ∀), it then wins
the simulation game.

Duplicator plays the role of Environment in the original AVASS game
and maintains the AVASS state using its state space, which contains Q.
When in a universal state it can choose the following state, but when in an
existential state Spoiler chooses instead the branch by firing transition 1 or
2. Duplicator ensures that the sequence of transitions of Spoiler is indeed
valid in the original AVASS, by punishing invalid transitions by entering
state ‘>,’ where it can play any symbol and thus win the simulation game.

Proposition 7.3. There is a logarithmic space reduction from AVASS state
reachability to BPP 6� FS.

7.3.3. FS � BPP. In this direction we reduce from the non-termination
problem. Spoiler now plays in an FS depicted on the left of Figure 6 and
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ALTERNATING VECTOR ADDITION SYSTEMS WITH STATES 19

plays for Environment in the original AVASS game. It still maintains the
current state of the AVASS in its state space.

Duplicator now plays on a BPP depicted on the right of Figure 6. It plays
the role of Controller in the original VASS game and maintains the vector
values in its places ci as before. We rely on Duplicator’s choice: using the
‘∃’ label in existential states, Spoiler leaves the choice to Duplicator, who
can punish Spoiler—if it does not comply with its choice between actions
‘1’ and ‘2’—by putting a token in place ‘>’, from where it wins.

Proposition 7.4. There is a logarithmic space reduction from AVASS non-
termination to FS � BPP.

7.4. Simulation Equivalence. Two states s1 and s2 of two LTS S1 and S2

are simulation equivalent, noted s1 ' s2, if they simulate each other—though
not necessarily by a single symmetric relation R—: s1 � s2 and s2 � s1. The
reduction from AVASS state reachability to BPP 6� FS in Proposition 7.3
can easily be lifted to a reduction to BPP 6' FS. This proves that BPP ' FS
is 2-ExpTime-hard, and improves on the ExpSpace lower bound of Lasota
[18].

Indeed, as noted by Lasota, N � A is equivalent to N + A ' A, where
‘+’ denotes a non-deterministic choice. Since a finite state system is also
a BPP, N + A can be represented by a BPP N ′ with copies of N and A
and an initial place marked p0 and two transitions with label ‘init ’ from p0

to run and qr. We match this new action on the FS side by adding a new
initial state q′r and a transition labelled by init to qr to A to form A′. Then
Controller has a winning strategy to reach q` from qr in the AVASS game if
and only if Spoiler has a winning strategy in the simulation game between
N ′ and A′ starting from ({p0}, q′r).

Proposition 7.5. There is a logarithmic space reduction from AVASS state
reachability to BPP 6' FS.

7.5. Trace Inclusion. Given a LTS S = 〈S,Σ,→〉, a trace of S from a
state s0 is a finite sequence a1a2 · · · an in Σ∗ that labels some sequence of

transitions s0
a1−→ s1

a2−→ · · · an−→ sn of S. Given two LTS S1 and S2 and two
initial states s1 and s2, we write ‘s1 ⊆ s2’ if the set of traces originating in
s1 is included in that originating in s2. If also s2 ⊆ s1 then s1 and s2 are
trace equivalent, noted ‘s1 ≡ s2.’ The corresponding regular trace inclusion
problems VASS ⊆ FS and FS ⊆ VASS were shown decidable by Jančar and
Moller [14].

If S2 = 〈S2,Σ,→〉 is deterministic, i.e. if for all s in S2 and a in Σ,

there is at most one s′ in S2 such that s
a−→ s′, then s1 � s2 if and only

if s1 ⊆ s2. This property was exploited by Lasota [18] to show that the
problems BPP ⊆ FS, FS ⊆ BPP, and BPP ≡ FS were all ExpSpace-hard:
indeed the ‘right-hand’ systems he constructed in this proofs were always
deterministic. Inspecting our proofs in Section 7.3, we see that we cannot
use this argument.

7.5.1. VASS ⊆ FS. We show here an ExpSpace upper bound for the trace
inclusion problem VASS ⊆ FS. Together with the ExpSpace lower bound
of Lasota [18] for BPP ⊆ FS, this yields the following:
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20 J.-B. COURTOIS AND S. SCHMITZ

Proposition 7.6. BPP ⊆ FS and VASS ⊆ FS are ExpSpace-complete.

Proof Idea. Consider an instance of VASS ⊆ FS: let V = 〈Q, d, Tu〉 be a
VASS with labelling function σ:Tu → Σ and A = 〈S,Σ,→A〉 be a FS, and

the trace inclusion question (q0,0)
?
⊆ s0 for some initial q0 in Q and s0 in S.

We first apply the subset construction to A from s0, yielding a deter-

ministic finite-state system D def
= 〈2S ,Σ,→D〉 of exponential size. By the

previous discussion, (q0,0) ⊆ s0 if and only if (q0,0) � {s0}.
We now build a synchronous product of V and D: this is a VASS V ′ def

=

〈Q× 2S , d, T ′u〉 where (q, E)
u−→ (q′, E′) if and only if there exists a in Σ such

that q
u,a−−→ q′ in V and E

a−→D E′ in D. In this product V ′, the triples in

F
def
= {(q, E,v) ∈ Q× 2S × Nd | ∃a ∈ Σ.∃u ∈ Zd.∃q′ ∈ Q.v + u ≥ 0

∧q u,a−−→ q′∧ 6 ∃E′ ⊆ S.E a−→ E′}
(18)

denote the set of immediately winning positions ((q,v), E) for Spoiler in the
simulation game between V and D: it can fire the corresponding transition

q
u,a−−→ q′ in V but Duplicator cannot reply with a transition E

a−→ E′ in D.
Note that F is upward-closed, with a finite set of minimal elements minF
of size bounded by |Q| · 2|S| · ‖Tu‖∞.

Then Spoiler has a winning strategy from the initial pair ((q0,0), {s0}) if
and only if there exists (q, E,v) in minF such that there exists an execution
of the VASS V ′

(q0, {s0},0)
u1−→ · · · un−→ (q, E,v′) (19)

for some n and v′ ≥ v. In other words, we can reduce (q0,0) ⊆ s0 to a
disjunction of coverability problems in V ′ a VASS with exponentially many
states but the same dimension d and same bitsize log(‖Tu‖+ 1).

By the complexity upper bounds of Rackoff [22] (see also Rosier and
Yen [24] and Blockelet and Schmitz [5]), such a disjunction of coverability
instances can be solved by a nondeterministic algorithm that guesses the
element (q, E,v) to cover, and guesses and checks a coverability witness
of the form (19). This requires exponential space in the dimension but
polynomial space in the bitsize and number of states of V ′, hence overall
exponential space in the size of the original instance 〈Σ,V, σ,A, q0, s0〉. �

7.5.2. FS ⊆ VASS. The previous argument does not work for this direction.
In fact, this is not surprising considering that Hoffmann and Totzke [13]
recently showed the problem FS ⊆ OCN to be Ackermann-complete, where
‘OCN’ denotes one-dimensional VASS.

8. Concluding Remarks

Alternating VASS provide a unified formalism to reason about VASS
games, along with simple complexity arguments for state reachability ob-
jectives. This allows us to improve on all the previously known complexity
bounds for regular VASS simulations, and show in particular that VASS�FS
is 2-ExpTime-complete.

The main open question at this point is whether the upper bounds for
non-termination and parity objectives on AVASS could be lowered to 2-
ExpTime, and thus to close the gap between 2-ExpTime-hardness and
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ALTERNATING VECTOR ADDITION SYSTEMS WITH STATES 21

Tower for FS � VASS. A first step to this end could be to extend the
PTime upper bound of Chaloupka [7] for the fixed bitsize and unknown ini-
tial credit case from dimension two to arbitrary fixed dimensions. However,
quoting Chaloupka, ‘since the presented results about 2-dimensional VASS
are relatively complicated, we suspect this problem is difficult.’

Acknowledgments. The authors thank Stefan Göller who drew our atten-
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