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Abstract Fast-Growing Hierarchy for at < w®, and use this to sim-
ulate perfect channels whose size is bounded=fgy(n).

We show that reachability and termination for lossy This relies on an originaldifferential encodingfor lists
channel systems is exactly at lege in the Fast-Growing of increasing ordinals that is simple enough to allow cor-
Hierarchy of recursive functions, the first level that domi- rect manipulation by finite-state transductions in theestyl
nates all multiply-recursive functions. of channel systems while, at the same time, being differen-

tial makes it robust in presence of message losses.

The consequence is that LCS verification cannot be-

1 Introduction long to Fe, i.€., the class of all multiply-recursive func-

tions [28, 15]. However, it belongs t§w as we explain
Lossy channel systems, or shortly LCS’s, are systems in section 6, heavily relying on Cichon and Tahhan Bittar’s
of finite-state automata communicating asynchronously viaanalysis of Higman’s lemma [12]. These results give a tight
unbounded FIFO channels that are unreliable (“lossy”) measure of the worst-case complexity and further show that
in the sense that they can nondeterministically lose mes-the key parameter is the size of the message alphabet (and
sages. While systems with reliable (“perfect”) channels are not the number of channels, or size of the control part).
Turing-powerful, systems with lossy channels can be algo- They also directly apply to all the problems with which LCS
rithmically verified, as was first observed by Abdulla and Verification has been connected (see above). Beyond these
Jonsson [4] and Finkel et al. [16, 8]. The two main positive applications, we hope that this work will help disseminate
results for LCS’s concern their reachability and termimati ~ some fundamental proof-theoretical techniques and gesult
properties, for which decidability relies on argumentsriro  on subrecursive hierarchies that are relevant to verifinati
the theory of well-quasi-orderings [17, 5], and more pre- techniques based on well-quasi-orderings.
cisely Higman’s lemma.

The complexity of LCS's. Ever since these early posi- Related work. The study of the complexity of Higman'’s

tive results, the main open question has been to assess thIQem:jn?hwas |n|'§|ated by Se Jto ngh and Pa;rlglfh [1??[]h\'\$0 mes-
algorithmic complexity of LCS’s since no upper bounds sured the maximum order-type compatibie wi € sub-

had been extracted from the decidability proofs, and no in- worq orderlng._ Constructive proofs of H_|gma_ns Lemma
teresting lower bounds were available for comparison. A provide recursive upper bounds that are inherited from the

; . : o computational power of the underlying logical framework,
partial answer was given in [26] where it is shqwn that nd F;lre thus e?(aggeratedly high.yuzing? clever combina-
t;: ii;;%jnmnqlsaﬁﬁr?;ir;?t ﬁ:;i@irﬁhgg;fﬁ:;?ylS'O??#gi?eﬁnrial reasonings, Cichon and Tahhan Bittar [12] were the
verification problems cannot be primitive-recursive. This ﬂLS(;r:gepsr(\mdtetﬂgr:ull;w;rci?rgz(rji;g)LrJrtzgriztnrﬂtcrli(());t:jacl)otlasse-
lower bound directly applies to problems that are equiva- got onl show that lona bad sequences can be oroduced b
lent to LCS verification, e.g., the “Regular Post Embedding y 9 d b y

Problem” introduced in [9, 10], or that can simulate LCS's something as weak as lossy channel systems: it shows how
see 21, 19, 3, 14, 18 22]’amc’)ng others ' such systems can check that the long computations did ac-

tually not lose any message. Such reductions are scarce in
the field of infinite-state systems verification (but theysexi

Our contribution.  We show that lossy channel systems in the neighbouring field of automated deduction).

can compute in a weak sense the functiégsfrom the

*Work supported by the Agence Nationale de la Recherche,t gran 1An earlier 3., upper bound for bad sequences N¥ (Dickson's
ANR-06-SETIN-001. Lemma) was provided by McAloon [24].



2 The Fast-Growing Hierarchy Fast-growing functions and monotonicity. The func-
tionsFy : N — N are defined by induction over.
The Fast-Growing Hierarchy also called theéextended
Grzegorczyk Hierarchys a clasgFy )« of number-theoretic Fo(n) i 1, (D1)
functions indexed by (an initial segment of the) ordinald an n+1 times
called ordinal recursive function$28]. Our exposition is def il C e
based on [25, 15, 12] where more details can be found. Fara(n) =Fa () = Fa(Fa(.. Fa()..), (02)
Each functionFy : N — N eventually dominates the F(n) d:'sfF,\n(n) if A € Lim. (D3)
lower functionskg for B < a. Furthermore, writings, for
the smallest class of functions containifg addition, zero,  This inducesF1(n) = 2n+ 1 andF,(n) = (n+1)2*1 1.
projections, and closed under compositions and limited re- ExpandingFs(n) needs a tower ofi exponents.F,(n) =
cursion, one obtains a strict hierarchy of subrecursivefun Fy(n), so thatr, is a variant of Ackermann’s function and

tions. Write§<q for Upq Sp: it is known that§ . is ex- s the firstF, that is not primitive-recursive. WitRg(n) &'
actly the set of primitive-recursive functions, thgt x is Fon(N), Fyo is a kind of “multiply-Ackermann” function,
the set of Péter’g-recursive functions for ang=1,2,.. ., the firstF, that is notk-recursive for somé € N.

that §.w is the set of multiply-recursive functions, and  sjnce we later construct a channel system that evaluates

thatT e, is the set of functions provably total in first-order the F, functions fora < Q, it is a good exercise for the

Peano arithmetic. reader to try and get some intuition of what wogl 1 (n),
Fo+2(n), Fu2(n) andF(n) look like. For example

Ordinals below w®. In this paper we us® to denote the

ordinalw®. We shall work with set-theoretical ordinals less Fe2.3(5) = F2.2105(5)

thanQ, written in Cantor’'s Normal Form. =F22.04.55)

We say that a given ordinal€ a < Q hasdegree & N,
written dega) = d, if @t > a > . In that caseq can
be decomposed in a unique way under the farm w®.a+ 6 times
a’ with 0 < ac N anda’ < wf. (We further letdeg0) =
0.) For anyp > deda), a < Q can be written in a unique
way under the fornar = wP.ap+ wPtap 1+ +whag +

e . e -
w".ao, shortly writteny <, «.a;, with a,...,ap € N. The | emma 2.1 (Monotonicity) For everya < Q and ne N:
sizelajof o = Ji<pw.aiis Fi<pai.

= Fw2.2+w.4+4(~ - (Fuﬂ.2+w.4+4(5)) .- )

We now state some standard monotonicity properties in
the form that will be convenient for our later developments.

Assumen = ¥, w'.g andB = zigpcoi.bi are two ordi- n < Fy(n), (2.1.a)
nals belowQ. We say that embeds i3, writtena C j3, Fa(n) < Fa(n+1), (2.1.b)
wheng < bj for alli =0,...,p. Observe that embedding la| < Fa(n) ifn>0 2.1.0)

a . L.

between ordinals is only a partial order (in which, e«.,

and 1 are incomparable), compatible with the usual linear |, general,p < a does not entailFg(n) < Fa(n), e.g.,

ordering of ordinals. _ . Fm(n) > Fe(n) when 0< n < m< w. What is true is
The set of limit ordinals< Q is denotedLim. Each  that, for all < a, Fs is eventuallydominated byFy, i.e.,

A € Lim comes with its canonicaundamental sequence Fa(n) < Fa(n) for nlarge enough.

(An)nen satisfyingAo < A1 < --- <Ap <Any1 < -+ and The next lemma provides more precise information on

A = sup,An. For limit ordinals belowQ, the fundamental  this issue.

sequence is given by

i) def o 4l oo r1 Lemma 2.2 (Monotonicity w.r.t. a) For everya, B,y < Q
(izpw'a>n_m apte @ tactd @-D+0 S
assumingg, is the last nonzero coefficient, i.e.,=0ag = Fg(n) < Fq(n) ifBCa, (2.2.a)
ap=...=a_1 < a. Equivalently, Fyra(n) < Fyronia(n) ifn>|yl. (2.2.b)
((0( +1)-°0i+1>n —a.w+un forala<QandieN.  Opserve that (2.2.b) is not a special case of (2.2.a) since

) 0 3 0 5 y+a C y+ P +a does not hold in general.

For example, i\ = w”.2+ "6, thenAn = 0”2+ w”.5+ We now prove Lemmas 2.1 and 2.2. The first four
w?.n. Observe that, for alk € Lim, An C Ana and|An| = inequalities are proved by induction ower We sometimes
Al +n—1. This ch"]?me extends canonically uggdand  yse simultaneous induction as when proving (2.1.b) and
beyond) with(c), ='W etc. [25, 15]. (2.2.a). Proving (2.2.b) requires the introduction of axtr



notations and tools, and is done in a later step. y1.0P +y» we obtain
Ry (M) = Fy11).00(N)
= FylAwPJrcoP*lAn(n) (by D3)
= Fyl.wPerP*l.(n—1)+wP*2.n(n) (D3 again)

Fc;(n) >n+i. (2.1.a) = Fyl.(.oPJrooP*l.(n71)+wP*2.(nfl)+wpf3.n(n)

21.a.Fy(n)>n:
An easy induction oven. This directly entails

2.1.b.We actually prové~(n+i) > Fy(n) forall i € N: = Fyl_wp+[zi<pwi.(n71>]+l(n) (written Fy, oy (N)).
If a =0, we are done witm+i+1>n+1.

If a =a’+1is a successor ordinal, thég(n+i) =
i+1 i 1 i 1
Fo'™(n+1i) (by D2) > F /" (n+1i) (by 2.1.2)> F]"*(n)

Now y, C ¥ sincen > |y|. HenceyC y;.wP + Y and (2.2.a)
concludes.
2.a=a'+1: thenF,(n) < R (n) by ind. hyp.

(by ind. h>_’p-): Fa(n). _ _ One deduces th& ,,(n) <F ., (n) forallk € Nusing
If a € Lim, we rely onoin C Ayt Fa(N+i) = Fay,; (N+1) 2.1.b (and also 2.1.a to guarantee that all arguments-are
(by D3) > Fq,,;(n) (by ind. hyp.) > Fa,(n) (by 2.2.2and |y|). Puttingk = n-+ 1, one obtaing; 4 (n) < Fyiwpa(n)
ind. hyp.)= Fq(n). as required.
3.0 eLim: Letd=dega). If d= ptheny+a C y+w’+a
2.1.c.Fy(n) > |alif n>0: so that (2.2.a) concludes.df> p, theny+a =y+wP+a
If o =0, thenFg(n) =n+1>0=|al. which is even more direct.

If now d < p then(wP + a), is wP + a,. Decompose
both asy;.wP +y, and asy;.w" +,. Note thaty; + wP =
Y, -+ wP sinced < p. Finally

If o =a’+1 is a successor ordinal, thefy(n) =
F&‘,*l(n) (by D2) > |a’| +n (by ind. hyp. and using 2.1.a’)
> |a| since|a| = |a’| + 1 andn > 0.

If a € Lim, we rely onFq(n) = Fy, (n) > |an| (by ind.  Fyrer+a(N) = Fyrwpia),(N) by D3

hyp.) = |a| —14n > |a| sincen > 0. = Fyp b an(N)
=FK p n(n)
2.2.a.Fy(n) < Fa(n) if BC a et rants _
. < F/ 1a,(N) byind. hyp., noting thaly;| <yl
If a =0, then necessarily = a and we are done. E !
If a =a’+1 is a successor ordinal, we consider two = Flyran ()
cases. Ifp =P +1 is a successor, thepl = o’ so that =Fya(n) by D3

Fg'(n) < Fy(n) by ind. hyp. Now, using 2.1.b we deduce _ _
F(n) < FoY(n), i.e., Fa(n) < Fu(n) as required. 15~ 3 Stacking ordinals

Bl
is a limit, thenp C a’ and Fg(n) < Fy(n) (by ind. hyp)
< F&‘,“(n) (by 2.1.8)= Fy(n). We use stacks to define a small-steps semantics for the

) . Fy’s that will be easier to simulate in channel systems.
If o € Lim, thenP € Lim too and there are two cases: - y

either C an or Bn C an. In both cases the induction hy-  pefinition 3.1 A stack(of length ke N) is a finite sequence
pothesis concludes immediately. L= 01,0p,...,0K of increasing ordinals< Q, i.e., a; <
O <--- <0k < Q.

) Since a stack must list its elements in increasing orderethe
Proof of (2.2.b) Recall that, for anyp € N, an ordinal  i5 4 npatural bijection between stacks and finite multisets
a can be decomposed in a unique way under the formgyero . Hence we let; (Q) denote the set of stacks, and
o = a1.0° +az such thata < wP. This decomposition ite 17 <o ¥ whenrtis strictly smaller thant in the mul-
satisfies botha;.wP C a andaz £ a.  Also note that  iset ordering inherited from the ordering of ordinals fvelo

0+ 0P = 1.0 + 0P = (01 +1).0P. Q. This is a well-founded linear ordering withthe empty
stack) as minimal element.

2.2.b.Fy 1o (n) < Fygwpia(n) if n> |y|: The proof is by in- We now extend théF, )y family with fast-growing func-

duction overa. There are three cases. tions indexed by stacks, denotéd: N — N, and defined

1. a = 0: we must prove thaF(n) < R e(n). When with:

p=0,ie.,w’ =1, we note thay C y+ wP so that (2.2.a) def def

concludes. Whem > 0, y+ wP € Lim. Decomposing as Fe(n) =n, Fan(n) = Fr(Fa(n)).



Note thatF, is the same when we seeas an ordinal or as
a stack of length one, hence we will not disambiguate.

The evaluation of somé&n(n) can be expressed as a

transformation system, where the manipulated objects are

pairs {{11; n)) of a stackm and a natural number. For-
mally, we define a relation over'; (Q) x N, denoted—nrg,
and defined by the three following “rewrite” rules:

((0,11; n)) —r ((T; N+ 1)) (R1)
n+1times

{{a+1,1; n)) —r ((O,0,...,0,TT; N)) (R2)

(A, 155 Y)Y —R ((An, TT; N)) if AeLim. (R3)

Observe that iftis a stack and(Tt; n))—gr((17; n')) then
T is indeed a stacky <msTandn’ > n. Note that—g is
deterministic.

Corollary 3.2 —gis terminating and convergent.

The normal forms are the paifért; n)) with T=¢.

Since rules R1-3 merely reformulate definitions D1-3
in terms of stacks, it follows tha{(rt; n))—gr{(17; n'))
implies Fr(n) = Fy(1Y). With Cor. 3.2, one deduces

(16 M) —r((€; F(N))).
1

Write «—g for —pU —g".
entail

The previous observations

Lemma 3.3 ((11; n))—{(T0; 1)) iff Fr(n) = Fy (1').

Notation 3.4 When dealing with-R, it is convenient to de-
compose it as the uniopg U —»ppU —wpgsU—g U —g U
—g3 of the six relations defined by rules R1 to R3 and
by inverse ruledenoted S1 to S3, and defined such that
—si= —>§i1. (See Appendix B for the explicit definition.)

4 A differential encoding of stacks

ForK € N, we let5x &' {uP, 0l ?, ..., oK1} U{I}
be an alphabet witK + 1 symbols, that we use to encode
stacks (restricted to ordinais wX). The symbols t&P” de-
note the corresponding finite powers of the ordiaal In
particular, ‘t°” and “w!” denote, respectively, the ordinals
1 andow.

We first explain the encoding informally. Consider the
following wordu € Z:

u = ull’wtlota’l.

One reads from left to right. While readingy, all the en-

for an ordinal in the stackeachl stands for one copy of the
current sum In our example, the stack associated witls

Nu) = 2, P+w 040 0’ +w2+1

(Indeeda’ 4+« = 2 andw® + w’ + w4+ w! = w4 w. Fur-
thermoreJ1(u) contains two occurrences @f + w because
u contains two tally symbols immediately after the first oc-
currence ofu'.)

Formally, the correspondente: X — a(¢(Q) and the
height functiorh: = — Q are defined by induction over

o
=

h(ul) 2" h(u); h(uw)

N £ 1), hu);  N(uw)

def

h(e)
M(e)

=0; h(u) + w';

Q.
=

L1 (w).

€
Observe thafl(u) is indeed a stack, i.el](u) lists increas-
ing ordinals, sincé(u.v) > h(u) for all u,v.

Remark 4.1 We call this encodingifferentialsince thewP
symbols inZx are not used to directly represent ar) in

a stackmt=ay,...,0x. Rather they represent the “differ-
ence”a; —a;_1 that must be added to the previous ordinal
in order to obtaina;.

Any u € T encodes a stack, and any stack betotv
can be encoded with sones . Such an encoding is not
unique. However, there is a unique shortest one, called a
pureencoding.

Definition 4.2 (Pure encodings)An encoding uc Xy is
pureif (1) it does not end with am' symbol, and (2) it
does not contain a factor of the formw' with i < j.

Note that the pure encodings are a regular subsEf of

The idea behind purity is to forbid useless symbols in
an encoding. Ifu is not pure, this is witnessed by some
occurrence of somel. Removing that occurrence yields
some shortew’ with M(u’) = M(u). Hence any impuracan
be replaced by a shorter equivalent encoding. Reciprgcally
if uis pure and/ is shorter tham, then(u’) # M(u).

Purity allows transferring the monotonicity lemmas from
stacks to their encodings. Write— vwhenu s a (scattered)
subword ofv, i.e., u can be obtained frora by removing
some letters (possibly none). The rest of this section grove
the following proposition.

Proposition 4.3 Letuve 2z andn>0. fuCvandvis
pure, then ) () < Fy)(n).

The crux of the proof is the case wharandv only differ
by one ordinal symbol:

countered ordinal symbols are added up, giving rise to aLemma 4.4 Fry,v,)(N) < Frp,wev,) () when ywPv; is

notion of current sum, or height. A tally symbdl’ ‘codes

pure and > 0.



Proof. Write Tt = qay,...,0x for M(viwPv,) and ¥ = 5 Fast-growing functions via lossy channels
ay,...,ay for M(vqvo) (clearly,tandt have same length).

Write | € {0,...,k—1} for the length off1(v1). Then 5.1
af =ajfori=1,...,1and, fori=1+1,...,k we can write
a; anda; under the following form:

Lossy channel systems

This section summarily defindsssy channel systems

o = h(vy) + 0P+ Bi, of = h(vy) + B, (LCS) and their behaviour. We refer the reader to [4, 8, 26]
for more detalils.
whereBj41,...,Bk is simply M(vz). There are now two A LCS is a tupleS= (Q,M,C,A) whereQ = {01,092, ...}
cases: is a finite set of(control) locations M = {as,az,...,a} IS

(1) If v1 ends with some I* symbol (or vy = €), then a finitemessage alphabet = {c1,cy,...,c|} is a finite set
h(v1) = a;_1, putting ap = 0 by convention. Observe of channelsandA C Q x Cx {!,?} x Mx Q is a finite set of

that Fyy  (n) > |oy| as a consequence of (2.1.c) and transition rules with typical elements denotel A rule of
(2.1.a). Thus (2.2.b) applies and we can prove thatthe form(qg,c,!,a,q) (respectivelyq,c,? a,q)) is called
Fafly_.,ai/(n) < Fa,,..q(n)foralli=1+1,... kbyinduction awriting rule (resp., aeading rulg.

overi. Assume thaB= (Q,M,C,A) is a LCS withl channels. A
(2) Otherwisev; ends with somey’ symbol. Observe that configurationof Sis a pair(q,u), whereq € Q is the cur-

r > p sinceviwPv; is pure. This implies thati; C a; for rent location andi € (M*)', is the contents of the channels.
i > | (and hence for ali's). We conclude with (2.2.a) and (q,u) is sometimes writterig, us, ..., u ) whereu; € M* is
the other monotonicity properties. O the sequence of messages contained in chanrfbly con-

vention, reading occurs at the headupfand writing at its
The case where and v differ by one tally symbol is tail). We write Conf = {a,p,...} for the setq x (M*)' of
easier. configurations (0f).
Configurations are compared via the subword ordering:
Lemma 4.5 Fl‘l(vlvz)(n) < Fﬂ(vllvz)(n)-

/o / —q ) /
Proof. [Sketch] M(viv,) is obtained by removing one (Qu,...,w) E(d, Uy, 1) < a=0 N /\ wCu.
ordinal somewhere ifl(vilv2). Hence we can conclude

with (2.1.a) and the other monotonicity properties. [ Observe that, since andM are finite, (Conf,C) is a well-

partial-order as a consequence of Higman’s Lemma.
The operational semantics 8fis given under the form
of a transition systents = (Conf,—). Assume that =
(q,ug,...,u) and o’ = (q,uf,...,u) are two configura-
tions. There is a (lossy) step frooo o’ via ruled, denoted

There remains to deal with the case whemndyv differ
by more than one symbol. Write C¢ v whenu C v and
[v| = |u] + k. Write u=n vwhenl(u) = M(v).

Lemma 4.6 If u C v and v is pure then there is a sequence

3
o—a’, when
U= WC1WwEy---Ciup =V — case 13 € Ais a reading rule of the forr(g, ¢, ?,a,q)
andu; = ay while uj = uj for j #i, or
where all y's,i=1,...,n, are pure. — case 2 & is a writing rule(q,ci,!,a,q) andu = ua

while uj = uj for j #i, or

— case 3 dis a writing rule(q, ¢i,!,a,q') anduj = u/j for
allj=1,...,1.

Hence a message can be lost (case 3) during a step that at-
tempts to write it in the channels. Once in the channels,
messages cannot be lost, they can only be removed by read-
ing steps.

Proof. We let u; be the pure encoding dfl(u): this
is a subword ofu, hence ofv too. The sequence
ui C1 Up Cq -+ £ Uy is obtained by inserting imi, one
by one, all the (occurrences of) symbols that arev iout
missing inu;. One first inserts all the missing tally symbols
(in no particular order) and then, in a second phase, all
the missing ordinal symbols (in no particular order). This ) 5 ) _ )
ensures that all the’s are pure: In the first phase, u A perfect stepwritten 0—per0’, is a step that is derived
inherits purity fromu;_1, starting withuy, sincexly is pure ~ from case 1 or 2 only. Perfect steps are the expected be-
whenxyis. In the second phase,uainherits purity from haviour of finite-state chgnnel systems [7]. A (losay) is
Ui11, Starting fromu, = v, sincexy is pure whernxwly is. O a sequence of consecutive steBsrfect runsthat only use
perfect steps, are a special case of lossy runs.

With Lemma 4.6 one can reduce Prop. 4.3 to repetitive ~ When writing steps, we usually omit tlesuperscript

applications of Lemmas 4.4 and 4.5, which concludes thewhen it is not useful. We use the standard notatioRs,

w«ton w X m

proof of Proposition 4.3. —"and “—" for, respectively, than-fold composition, the



transitive closure and the reflexive-transitive closureaof
transition relation ="

Remark 5.1 (Different ways to lose messagesjhe liter-
ature proposes several different notions of message losses
LCS'’s. The definition we used above is called “write-lossy”

can be seen as a finite-state transduction. The LCS’s that
implement these components are described in Appendix B.
Implementing one rewriting stefyk will replace ((1t; n))

with the resulting((1' ; ')}, that is, unless message losses
corrupt the result. Thelk reaches stater ap where it
reads the end markers and writes them back &ftér n')).

and is the most convenient for the technical developmentsin stateend Wi can terminate and exit, or loop backiteg

that follow. This choice has no important impact on the be-
haviour of lossy systems, and no impact at all on our main
results that apply equivalently to other standard notiohs o

lossy steps (see Appendix A).

5.2 A channel system that computes fast-
growing functions

We now construct a LCS, calldti, that weakly com-
putes theF, functions for alla < wX. It can also weakly
compute their inverseg; * as we explain later.

Wk uses two channels. The first chanpglstores a word
u € Iy that encodes a stack of ordinals as in Section 4. The
second channed, stores a number > 0 in unary (usingn
times the tally symbol, of"). Thus a paif(m; n)) is stored
in two channels. An extra marker symbol # is written at the
end of these encodings to recognize their extremity during
the manipulations.

The overall structure of\i is illustrated in Fig. 1 (see
Appendix B for the details of the components). When
explaining its behaviour, we callsfhgle-passrun” any
run that does not visit the stat@mop. In statebeg, Wk

channelp

o] [ 11 ] #]

channeld
INNRINNNES

-

-

-

... apply Ri...':

applyR2.
applyR3
. apply S1..-
. apply S2.--
. apply 83+

Figure 1. A schematic view of W.

will traverse one of six possible “components” where it
transforms the paif(1t; n)) (more precisely, its encoding)

stored in the channels by one application of the rewriting
rules R1 to R3 (from section 2), or the inverse rules S1
to S3. With our encodings of pairs, each of these rules

and transform({(1’ ; n')) again, therefore computing the
transitive closure of-g.

The construction ensures the following features:

sanity check: The rule components assume that each chan-
nel contain & -word followed by at most one marker
symbol #. With this assumption, the components
check that the channels contain proper inputs. For-
mally, there is a single-pass run frofbeg, u#,#) to
stateend only if uis some pure encoding, amis some
I" for somen > 0. If this is not the case, on impute
or incorrectv, Wk will stop in a deadlock. If a final #
is missing Wk will loop without reachingend.

one-pass transduction: If the channels contain proper in-
puts, a single-pass run frortbeg, u#, v#) to some
(wr ap,w,w') readsu andv completely, write some new
datau’ andV, and does not touch the end markers.
Hencew = #u andw = #V'.

rule applicability: When going frombeg to end, Wk
chooses nondeterministically what rule component
will be traversed. It may be the case that the corre-
sponding rule is not applicable to the current channel
contents: this is checked Mk and it will stop in a
deadlock if the rule is not applicable.

We can now state formally hoWk implements—r.

Lemma 5.2 (Single-pass perfect runs i) Assume
that uu' € X are the pure encodings of two stacksind
. Assume m' > 0. Then{(m; n))—g((17; n')) if, and
only if, W¢ has a single-pasgerfectrun of the form

(beg, u#, I"#) S per(end, U#, 17 #).

Proof. [ldea] The “=" direction is obvious sincéhk
implements exactly the six rules that defirer (see
Appendix B). Reciprocally, theule-applicability features
ensure thatnd is only reached by one proper step of
rewriting. Hence the <" direction. O

The corollary is:

Theorem 5.3 M« weakly computes theR,’s) Assume
that uu' € X are the pure encodings of two stacksind



. Assume m' > 0. Then R(n) > Fy (1) if, and only if,
Wk has alossyrun of the form

(beg, u#, I"#) S (end, u'#, 1" #).
Proof. (=): Write a for Fy(n) and b for Fy(n'). By
Lemma 3.3, there exist rewriting sequences of the form
((m; n))—R{(e; @) and((€; b))—{((T; I')), and itis even
possible to ensuré(tt; n))—4((e; a)) by inserting extra
rewriting steps. These rewriting steps entail the exigenc

of corresponding single-pass perfect runs (Lemma 5.2).

Concatenating these, we deduce tN#t has two per-
fect runs of the form(beg, u#, I"#) = perr(end, #, 13#) and
(beg,#,1°#) 5 pen(end, U#, I"#).  Sincea > b, there also
exists a lossy rurfbeg, u#, I"#) = (end, #, 1°#) obtained by
losinga— b tally symbols ind during the last single-pass of

the first run. Concatenating with the second run we obtain

the required lossy rutbeg, u#, I"#) = pers(end, U'#, %),

(«<): Write k for the number of times the run
(end, u#, I"#) (end, U'#, 1" #) visits statel oop. We prove
the implication by induction ovek. If k = 0, then the run
has length zero) = U, n=n' and we are done. Now as-
sumek > 0. The run has the form

single-pass

(end, u#, I"#)— (1 oop, U#, 1I"#)— (beg, u#, 1"#) = (end, w, W)
= (end, U#, 1" #).
ﬁ_/
k— 1 remaining visits

After two steps, the first single-pass reacliesd,w,w')
by traversing one of the six components\f. Travers-
ing the same componedk has a perfect single-pass run
(beg, u#, I"#) 5 (end, V4, I™#) satisfying

Fr(w(n) = Fng (M) (1)

thanks to Lemma 5.2. With our write-lossy semantics, the
one-pass transductionfeatures ensure that andw' are
subwords of, respectively# andI™#. Observe thatv and

W are proper inputs, i.ew is somev'# for some pure, and

W is somd™# for somem’ > 0. Indeed, eithek > 1 and the
sanity checkfeatures require a proper input (otherwise the
next single-pass would not succeed)kes 1, implying that

w = U# andw = I"#. Therefore, the induction hypothesis
applies, yielding

Fr) (M) > By (7). 2
Now, sincev# C v# andI™ C I™#, i.e.,v C vandnm <m,
sincev is pure andn’ > 0, Lemmas 2.1.b and 4.3 imply
Fro) (M) < Frgy (m). )

Combining (1-3) provides the requiredny)(n)

>
F|-|<u/)(n,). O

5.3 Lower bounds for LCS’s

Wk can be used to check that a possibly lossy run is ac-
tually perfect in space-bounded LCS’s. Formally, a space-
bounded LCS is a LCS operating on one channel and whose
transition rules write exactly as many messages as they read
(see [26]). Hence the number of messages in the channel
remains constant during perfect runs, and it can only de-
crease during lossy runs. Given a space-bourt§eand

& D IR T )

@ Space-bounded LCS @

someK € N, we build the LCSS¢ by inserting two copies
of Wk, one before and one aft8ras schematically depicted
above.Sdoes not use, onlyd. The idea is that the fir$tk
will be started with a paif(w‘~1; 1)) in the channels, will
write some largd™# in 4, that will be used byg, that will
returnl™# to be fed to the secontk:

channep: o~ 1# # # U#

Wk
—
I™#

|®

channel: I# I"# I#

The construction 0§ has some simple sanity checks (not
depicted) between th&k s and theSpart, ensuring that the
# markers are not lost, etc.

Now, assumé& has a run of the form

(beg, w14, 1#) 5 (end, u#, I"#)
—(init,u# 1S (Final ,u# 1M (1)
—(beg’,u#, IM#) 5 (end’, o~ 1#, 1#)

Then the construction of\k ensures thah < Fx-1(1)
and Fx1(1) < m (by Theorem 5.3).  SinceS is
space-boundedn > m.  Hence a run like (f) re-
quires n m (= Fx-1(1)), so that the sub-run
(ini t,u# 1"%) 5 (final ,u#, I™#) must be perfect. Recipro-
cally, a run(beg, W # 1#) 5 (end’, WX~ 14 1#) in S, must
be decomposable under the form of (7).

Corollary 5.4 S¢ has a run from (beg,wf 14 1#) to
(end’, wX~# 1#) if, and only if, S has an acceptinmerfect
run using space fx-1(1).

Theorem 5.5 (Main result) Reachability for lossy channel
systems does not belong3ow.

Proof. Using &, it is possible to reduce the problem
of whether a space-bounded LCS has an accepting



perfectrun using spacec F x-1(1) to a LCS-reachability
question of size polynomial iK and|S|. We conclude by

Bounding termination and reachability. When config-
urations of a LCS are compared with, there are similar

observing that perfect space-bounded LCS’s have the sam@otions of a bad, and of anbad, runcp—0o1— ... —0p.
computational power than space-bounded Turing machinesWith such a run, we associate its sequence of channel

and that the hierarch{f§ . x )k=123,... Is strict. O
There exists a similar construction, again usidg that
reduces the existence of perfect space-bounded rues-to
minationof LCS’s, rather thameachability(along the lines

of [26, section 4.2]). The consequences are similar:

Theorem 5.6 Termination for lossy channel systems does
not belong ta§ - (.

6 Upper bounds

In this section, we explain how Cichon’s and Tahhan Bit-
tar's analysis of Higman’s Lemma [12] leads to:

Observation 6.1 Reachability and termination for lossy
channel systems are gi.

contentsug, ..., U, Obtained by forgetting the control state
part of a configuratioro; = (g, u;). Observe that if the
run is bad then the sequen¢a)i—o,. n is (|Q] — 1)-bad
(by the pigeonhole principle). Hence bad runs have
length bounded irO(Fue(max(|ql,[C],|00]))), or even in
O(Fyyip (max([a, [c]. |oo])).

Now, since deciding termination can be done by check-
ing that all runs fromog are bad (this is the classic algo-
rithm, see [16, 4, 17]), termination of LCS is fyw.

Regarding reachability, the backward-chaining algo-
rithm [4, 17] also builds a bad sequence of configurations:
the minimal elements oPre*(Goal) for some upward-
closedGoal C Conf defined by its minimal elements. By
construction, this sequence is controlled (even though it i
not a runper s§. Hence the running time of the algorithm
is in Fw too.

We observe that these two algorithms handle equally

Since we showed that these problems do not belong towell our write-lossy semantics or the standard lossy seman-

T <, this concludes the proof of our main result.

Longest bad sequences.Let Z be an alphabet contain-
ing p letters. Twol-tuplesu,u’ of words fromZ* can be

tics (see Appendix A).

Variants and restrictions. From the above observations,
one concludes that termination and reachability are in

compared using the subword ordering component-wise, i.e..F ., if we restrict ourselves to LCS’s having a message

defining

; def
=

u=(Up,...,u)C(Uy,....,u)=u S u CU A AU LCU.
A sequencalg, Uy, Uy, ..., is badif there are nd < j such

thatu; C uj, it is goodotherwise. For € N, we say the se-

alphabet of size at mogi. This indicates that the size of
M, not the number of channels, or the number of control
states, or the size of the initial configuration, is the key
parameter affecting complexity. (Note that, in section 5,
we used an alphabet of si#e+ 2 to build LCS’s whose
complexity was not in§_,x.) Since the cumulative

quence isr-good if it contains an increasing subsequence nierarchy (Fq)g<we is strict, we deduce that increasing

of lengthr +2, ie, ifu;, Cu, C--- C uj,, for some
i1 <lip < - <iry2 (and it isr-bad otherwise). By Hig-
man’s Lemmal is a well-partial-order ori*)', hence any

the alphabet size of LCS’s gives rise to a strict hierarchy
of verification problems (more precisely, a hierarchy that
contains a strict sub-hierarchy). This further explaingwh

bad sequence, and ampad sequence, is finite. Arbitrarily | cs's with large message alphabets cannot be simulated
long bad sequences can be produced, for example by startpy |LCS’s with a fixed alphabet (more exactly, not via a

ing with ug large enough. However, if one considemn-
trolled sequences, i.e., sequences such|thpt i + |ug| for

reduction in§_w) unlike the way Turing machines can
be restricted to alphabets of size 2. Contrast this with the

alli, itis easy to see (Hint: use Kénig's Lemma) thatthere is 53¢t that LCS’s withl channels can be simulated (via a
an upper bound on the lengths of controlled bad sequencegnany-one polynomial-time reduction) by LCS’s with a

that start from a givemi.

Cichon and Tahhan Bittar consider the function
H(p,l,r,n), defined as the length of the longest controlled
r-good sequence withug| = n for an alphabek of sizep 2.
They show thaH (p,l,r,n) < F ¢ (maxl,r,n)) for some
function f that is left implicit but that is definitely primitive-
recursive [11] (see also [27]). Henkkbelongs ta§ .

ZH(p,I,r, n) is our notation for what Cichon and Tahhan Bittar denote
Hig(wP.l,r, Sucg(n).

single channel and an alphabet enlarged with a single extra
symbol.

In the same spirit, let us observe that Lossy Counter Ma-
chines [23], which can be seen as LCS’s where the alpha-
bet has size 1, can be verified #, wherel is the num-
ber of counters. This is a direct consequence of McAloon’s
bounds on the length of bad sequenceX'imrdered by the
component-wise ordering [24]. Whéis not fixed, reacha-



bility and termination for these Lossy Counter Machines is

exactly ing, [26].

7 Conclusion

Our main construction shows that lossy channel systems

9]

(10]

can compute, in a weak sense, the Fast-Growing Functions

Fq of the extended Grzegorczyk hierarchy, foralk w®.

[11]

This construction can be used to show that reachability and (12]

termination for lossy channel systems cannot b igw,

i.e., cannot be multiply-recursive. We further explain how [13]

they belong t§w» as a consequence of Cichon and Tahhan

Bittar's analysis of Higman’'s Lemma. Hence we could pre- [14]

cisely locate the complexity of these problems in the Fast-

Growing Hierarchy.

Using known reductions, these results apply to other ver-

ification problems for LCS's: safety, inevitability, regul
equivalences [20], game-theoretical properties [2, BlbprF
bilistic verification [1, 6], etc. They also apply to problem

like the Regular Post Embedding Problem, that have been
equated to LCS reachability [9, 10]. The hardness proof

(18]

(16]

also applies to problems to which LCS reachability reduces, [17]

like one-clock alternating time automata [21, 3] and many

other problems.
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A Comparing two different ways of losing  control states, and adds transition rules for these exttesst
messages encoding the original semantics. This many-one reduction
is PSPACE when reducing from the standard lossy seman-
In section 5.1, the operational semanticsSois given tics to the write-lossy semantiésandNLOGSPACE when

under the form of a transition systerg = (Conf, —) where ~ reducing in the other directich.
we adopted the “write-lossy” semantics, more convenient
for our purposes since it provides a better control ofthenon B Channel systems that implement stack
determinism in message !osses. rewriting
The standard semantics, that we shall dennfé =

(Conf, —g), assumes that any messages can be lost before - ) . . AR .
and after any perfect step. That is, it puts Rule Rlis *((0,7; n)) —r {{1t; n+1))". With our differ-
ential encoding of stacks, this requires the following $ran

def formation:
—gl = © —perf© .| (4)

channeb: lTu# u#
whereJ is C1, i.e.,0 2 ¢ iff ¢ is obtained fromo by b *

losing messages. Note that the only difference betwegn
9 g y an channeld: 1"# N1
and —perfo 2 is that—g can lose a message that has just

been written by the-pert partin (4). Since this can be done  \yherey is pure. This transformation is performed by the

“won

by write-lossy steps—", —¢ and— o J coincide!

LemmaA.l Foralln>0, %g="0 2.

Proof. By induction onn. As we just observed, the base
casen = 1 holds. For the inductive step, we use

il>sl = 1’sl 0 —g| = Lo J o—y by ind. hyp.
=50 -y using (4)
L. using casefi = 1" Figure 2. LCS component that implements
hel rule R1 (assuming purity)
=—>o0 J.
O

LCS depicted in Fig. 2. Here, and in the rest of this section,

. two simplifying conventions are assumed:
In other wordsp—5 0’ iff p—>0’ for somep C ©. plifying

Purity check: the system depicted in Fig. 2 does not check
thatp contains a pure encoding. This is for improv-
ing the clarity of the diagram but, of course, it is easy
to check purity (a simple regular property) while per-
forming the transformation. We assume our system
deadlocks before reaching statel when purity is not
satisfied.

Corollary A.2 Assume has the formg,s,...,€). Then
1. ¢’ is reachable frono in 75 iff it is reachable fromo in
7389 and

2. there is an infinite run frora in 7giff there is one inTSStd.

Proof. [Sketch] Since— C —yg, we only have to prove
the “<” implications. 1. is direct from Lemma A.1: when
o has empty channelg C o requiresp = 0. 2. is a

) . Abbreviated rules: our pictures for LCS uses implicit
consequence of 1., using Kénig's Lemma. (I

variables or patterns in order to describe several similar

R, . . p?X p!X

Therefore, when the initial configuration has empty rules at once. For example, the looppy ——copy
channels, a LCS satisfy exactly the same reachability and ~ in Fig. 2 usescas a variable standing for any message
termination properties under the standard semantics,-or un M € M so that, lettingk = [M], it abbreviates loops
der the write-lossy semantics we adopted. In particular, ex
actly the same algorithms can be used.

In the ge”era' Ca_S? where the initial Conflgura_tlon IS not N times larger folN d:Efﬂi";le'. For the transition rules, the increasing
necessarily empty, it is easy to reduce reachability and ter factor iso(N2).
mination fr_om_ one semantics to the othgr: one simply eN-  4pere the increasing factor is only %" ™, (k + 1) since less sub-
codes the initial channel contents (and its residuals)én th configurations ofy, ..., uy, are meaningful.

3Assume the initial configuratioo = (g,uy,...,un) has contents of

sizeky + -+ + km, writing ki for |uj|. We need to replacq with a set

10



(each with a different intermediary state). Other ex-
amples ard in Fig. 3, a in Fig. 4, and so on. For
these variables, the allowed instantiations are some-
times constrained, as with(i“> 0)” or “(i > a)” in

Fig. 3and 4.

n+ 1 times
Rule R2is “((a +1,1; n)) —g {((a,q,...,d,1T; n))". With
our differential encoding of stacks, this requires thedioH
ing transformation:

p: . wPPullu# WA I Pu#

d: " # " #

where we assume thafu is pure, otherwise the® is not
copied to the right-hand side, as is done in staf€ig. 3).

dll

end

Figure 3. LCS component that implements
rule R2 (assuming purity)

Our channel system is actually more complex than de-
picted in Fig. 3 since it only accepts pure encodings. For
example, it will check thalk >a; >a, >---ap_1>a,=0
while performing the first copy loop (in statepy_beg).

Rule R3is “((A\,11; n)) —Rr {((An,TT; N))". With our differ-
ential encoding of stacks, this requires the following $ran
formation:

p: . wPPlu# W, o-1(wP H)NwPru #

d: N# N #

where it is assumed tha#ru is pure, otherwise the?r is
not copied to the right-hand side (see stair Fig. 4). On
top of the usual implicit check for puritydy > ap > --- >
ap", the system depicted in Fig. 4 checks tifat=)a, > 0
so thata, € Lim.

11

Figure 4. LCS component that implements
rule R3 (assuming purity)

Rule Siis “((1t; n+1)) —s ((0,TT; n))". With our differ-
ential encoding of stacks, this requires the following $ran
formation:

u# lu#

p:

a Iy " #

The component that implements S1 behaves like the com-
ponent for R1, only backwards.

Figure 5. LCS component that implements
rule S1 (assuming purity)

n+ 1times

Rule S2is “((a,a,...,d,T; n)) —s ((a+1,1T; n))” assum-

ing thata does not occur imt
With our differential encoding of stacks, this requires the
following transformation:

W, oI Iy #

p: W, P’ lu#

d: I"# N #

where it is now checked that does not start with. The
component that implements S2 is depicted in Fig. 6. Anim-
portant feature is the ability to check that the numberl



Figure 6. LCS component that implements
rule S2 (assuming purity)

of tally symbols after the first ordinal symbolsprmatches
the number in" in d. If there is a mismatch, our system
will never reactend.

Rule S3is “((An,TT; N)) —s ((A,T1; n))” assuming thatt
does not start with somz, < A.

With our differential encoding of stacks, this requires the
following transformation:

p: W () u# W, PPV

d: N # " #

where it is required thaa, > a, and wherev is obtained
from u. More precisely, ifu is € thenv = g, while if u is
somewPd, thenv=uif b>a+1andv=U if b=a+

1. The rule does not apply b < a or if u starts withl,
indicating thata, < A. Here again, the component has to

Figure 7. LCS component that implements
rule S3 (assuming purity)
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perform a crucial comparison: the numipghat is encoded
in d must match the number off symbols in the encoding
of the first ordinal in the stack. (As before, the depiction in
Fig. 7 does not feature the implicit purity check.)



