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Abstract

We show that reachability and termination for lossy
channel systems is exactly at levelFωω in the Fast-Growing
Hierarchy of recursive functions, the first level that domi-
nates all multiply-recursive functions.

1 Introduction

Lossy channel systems, or shortly LCS’s, are systems
of finite-state automata communicating asynchronously via
unbounded FIFO channels that are unreliable (“lossy”)
in the sense that they can nondeterministically lose mes-
sages. While systems with reliable (“perfect”) channels are
Turing-powerful, systems with lossy channels can be algo-
rithmically verified, as was first observed by Abdulla and
Jonsson [4] and Finkel et al. [16, 8]. The two main positive
results for LCS’s concern their reachability and termination
properties, for which decidability relies on arguments from
the theory of well-quasi-orderings [17, 5], and more pre-
cisely Higman’s lemma.

The complexity of LCS’s. Ever since these early posi-
tive results, the main open question has been to assess the
algorithmic complexity of LCS’s since no upper bounds
had been extracted from the decidability proofs, and no in-
teresting lower bounds were available for comparison. A
partial answer was given in [26] where it is shown that
LCS’s can simulate perfect systems whose space is bounded
by Ackermann’s function. Hence the complexity of their
verification problems cannot be primitive-recursive. This
lower bound directly applies to problems that are equiva-
lent to LCS verification, e.g., the “Regular Post Embedding
Problem” introduced in [9, 10], or that can simulate LCS’s,
see [21, 19, 3, 14, 18, 22] among others.

Our contribution. We show that lossy channel systems
can compute in a weak sense the functionsFα from the
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Fast-Growing Hierarchy for allα < ωω, and use this to sim-
ulate perfect channels whose size is bounded byFωω(n).
This relies on an original “differential encoding” for lists
of increasing ordinals that is simple enough to allow cor-
rect manipulation by finite-state transductions in the style
of channel systems while, at the same time, being differen-
tial makes it robust in presence of message losses.

The consequence is that LCS verification cannot be-
long toF<ωω , i.e., the class of all multiply-recursive func-
tions [28, 15]. However, it belongs toFωω as we explain
in section 6, heavily relying on Cichon and Tahhan Bittar’s
analysis of Higman’s lemma [12]. These results give a tight
measure of the worst-case complexity and further show that
the key parameter is the size of the message alphabet (and
not the number of channels, or size of the control part).
They also directly apply to all the problems with which LCS
verification has been connected (see above). Beyond these
applications, we hope that this work will help disseminate
some fundamental proof-theoretical techniques and results
on subrecursive hierarchies that are relevant to verification
techniques based on well-quasi-orderings.

Related work. The study of the complexity of Higman’s
Lemma was initiated by de Jongh and Parikh [13] who mea-
sured the maximum order-type compatible with the sub-
word ordering. Constructive proofs of Higman’s Lemma
provide recursive upper bounds that are inherited from the
computational power of the underlying logical framework,
and are thus exaggeratedly high. Using clever combina-
torial reasonings, Cichon and Tahhan Bittar [12] were the
first to provide tight upper bounds for the length of bad se-
quences w.r.t. the subword ordering.1 Our construction does
not only show that long bad sequences can be produced by
something as weak as lossy channel systems: it shows how
such systems can check that the long computations did ac-
tually not lose any message. Such reductions are scarce in
the field of infinite-state systems verification (but they exist
in the neighbouring field of automated deduction).

1An earlier Fω upper bound for bad sequences inN
k (Dickson’s

Lemma) was provided by McAloon [24].
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2 The Fast-Growing Hierarchy

The Fast-Growing Hierarchy, also called theExtended
Grzegorczyk Hierarchy, is a class(Fα)α of number-theoretic
functions indexed by (an initial segment of the) ordinals and
calledordinal recursive functions[28]. Our exposition is
based on [25, 15, 12] where more details can be found.

Each functionFα : N → N eventually dominates the
lower functionsFβ for β < α. Furthermore, writingFα for
the smallest class of functions containingFα, addition, zero,
projections, and closed under compositions and limited re-
cursion, one obtains a strict hierarchy of subrecursive func-
tions. WriteF<α for

S

β<α Fβ: it is known thatF<ω is ex-
actly the set of primitive-recursive functions, thatF

<ωk is
the set of Péter’sk-recursive functions for anyk = 1,2, . . .,
that F<ωω is the set of multiply-recursive functions, and
thatF<ε0 is the set of functions provably total in first-order
Peano arithmetic.

Ordinals below ωω. In this paper we useΩ to denote the
ordinalωω. We shall work with set-theoretical ordinals less
thanΩ, written in Cantor’s Normal Form.

We say that a given ordinal 0< α < Ω hasdegree d∈ N,
written deg(α) = d, if ωd+1 > α ≥ ωd. In that case,α can
be decomposed in a unique way under the formα = ωd.a+
α′ with 0 < a ∈ N andα′ < ωd. (We further letdeg(0) =
0.) For anyp≥ deg(α), α < Ω can be written in a unique
way under the formα = ωp.ap+ωp−1.ap−1+ · · ·+ω1.a1+
ω0.a0, shortly written∑i≤p ωi .ai , with a0, . . . ,ap ∈ N. The
size|α| of α = ∑i≤p ωi .ai is ∑i≤pai .

Assumeα = ∑i≤p ωi .ai andβ = ∑i≤p ωi .bi are two ordi-
nals belowΩ. We say thatα embeds inβ, written α ⊑ β,
whenai ≤ bi for all i = 0, . . . , p. Observe that embedding
between ordinals is only a partial order (in which, e.g.,ω
and 1 are incomparable), compatible with the usual linear
ordering of ordinals.

The set of limit ordinals≤ Ω is denotedLim. Each
λ ∈ Lim comes with its canonicalfundamental sequence
(λn)n∈N satisfyingλ0 < λ1 < · · · < λn < λn+1 < · · · and
λ = supn λn. For limit ordinals belowΩ, the fundamental
sequence is given by
(

∑
i≤p

ωi
.ai

)

n

def
= ωp

.ap+· · ·+ωr+1
.ar+1+ωr(ar −1)+ωr−1

.n

assumingar is the last nonzero coefficient, i.e., 0= a0 =
a1 = . . . = ar−1 < ar . Equivalently,
(

(α+1).ωi+1
)

n
= α.ωi+1 +ωi

.n for all α < Ω andi ∈ N.

For example, ifλ = ω9.2+ ω3.6, thenλn = ω9.2+ ω3.5+
ω2.n. Observe that, for allλ ∈ Lim, λn ⊑ λn+1 and|λn| =
|λ|+n−1. This scheme extends canonically up toε0 (and

beyond) with(ωλ)n
def
= ωλn etc. [25, 15].

Fast-growing functions and monotonicity. The func-
tionsFα : N → N are defined by induction overα:

F0(n)
def
= n+1, (D1)

Fα+1(n)
def
= Fn+1

α (n) =

n+1 times
︷ ︸︸ ︷

Fα(Fα(. . .Fα(n) . . .)), (D2)

Fλ(n)
def
= Fλn(n) if λ ∈ Lim. (D3)

This inducesF1(n) = 2n+ 1 andF2(n) = (n+ 1)2n+1−1.
ExpandingF3(n) needs a tower ofn exponents.Fω(n) =
Fn(n), so thatFω is a variant of Ackermann’s function and

is the firstFα that is not primitive-recursive. WithFωω(n)
def
=

Fωn(n), Fωω is a kind of “multiply-Ackermann” function,
the firstFα that is notk-recursive for somek∈ N.

Since we later construct a channel system that evaluates
the Fα functions forα < Ω, it is a good exercise for the
reader to try and get some intuition of what wouldFω+1(n),
Fω+2(n), Fω.2(n) andFω2(n) look like. For example

Fω2.3(5) = Fω2.2+ω.5(5)

= Fω2.2+ω.4+5(5)

= Fω2.2+ω.4+4(. . .(Fω2.2+ω.4+4
︸ ︷︷ ︸

6 times

(5)) . . .).

We now state some standard monotonicity properties in
the form that will be convenient for our later developments.

Lemma 2.1 (Monotonicity) For everyα < Ω and n∈ N:

n < Fα(n), (2.1.a)

Fα(n) ≤ Fα(n+1), (2.1.b)

|α| < Fα(n) if n > 0. (2.1.c)

In general, β < α does not entailFβ(n) ≤ Fα(n), e.g.,
Fm(n) > Fω(n) when 0< n < m < ω. What is true is
that, for all β < α, Fβ is eventuallydominated byFα, i.e.,
Fβ(n) < Fα(n) for n large enough.

The next lemma provides more precise information on
this issue.

Lemma 2.2 (Monotonicity w.r.t. α) For everyα,β,γ < Ω
and n, p∈ N:

Fβ(n) ≤ Fα(n) if β ⊑ α, (2.2.a)

Fγ+α(n) ≤ Fγ+ωp+α(n) if n > |γ|. (2.2.b)

Observe that (2.2.b) is not a special case of (2.2.a) since
γ+α ⊑ γ+ωp +α does not hold in general.

We now prove Lemmas 2.1 and 2.2. The first four
inequalities are proved by induction overα. We sometimes
use simultaneous induction as when proving (2.1.b) and
(2.2.a). Proving (2.2.b) requires the introduction of extra
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notations and tools, and is done in a later step.

2.1.a.Fα(n) > n:

An easy induction overα. This directly entails

F i
α(n) ≥ n+ i. (2.1.a’)

2.1.b.We actually proveFα(n+ i) ≥ Fα(n) for all i ∈ N:

If α = 0, we are done withn+ i +1≥ n+1.

If α = α′ + 1 is a successor ordinal, thenFα(n+ i) =
Fn+i+1

α′ (n+ i) (by D2)≥ Fn+1
α′ (n+ i) (by 2.1.a)≥ Fn+1

α′ (n)
(by ind. hyp.)= Fα(n).

If α∈ Lim, we rely onαn ⊑αn+i : Fα(n+ i) = Fαn+i (n+ i)
(by D3) ≥ Fαn+i (n) (by ind. hyp.) ≥ Fαn(n) (by 2.2.a and
ind. hyp.)= Fα(n).

2.1.c.Fα(n) > |α| if n > 0:

If α = 0, thenFα(n) = n+1 > 0 = |α|.
If α = α′ + 1 is a successor ordinal, thenFα(n) =

Fn+1
α′ (n) (by D2) > |α′|+ n (by ind. hyp. and using 2.1.a’)

≥ |α| since|α| = |α′|+1 andn > 0.

If α ∈ Lim, we rely onFα(n) = Fαn(n) > |αn| (by ind.
hyp.) = |α|−1+n≥ |α| sincen > 0.

2.2.a.Fβ(n) ≤ Fα(n) if β ⊑ α:

If α = 0, then necessarilyβ = α and we are done.

If α = α′ + 1 is a successor ordinal, we consider two
cases. Ifβ = β′ + 1 is a successor, thenβ′ ⊑ α′ so that
Fβ′(n) ≤ Fα′(n) by ind. hyp. Now, using 2.1.b we deduce
Fn+1

β′ (n) ≤ Fn+1
α′ (n), i.e., Fβ(n) ≤ Fα(n) as required. Ifβ

is a limit, thenβ ⊑ α′ and Fβ(n) ≤ Fα′(n) (by ind. hyp)
≤ Fn+1

α′ (n) (by 2.1.a)= Fα(n).

If α ∈ Lim, thenβ ∈ Lim too and there are two cases:
eitherβ ⊑ αn or βn ⊑ αn. In both cases the induction hy-
pothesis concludes immediately.

Proof of (2.2.b). Recall that, for anyp ∈ N, an ordinal
α can be decomposed in a unique way under the form
α = α1.ωp + α2 such thatα2 < ωp. This decomposition
satisfies bothα1.ωp ⊑ α and α2 ⊑ α. Also note that
α+ωp = α1.ωp +ωp = (α1 +1).ωp.

2.2.b.Fγ+α(n) ≤ Fγ+ωp+α(n) if n > |γ|: The proof is by in-
duction overα. There are three cases.
1. α = 0: we must prove thatFγ(n) ≤ Fγ+ωp(n). When
p = 0, i.e.,ωp = 1, we note thatγ ⊑ γ + ωp so that (2.2.a)
concludes. Whenp > 0, γ + ωp ∈ Lim. Decomposingγ as

γ1.ωp + γ2 we obtain

Fγ+ωp(n) = F(γ1+1).ωp(n)

= Fγ1.ωp+ωp−1.n(n) (by D3)

= Fγ1.ωp+ωp−1.(n−1)+ωp−2.n(n) (D3 again)

= Fγ1.ωp+ωp−1.(n−1)+ωp−2.(n−1)+ωp−3.n(n)

· · ·

= Fγ1.ωp+[∑i<p ωi .(n−1)]+1(n) (writtenFγ1.ωp+γ′(n)).

Now γ2 ⊑ γ′ sincen > |γ|. Henceγ ⊑ γ1.ωp + γ′ and (2.2.a)
concludes.
2. α = α′ + 1: then Fγ+α′(n) ≤ Fγ+ωp+α′(n) by ind. hyp.
One deduces thatFk

γ+α′(n)≤Fk
γ+ωp+α′(n) for all k∈N using

2.1.b (and also 2.1.a to guarantee that all arguments are>

|γ|). Puttingk = n+ 1, one obtainsFγ+α(n) ≤ Fγ+ωp+α(n)
as required.
3.α∈ Lim: Letd = deg(α). If d = p thenγ+α⊑ γ+ωp+α
so that (2.2.a) concludes. Ifd > p, thenγ+α = γ+ωp +α
which is even more direct.

If now d < p then(ωp + α)n is ωp + αn. Decomposeγ
both asγ1.ωp + γ2 and asγ′1.ω

d + γ′2. Note thatγ1 + ωp =
γ′1 +ωp sinced < p. Finally

Fγ+ωp+α(n) = F(γ+ωp+α)n(n) by D3

= Fγ1+ωp+αn(n)

= Fγ′1+ωp+αn
(n)

≤ Fγ′1+αn
(n) by ind. hyp., noting that|γ′1| ≤ |γ|

= F(γ+α)n(n)

= Fγ+α(n) by D3.

3 Stacking ordinals

We use stacks to define a small-steps semantics for the
Fα’s that will be easier to simulate in channel systems.

Definition 3.1 A stack(of length k∈N) is a finite sequence
π = α1,α2, . . . ,αk of increasing ordinals< Ω, i.e., α1 ≤
α2 ≤ ·· · ≤ αk < Ω.

Since a stack must list its elements in increasing order, there
is a natural bijection between stacks and finite multisets
overΩ . Hence we letM f (Ω) denote the set of stacks, and
write π <ms π′ whenπ is strictly smaller thanπ′ in the mul-
tiset ordering inherited from the ordering of ordinals below
Ω. This is a well-founded linear ordering withε (the empty
stack) as minimal element.

We now extend the(Fα)α family with fast-growing func-
tions indexed by stacks, denotedFπ : N → N, and defined
with:

Fε(n)
def
= n, Fα,π(n)

def
= Fπ(Fα(n)).

3



Note thatFα is the same when we seeα as an ordinal or as
a stack of length one, hence we will not disambiguate.

The evaluation of someFπ(n) can be expressed as a
transformation system, where the manipulated objects are
pairs 〈〈π ; n〉〉 of a stackπ and a natural numbern. For-
mally, we define a relation overM f (Ω)×N, denoted−→R,
and defined by the three following “rewrite” rules:

〈〈0,π ; n〉〉 −→R 〈〈π ; n+1〉〉 (R1)

〈〈α+1,π ; n〉〉 −→R 〈〈

n+1 times
︷ ︸︸ ︷
α,α, ...,α,π ; n〉〉 (R2)

〈〈λ,π ; n〉〉 −→R 〈〈λn,π ; n〉〉 if λ ∈ Lim. (R3)

Observe that ifπ is a stack and〈〈π ; n〉〉−→R〈〈π′ ; n′〉〉 then
π′ is indeed a stack,π′ <ms π andn′ ≥ n. Note that−→R is
deterministic.

Corollary 3.2 −→R is terminating and convergent.

The normal forms are the pairs〈〈π ; n〉〉 with π = ε.
Since rules R1–3 merely reformulate definitions D1–3

in terms of stacks, it follows that〈〈π ; n〉〉−→R〈〈π′ ; n′〉〉
implies Fπ(n) = Fπ′(n

′). With Cor. 3.2, one deduces
〈〈π ; n〉〉−→∗

R〈〈ε ; Fπ(n)〉〉.

Write ↔R for −→R∪−→−1
R . The previous observations

entail

Lemma 3.3 〈〈π ; n〉〉↔∗
R〈〈π′ ; n′〉〉 iff Fπ(n) = Fπ′(n

′).

Notation 3.4 When dealing with↔R, it is convenient to de-
compose it as the union−→R1∪−→R2∪−→R3∪−→S1∪−→S2∪
−→S3 of the six relations defined by rules R1 to R3 and
by inverse rulesdenoted S1 to S3, and defined such that
−→Si = −→−1

Ri . (See Appendix B for the explicit definition.)

4 A differential encoding of stacks

For K ∈ N, we let ΣK
def
= {ω0,ω1,ω2, . . . ,ωK−1} ∪ {I}

be an alphabet withK + 1 symbols, that we use to encode
stacks (restricted to ordinals< ωK). The symbols “ωp” de-
note the corresponding finite powers of the ordinalω. In
particular, “ω0” and “ω1” denote, respectively, the ordinals
1 andω.

We first explain the encoding informally. Consider the
following wordu∈ Σ∗

K :

u = ω0ω0
Iω3ω1

IIω1ω0
I.

One readsu from left to right. While readingu, all the en-
countered ordinal symbols are added up, giving rise to a
notion of current sum, or height. A tally symbol “I” codes

for an ordinal in the stack:eachI stands for one copy of the
current sum. In our example, the stack associated withu, is

Π(u) = 2, ω3 +ω, ω3 +ω, ω3 +ω.2+1.

(Indeedω0+ω0 = 2 andω0+ω0+ω3+ω1 = ω3+ω. Fur-
thermore,Π(u) contains two occurrences ofω3+ω because
u contains two tally symbols immediately after the first oc-
currence ofω1.)

Formally, the correspondenceΠ : Σ∗
K → M f (Ω) and the

height functionh : Σ∗
K → Ω are defined by induction overu:

h(ε) def
= 0; h(uI)

def
= h(u); h(uωi)

def
= h(u)+ωi ;

Π(ε) def
= ε; Π(uI)

def
= Π(u),h(u); Π(uωi)

def
= Π(u).

Observe thatΠ(u) is indeed a stack, i.e.,Π(u) lists increas-
ing ordinals, sinceh(u.v) ≥ h(u) for all u,v.

Remark 4.1 We call this encodingdifferentialsince theωp

symbols inΣK are not used to directly represent anα j in
a stackπ = α1, . . . ,αk. Rather they represent the “differ-
ence”α j −α j−1 that must be added to the previous ordinal
in order to obtainα j .

Any u ∈ Σ∗
K encodes a stack, and any stack belowωK

can be encoded with someu∈ Σ∗
K . Such an encoding is not

unique. However, there is a unique shortest one, called a
pureencoding.

Definition 4.2 (Pure encodings)An encoding u∈ Σ∗
K is

pure if (1) it does not end with anωi symbol, and (2) it
does not contain a factor of the formωiω j with i < j.

Note that the pure encodings are a regular subset ofΣ∗
K .

The idea behind purity is to forbid useless symbols in
an encoding. Ifu is not pure, this is witnessed by some
occurrence of someωi . Removing that occurrence yields
some shorteru′ with Π(u′) = Π(u). Hence any impureu can
be replaced by a shorter equivalent encoding. Reciprocally,
if u is pure andu′ is shorter thanu, thenΠ(u′) 6= Π(u).

Purity allows transferring the monotonicity lemmas from
stacks to their encodings. Writeu⊑ vwhenu is a (scattered)
subword ofv, i.e., u can be obtained fromv by removing
some letters (possibly none). The rest of this section proves
the following proposition.

Proposition 4.3 Let u,v∈ Σ∗
K and n> 0. If u ⊑ v and v is

pure, then FΠ(u)(n) ≤ FΠ(v)(n).

The crux of the proof is the case whereu andv only differ
by one ordinal symbol:

Lemma 4.4 FΠ(v1v2)(n) ≤ FΠ(v1ωpv2)(n) when v1ωpv2 is
pure and n> 0.
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Proof. Write π = α1, . . . ,αk for Π(v1ωpv2) and π′ =
α′

1, . . . ,α
′
k for Π(v1v2) (clearly,π andπ′ have same length).

Write l ∈ {0, . . . ,k− 1} for the length ofΠ(v1). Then
α′

i = αi for i = 1, . . . , l and, fori = l +1, . . . ,k, we can write
αi andα′

i under the following form:

αi = h(v1)+ωp +βi , α′
i = h(v1)+βi ,

where βl+1, . . . ,βk is simply Π(v2). There are now two
cases:
(1) If v1 ends with some “I” symbol (or v1 = ε), then
h(v1) = αl−1, putting α0 = 0 by convention. Observe
that Fα′

1,...,α′
l
(n) > |αl | as a consequence of (2.1.c) and

(2.1.a). Thus (2.2.b) applies and we can prove that
Fα′

1,...,α′
i
(n)≤ Fα1,...,αi (n) for all i = l +1, . . . ,k by induction

over i.
(2) Otherwisev1 ends with someωr symbol. Observe that
r ≥ p sincev1ωpv2 is pure. This implies thatα′

i ⊑ αi for
i ≥ l (and hence for alli’s). We conclude with (2.2.a) and
the other monotonicity properties. �

The case whereu and v differ by one tally symbol is
easier.

Lemma 4.5 FΠ(v1v2)(n) ≤ FΠ(v1Iv2)(n).

Proof. [Sketch] Π(v1v2) is obtained by removing one
ordinal somewhere inΠ(v1Iv2). Hence we can conclude
with (2.1.a) and the other monotonicity properties. �

There remains to deal with the case whereu andv differ
by more than one symbol. Writeu ⊑k v whenu ⊑ v and
|v| = |u|+k. Write u≡Π v whenΠ(u) = Π(v).

Lemma 4.6 If u ⊑ v and v is pure then there is a sequence

u ≡Π u1 ⊑1 u2 ⊑1 · · · ⊑1 un = v

where all ui ’s, i = 1, . . . ,n, are pure.

Proof. We let u1 be the pure encoding ofΠ(u): this
is a subword ofu, hence of v too. The sequence
u1 ⊑1 u2 ⊑1 · · · ⊑1 un is obtained by inserting inu1, one
by one, all the (occurrences of) symbols that are inv but
missing inu1. One first inserts all the missing tally symbols
(in no particular order) and then, in a second phase, all
the missing ordinal symbols (in no particular order). This
ensures that all theui ’s are pure: In the first phase, aui

inherits purity fromui−1, starting withu1, sincexIy is pure
whenxy is. In the second phase, aui inherits purity from
ui+1, starting fromun = v, sincexy is pure whenxω jy is. �

With Lemma 4.6 one can reduce Prop. 4.3 to repetitive
applications of Lemmas 4.4 and 4.5, which concludes the
proof of Proposition 4.3.

5 Fast-growing functions via lossy channels

5.1 Lossy channel systems

This section summarily defineslossy channel systems
(LCS) and their behaviour. We refer the reader to [4, 8, 26]
for more details.

A LCS is a tupleS= (Q,M,C,∆) whereQ = {q1,q2, . . .}
is a finite set of(control) locations, M = {a1,a2, . . . ,ak} is
a finitemessage alphabet, C = {c1,c2, . . . ,cl} is a finite set
of channels, and∆ ⊆ Q×C×{!,?}×M×Q is a finite set of
transition rules, with typical elements denotedδ. A rule of
the form(q,c, !,a,q′) (respectively,(q,c,?,a,q′)) is called
awriting rule (resp., areading rule).

Assume thatS= (Q,M,C,∆) is a LCS withl channels. A
configurationof S is a pair(q,uuu), whereq ∈ Q is the cur-
rent location anduuu∈ (M∗)l , is the contents of the channels.
(q,uuu) is sometimes written(q,u1, . . . ,ul ) whereui ∈ M∗ is
the sequence of messages contained in channelci (by con-
vention, reading occurs at the head ofui and writing at its
tail). We write Conf = {σ,ρ, . . .} for the setQ× (M∗)l of
configurations (ofS).

Configurations are compared via the subword ordering:

(q,u1, . . . ,ul ) ⊑ (q′,u′1, . . . ,u
′
l )

def
⇔ q = q′∧

^

i=1,...,l

ui ⊑ u′i .

Observe that, sinceQ andM are finite,(Conf,⊑) is a well-
partial-order as a consequence of Higman’s Lemma.

The operational semantics ofS is given under the form
of a transition systemTS = (Conf,−→). Assume thatσ =
(q,u1, . . . ,ul ) and σ′ = (q′,u′1, . . . ,u

′
l ) are two configura-

tions. There is a (lossy) step fromσ to σ′ via ruleδ, denoted

σ δ
−→σ′, when

— case 1: δ ∈ ∆ is a reading rule of the form(q,ci ,?,a,q′)
andui = au′i while u j = u′j for j 6= i, or
— case 2: δ is a writing rule(q,ci , !,a,q′) and u′i = uia
while u j = u′j for j 6= i, or
— case 3: δ is a writing rule(q,ci , !,a,q′) andu j = u′j for
all j = 1, ..., l .
Hence a message can be lost (case 3) during a step that at-
tempts to write it in the channels. Once in the channels,
messages cannot be lost, they can only be removed by read-
ing steps.

A perfect step, writtenσ δ
−→perfσ′, is a step that is derived

from case 1 or 2 only. Perfect steps are the expected be-
haviour of finite-state channel systems [7]. A (lossy)run is
a sequence of consecutive steps.Perfect runs, that only use
perfect steps, are a special case of lossy runs.

When writing steps, we usually omit theδ superscript
when it is not useful. We use the standard notations “

n
−→”,

“
+
−→” and “

∗
−→” for, respectively, then-fold composition, the
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transitive closure and the reflexive-transitive closure ofa
transition relation “−→”.

Remark 5.1 (Different ways to lose messages)The liter-
ature proposes several different notions of message lossesin
LCS’s. The definition we used above is called “write-lossy”
and is the most convenient for the technical developments
that follow. This choice has no important impact on the be-
haviour of lossy systems, and no impact at all on our main
results that apply equivalently to other standard notions of
lossy steps (see Appendix A).

5.2 A channel system that computes fast-
growing functions

We now construct a LCS, calledWK , that weakly com-
putes theFα functions for allα < ωK . It can also weakly
compute their inversesF−1

α as we explain later.
WK uses two channels. The first channel,p, stores a word

u∈ Σ∗
K that encodes a stack of ordinals as in Section 4. The

second channel,d, stores a numbern > 0 in unary (usingn
times the tally symbol, orIn). Thus a pair〈〈π ; n〉〉 is stored
in two channels. An extra marker symbol # is written at the
end of these encodings to recognize their extremity during
the manipulations.

The overall structure ofWK is illustrated in Fig. 1 (see
Appendix B for the details of the components). When
explaining its behaviour, we call “single-passrun” any
run that does not visit the stateloop. In statebeg, WK

beg wrap

loop end

p?#

p!#

d?#

d!#

· · · apply R1· · ·

· · · apply R2· · ·

· · · apply R3· · ·

· · · apply S1· · ·

· · · apply S2· · ·

· · · apply S3· · ·

channelp

channeld

ω1 I ω0 I I #

I I I I #

Figure 1. A schematic view of WK .

will traverse one of six possible “components” where it
transforms the pair〈〈π ; n〉〉 (more precisely, its encoding)
stored in the channels by one application of the rewriting
rules R1 to R3 (from section 2), or the inverse rules S1
to S3. With our encodings of pairs, each of these rules

can be seen as a finite-state transduction. The LCS’s that
implement these components are described in Appendix B.
Implementing one rewriting step,WK will replace〈〈π ; n〉〉
with the resulting〈〈π′ ; n′〉〉, that is, unless message losses
corrupt the result. ThenWK reaches statewrap where it
reads the end markers and writes them back after〈〈π′ ; n′〉〉.
In stateend WK can terminate and exit, or loop back tobeg
and transform〈〈π′ ; n′〉〉 again, therefore computing the
transitive closure of↔R.

The construction ensures the following features:

sanity check: The rule components assume that each chan-
nel contain aΣK-word followed by at most one marker
symbol #. With this assumption, the components
check that the channels contain proper inputs. For-
mally, there is a single-pass run from(beg,u#,v#) to
stateend only if u is some pure encoding, andv is some
In for somen > 0. If this is not the case, on impureu
or incorrectv, WK will stop in a deadlock. If a final #
is missing,WK will loop without reachingend.

one-pass transduction: If the channels contain proper in-
puts, a single-pass run from(beg,u#,v#) to some
(wrap,w,w′) readsu andv completely, write some new
datau′ and v′, and does not touch the end markers.
Hencew = #u′ andw′ = #v′.

rule applicability: When going frombeg to end, WK

chooses nondeterministically what rule component
will be traversed. It may be the case that the corre-
sponding rule is not applicable to the current channel
contents: this is checked byWK and it will stop in a
deadlock if the rule is not applicable.

We can now state formally howWK implements↔R.

Lemma 5.2 (Single-pass perfect runs inWK) Assume
that u,u′ ∈ Σ∗

K are the pure encodings of two stacksπ and
π′. Assume n,n′ > 0. Then〈〈π ; n〉〉↔R〈〈π′ ; n′〉〉 if, and
only if, WK has a single-passperfectrun of the form

(beg,u#, I
n#)

∗
−→perf(end,u′#, I

n′#).

Proof. [Idea] The “⇒” direction is obvious sinceWK

implements exactly the six rules that define↔R (see
Appendix B). Reciprocally, therule-applicability features
ensure thatend is only reached by one proper step of
rewriting. Hence the “⇐” direction. �

The corollary is:

Theorem 5.3 (WK weakly computes theFα’s) Assume
that u,u′ ∈ Σ∗

K are the pure encodings of two stacksπ and
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π′. Assume n,n′ > 0. Then Fπ(n) ≥ Fπ′(n
′) if, and only if,

WK has alossyrun of the form

(beg,u#, I
n#)

∗
−→(end,u′#, I

n′#).

Proof. (⇒): Write a for Fπ(n) and b for Fπ′(n
′). By

Lemma 3.3, there exist rewriting sequences of the form
〈〈π ; n〉〉↔∗

R〈〈ε ; a〉〉 and〈〈ε ; b〉〉↔∗
R〈〈π′ ; n′〉〉, and it is even

possible to ensure〈〈π ; n〉〉↔+
R〈〈ε ; a〉〉 by inserting extra

rewriting steps. These rewriting steps entail the existence
of corresponding single-pass perfect runs (Lemma 5.2).
Concatenating these, we deduce thatWK has two per-
fect runs of the form(beg,u#, In#)

∗
−→perf(end,#, Ia#) and

(beg,#, Ib#)
∗
−→perf(end,u′#, In

′
#). Sincea ≥ b, there also

exists a lossy run(beg,u#, In#)
∗
−→(end,#, Ib#) obtained by

losinga−b tally symbols ind during the last single-pass of
the first run. Concatenating with the second run we obtain
the required lossy run(beg,u#, In#)

∗
−→perf(end,u′#, In

′
#).

(⇐): Write k for the number of times the run
(end,u#, In#)

∗
−→(end,u′#, In

′
#) visits stateloop. We prove

the implication by induction overk. If k = 0, then the run
has length zero,u = u′, n = n′ and we are done. Now as-
sumek > 0. The run has the form

(end,u#, I
n#)−→(loop,u#, I

n#)−→

single-pass
︷ ︸︸ ︷

(beg,u#, I
n#)

∗
−→(end,w,w′)

∗
−→(end,u′#, I

n′#)
︸ ︷︷ ︸

k−1 remaining visits

.

After two steps, the first single-pass reaches(end,w,w′)
by traversing one of the six components ofWK . Travers-
ing the same component,WK has a perfect single-pass run
(beg,u#, In#)

∗
−→(end,v#, Im#) satisfying

FΠ(u)(n) = FΠ(v)(m) (1)

thanks to Lemma 5.2. With our write-lossy semantics, the
one-pass transductionfeatures ensure thatw and w′ are
subwords of, respectively,v# andIm#. Observe thatw and
w′ are proper inputs, i.e.,w is somev′# for some purev, and
w′ is someIm

′
# for somem′ > 0. Indeed, eitherk> 1 and the

sanity checkfeatures require a proper input (otherwise the
next single-pass would not succeed), ork= 1, implying that
w = u′# andw′ = In

′
#. Therefore, the induction hypothesis

applies, yielding

FΠ(v′)(m
′) ≥ FΠ(u′)(n

′). (2)

Now, sincev′#⊑ v# andIm
′
⊑ Im#, i.e.,v′ ⊑ v andm′ ≤ m,

sincev is pure andm′ > 0, Lemmas 2.1.b and 4.3 imply

FΠ(v′)(m
′) ≤ FΠ(v)(m). (3)

Combining (1–3) provides the requiredFΠ(u)(n) ≥
FΠ(u′)(n

′). �

5.3 Lower bounds for LCS’s

WK can be used to check that a possibly lossy run is ac-
tually perfect in space-bounded LCS’s. Formally, a space-
bounded LCS is a LCS operating on one channel and whose
transition rules write exactly as many messages as they read
(see [26]). Hence the number of messages in the channel
remains constant during perfect runs, and it can only de-
crease during lossy runs. Given a space-boundedS, and

WK

beg

end

Space-bounded LCSS

init final

WK

beg′

end′

someK ∈ N, we build the LCSSK by inserting two copies
of WK , one before and one afterS, as schematically depicted
above.Sdoes not usep, onlyd. The idea is that the firstWK

will be started with a pair〈〈ωK−1 ; 1〉〉 in the channels, will
write some largeIn# in d, that will be used byS, that will
returnIm# to be fed to the secondWK :

channelp: ωK−1# # # u#
WK−→

S
−→

WK−→
channeld: I# In# Im# I#

The construction ofSK has some simple sanity checks (not
depicted) between theWK ’s and theSpart, ensuring that the
# markers are not lost, etc.

Now, assumeSK has a run of the form

(beg,ωK−1#, I#)
∗
−→(end,u#, I

n#)

−→(init,u#, I
n#)

∗
−→(final,u#, I

m#) (†)

−→(beg′,u#, I
m#)

∗
−→(end′,ωK−1#, I#)

Then the construction ofWK ensures thatn ≤ FωK−1(1)
and FωK−1(1) ≤ m (by Theorem 5.3). SinceS is
space-bounded,n ≥ m. Hence a run like (†) re-
quires n = m (= FωK−1(1)), so that the sub-run
(init,u#, In#)

∗
−→(final,u#, Im#) must be perfect. Recipro-

cally, a run(beg,ωK−1#, I#)
∗
−→(end′,ωK−1#, I#) in S′K must

be decomposable under the form of (†).

Corollary 5.4 SK has a run from (beg,ωK−1#, I#) to
(end′,ωK−1#, I#) if, and only if, S has an acceptingperfect
run using space FωK−1(1).

Theorem 5.5 (Main result) Reachability for lossy channel
systems does not belong toF<ωω .

Proof. Using SK , it is possible to reduce the problem
of whether a space-bounded LCSS has an accepting

7



perfectrun using space≤ FωK−1(1) to a LCS-reachability
question of size polynomial inK and|S|. We conclude by
observing that perfect space-bounded LCS’s have the same
computational power than space-bounded Turing machines,
and that the hierarchy(F<ωK )K=1,2,3,... is strict. �

There exists a similar construction, again usingWK , that
reduces the existence of perfect space-bounded runs toter-
minationof LCS’s, rather thanreachability(along the lines
of [26, section 4.2]). The consequences are similar:

Theorem 5.6 Termination for lossy channel systems does
not belong toF<ωω .

6 Upper bounds

In this section, we explain how Cichon’s and Tahhan Bit-
tar’s analysis of Higman’s Lemma [12] leads to:

Observation 6.1 Reachability and termination for lossy
channel systems are inFωω .

Since we showed that these problems do not belong to
F<ωω , this concludes the proof of our main result.

Longest bad sequences.Let Σ be an alphabet contain-
ing p letters. Twol -tuplesuuu,uuu′ of words fromΣ∗ can be
compared using the subword ordering component-wise, i.e.,
defining

uuu= (u1, . . . ,ul )⊑ (u′1, . . . ,u
′
l ) = uuu′

def
⇔ u1 ⊑ u′1∧·· ·∧ul ⊑ u′l .

A sequenceuuu0,uuu1,uuu2, . . . , is bad if there are noi < j such
thatuuui ⊑ uuu j , it is goodotherwise. Forr ∈ N, we say the se-
quence isr-good if it contains an increasing subsequence
of length r + 2, i.e., if uuui1 ⊑ uuui2 ⊑ ·· · ⊑ uuuir+2 for some
i1 < i2 < · · · < ir+2 (and it is r-bad otherwise). By Hig-
man’s Lemma,⊑ is a well-partial-order on(Σ∗)l , hence any
bad sequence, and anyr-bad sequence, is finite. Arbitrarily
long bad sequences can be produced, for example by start-
ing with uuu0 large enough. However, if one considerscon-
trolled sequences, i.e., sequences such that|uuui | ≤ i + |uuu0| for
all i, it is easy to see (Hint: use König’s Lemma) that there is
an upper bound on the lengths of controlled bad sequences
that start from a givenuuu0.

Cichon and Tahhan Bittar consider the function
H(p, l , r,n), defined as the length of the longest controlled
r-good sequence with|uuu0|= n for an alphabetΣ of sizep 2.
They show thatH(p, l , r,n) ≤ Fω f (p)(max(l , r,n)) for some
function f that is left implicit but that is definitely primitive-
recursive [11] (see also [27]). HenceH belongs toFωω .

2H(p, l , r,n) is our notation for what Cichon and Tahhan Bittar denote
Hig(ωp.l , r,Succ)(n).

Bounding termination and reachability. When config-
urations of a LCS are compared with⊑, there are similar
notions of a bad, and of anr-bad, runσ0−→σ1−→ . . .−→σn.
With such a run, we associate its sequence of channel
contentsuuu0, . . . ,uuun, obtained by forgetting the control state
part of a configurationσi = (qi ,uuui). Observe that if the
run is bad then the sequence(uuui)i=0,...,n is (|Q| − 1)-bad
(by the pigeonhole principle). Hence bad runs have
length bounded inO

(
Fωω(max(|Q|, |C|, |σ0|))

)
, or even in

O
(
Fω f (p)(max(|Q|, |C|, |σ0|))

)
.

Now, since deciding termination can be done by check-
ing that all runs fromσ0 are bad (this is the classic algo-
rithm, see [16, 4, 17]), termination of LCS is inFωω .

Regarding reachability, the backward-chaining algo-
rithm [4, 17] also builds a bad sequence of configurations:
the minimal elements ofPre∗(Goal) for some upward-
closedGoal⊆ Conf defined by its minimal elements. By
construction, this sequence is controlled (even though it is
not a runper se). Hence the running time of the algorithm
is in Fωω too.

We observe that these two algorithms handle equally
well our write-lossy semantics or the standard lossy seman-
tics (see Appendix A).

Variants and restrictions. From the above observations,
one concludes that termination and reachability are in
Fω f (p) if we restrict ourselves to LCS’s having a message
alphabet of size at mostp. This indicates that the size of
M, not the number of channels, or the number of control
states, or the size of the initial configuration, is the key
parameter affecting complexity. (Note that, in section 5,
we used an alphabet of sizeK + 2 to build LCS’s whose
complexity was not inF<ωK .) Since the cumulative
hierarchy (Fα)α<ωω is strict, we deduce that increasing
the alphabet size of LCS’s gives rise to a strict hierarchy
of verification problems (more precisely, a hierarchy that
contains a strict sub-hierarchy). This further explains why
LCS’s with large message alphabets cannot be simulated
by LCS’s with a fixed alphabet (more exactly, not via a
reduction inF<ωω) unlike the way Turing machines can
be restricted to alphabets of size 2. Contrast this with the
fact that LCS’s withl channels can be simulated (via a
many-one polynomial-time reduction) by LCS’s with a
single channel and an alphabet enlarged with a single extra
symbol.

In the same spirit, let us observe that Lossy Counter Ma-
chines [23], which can be seen as LCS’s where the alpha-
bet has size 1, can be verified inFl , wherel is the num-
ber of counters. This is a direct consequence of McAloon’s
bounds on the length of bad sequences inN

l ordered by the
component-wise ordering [24]. Whenl is not fixed, reacha-
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bility and termination for these Lossy Counter Machines is
exactly inFω [26].

7 Conclusion

Our main construction shows that lossy channel systems
can compute, in a weak sense, the Fast-Growing Functions
Fα of the extended Grzegorczyk hierarchy, for allα < ωω.
This construction can be used to show that reachability and
termination for lossy channel systems cannot be inF<ωω ,
i.e., cannot be multiply-recursive. We further explain how
they belong toFωω as a consequence of Cichon and Tahhan
Bittar’s analysis of Higman’s Lemma. Hence we could pre-
cisely locate the complexity of these problems in the Fast-
Growing Hierarchy.

Using known reductions, these results apply to other ver-
ification problems for LCS’s: safety, inevitability, regular
equivalences [20], game-theoretical properties [2, 5], proba-
bilistic verification [1, 6], etc. They also apply to problems,
like the Regular Post Embedding Problem, that have been
equated to LCS reachability [9, 10]. The hardness proof
also applies to problems to which LCS reachability reduces,
like one-clock alternating time automata [21, 3] and many
other problems.
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A Comparing two different ways of losing
messages

In section 5.1, the operational semantics ofS is given
under the form of a transition systemTS= (Conf,−→) where
we adopted the “write-lossy” semantics, more convenient
for our purposes since it provides a better control of the non-
determinism in message losses.

The standard semantics, that we shall denoteT std
S =

(Conf,−→sl), assumes that any messages can be lost before
and after any perfect step. That is, it puts

−→sl
def
= ⊒ ◦−→perf◦ ⊒ (4)

where⊒ is ⊑−1, i.e., σ ⊒ σ′ iff σ′ is obtained fromσ by
losing messages. Note that the only difference between−→sl

and−→perf◦ ⊒ is that−→sl can lose a message that has just
been written by the−→perf part in (4). Since this can be done
by write-lossy steps “−→”, −→sl and−→◦ ⊒ coincide!

Lemma A.1 For all n > 0,
n
−→sl =

n
−→◦ ⊒.

Proof. By induction onn. As we just observed, the base
casen = 1 holds. For the inductive step, we use

n+1
−−→sl =

n
−→sl ◦ −→sl =

n
−→◦ ⊒ ◦−→sl by ind. hyp.

=
n
−→ ◦ −→sl using (4)

=
n
−→ ◦ −→◦ ⊒ using case “n = 1”

=
n+1
−−→◦ ⊒ .

�

In other words,σ n
−→slσ′ iff ρ n

−→σ′ for someρ ⊑ σ.

Corollary A.2 Assumeσ has the form〈q,ε, . . . ,ε〉. Then
1. σ′ is reachable fromσ in TS iff it is reachable fromσ in
T std

S , and
2. there is an infinite run fromσ in TS iff there is one inT std

S .

Proof. [Sketch] Since−→ ⊆ −→sl, we only have to prove
the “⇐” implications. 1. is direct from Lemma A.1: when
σ has empty channels,ρ ⊑ σ requiresρ = σ. 2. is a
consequence of 1., using König’s Lemma. �

Therefore, when the initial configuration has empty
channels, a LCS satisfy exactly the same reachability and
termination properties under the standard semantics, or un-
der the write-lossy semantics we adopted. In particular, ex-
actly the same algorithms can be used.

In the general case where the initial configuration is not
necessarily empty, it is easy to reduce reachability and ter-
mination from one semantics to the other: one simply en-
codes the initial channel contents (and its residuals) in the

control states, and adds transition rules for these extra states,
encoding the original semantics. This many-one reduction
is PSPACE when reducing from the standard lossy seman-
tics to the write-lossy semantics,3 andNLOGSPACE when
reducing in the other direction.4

B Channel systems that implement stack
rewriting

Rule R1is “〈〈0,π ; n〉〉 −→R 〈〈π ; n+1〉〉”. With our differ-
ential encoding of stacks, this requires the following trans-
formation:

channelp: I u # u #
∗

−−→
channeld: In # In+1 #

whereu is pure. This transformation is performed by the

beg

copy

wrap end
p?# p!#

d?# d!#
p?I d!I

p?x

p!x d?x

d!x

Figure 2. LCS component that implements
rule R1 (assuming purity)

LCS depicted in Fig. 2. Here, and in the rest of this section,
two simplifying conventions are assumed:

Purity check: the system depicted in Fig. 2 does not check
that p contains a pure encoding. This is for improv-
ing the clarity of the diagram but, of course, it is easy
to check purity (a simple regular property) while per-
forming the transformation. We assume our system
deadlocks before reaching stateend when purity is not
satisfied.

Abbreviated rules: our pictures for LCS uses implicit
variables or patterns in order to describe several similar

rules at once. For example, the loopcopy
p?x
−→

p!x
−→copy

in Fig. 2 usesx as a variable standing for any message
m∈ M so that, lettingk = |M|, it abbreviatesk loops

3Assume the initial configurationσ = (q,u1, . . . ,um) has contents of
size k1 + · · ·+ km, writing ki for |ui |. We need to replaceQ with a set

N times larger forN
def
= ∏m

i=1 2ki . For the transition rules, the increasing
factor isO(N2).

4Here the increasing factor is onlyN
def
= ∏m

i=1(ki + 1) since less sub-
configurations ofu1, . . . ,um are meaningful.
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(each with a different intermediary state). Other ex-
amples arei in Fig. 3, a in Fig. 4, and so on. For
these variables, the allowed instantiations are some-
times constrained, as with “(i > 0)” or “ (i > a)” in
Fig. 3 and 4.

Rule R2is “〈〈α+1,π ; n〉〉 −→R 〈〈

n+1 times
︷ ︸︸ ︷
α,α, ...,α,π ; n〉〉”. With

our differential encoding of stacks, this requires the follow-
ing transformation:

p: ωa1 . . .ωapω0Iu # ωa1 . . .ωapIn+1ω0u #
∗

−−→
d: In # In #

where we assume thatω0u is pure, otherwise theω0 is not
copied to the right-hand side, as is done in state∗ (Fig. 3).

copy_beg

copy u

∗

end

p?ω0

p?I p!I

p?I

p?ω0

p?ωi (i>0)

p!ω0

p!ω0

p!I

p!ω0

p!ωi

d?I

d!I

p!I

p?ωi

p!ωi

p?x

p!x

d?#

d!#

p?#

p!#

Figure 3. LCS component that implements
rule R2 (assuming purity)

Our channel system is actually more complex than de-
picted in Fig. 3 since it only accepts pure encodings. For
example, it will check thatK > a1 ≥ a2 ≥ ·· ·ap−1 ≥ ap = 0
while performing the first copy loop (in statecopy_beg).

Rule R3is “〈〈λ,π ; n〉〉 −→R 〈〈λn,π ; n〉〉”. With our differ-
ential encoding of stacks, this requires the following trans-
formation:

p: ωa1 . . .ωapIu # ωa1 . . .ωap−1(ωap−1)nIωapu #
∗
−→

d: In # In #

where it is assumed thatωapu is pure, otherwise theωap is
not copied to the right-hand side (see state∗ in Fig. 4). On
top of the usual implicit check for purity “a1 ≥ a2 ≥ ·· · ≥
ap”, the system depicted in Fig. 4 checks that(a =)ap > 0
so thatα1 ∈ Lim.

copy_beg

copy u

∗

end

p?ωa

(a>0)

p?I p!I

p?I

p?ωi (i≤a)

p?ωi (i>a)

p!ωa

p!ωa

p!I

p!ωi

p!ωi

d?I

d!I

p!ωa−1

p?ωi

p!ωi

p?x

p!x

d?#

d!#

p?#

p!#

Figure 4. LCS component that implements
rule R3 (assuming purity)

Rule S1is “〈〈π ; n+1〉〉 −→S 〈〈0,π ; n〉〉”. With our differ-
ential encoding of stacks, this requires the following trans-
formation:

p: u # I u #
∗

−−→
d: In+1 # In #

The component that implements S1 behaves like the com-
ponent for R1, only backwards.

beg

copy

wrap end
p?# p!#

d?# d!#
p!I d?I

p?x

p!x d?x

d!x

Figure 5. LCS component that implements
rule S1 (assuming purity)

Rule S2is “〈〈

n+1 times
︷ ︸︸ ︷
α,α, ...,α,π ; n〉〉 −→S 〈〈α+1,π ; n〉〉” assum-

ing thatα does not occur inπ.
With our differential encoding of stacks, this requires the

following transformation:

p: ωa1 . . .ωapIn+1u # ωa1 . . .ωapω0Iu #
∗

−−→
d: In # In #

where it is now checked thatu does not start withI. The
component that implements S2 is depicted in Fig. 6. An im-
portant feature is the ability to check that the numbern+1
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copy_beg

copy u

wrap

end

p?I

p!ω0

p!I

p?ωi

p!ωi

d?I

d!I

p?I

p?ωi

p!ωi
p?xp!x

p?#

p!#

d?#

d!#

Figure 6. LCS component that implements
rule S2 (assuming purity)

of tally symbols after the first ordinal symbols inp matches
the number inIn in d. If there is a mismatch, our system
will never reachend.

Rule S3is “〈〈λn,π ; n〉〉 −→S 〈〈λ,π ; n〉〉” assuming thatπ
does not start with someα2 < λ.

With our differential encoding of stacks, this requires the
following transformation:

p: ωa1 . . .ωap(ωa)nIu # ωa1 . . .ωapωa+1Iv #
∗

−−→
d: In # In #

where it is required thatap > a, and wherev is obtained
from u. More precisely, ifu is ε thenv = ε, while if u is
someωbu′, thenv = u if b > a+ 1 andv = u′ if b = a+
1. The rule does not apply ifb ≤ a or if u starts withI,
indicating thatα2 < λ. Here again, the component has to

copy_beg

copy u

wrap

∗

end

p?ωa

(a>0)

d?I

d!I
p?I

p!ωa+1

p!I

p?ωb

(b>a+1)

p?ωa+1

p!ωb

d?I

d!I

p?ωa

p?ωi

p!ωi
p?xp!x

p?#

p!#

d?#

d!#

Figure 7. LCS component that implements
rule S3 (assuming purity)

perform a crucial comparison: the numbern that is encoded
in d must match the number ofωa symbols in the encoding
of the first ordinal in the stack. (As before, the depiction in
Fig. 7 does not feature the implicit purity check.)
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