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Abstract. The Regular Post Embedding Problem is a variant of Post’s Corre-
spondence Problem where one compares strings with the subwordnelatio
imposes additional regular constraints on admissible solutions. It is kitoagn
this problem is decidable, albeit with very high complexity.

We consider and solve variant problems where the set of solutions gazethto
regular constraint sets and where one counts the number of solutiongo§itive
results rely on two non-trivial pumping lemmas for Post-embedding lages!
and their complements.

1 Introduction

Post's Correspondence Problem, or shoRIyP, is the question whether two mor-
phismsu,v: Z* — ['* agree non-trivially on some input, i.e., whethgo) = v(o) for
some non-emptg € . Post'sEmbeddingProblem, shortyPEP, is a variant ofPCP
where one asks whethe(o) is a (scattered) subword efo) for somea. The subword

relation, also called embedding, is denoted“xC y %' can be obtained from by
erasing some letters, possibly all of them, possibly noheRegularPost Embedding
Problem, orPEP™Y, is an extension oPEP where one adds the requirement that only
solutionso belonging to a given regular languaBe& >* are admittedPEP andPEP"™9
were introduced, and shown decidable, in [2, 3].

Regular constraints and the set BEP-solutions. The decidability ofPEP™9 can be
restated under the following form: it is decidable, givem tworphismau,v: * — *
and a regular languadeC >*, whether the following holds:

Ix e R:u(x) C v(Xx). (Existence)
In other words, and lettin§E(u, v) def {xe€Z* | u(x) C v(x)}, one can decide whether
RNPE(u,v) # @. However, this problem has very high complexity. Here trgular
languageR, acting as a constraint on the form of solutions, plays a kéy. indeed,
in the special case wheR= 3*, the problem becomes trivial (if there are solutions,

in particular length-one solutions exist) which probabtplains whyPEP andPEP"9
had not been investigated earlier.

* Work supported by the Agence Nationale de la Recherche, grant AN&=TIN-001.
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In this paper, we prove the decidability of the following gtiens:

vx € R:u(x) C v(x), (Universality)
I"x e R:u(x) C v(x), (Infinity)
-3"x € R: u(x) Z v(x). (Cofiniteness)

“Universality” asks whether all words iR are solutions. “Infinity” asks whetheR
contains infinitely many solutiong while dually “Cofiniteness” asks whether all but
finitely manyx € Rare solutions. Equivalently, these questions ask wh&kePE(u, V),
whetherRNPE(u,v) =5 @, and whetheR . PE(u,v) =, @, writing S=, S to denote
the “quasi-equality” of two sets, i.e., equality up to a Ensubset. As a consequence of
these decidability results we can compute the number of svor® that are (respec-
tively, that are not) solutions.

These results are obtained with the help of two pumping lesqroae for sets of
solutions and one for sets of “antisolutions”, i.e., woxdsich thau(x) Z v(x). These
pumping lemmas are the more technically involved developmef this paper. Prov-
ing them relies on two kinds of techniques: (1) combinatatwords in presence of
the subword relation and associated operations, and (2hiatoiisation of Higman’s
Lemma that gives effective bounds on the length of bad sexgsen

Related work.The Regular Post Embedding Problem was introduced in [2 &rev
its decidability was proved. These papers also showedPtBRf? is expressive enough
to encode problems on lossy channel systems, or LCS's. tndacoding in both di-
rections exist, hencBEP™ is exactly at levelF.w in the Fast Growing Hierarchy.
Thus, although it is decidablBEP™9is not primitive-recursive, and not even multiply-
recursive (see [4] and the references therein).

A conseguence of the above encodings is B9 is an abstract problem that is
inter-reducible with a growing list of decision problemstihave the samg.» com-
plexity: metric temporal logic [14], products of modal logi[8], leftist grammars [9,
6], data nets [11], alternating one-clock timed automata(}, etc.

On complexity. Aiming at simplicity, our main decidability proofs do notroe with
explicit statements regarding the computational complefithe associated problems.
The decidability proofs can be turned into deterministgoaithms with complexity in
Fuw, providing the same upper bound that already applid2E®®. Regarding lower
bounds, it is clear that “Infinity” is at least as hard REP"™Y. We do not know if the
same lower bound holds for “Universality” and “Cofiniteness

Outline of the paperSection 2 recalls the necessary definitions and notati@tdidd 3
deals with combinatorics on words with subwords. Sectionogs the decidability of
comparisons with regular sets. Then our pumping lemmatedta Section 5 and used
in Section 6 for deciding finiteness, counting, and quagita& questions. Sections 7
and 8 prove the two halves of the pumping lemma. Proofs odhitt¢he main text can
be found in the full version of this extended abstract.
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2 Notations and definitions

Words and morphismsWe write x,y,z t,o,p,a, [, ... for words, i.e., finite sequences
of letters such ag,b,c,i, j,... from alphabetZ,I", ..., and denote witkx.y, or xy, the
concatenation of andy. We lete denote the empty word. Thengthof x is written |x|.
A morphisnfrom Z* to " is a mapu: * — I'* that respects the monoidal structure, i.e.,
with u(e) = € andu(x.y) = u(x).u(y). A morphismu is completely defined by its image
u(a), u(b), ..., onZ = {a,b,...}. We often simply writeus, Uy, ..., anduy, instead of
u(a),u(b),..., andu(x). Finally, for a morphismu : Z* — ', we letKy = maXaes |Ual
denote thexpansion factoof u, thus called because cleafly| < Ky x |X].

The mirror image of a wordx is denotedx, e.g.,abvc: cba The mirror image of
a languagd. is L def {X| x € L}. It is well-known that the mirror image of a regular
language is regular. For a morphigm>* — ', the mirror morphisnﬁ is defined by

h(x) £'h(x), ensurindh(X) = h(x).

Syntactic congruenceFor a languagé., we let~ denote the syntactic congruence

induced byL: x ~| yg:e)jVV\l,V\/(WXV\/ € L < wyw € L). The Myhill-Nerode Theorem
states thatv| has finite index iffL is a regular language. For a regularwe letn_
denote the number of equivalence classes wr.t!

Subwords and Higman’s Lemm&iven two wordsx andy, we writex C y whenx is

a subwordof y, i.e., whenx can be obtained by erasing some letters (possibly none)
fromy. For exampleabbaC abracadalra. The subword relation, akembeddingis a
partial ordering on words. It is compatible with the monadistaucture:

eC X, (XCYAXLCY) = xxCyy.

It is well-known (Higman’s Lemma) that the subword relatisna well-quasi-
ordering when we consider words over a fixed finite alphabbkis Teans that any
set of words has a finite number of minimal elements (minimat.VL).

We say that a sequengg, ..., X, ... of words inZ* is n-good if there exists indexes
i1 <ip <...<ipsuchthat, Cx, C ... C X, i.e., if the sequence contains a subse-
quence of lengtim that is increasing w.r.t. embedding. Itridhad otherwise. Higman’s
Lemma states that every infinite sequence is 2-good, andregend for anyn € N.
Hencen-bad sequences are finite.

Higman’s Lemma is often described as being “non-effectimghat it does not give
any information on the length of bad sequences. Indeedrariby long bad sequences
exist. However, upper bounds on the length of bad sequeraesartainly be given
when one restricts to “simple” sequences. Such finitaryioessof well-quasi-ordering
properties are called “miniaturisations” in proof-thetaral circles.

In this paper we consider a very simple miniaturisation #plies to “controlled”
sequences [7]. Formally, and givkre N, we say that a sequengg ..., x of words in
>* is k-controlledif |x| <ix kforalli=1,...,]. We shall use the following result:

1f the minimal complete DFA that accepitshasq states, them, can be bounded byf.
2 For a proof, see [7] or the long version of this paper.
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Lemma 2.1. There exists &ounding functiorH : N — N such that, for any rk € N
and | > H(n,k, |Z|), any k-controlled sequence of | words3his n-good.

The lemma states that ifkacontrolled sequence is long enough, inigood. Equiva-
lently, n-bad sequences are shorter tHén, k, |Z|) or are nok-controlled.

3 Composing, decomposing, and iterating words and subwords

This section is devoted to the subword ordering and the wigdtacts with concate-
nations and factorizations. It proves a few basic resulgs, eemma 3.7, that we have
been unable to find in the technical literature [12, 13].

3.1 Available suffixes

Whenx C y, we decomposg as a concatenation= y;y» such thaty; is theshortest
prefix of y with x C y;. We cally; the “used prefixand y» the “available suffix. We

usey @ x to denote the available suffix. For exammécabc@ ba= bc. Note thaty © x

is only defined whex C y.

Lemma 3.1. xCyand X C (yox)y imply xX C yy.
Corollary 3.2. xCyimplies Xxyox) Cy.
Lemma 3.3. xC y and xXC yy imply X C (Yo X)y'.

3.2 Unmatched suffixes

Whenx IZ y, we decompos& as a concatenation= x;X, such thatx; is thelongest
prefix of x with x; C y. We callx; the “matched prefixand x, the “unmatched suffix
We usex©y to denote the unmatched suffix. For examaébcabco baca = bcabce
Note thatxoy is only defined whex IZ y (hencexoy +# €).

Lemma 3.4. xZy and xXZ yy imply [(xoy)X] oy =xX Oyy.
Corollary 3.5. xiZy and xXIZ yy imply (xoy)X Z Y.
Lemma 3.6. x[Zy and xXxC yy imply (xay)X Cy.

3.3 lterating factors
Lemma 3.7. xy C yz if, and only if, %y C yZ for all k € N.

Proof. We only need to prove the=" direction. This is done by induction on the length
of y. The cases whene= € or x =€ or k= 0 are obvious, so we assume that |x| and

k are strictly positive. There are now two cases:

1. If X Cy, we consider a factorization= y1y» (€.9.,y2 = y@ X is convenient) with

x C y1 (hencexX C yX) andy C y»z Sincely,| < |y| (because # € and hencey; # €),
the induction hypothesis applies and frgay, =y C y,z one getsXy, C y-Z. Now
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Xy C Ky = yivkys C yiyoZ = y2

2. If X [Z'y, we writex = X3 X2 With X, = X8 Y. Thusx; C y andxpy C z Thus there exists
a factorizatiorz= 12, s.t.xo C z; (entailingx C yz) andy C zo. Now XXy C (yz )z, =
ya(ya) 1z C yz(zz)< 1z, = y2&. O

Lemma 3.8. Assume ¥ y, xz[Z yt, and x©y C xz& yt. Then for all ke N:
X2 yt<. (Zx)
Furthermore, if we lety & x& o yt¥, then for all ke N:

ro C Mk C riga. (Ry)

Proof. The hypothesis for the Lemma are thap)4Z;) and (Ry) hold. We prove, by
induction onk, that (%) and (R1) imply (Zx.1) and (R).

Proof of (Z1): applying Coro. 3.5 on (g) and (4) yieldsroz Z t, hence a fortiori
rezZt using (R—1). Combining with (4) and applying Lemma 3.6 contrapositively
entailsxZzZ ytkt, i.e., (Zey1).

Proof of (Ry): rr.1 is x2 1o yttl, By Lemma 3.4, this i§(xX o yth)Z ot, ie.,
rkzot. From (R1) we getry_1z6t C rzet. Howeverry,_1z6t = rg (Lemma 3.4).
Finally rg C g, 1. O

4 Regular properties of sets oPEP solutions

Given two morphismsi,v: ¥* — ', a wordx € 2* is called a Solutiori’ (of Post’s
Embedding Problem) whemy C vy. Otherwise it is an dntisolutiori. We let PE(u, V)
denote the set of solutions (for giverandv). Note that is always a solution.

We consider questions where we are givelPE® instanceu,v with u,v: 2* — I*
and a regular languadeC >*. The considered problems are
PEP_Inclusion: doesPE(u,v) C R?
PEP_Containment: doesPE(u,v) O R?
PEP_Equality: doesPE(u,v) = R?

It is tempting to compar®E(u,v) with another Post-embedding set, however:

Theorem 4.1. The questions “does RH, v) "\PE(U,V') = {€}?" and “does PEu, V) C
PE(U,V)?” are N%-complete.

Proof. I'I‘l)—hardness can be shown directly by reduction fie@P. For the first ques-
tion, simply letu’ = vandv = u. Then a common solution hag C vy = U C v} = Uy,
i.e., Uy = Vy.

For the second question we use a more subtle encoding: assilimg. thatl

contains two distinct symbols, b and thatuy # € whenx # €. Let nowu, &' (ab)/t

andv, &' (ba)l. Thusu, TV, if, and only if, x = € or |uy| < |vy|. Finally, PE(U,V) ~

PE(U’,V) contains the non-trividPCP solutions. O

Theorem 4.2. PEP_Inclusion, PEP_Containment and PEP_Equality are decidable.
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Note that, while comparisons with a regular language ar@edbte, regularity itself is
undecidable, at least in the more general form stated here:

Proposition 4.3 (Regularity is undecidable [5]) The question “is R PE(u,V) a reg-
ular language?” isz(l)-complete.

The remainder of this section proves Theorem 4.2.

We first observe tha®EP_Inclusion andPEP"9 are inter-reducible sincs, v, R) is
a positive instance fdPEP_Inclusion if, and only if, (u,v,Z* \ R) is a negative instance
for PEP"™9. Hence the decidability dPEP_Inclusion follows from the decidability of
PEP'™9, proved in [2, 3].

For the decidability oPEP_Containment (and then ofPEP_Equality), we fix an
instance(u,v,R).

For a wordx € *, we say thak is goodif uy C vk and then we letvy def Vy @ Uy,

otherwise it ishadand then we ety def Uy © Vx. We say thak is aliveif xy € Rfor some

y, otherwise it isdead Finally, we write|R| for the number of states of a FSA f&;

and letL %' Ky x |R| be asize thresholdmore details in the proof of Lemma 4.5).

A word x is acut-off if, and only if, one of the following conditions holds:

dead cut-off: xis dead;

subsumption cut-off: there exists a strict prefiX of x such thai’ ~g x, and either
1. bothx andx are good, withw,, C wy,
2. or bothx andx’ are bad, withry C ry/;

big cut-off: xis alive, bad andryx| > L.

Let T C Z* be the set of all words that do not have a cut-off as a (strieffix@ T is
prefix-closed and can be seen as a tree.

Lemma 4.4. T is finite.

Proof. We show thafT, seen as a tree, has no infinite branch. Hence, and since it is
finitely branching, it is finite (Knig’'s Lemma).

Assume, by way of contradiction, that has an infinite branch labeled by some
Xo,X1,X2,... (@nd recall that every; is a prefix of all thex,'s). We show that one of
thex; must be a cut-off, which contradicts the assumption.

Since the syntactic congrueneg has finite index, there exists an infinite subse-
quencexp, X1, X2, ... (renumbered for convenience) efz-equivalentx;’s. If infinitely
many of thex;'s are good, one of them must be a subsumption cut-off sincé]ity-
man’s Lemma, the infinite sequence of iug’s (for goodx;’s) must have someay T
wy. If only finitely many of thex;’s are good, then infinitely many of them are bad and
either some, has size larger thal (hencex; is a big cut-off), or allry’s have size at
mostL, hence belong to a finite sSEEL, and two of them must be equal (hence there
must be a subsumption cut-off). O

With the next two lemmas, we show th@t contains enough information to decide
whetherR C PE(u,Vv).

Lemma4.5. If T contains a big cut-off, then R PE(u, V).



Pumping and Counting on the Regular Post Embedding Problem

Proof. Assumex s a big cut-off (i.e., is alive, bad, and with| > L) in T. It is alive so
xy € R for somey. We pick the smallest suagh ensuring thaly| < |R| (the number of
states of an FSA fdR). Sincex is bad, we know thaty IZ vx. Note thafvy| < Ky x |y| <
Kv x |R| < L so thatwy| < |rx| and, consequentlyy Z vy. Thus, and sincg, = uy S vy,
applying Lemma 3.6 contrapositively givagZ vyvy and,a fortiori, Uyy IZ Vyy. Finally
xy & PE(u,V). Sincexy € R, we concludeR € PE(u, V). O

There is a reciprocal.

Lemma 4.6. Assume that T has no big cut-offs and ttRN T) C PE(u,v). Then RC
PE(u,v).

Proof. Consider som& € R: we show thati, C vy by induction on the size of If xe T
thenx € (RNT) C PE(u,v) and we are done. K ¢ T, then a prefix ok is a cut-off.
This cannot be a big cut-off (we assuniEchas none) or a dead cut-off (the prefix is
alive sincex € R). Hence this is a subsumption cut-off, caused by one of géix@s.
Finally, x can be written under the form= xxox3 with x1x, the subsumption cut-off,
andx; the prefix justifying the subsumption. We know # € (x; is a strict prefix of
the cut-off) andx; ~r X1X2. Hencexixz € R (sincexixoxz € R) and Uy, x, & Vx,x; DY
induction hypothesis.

There are now two cases, depending on what kind of subsumigtet hand.
1. If x¢ is good thenuy, T vx,. Combining withuyx, T Vi, €ntails uy, T Wy, Vy,
(Lemma 3.3). Fromvy, T wy,x, (condition for subsumption) we deduog, T Wy, x, Vxs.
Combining withuy,x, T Vx,x, (X1X2 t00 is good), Lemma 3.1 yields, x,Ux; T Vi;x,Vxs-
2. If X is bad, theruy,x, T Vx,x, anduy, £ Vy, entailry, ux, C vy, (Lemma 3.6). From
I'yx, C Iy, (condition for subsumption) we deduggy, Uy, T Vx,. Combined withuy, y, IZ
Vyyx, (X1X2 too is bad), applying Coro. 3.5 contrapositively yielsls,, Ux, & Vx;x, Vxs-
In both cases we proved thaixoxs € PE(u,v) as requested. O

We can now prove the decidability ®EP_Containment: the treeT can be built
effectively starting from the root since it is easy to see thhbea word is a cut-off. The
construction terminates thanks to Lemma 4.4. Ohde at hand, Lemmas 4.5 and 4.6
gives an effective criterion for deciding whetteC PE(u, Vv): it is enough to check that
T has no big cut-off and that all the words T satisfyuy C vy or do not belong tdR.

5 Pumpable solutions and antisolutions

Letu,v:2* — '* be a giverPEP instance.

Definition 5.1. A triple of words(x,y,z) € Z* with y = € is a pumpable solutiorif
xyz € PE(u,v) for all k € N.
It is a pumpable antisolutioif xyz ¢ PE(u,v) for all k € N.

In other words, a pumpable solution denotes an infinite gutifsBE(u,v) of the
form xy*z, while a pumpable antisolution denotes an infinite subsésaomplement.
Our interest in pumpable solutions and antisolutions i they provide simple wit-
nesses proving th&E(u,v) (or its complement) is infinite.

We observe that these witnesses are effective:

7
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Proposition 5.2 (Decidability of pumpability). It is decidable whethefx,y,z) is a
pumpable solution, and also whether it is a pumpable aniigmh.

Proof. Checking thatx,y,z) is a pumpable solution reduces to theP_Containment
problem, while checking that it is not a pumpable antisolutieduces to th@EP"™9
problem (or, equivalenthPEP _Inclusion). ad

We can now state our main technical result. Here (and belandpeak loosely of
“a pumpable solution”, when we meatht language denoted laypumpable solution”.

Lemma 5.3 (Pumping Lemma).Let RC >* be a regular language.
1. If RN PE(u, V) is infinite, it contains a pumpable solution.
2. If R~ PE(u,v) is infinite, it contains a pumpable antisolution.

Section 7 is devoted to a proof of the Pumping Lemma for sahgti while Section 8
proves the Pumping Lemma for antisolutions. Without waifior that, we list the main
conseguences on our questions.

6 Quasi-regular properties and counting properties

For two languages, L, we say thal is quasi-includedn L', written L C4 L', when

L\ L’ is finite, and that they amguasi-equalwrittenL =, L', whenL C, L’ andL’ C, L.
We consider the following questions, where we are giv@fiR instanceu,vand a

regularRC >*:

PEP_Quasi_Inclusion: doesPE(u,v) C3 R?

PEP_Quasi_Containment: doesPE(u,v) 25 R?

PEP_Quasi_Equality: doesPE(u,v) =5 R?

Theorem 6.1. PEP_Quasi_Inclusion, PEP_Quasi_Containment andPEP_Quasi_Equa-
lity are decidable.

Proof. We start withPEP_Quasi_Inclusion. This problem is co-r.e. since whe¥(u, v) \
R is infinite, there is a pumpable solution ¥f ~ R (Pumping Lemma) that can be
guessed and checked (Prop. 5.2). It is also r.e. dnitfe, v) C, Riff there is a finite
languagd- C =* s.t.PE(u,v) C RUF, which can be checked (Theo. 4.2) sifvegF is
aregular language. Thi®EP_Quasi_Inclusion, being r.e. and co-r.e., is decidable.
We use the same reasoning to show tRBP_Quasi_Containment is decidable.
ThenPEP_Quasi_Equality is obviously decidable as well. ad

We also consider counting questions where the answer is eumN U {w}:
PEP_NbSol: what is the cardinality oRN PE(u,v)?
PEP_NbAntisol: what is the cardinalitiR~. PE(u,v)?

Theorem 6.2. PEP_NbSol and PEP_NbAntisol are decidable (more precisely, the as-
sociated counting functions are recursive).
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Proof. We start withPEP_NbSol. We can first check whether the cardinality ®Rh
PE(u,v) is finite by deciding whethePE(u,v) C4 (Z* \ R) (using the decidability of
PEP_Quasi_Inclusion). If we find that the cardinality is infinite, we are done. Qthise
we can enumerate all words Riand check whether they are solutions. At any given
stage during this enumeration, we can check whether thertuset of already found
solutions is complete by deciding wheth&E(u,v) N (R~ F) = @ (using the decidabil-
ity of PEP_Inclusion). We are bound to eventually find a complete set since we only
started enumerating solutionsRknowing there are finitely many of them.

The same method works f&rEP_NbAntisol, this times using the decidability of
PEP_Containment andPEP_Quasi_Containment. ad

7 Pumping in long solutions

We start with a sufficient condition for pumpability of satuts.

Definition 7.1. Atriple x,y,z< ~* with y+# € is positiveif the following four conditions
are satisfied:

Ux C Vy, (C1) UxUy & VxVy, (€2)
UxUyUz T VWV, (C3) (Vx @ Uy) T (VxVy @ UxUy). (C4

Lemma 7.2. If (x,y,2) is positive ther{x,y,yz) is a pumpable solution.

Proof. Assume thatx,y, z) is positive, so that (C1-4) hold. Write shorthyfor vx @ uy
andw for vyy @ uyy. From (C1) and the definition af, Coro. 3.2 yields:

UsW V. (C5)
From (C2), it further yieldsiuw T vyvy, from which (C4) entails:
UxUyW C VyeVy. (Ce)
Applying Lemma 3.3 on (C1) and (C3) (respectively on (C1) é&D@)) yields:
UyUz C WW\Vz, (C7) UyW = Wy (C7)
Applying Lemma 3.7 on (C7’) gives
UkW = (Uy)“w C w(vy)* = wy for all k € N. (C8)
With (C5) and (C8), Lemma 3.1 entails
ULy W = VeV forallk € N. (C9)
With (C7) and (C9), it then entails
ULk Uyz & ViVikVyz forallk e N, (C10)

which just states thdk,y,yz) is a pumpable solution. O
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We now letng denote the number of equivalence classes inducedifsection 2).
Finally, we letH, andHy denote, respectivel{d (nr+ 1, Ky, |I'|) andH (nr+ 1, Ky, |T|).
Recall that, by definition of thél function (Lemma 2.1), ani(,-controlled sequence
of at leastH,, '-words is(nr+ 1)-good.

Lemma 7.3. If R contains a solutiow € PE(u,Vv) of length|o| > 2H, then it contains
a pumpable solution.

(Observe that this will entail, as a corollary, the first haflthe Pumping Lemma since,
if RNPE(u, V) is infinite, it contains solutione of arbitrarily large length.)

Proof. Leto € PE(u,v) be a solution of length: o hasL + 1 prefixes, X, . ..,x_ . We
consider the subsequengg x;,, ... x;, of all prefixes ofo that satisfyuxij C vxij (called
good prefixesand split the proof in three main steps.

1. We show, by induction over, that the sequenc(@/XI @ Uy, )J 1.1 is Ky-controlled,
i.e., writing w;j for Vig; © U, » that|wj| < j x Ky for all j =1,...,1. The base case is
obvious sincd; = 0 andw; = €. For the inductive case, we consider- 0 so that
Xi; = X;-1.2 for somea € Z (theij-th letter ino). If uxirl c vxijf1 (hencei(j,l) =
(ij) —1) thenw; = Vg @ Uy, is (vﬁjfl.va) © (Umjfl‘ua) which cannot be longer than
(inj—l'va)®uxij—1’ itself not longer thar(V>qj,l®Uxij,1).Va. Thus|w;j| < |wj_1| + Ky
and we conclude with the induction hypothesis. If on the otrend Uy, 1 va Wy,
thenw; is a suffix ofva hencelw;| < K.

2a. Assume now thdt> Hy. Then, using Lemma 2.1, we conclude that there is a
further subsequenqe(IJ )r=o0,...ng Of NR+ 1 prefixes ofo such thatw;, Cwj, C --- C

Wing - Sinceng is the index of~g, we deduce that there exists two such prefnx;cjas
(shortly,x) andx;; | (shortly,x) with x ~g X If we write X' under the fornxy (NB: y #
P

1!

€) ando under the formxyz we have found a positive triplec,y,z). Then Lemma 7.2
applies and shows thay*yzis a pumpable solution. Finally, singevr xy, we know
thatxy*yzis a subset oR.

2b. Observe that if a prefix of o = x;.y; is not good, thery; is a good prefix of the
solutiono € PE(T, V) of the mirrorPEP problem. Hence i& hasl < Hy good prefixes,
0 hasl’ > 2H, — | > H, good ones. Then the mirror problem falls in case 2a above (we
note that~g, Nr, andKy do not have to be adjusted when mirroring). We deduce that
there is a pumpable solution RN PE(U, V), whose mirror is a pumpable solution in
RNPE(u,v). O

8 Pumping in long antisolutions
As with pumpable solutions, there is a sufficient conditiongumpability of antisolu-
tions.

Definition 8.1. Atriple x,y,z€ Z* with y+ € is negativef the following four conditions
are satisfied:

Ux IZ Vy, (D1) Ux Uy Z VxVy, (D2)
UyUz IZ WV (D3) Ux © Vx £ Uxy S Vixy (D4)
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Lemma 8.2. If (x,y,2) is negative therix,y,z) is a pumpable antisolution.

Proof. Assume thatx,y, z) is negative, so that (D1-4) hold. Write shortl§or uy © vy
andr’ for uyy & vyy. With (D1), (D2) and (D4), Lemma 3.8 applies and yields

Uk Z vy forallk € N, (D5)
with furthermore
Uk © Vi C Uy O Vi 1. (D6)

On the other hand, (D1) and (D3) entail IZ v; by Coro. 3.5, hencfu,x © Vi )Uz £V,
by (D6). We deduce that,, IZ Vyx,. O

Lemma 8.3. If R contains an antisolutiomw ¢ PE(u,v) of length|a| > 2H, then it
contains a pumpable antisolution.

(As a corollary, we obtain the second half of the Pumping Lemm

Proof (Sketch)We proceed as with Lemma 7.3. Writefor |o], and Xg, X1, ..., X_
for the prefixes ofo. Consider the subsequenke,x;,,...x; of all bad prefixesf o,
i.e., such tha’uXij Z Vy;, and definer; = Uy, © Vi, - The sequencérj)i—1,. is Ky-
controlled.

If | > Hy, we find two positions X p < p’ <1 such tha1>qjp ~R Xijp’ andr,-p C Fjys

so that, writingx for Xijy X for xijp,, writing X' under the formxy, andc under the

form xyz we can apply Lemma 8.2 and deduce thay, z) is a pumpable antisolution.
Furthermorexy*zis a subset oR sincexyz= o € Randxy ~gr X.

Observe that if a prefix; is not bad, then, writing under the formx;y;, Vi is a bad
prefix of the antisolutiors ¢ PE(T, V) of the mirror problem. Thus, if < H, theng
has> Hy bad prefixes in the mirror problem. HenRe. PE(U.V) contains a pumpable
antisolution, whose mirror is a pumpable antisolutiofRin PE(u, v). O

Remark 8.4.Lemmas 7.3 and 8.3 show that one can strengthen the staterime
Pumping Lemma. Rather than assuming tRatPE(u,v) (respectivelyR~ PE(u,V))
is infinite, we only need to assume that they contain a largegmelement. O

9 Concluding remarks

The decidability of the Regular Post Embedding Problem mélaat one can find out
whether the inequation(x) C v(x) has a solution in a given regul®& In this paper,

we investigated more general questions pertaining to thefsmlutionsPE(u,v). We
developed new techniques showing how one can decide regidations (doeBE(u, v)
contain, or is it included in, a giveR?), finiteness and quasi-regular questions (does
PE(u,v) satisfy a regular constraint except perhaps for finitely ynelements?), and
counting questions (how many elements in sdXse — or are hot — solutions?).
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It is not clear how to go beyond these positive results. Oeaa® we have started
to explore [5] is to consider Post-embedding questions taithvariables, e.g.,

Ixe Ry Yy € Ra : u(xy) C v(xy).

Another direction is suggested by the pumpings lemmas weldged here. These
lemmas have applications beyond the finiteness problemensdered. For example,
they are useful in the study of the expressive powdtkER %languages, i.e., languages

of the formRN PE(u,v) for someR, u,v. For example, using the pumping lemma we
can show thatg d:(Ef{a”b” | n € N} is not aPEP™%language. Now, and sindg oef
{a"b™M | n,me N} andL, 2 {a™ ™" | n,m e N} clearly arePEP™%-languages, we
conclude thaPEP"™9%languages are not closed under intersection!
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