
Pumping and Counting on
the Regular Post Embedding Problem⋆

P. Chambart and Ph. Schnoebelen

LSV, ENS Cachan, CNRS
61, av. Pdt. Wilson, F-94230 Cachan, France

email: {chambart|phs}@lsv.ens-cachan.fr

Abstract. The Regular Post Embedding Problem is a variant of Post’s Corre-
spondence Problem where one compares strings with the subword relation and
imposes additional regular constraints on admissible solutions. It is knownthat
this problem is decidable, albeit with very high complexity.
We consider and solve variant problems where the set of solutions is compared to
regular constraint sets and where one counts the number of solutions. Our positive
results rely on two non-trivial pumping lemmas for Post-embedding languages
and their complements.

1 Introduction

Post’s Correspondence Problem, or shortlyPCP, is the question whether two mor-
phismsu,v : Σ∗ → Γ∗ agree non-trivially on some input, i.e., whetheru(σ) = v(σ) for
some non-emptyσ ∈ Σ+. Post’sEmbeddingProblem, shortlyPEP, is a variant ofPCP

where one asks whetheru(σ) is a (scattered) subword ofv(σ) for someσ. The subword

relation, also called embedding, is denoted “⊑”: x⊑ y
def
⇔ x can be obtained fromy by

erasing some letters, possibly all of them, possibly none. TheRegularPost Embedding
Problem, orPEPreg, is an extension ofPEP where one adds the requirement that only
solutionsσ belonging to a given regular languageR⊆ Σ∗ are admitted.PEP andPEPreg

were introduced, and shown decidable, in [2, 3].

Regular constraints and the set ofPEP-solutions. The decidability ofPEPreg can be
restated under the following form: it is decidable, given two morphismsu,v : Σ∗ → Γ∗

and a regular languageR⊆ Σ∗, whether the following holds:

∃x∈ R : u(x) ⊑ v(x). (Existence)

In other words, and lettingPE(u,v)
def
= {x∈ Σ∗ | u(x) ⊑ v(x)}, one can decide whether

R∩PE(u,v) 6= ∅. However, this problem has very high complexity. Here the regular
languageR, acting as a constraint on the form of solutions, plays a key role. Indeed,
in the special case whereR= Σ+, the problem becomes trivial (if there are solutions,
in particular length-one solutions exist) which probably explains whyPEP andPEPreg

had not been investigated earlier.

⋆ Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.

2 P. Chambart and Ph. Schnoebelen

In this paper, we prove the decidability of the following questions:

∀x∈ R : u(x) ⊑ v(x), (Universality)

∃∞x∈ R : u(x) ⊑ v(x), (Infinity)

¬∃∞x∈ R : u(x) 6⊑ v(x). (Cofiniteness)

“Universality” asks whether all words inR are solutions. “Infinity” asks whetherR
contains infinitely many solutionsx, while dually “Cofiniteness” asks whether all but
finitely manyx∈Rare solutions. Equivalently, these questions ask whetherR⊆PE(u,v),
whetherR∩PE(u,v) =a ∅, and whetherRr PE(u,v) =a ∅, writing S=a S′ to denote
the “quasi-equality” of two sets, i.e., equality up to a finite subset. As a consequence of
these decidability results we can compute the number of words in R that are (respec-
tively, that are not) solutions.

These results are obtained with the help of two pumping lemmas, one for sets of
solutions and one for sets of “antisolutions”, i.e., wordsx such thatu(x) 6⊑ v(x). These
pumping lemmas are the more technically involved developments of this paper. Prov-
ing them relies on two kinds of techniques: (1) combinatorics of words in presence of
the subword relation and associated operations, and (2) a miniaturisation of Higman’s
Lemma that gives effective bounds on the length of bad sequences.

Related work.The Regular Post Embedding Problem was introduced in [2, 3] where
its decidability was proved. These papers also showed thatPEPreg is expressive enough
to encode problems on lossy channel systems, or LCS’s. In fact, encoding in both di-
rections exist, hencePEPreg is exactly at levelFωω in the Fast Growing Hierarchy.
Thus, although it is decidable,PEPreg is not primitive-recursive, and not even multiply-
recursive (see [4] and the references therein).

A consequence of the above encodings is thatPEPreg is an abstract problem that is
inter-reducible with a growing list of decision problems that have the sameFωω com-
plexity: metric temporal logic [14], products of modal logics [8], leftist grammars [9,
6], data nets [11], alternating one-clock timed automata [1, 10], etc.

On complexity.Aiming at simplicity, our main decidability proofs do not come with
explicit statements regarding the computational complexity of the associated problems.
The decidability proofs can be turned into deterministic algorithms with complexity in
Fωω , providing the same upper bound that already applies toPEPreg. Regarding lower
bounds, it is clear that “Infinity” is at least as hard asPEPreg. We do not know if the
same lower bound holds for “Universality” and “Cofiniteness”.

Outline of the paper.Section 2 recalls the necessary definitions and notations. Section 3
deals with combinatorics on words with subwords. Section 4 proves the decidability of
comparisons with regular sets. Then our pumping lemma is stated in Section 5 and used
in Section 6 for deciding finiteness, counting, and quasi-regular questions. Sections 7
and 8 prove the two halves of the pumping lemma. Proofs omitted in the main text can
be found in the full version of this extended abstract.

Pumping and Counting on the Regular Post Embedding Problem 3

2 Notations and definitions

Words and morphisms.We writex,y,z, t,σ,ρ,α,β, . . . for words, i.e., finite sequences
of letters such asa,b,c, i, j, . . . from alphabetsΣ,Γ, . . ., and denote withx.y, or xy, the
concatenation ofx andy. We letε denote the empty word. Thelengthof x is written|x|.
A morphismfrom Σ∗ to Γ∗ is a mapu : Σ∗ →Γ∗ that respects the monoidal structure, i.e.,
with u(ε) = ε andu(x.y) = u(x).u(y). A morphismu is completely defined by its image
u(a), u(b), . . . , onΣ = {a,b, . . .}. We often simply writeua,ub, . . ., andux, instead of
u(a),u(b), . . ., andu(x). Finally, for a morphismu : Σ∗ → Γ∗, we letKu = maxa∈Σ |ua|
denote theexpansion factorof u, thus called because clearly|ux| ≤ Ku×|x|.

The mirror imageof a wordx is denoted̃x, e.g.,ãbc= cba. The mirror image of

a languageL is L̃
def
= {x̃ | x ∈ L}. It is well-known that the mirror image of a regular

language is regular. For a morphismh : Σ∗ → Γ∗, the mirror morphism̃h is defined by

h̃(x)
def
= h̃(x̃), ensuring̃h(x̃) = h̃(x).

Syntactic congruence.For a languageL, we let∼L denote the syntactic congruence

induced byL: x ∼L y
def
⇔ ∀w,w′(wxw′ ∈ L ⇔ wyw′ ∈ L). The Myhill-Nerode Theorem

states that∼L has finite index iffL is a regular language. For a regularL, we let nL

denote the number of equivalence classes w.r.t.∼L.1

Subwords and Higman’s Lemma.Given two wordsx andy, we writex⊑ y whenx is
a subwordof y, i.e., whenx can be obtained by erasing some letters (possibly none)
from y. For example,abba⊑ abracadabra. The subword relation, akaembedding, is a
partial ordering on words. It is compatible with the monoidal structure:

ε ⊑ x, (x⊑ y ∧ x′ ⊑ y′) ⇒ xx⊑ yy′.

It is well-known (Higman’s Lemma) that the subword relationis a well-quasi-
ordering when we consider words over a fixed finite alphabet. This means that any
set of words has a finite number of minimal elements (minimal w.r.t.⊑).

We say that a sequencex1, . . . ,xl , . . . of words inΣ∗ is n-good if there exists indexes
i1 < i2 < .. . < in such thatxi1 ⊑ xi2 ⊑ . . . ⊑ xin, i.e., if the sequence contains a subse-
quence of lengthn that is increasing w.r.t. embedding. It isn-bad otherwise. Higman’s
Lemma states that every infinite sequence is 2-good, and evenn-good for anyn ∈ N.
Hencen-bad sequences are finite.

Higman’s Lemma is often described as being “non-effective”in that it does not give
any information on the length of bad sequences. Indeed, arbitrarily long bad sequences
exist. However, upper bounds on the length of bad sequences can certainly be given
when one restricts to “simple” sequences. Such finitary versions of well-quasi-ordering
properties are called “miniaturisations” in proof-theoretical circles.

In this paper we consider a very simple miniaturisation thatapplies to “controlled”
sequences [7]. Formally, and givenk∈ N, we say that a sequencex1, . . . ,xl of words in
Σ∗ is k-controlledif |xi | ≤ i ×k for all i = 1, . . . , l . We shall use the following result:2

1 If the minimal complete DFA that acceptsL hasq states, thennL can be bounded byqq.
2 For a proof, see [7] or the long version of this paper.

4 P. Chambart and Ph. Schnoebelen

Lemma 2.1. There exists abounding functionH : N
3 → N such that, for any n,k ∈ N

and l≥ H(n,k, |Σ|), any k-controlled sequence of l words inΣ∗ is n-good.

The lemma states that if ak-controlled sequence is long enough, it isn-good. Equiva-
lently, n-bad sequences are shorter thatH(n,k, |Σ|) or are notk-controlled.

3 Composing, decomposing, and iterating words and subwords

This section is devoted to the subword ordering and the way itinteracts with concate-
nations and factorizations. It proves a few basic results, e.g., Lemma 3.7, that we have
been unable to find in the technical literature [12, 13].

3.1 Available suffixes

Whenx ⊑ y, we decomposey as a concatenationy = y1y2 such thaty1 is theshortest
prefix of y with x ⊑ y1. We cally1 the “used prefix” and y2 the “available suffix”. We
usey⊘x to denote the available suffix. For example,abcabc⊘ba= bc. Note thaty⊘x
is only defined whenx⊑ y.

Lemma 3.1. x⊑ y and x′ ⊑ (y⊘x)y′ imply xx′ ⊑ yy′.

Corollary 3.2. x⊑ y implies x(y⊘x) ⊑ y.

Lemma 3.3. x⊑ y and xx′ ⊑ yy′ imply x′ ⊑ (y⊘x)y′.

3.2 Unmatched suffixes

Whenx 6⊑ y, we decomposex as a concatenationx = x1x2 such thatx1 is the longest
prefix of x with x1 ⊑ y. We callx1 the “matched prefix” and x2 the “unmatched suffix”.
We usex⊖y to denote the unmatched suffix. For exampleaabcabc⊖baca = bcabc.
Note thatx⊖y is only defined whenx 6⊑ y (hencex⊖y 6= ε).

Lemma 3.4. x 6⊑ y and xx′ 6⊑ yy′ imply [(x⊖y)x′]⊖y′ = xx′⊖yy′.

Corollary 3.5. x 6⊑ y and xx′ 6⊑ yy′ imply (x⊖y)x′ 6⊑ y′.

Lemma 3.6. x 6⊑ y and xx′ ⊑ yy′ imply (x⊖y)x′ ⊑ y′.

3.3 Iterating factors

Lemma 3.7. xy⊑ yz if, and only if, xky⊑ yzk for all k ∈ N.

Proof. We only need to prove the “⇒” direction. This is done by induction on the length
of y. The cases wherey = ε or x = ε or k = 0 are obvious, so we assume that|y|, |x| and
k are strictly positive. There are now two cases:
1. If x ⊑ y, we consider a factorizationy = y1y2 (e.g.,y2 = y⊘x is convenient) with
x⊑ y1 (hencexk ⊑ yk

1) andy⊑ y2z. Since|y2| < |y| (becausex 6= ε and hencey1 6= ε),
the induction hypothesis applies and fromy1y2 = y ⊑ y2z one getsyk

1y2 ⊑ y2zk. Now

Pumping and Counting on the Regular Post Embedding Problem 5

xky⊑ yk
1y = y1yk

1y2 ⊑ y1y2zk = yzk.
2. If x 6⊑ y, we writex= x1x2 with x2 = x⊖y. Thusx1 ⊑ y andx2y⊑ z. Thus there exists
a factorizationz= z1z2 s.t.x2 ⊑ z1 (entailingx⊑ yz1) andy⊑ z2. Now xky⊑ (yz1)

kz2 =
yz1(yz1)

k−1z2 ⊑ yz1(z2z1)
k−1z2 = yzk. ⊓⊔

Lemma 3.8. Assume x6⊑ y, xz6⊑ yt, and x⊖y⊑ xz⊖yt. Then for all k∈ N:

xzk 6⊑ ytk. (Zk)

Furthermore, if we let rk
def
= xzk⊖ytk, then for all k∈ N:

r0 ⊑ rk ⊑ rk+1. (Rk)

Proof. The hypothesis for the Lemma are that (Z0), (Z1) and (R0) hold. We prove, by
induction onk, that (Zk) and (Rk−1) imply (Zk+1) and (Rk).

Proof of (Zk+1): applying Coro. 3.5 on (Z0) and (Z1) yieldsr0z 6⊑ t, hence a fortiori
rkz 6⊑ t using (Rk−1). Combining with (Zk) and applying Lemma 3.6 contrapositively
entailsxzkz 6⊑ ytkt, i.e., (Zk+1).

Proof of (Rk): rk+1 is xzk+1⊖ytk+1. By Lemma 3.4, this is[(xzk⊖ytk)z]⊖ t, i.e.,
rkz⊖ t. From (Rk−1) we getrk−1z⊖ t ⊑ rkz⊖ t. Howeverrk−1z⊖ t = rk (Lemma 3.4).
Finally rk ⊑ rk+1. ⊓⊔

4 Regular properties of sets ofPEP solutions

Given two morphismsu,v : Σ∗ → Γ∗, a wordx ∈ Σ∗ is called a “solution” (of Post’s
Embedding Problem) whenux ⊑ vx. Otherwise it is an “antisolution”. We let PE(u,v)
denote the set of solutions (for givenu andv). Note thatε is always a solution.

We consider questions where we are given aPEP instanceu,v with u,v : Σ∗ → Γ∗

and a regular languageR⊆ Σ∗. The considered problems are
PEP_Inclusion: doesPE(u,v) ⊆ R?
PEP_Containment: doesPE(u,v) ⊇ R?
PEP_Equality: doesPE(u,v) = R?

It is tempting to comparePE(u,v) with another Post-embedding set, however:

Theorem 4.1. The questions “does PE(u,v)∩PE(u′,v′)= {ε}?” and “does PE(u,v)⊆
PE(u′,v′)?” are Π0

1-complete.

Proof. Π0
1-hardness can be shown directly by reduction fromPCP. For the first ques-

tion, simply letu′ = v andv′ = u. Then a common solution hasux ⊑ vx = u′x ⊑ v′x = ux,
i.e.,ux = vx.

For the second question we use a more subtle encoding: assumew.l.o.g. thatΓ
contains two distinct symbolsa,b and thatux 6= ε whenx 6= ε. Let nowu′x

def
= (ab)|ux|

andv′x
def
= (ba)|vx|. Thusu′x ⊑ v′x if, and only if, x = ε or |ux| < |vx|. Finally, PE(u,v)r

PE(u′,v′) contains the non-trivialPCP solutions. ⊓⊔

Theorem 4.2. PEP_Inclusion, PEP_Containment andPEP_Equality are decidable.

6 P. Chambart and Ph. Schnoebelen

Note that, while comparisons with a regular language are decidable, regularity itself is
undecidable, at least in the more general form stated here:

Proposition 4.3 (Regularity is undecidable [5]).The question “is R∩PE(u,v) a reg-
ular language?” isΣ0

1-complete.

The remainder of this section proves Theorem 4.2.
We first observe thatPEP_Inclusion andPEPreg are inter-reducible since(u,v,R) is

a positive instance forPEP_Inclusion if, and only if,(u,v,Σ∗
rR) is a negative instance

for PEPreg. Hence the decidability ofPEP_Inclusion follows from the decidability of
PEPreg, proved in [2, 3].

For the decidability ofPEP_Containment (and then ofPEP_Equality), we fix an
instance(u,v,R).

For a wordx ∈ Σ∗, we say thatx is good if ux ⊑ vx and then we letwx
def
= vx⊘ux,

otherwise it isbadand then we letrx
def
= ux⊖vx. We say thatx is alive if xy∈ R for some

y, otherwise it isdead. Finally, we write|R| for the number of states of a FSA forR,

and letL
def
= Kv×|R| be asize threshold(more details in the proof of Lemma 4.5).

A word x is acut-off if, and only if, one of the following conditions holds:

dead cut-off: x is dead;
subsumption cut-off: there exists a strict prefixx′ of x such thatx′ ∼R x, and either

1. bothx andx′ are good, withwx′ ⊑ wx,
2. or bothx andx′ are bad, withrx ⊑ rx′ ;

big cut-off: x is alive, bad and|rx| > L.

Let T ⊆ Σ∗ be the set of all words that do not have a cut-off as a (strict) prefix. T is
prefix-closed and can be seen as a tree.

Lemma 4.4. T is finite.

Proof. We show thatT, seen as a tree, has no infinite branch. Hence, and since it is
finitely branching, it is finite (K̋onig’s Lemma).

Assume, by way of contradiction, thatT has an infinite branch labeled by some
x0,x1,x2, . . . (and recall that everyxi is a prefix of all thexi+k’s). We show that one of
thexi must be a cut-off, which contradicts the assumption.

Since the syntactic congruence∼R has finite index, there exists an infinite subse-
quencex0,x1,x2, . . . (renumbered for convenience) of∼R-equivalentxi ’s. If infinitely
many of thexi ’s are good, one of them must be a subsumption cut-off since, by Hig-
man’s Lemma, the infinite sequence of thewxi ’s (for goodxi ’s) must have somewx′ ⊑
wx. If only finitely many of thexi ’s are good, then infinitely many of them are bad and
either somerxi has size larger thanL (hencexi is a big cut-off), or allrxi ’s have size at
mostL, hence belong to a finite setΓ≤L, and two of them must be equal (hence there
must be a subsumption cut-off). ⊓⊔

With the next two lemmas, we show thatT contains enough information to decide
whetherR⊆ PE(u,v).

Lemma 4.5. If T contains a big cut-off, then R6⊆ PE(u,v).

Pumping and Counting on the Regular Post Embedding Problem 7

Proof. Assumex is a big cut-off (i.e., is alive, bad, and with|rx|> L) in T. It is alive so
xy∈ R for somey. We pick the smallest suchy, ensuring that|y| < |R| (the number of
states of an FSA forR). Sincex is bad, we know thatux 6⊑ vx. Note that|vy| ≤Kv×|y| ≤
Kv×|R| ≤ L so that|vy| < |rx| and, consequently,rx 6⊑ vy. Thus, and sincerx = ux⊖vx,
applying Lemma 3.6 contrapositively givesux 6⊑ vxvy and,a fortiori, uxy 6⊑ vxy. Finally
xy 6∈ PE(u,v). Sincexy∈ R, we concludeR 6⊆ PE(u,v). ⊓⊔

There is a reciprocal.

Lemma 4.6. Assume that T has no big cut-offs and that(R∩T) ⊆ PE(u,v). Then R⊆
PE(u,v).

Proof. Consider somex∈R: we show thatux ⊑ vx by induction on the size ofx. If x∈T
thenx ∈ (R∩T) ⊆ PE(u,v) and we are done. Ifx 6∈ T, then a prefix ofx is a cut-off.
This cannot be a big cut-off (we assumedT has none) or a dead cut-off (the prefix is
alive sincex ∈ R). Hence this is a subsumption cut-off, caused by one of its prefixes.
Finally, x can be written under the formx = x1x2x3 with x1x2 the subsumption cut-off,
andx1 the prefix justifying the subsumption. We knowx2 6= ε (x1 is a strict prefix of
the cut-off) andx1 ∼R x1x2. Hencex1x3 ∈ R (sincex1x2x3 ∈ R) andux1x3 ⊑ vx1x3 by
induction hypothesis.

There are now two cases, depending on what kind of subsumption is at hand.
1. If x1 is good thenux1 ⊑ vx1. Combining withux1x3 ⊑ vx1x3 entails ux3 ⊑ wx1vx3

(Lemma 3.3). Fromwx1 ⊑ wx1x2 (condition for subsumption) we deduceux3 ⊑ wx1x2vx3.
Combining withux1x2 ⊑ vx1x2 (x1x2 too is good), Lemma 3.1 yieldsux1x2ux3 ⊑ vx1x2vx3.
2. If x1 is bad, thenux1x3 ⊑ vx1x3 andux1 6⊑ vx1 entail rx1ux3 ⊑ vx3 (Lemma 3.6). From
rx1x2 ⊑ rx1 (condition for subsumption) we deducerx1x2ux3 ⊑ vx3. Combined withux1x2 6⊑
vx1x2 (x1x2 too is bad), applying Coro. 3.5 contrapositively yieldsux1x2ux3 ⊑ vx1x2vx3.
In both cases we proved thatx1x2x3 ∈ PE(u,v) as requested. ⊓⊔

We can now prove the decidability ofPEP_Containment: the treeT can be built
effectively starting from the root since it is easy to see whether a word is a cut-off. The
construction terminates thanks to Lemma 4.4. OnceT is at hand, Lemmas 4.5 and 4.6
gives an effective criterion for deciding whetherR⊆PE(u,v): it is enough to check that
T has no big cut-off and that all the wordsx∈ T satisfyux ⊑ vx or do not belong toR.

5 Pumpable solutions and antisolutions

Let u,v : Σ∗ → Γ∗ be a givenPEP instance.

Definition 5.1. A triple of words(x,y,z) ∈ Σ∗ with y 6= ε is a pumpable solutionif
xykz∈ PE(u,v) for all k ∈ N.
It is a pumpable antisolutionif xykz 6∈ PE(u,v) for all k ∈ N.

In other words, a pumpable solution denotes an infinite subset of PE(u,v) of the
form xy∗z, while a pumpable antisolution denotes an infinite subset ofits complement.
Our interest in pumpable solutions and antisolutions is that they provide simple wit-
nesses proving thatPE(u,v) (or its complement) is infinite.

We observe that these witnesses are effective:

8 P. Chambart and Ph. Schnoebelen

Proposition 5.2 (Decidability of pumpability). It is decidable whether(x,y,z) is a
pumpable solution, and also whether it is a pumpable antisolution.

Proof. Checking that(x,y,z) is a pumpable solution reduces to thePEP_Containment

problem, while checking that it is not a pumpable antisolution reduces to thePEPreg

problem (or, equivalently,PEP_Inclusion). ⊓⊔

We can now state our main technical result. Here (and below) we speak loosely of
“a pumpable solution”, when we mean “the language denoted bya pumpable solution”.

Lemma 5.3 (Pumping Lemma).Let R⊆ Σ∗ be a regular language.
1. If R∩PE(u,v) is infinite, it contains a pumpable solution.
2. If RrPE(u,v) is infinite, it contains a pumpable antisolution.

Section 7 is devoted to a proof of the Pumping Lemma for solutions, while Section 8
proves the Pumping Lemma for antisolutions. Without waiting for that, we list the main
consequences on our questions.

6 Quasi-regular properties and counting properties

For two languagesL,L, we say thatL is quasi-includedin L′, written L ⊆a L′, when
LrL′ is finite, and that they arequasi-equal, writtenL =a L′, whenL⊆a L′ andL′ ⊆a L.

We consider the following questions, where we are given aPEP instanceu,v and a
regularR⊆ Σ∗:
PEP_Quasi_Inclusion: doesPE(u,v) ⊆a R?
PEP_Quasi_Containment: doesPE(u,v) ⊇a R?
PEP_Quasi_Equality: doesPE(u,v) =a R?

Theorem 6.1. PEP_Quasi_Inclusion, PEP_Quasi_Containment andPEP_Quasi_Equa-
lity are decidable.

Proof. We start withPEP_Quasi_Inclusion. This problem is co-r.e. since whenPE(u,v)r

R is infinite, there is a pumpable solution inΣ∗
r R (Pumping Lemma) that can be

guessed and checked (Prop. 5.2). It is also r.e. sincePE(u,v) ⊆a R iff there is a finite
languageF ⊆ Σ∗ s.t.PE(u,v)⊆ R∪F, which can be checked (Theo. 4.2) sinceR∪F is
a regular language. ThusPEP_Quasi_Inclusion, being r.e. and co-r.e., is decidable.

We use the same reasoning to show thatPEP_Quasi_Containment is decidable.
ThenPEP_Quasi_Equality is obviously decidable as well. ⊓⊔

We also consider counting questions where the answer is a number inN∪{ω}:
PEP_NbSol: what is the cardinality ofR∩PE(u,v)?
PEP_NbAntisol: what is the cardinalityRrPE(u,v)?

Theorem 6.2. PEP_NbSol andPEP_NbAntisol are decidable (more precisely, the as-
sociated counting functions are recursive).

Pumping and Counting on the Regular Post Embedding Problem 9

Proof. We start withPEP_NbSol. We can first check whether the cardinality ofR∩
PE(u,v) is finite by deciding whetherPE(u,v) ⊆a (Σ∗

r R) (using the decidability of
PEP_Quasi_Inclusion). If we find that the cardinality is infinite, we are done. Otherwise
we can enumerate all words inR and check whether they are solutions. At any given
stage during this enumeration, we can check whether the current setF of already found
solutions is complete by deciding whetherPE(u,v)∩ (RrF) = ∅ (using the decidabil-
ity of PEP_Inclusion). We are bound to eventually find a complete set since we only
started enumerating solutions inRknowing there are finitely many of them.

The same method works forPEP_NbAntisol, this times using the decidability of
PEP_Containment andPEP_Quasi_Containment. ⊓⊔

7 Pumping in long solutions

We start with a sufficient condition for pumpability of solutions.

Definition 7.1. A triple x,y,z∈ Σ∗ with y 6= ε is positiveif the following four conditions
are satisfied:

ux ⊑ vx, (C1) uxuy ⊑ vxvy, (C2)

uxuyuz ⊑ vxvyvz, (C3) (vx⊘ux) ⊑ (vxvy⊘uxuy). (C4)

Lemma 7.2. If (x,y,z) is positive then(x,y,yz) is a pumpable solution.

Proof. Assume that(x,y,z) is positive, so that (C1–4) hold. Write shortlyw for vx⊘ux

andw′ for vxy⊘uxy. From (C1) and the definition ofw, Coro. 3.2 yields:

uxw⊑ vx. (C5)

From (C2), it further yieldsuxuyw′ ⊑ vxvy, from which (C4) entails:

uxuyw⊑ vxvy. (C6)

Applying Lemma 3.3 on (C1) and (C3) (respectively on (C1) and(C6)) yields:

uyuz ⊑ wvyvz, (C7) uyw⊑ wvy. (C7′)

Applying Lemma 3.7 on (C7’) gives

uykw = (uy)
kw⊑ w(vy)

k = wvyk for all k∈ N. (C8)

With (C5) and (C8), Lemma 3.1 entails

uxuykw⊑ vxvyk for all k∈ N. (C9)

With (C7) and (C9), it then entails

uxuykuyz⊑ vxvykvyz for all k∈ N, (C10)

which just states that(x,y,yz) is a pumpable solution. ⊓⊔

10 P. Chambart and Ph. Schnoebelen

We now letnR denote the number of equivalence classes induced by∼R (Section 2).
Finally, we letHu andHv denote, respectively,H(nR+1,Ku, |Γ|) andH(nR+1,Kv, |Γ|).
Recall that, by definition of theH function (Lemma 2.1), anyKu-controlled sequence
of at leastHu Γ-words is(nR+1)-good.

Lemma 7.3. If R contains a solutionσ ∈ PE(u,v) of length|σ| ≥ 2Hv then it contains
a pumpable solution.

(Observe that this will entail, as a corollary, the first halfof the Pumping Lemma since,
if R∩PE(u,v) is infinite, it contains solutionsσ of arbitrarily large length.)

Proof. Let σ ∈ PE(u,v) be a solution of lengthL: σ hasL+1 prefixesx0,x1, . . . ,xL. We
consider the subsequencexi1,xi2, . . .xi l of all prefixes ofσ that satisfyuxi j

⊑ vxi j
(called

good prefixes) and split the proof in three main steps.
1. We show, by induction overj, that the sequence

(
vxi j

⊘uxi j

)
j=1,..,l isKv-controlled,

i.e., writing w j for vxi j
⊘uxi j

, that |w j | ≤ j ×Kv for all j = 1, . . . , l . The base case is
obvious sincei1 = 0 andw1 = ε. For the inductive case, we considerj > 0 so that
xi j = xi j−1.a for somea ∈ Σ (the i j -th letter in σ). If uxi j−1 ⊑ vxi j−1 (hencei(j−1) =

(i j)− 1) thenw j = vxi j
⊘uxi j

is (vxi j−1.va)⊘ (uxi j−1.ua) which cannot be longer than

(vxi j−1.va)⊘uxi j−1, itself not longer than(vxi j−1 ⊘uxi j−1).va. Thus |w j | ≤ |w j−1|+ Kv

and we conclude with the induction hypothesis. If on the other handuxi j−1 6⊑ vxi j−1,

thenw j is a suffix ofva hence|w j | ≤ Kv.
2a. Assume now thatl ≥ Hv. Then, using Lemma 2.1, we conclude that there is a

further subsequence(xi jr
)r=0,...,nR of nR+ 1 prefixes ofσ such thatw j0 ⊑ w j1 ⊑ ·· · ⊑

w jnR
. SincenR is the index of∼R, we deduce that there exists two such prefixesxi j p

(shortly,x) andxi j p′
(shortly,x′) with x∼R x′. If we write x′ under the formxy (NB: y 6=

ε) andσ under the formxyz, we have found a positive triple(x,y,z). Then Lemma 7.2
applies and shows thatxy∗yz is a pumpable solution. Finally, sincex ∼R xy, we know
thatxy∗yz is a subset ofR.

2b. Observe that if a prefixxi of σ = xi .yi is not good, theñyi is a good prefix of the
solutionσ̃ ∈ PE(ũ, ṽ) of the mirrorPEP problem. Hence ifσ hasl < Hv good prefixes,
σ̃ hasl ′ ≥ 2Hv− l > Hv good ones. Then the mirror problem falls in case 2a above (we
note that∼R, nR, andKv do not have to be adjusted when mirroring). We deduce that
there is a pumpable solution iñR∩PE(ũ, ṽ), whose mirror is a pumpable solution in
R∩PE(u,v). ⊓⊔

8 Pumping in long antisolutions

As with pumpable solutions, there is a sufficient condition for pumpability of antisolu-
tions.

Definition 8.1. A triple x,y,z∈ Σ∗ with y 6= ε is negativeif the following four conditions
are satisfied:

ux 6⊑ vx, (D1) uxuy 6⊑ vxvy, (D2)

uxuz 6⊑ vxvz (D3) ux⊖vx ⊑ uxy⊖vxy (D4)

Pumping and Counting on the Regular Post Embedding Problem 11

Lemma 8.2. If (x,y,z) is negative then(x,y,z) is a pumpable antisolution.

Proof. Assume that(x,y,z) is negative, so that (D1–4) hold. Write shortlyr for ux⊖vx

andr ′ for uxy⊖vxy. With (D1), (D2) and (D4), Lemma 3.8 applies and yields

uxyk 6⊑ vxyk for all k∈ N, (D5)

with furthermore

uxyk ⊖vxyk ⊑ uxyk+1 ⊖vxyk+1. (D6)

On the other hand, (D1) and (D3) entailruz 6⊑ vz by Coro. 3.5, hence(uxyk ⊖vxyk)uz 6⊑ vz

by (D6). We deduce thatuxykz 6⊑ vxykz. ⊓⊔

Lemma 8.3. If R contains an antisolutionσ 6∈ PE(u,v) of length |σ| ≥ 2Hu then it
contains a pumpable antisolution.

(As a corollary, we obtain the second half of the Pumping Lemma.)

Proof (Sketch).We proceed as with Lemma 7.3. WriteL for |σ|, and x0,x1, . . . ,xL

for the prefixes ofσ. Consider the subsequencexi1,xi2, . . .xi l of all bad prefixesof σ,
i.e., such thatuxi j

6⊑ vxi j
and definer j = uxi j

⊖vxi j
. The sequence(r j) j=1,...,l is Ku-

controlled.
If l ≥ Hu, we find two positions 1≤ p< p′ ≤ l such thatxi j p

∼R xi j p′
andr jp ⊑ r jp′ ,

so that, writingx for xi j p
, x′ for xi j p′

, writing x′ under the formxy, andσ under the

form xyz, we can apply Lemma 8.2 and deduce that(x,y,z) is a pumpable antisolution.
Furthermorexy∗z is a subset ofRsincexyz= σ ∈ Randxy∼R x.

Observe that if a prefixxi is not bad, then, writingσ under the formxiyi , ỹi is a bad
prefix of the antisolutioñσ 6∈ PE(ũ, ṽ) of the mirror problem. Thus, ifl < Hu, thenσ̃
has≥ Hu bad prefixes in the mirror problem. HencẽRr PE(ũ.ṽ) contains a pumpable
antisolution, whose mirror is a pumpable antisolution inR∩PE(u,v). ⊓⊔

Remark 8.4.Lemmas 7.3 and 8.3 show that one can strengthen the statementof the
Pumping Lemma. Rather than assuming thatR∩PE(u,v) (respectively,Rr PE(u,v))
is infinite, we only need to assume that they contain a large enough element. ⊓⊔

9 Concluding remarks

The decidability of the Regular Post Embedding Problem means that one can find out
whether the inequationu(x) ⊑ v(x) has a solution in a given regularR. In this paper,
we investigated more general questions pertaining to the set of solutionsPE(u,v). We
developed new techniques showing how one can decide regularquestions (doesPE(u,v)
contain, or is it included in, a givenR?), finiteness and quasi-regular questions (does
PE(u,v) satisfy a regular constraint except perhaps for finitely many elements?), and
counting questions (how many elements in someRare — or are not — solutions?).

12 P. Chambart and Ph. Schnoebelen

It is not clear how to go beyond these positive results. One avenue we have started
to explore [5] is to consider Post-embedding questions withtwo variables, e.g.,

∃x∈ R1∀y∈ R2 : u(xy) ⊑ v(xy).

Another direction is suggested by the pumpings lemmas we developed here. These
lemmas have applications beyond the finiteness problems we considered. For example,
they are useful in the study of the expressive power ofPEPreg-languages, i.e., languages
of the formR∩PE(u,v) for someR,u,v. For example, using the pumping lemma we

can show thatL0
def
= {anbn | n ∈ N} is not aPEPreg-language. Now, and sinceL1

def
=

{anbn+m | n,m∈ N} andL2
def
= {an+mbn | n,m∈ N} clearly arePEPreg-languages, we

conclude thatPEPreg-languages are not closed under intersection!

References

1. P. A. Abdulla, J. Deneux, J. Ouaknine, K. Quaas, and J. Worrell. Universality analysis for
one-clock timed automata.Fundamenta Informaticae, 89(4):419–450, 2008.

2. P. Chambart and Ph. Schnoebelen. Post embedding problem is notprimitive recursive, with
applications to channel systems. InProc. FST&TCS 2007, volume 4855 ofLecture Notes in
Computer Science, pages 265–276. Springer, 2007.

3. P. Chambart and Ph. Schnoebelen. Theω-regular Post embedding problem. InProc. FOS-
SACS 2008, volume 4962 ofLecture Notes in Computer Science, pages 97–111. Springer,
2008.

4. P. Chambart and Ph. Schnoebelen. The ordinal recursive complexity of lossy channel sys-
tems. InProc. LICS 2008, pages 205–216. IEEE Comp. Soc. Press, 2008.

5. P. Chambart and Ph. Schnoebelen. Computing blocker sets for the regular Post embedding
problem. InProc. DTL 2010, Lecture Notes in Computer Science. Springer, 2010. To appear.

6. P. Chambart and Ph. Schnoebelen. Toward a compositional theoryof leftist grammars and
transformations. InProc. FOSSACS 2010, volume 6014 ofLecture Notes in Computer Sci-
ence, pages 237–251. Springer, 2010.

7. E. A. Cichon and E. Tahhan Bittar. Ordinal recursive bounds for Higman’s theorem.Theo-
retical Computer Science, 201(1–2):63–84, 1998.

8. D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Non-primitive recursive decid-
ability of products of modal logics with expanding domains.Annals of Pure and Applied
Logic, 142(1–3):245–268, 2006.

9. T. Jurdzínski. Leftist grammars are nonprimitive recursive. InProc. ICALP 2008, volume
5126 ofLecture Notes in Computer Science, pages 51–62. Springer, 2008.

10. S. Lasota and I. Walukiewicz. Alternating timed automata.ACM Trans. Computational
Logic, 9(2), 2008.

11. R. Lazíc, T. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Worrell. Nets with tokens which
carry data.Fundamenta Informaticae, 88(3):251–274, 2008.

12. M. Lothaire, editor.Combinatorics on words, volume 17 ofEncyclopedia of Mathematics
and Its Applications. Cambridge Univ. Press, 1983.

13. M. Lothaire, editor.Algebraic combinatorics on words, volume 90 ofEncyclopedia of Math-
ematics and Its Applications. Cambridge Univ. Press, 2002.

14. J. Ouaknine and J. Worrell. On the decidability and complexity of Metric Temporal Logic
over finite words.Logical Methods in Comp. Science, 3(1):1–27, 2007.

