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Abstract. We introducePEP, the Post Embedding Problem, a variantRgiP
where one compares strings with the subword relation P&RI®S, a further vari-

ant where solutions are constrained and must belong to a given réanudalage.
PEP'9 is decidable but not primitive recursive. This entails the decidability of
reachability for unidirectional systems with one reliable and one lossynghan
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1 Introduction

Post correspondence problenoy shortly PCP, can be stated as the question whether
two morphismau,v: ¥* — '* agree non-trivially on some input, i.e., whethgo) =
v(0o) for some non-empty € =*. This undecidable problem plays a central role in com-
puter science because it is very often easier and more htdymave undecidability by
reduction fromPCP than from, say, the halting problem for Turing machines.

In this paper we introducBEP, a variant ofPCP where one asks whethefo) is a

subwordof v(o) for somea. The subword relation, also called embedding, is denoted

“CmwCewW %" w can be obtained from/ by erasing some letters, possibly all of

them, possibly none. We also introdueEP'™?, an extension oPEP where one adds
the requirement that a solutianbelongs to a regular languageC >*.

As far as we knowPEP andPEP"™?have never been considered in the literature [13,
9]. This is probably becaudeEP is trivial (Prop. 3.1). However, and quite surprisingly,
adding a regular constraint makes the problem consideltsoiger. In this paper we
show thatPEP™9is decidable but that it is not primitive recursive.

Channel systemsWhat led us to consideREP'Y are verification problems for chan-
nel systems, i.e., systems of finite-state machines thatmeoritate asynchronously
via unbounded FIFO channels. These systems are Turingrdwegeneral but sev-

eral restricted families or variants have decidable vetiion problems. For example
lossychannel systems, where messages can be lost nondeteicallyishave decidable

reachability and termination problems [7, 3, 15]. For systavith one reliable channel
(no message losses), reachability is easily decidable ifystem isinidirectional one

* Work supported by the Agence Nationale de la Recherche, grant AN&=TIN-001.
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channelr (reliable)
— __[afbld]a]c]

channell (lossy)
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Fig. 1. A unidirectional channel system with oneliable and onéossy channel

sender sends messages to a receiver via the reliable chenheb communication is
possible in the other direction. With two (reliable) unatitional channels between the
sender and the receiver, reachability is undecidable. Plea guestion that motivated
our study isReachUcs, i.e., reachability for channel systems withidirectional com-
munication through one reliablend one unreliablehannelsas illustrated in Figure 1.

It is easy to reduc®EP andPEP"™9to ReachUcs. It turns out that reductions from
ReachUcs to PEP™9 also exist. More surprisingly, we are able to redirfeP™9 to
ReachLcs, the reachability problem for (classical) lossy channstaems, and to reduce
ReachLcs to ReachUcs. Finally, all three problems are equivalent.

Summary of our contributionsl. We introducePEP™9, a new decidable variant of the
PCP problem that is based on the subword relation. A surprising i that the regu-
larity constraint makeBEP'? very different fromPEP, and highly non-trivial.
2. We prove thatPEP™? is equivalent to (i.e., inter-reducible witieachUcs and
ReachLcs, two verification problems for systems of communicatingaudta. This pro-
vides the decidability oReachUcs (and a new decidability proof fdReachLcs).
3. This shows thaPEP"™Yis not primitive recursive (sincReachLcs is not either [15]).
This last point is quite interesting. In recent years, s@veroblems coming from
various areas have been shown to be not primitive recursiveductions fronReach-
Lcs: see, e.g.,[2,4,6,8,10-12]. Thisis a clear indication eachLcs and equivalent
problems occupy a specific niche that had not been identifiedqusly. Discovering
a simple and natural problem liEEEP™9 amid this class will help extend the range of
problems that can be connected to the cl&&P"™9 can be used to simplify existing
reduction proofs, and make some future proofs easier torobta

Outline of the paperSection 2 recalls the necessary definitions and notatioaqrdwe
thatPEP"™Y is decidable in Section 3 and explore variants and exteasioBection 4.
The reductions betweeREP™Y and ReachLcs or ReachUcs are given in sections 5
and 6. Proofs omitted for lack of space can be found in theVengjon of this paper [5].

2 Notations and definitions

Words. We writeu,v,w,t, 0, p,a, 3, ... for words, i.e., finite sequences of letters such as
a,b)i, j,... from alphabetz,I", ..., and denote withu.v, or uv, the concatenation af
andv. Thelengthof uis written|u|. A morphismfrom Z* to " is a magh: Z* — '* that
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respects the monoidal structure, i.e., with) = € andh(o.p) = h(o).h(p). A morphism
his completely defined by its imadg1), h(2), ..., onZ = {1,2,...}. We often simply
write hy, hy, ..., andhg, instead oh(1),h(2),..., andh(o).

Quotients. Let L be a language anth a word: m\L def {wlmw € L} is the (right)

quotientof L by m. WhenL C ¥, we write (L) for the set{m\L | me Z*} of all

quotients ofL. It is well-known that ifR is a regular language, then(R) is finite and
only contains regular languages (that still have their igmts in £ (R)). £ (R) can be
built effectively from a canonical DFA foR just by varying the initial state.

EmbeddingsGiven two wordsi=a; ...a, andv=b; ... by, we writeu C vwhenuis a
subwordof v, i.e., whenu can be obtained by erasing some letters (possibly none) from
v. For exampleabbaC abracadabra Equivalently,u C v whenu can be embedded in

v, i.e., when there exists an order-preserving injective mafl,... ,n} — {1,...,m}

such thata; = by for all i = 1,...,n. It is well-known that the subword relation is a
partial ordering on words, and it is a well-quasi-ordeririiginan’s Lemma) when we
consider words over a fixed finite alphabet. This means thesetof words has a finite
number of minimal elements (minimal w.IT).

Upward-closure.A languagd. C I'* isupward-closedf uc L anduC vimplyve L. It
is downward-closedf its complement is upward-closed. Higman’s Lemma entidd
upward-closed languages (hence also downward-closeddgeg) are regular.

Splitting words. Whenu C v, we writev[u] for the longest;, such that is somevg.vq
with u C vp. Hencev[u] is the longest suffix of that can be retained if one has to re-
move some prefix containing Dually, for anyu andv, we writeu{v} for the shortest
uz, such thatu can be written as soma&.u; with up = v. Henceu{v} is the shortest
suffix of u that can be obtained if one may only remove prefixes that ar@acwed inv.
Observe that{v} is always defined whilg[u] is only defined whem C v.

When reasoning about embedding and concatenation, a nabdaimple tool is
the following.
Lemma 2.1 (Simple Decomposition Lemma)if u.w C v.t then either iZ v orwC t.

However, Lemma 2.1 only works one way. For deeper analyseshall need the fol-
lowing more powerful tool.

Lemma 2.2 (Complete Decomposition Lemma).

uL vand wC v[u].t

uwE vt if and only if {or uiZvand yvi.wCt.

3 PEP: Post correspondence with embedding

The problem we are considering is a variant of Post corredgroce problem where
equality is replaced by embedding, and where an additiegllar constraint is im-
posed over the solution.
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Problem PEP™9

Instance Two finite alphabet& andl", two morphismau,v: Z* — I'*, and a regular
languageR C 2*.

Answer: Yes if and only if there exists @ € R such thaug C V.

In the above definition, the regular constraint applies twt this is inessential and
our results still hold when the constraint appliesi§o or v, or both (see Section 4).

For complexity issues, we assume that the constRinta PEP™9instance is given
as a nondeterministic finite-state automaton (NE#&) By a reductionbetween two
decision problems, we mean a logspace many-one reductieisawtwo problems are
equivalentwhen they are inter-reducible.

PEP is the special case 6fEP™YwhereRis =T, i.e., where there are no constraints
over the form of a non-trivial solution. As far as we knd®&P andPEP™ have never
been considered in the literature and this is probably esfaHP is trivial:

Proposition 3.1. There is ao € =T such that ¢ C Vg if and only if there is somed <
such that uC v;.

This is a direct corollary of Lemma 2.1. A consequence is BiaR is decidable in
deterministic logarithmic space.

Surprisingly, adding a regularity constraint makes théofmm much harder, as will
be proved later. As of now, we focus on proving the followingimresult.

Theorem 3.2 (Main Result).PEP™Yis decidable.

In the rest of this section, we assume a giP&P“%instance made af,v: * — *
andR C Z*. We consider some (R)-indexed families of languages iri:

Definition 3.3 (Blocking family). An £ (R)-indexed familfA., BL) ¢, (r) Of languages
in I is ablocking familyif for all L € £ (R):

oclLanda € A implyaug £ g, (B1)
ocLandB e B imply u Z Bvg. (B2)

The terminology “blocking” comes from the fact that tbeprefix “blocks” solutions
in L to a.ug C Vg. For By, the situation is dual: adding € B, is not enough to allow
solutions inL to ug C B.vg.
There is a largest blocking family, called theockerlanguages, or blocker family,
(XL, ML) LeL (R)» giVen by:
XL d:ef{a el |augZvsforaloel}, (B3)
YL & Ber | us ZPvsforalloeL}. (B4)
A blocking family provides information about the absencesofutions to several
variants of ourPEP™9 instance. For example, thev,R instance itself is positive iff
eZ Xgiff € YR
For proving that a given family is blocking, we use a criteralled “stability”.
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Definition 3.4 (Stable family). An £ (R)-indexed family(A_, B\ )¢, r) Of languages
is stableiff, for all L € £ (R):

1. A CTI*is upward-closed andBC I'* is downward-closed,
2. ifeeL, thene g AL UBL,
3. forallie Zanda € A_:
(@) ifa.ui C v then v[o.u] € By,
(b) ifa.ui Z v then(a.u){vi} € Ay,
4. forallie Zandp € B.:
(@) ifui C B.vi then(B.vi)[ui] € By,
(b) if ui Z B.vi then y{B.vi} € A,

Recall thatA, andB,, being respectively upward- and downward-closed, musege r
ular languages. Observe also that B iff B # @, whilee € A iff AL =T*.

Proposition 3.5 (Soundness)A stable family is a blocking family.

Proof. Assume thatA.,BL) <, (r) is stable. We prove that it satisfies (B1) and (B2) by
induction on the length af.

Base cases = €. Henceug = vg = €. Assumingaug C Vg requiresa = € butifo e L,
stability implies that ¢ A.. o € L also implies thaBy_ is empty so thati; Z Bvg
is vacuously true.

Inductive case: assume thais somei.p with i € 2 andp € Z*. Recall thaio € L iff
peil\L.

Leta € AL. If ay C v;, thenvi[au;] € Bi\L by stability. Henceu, £ (vilau])vp
by ind. hyp. Themus = auiup £ vivp = Vg by Lemma 2.2. If, on the other hand,
au; IZ v, then(aui){vi} € Ay by stability, hencgaui){vi }u, Z v, by ind. hyp.,
entailingaug Z vg by Lemma 2.2.

For B € BL the reasoning is similar. ifi = Bvi, then(Bvi)[ui] € B;| by stability,
henceu, IZ (Bvi)[ui]vp by ind. hyp., hences = uiup Z Bvivp = Bvg by Lemma 2.2.
If, on the other handy; IZ Bvi, thenu; {Bvi } € A\ by stability, hencesi {Bvi jup IZ v,
by ind. hyp., hences Z Bvs. ad

The criterion is also sufficient:
Proposition 3.6 (Completeness)The blocker familyX_,Y.) ¢, (r) is stable.

Proof. Clearly, as defined by (B3) and (B4) and for dng £ (R), X, is upward-closed
andY_ is downward-closed. Similarlg, & X ande € Y_ whene € L.
It remains to check conditiorsand4 for stability. We consider four cases:

3a Assume thatiy; C v; for somei in ~ and somex in someX,. If, by way of con-
tradiction, we assume thefa.u;] Y| then, by (B4), there is songec i\L such
thatup C vi[a.u]vp. Thusau;u, T vivp by Lemma 2.2, i.equg C Vi writing o for
i.p. But, sinceo € L, this contradict® € X, .

4a A similar reasoning applies if we assume thiatE Bv; for somei in ~ and some
B in someY. while (Bvi)[u] & Yi\.: we derive from (B4) that, = (Bvi)[ui]vp for
somep € i\L. Henceuju, C Bvivp by Lemma 2.2, a contradiction sinte € L.
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3b If we assume thatiy; £ v; for o € X and(aui){vi} € X, then, by (B3), there is
somep € i\L s.t. (au;){vi }up C Vp. Thenau;up, C viv, by Lemma 2.2, a contradic-
tion sincei.p € L.

4b Similarly, assuming thati IZ Bv; while ui{Bvi} & A\, we derive(ui{Bvi})u, C
ViVp, i.€.,Uiup C BViVp, another contradiction. a

Proposition 3.7 (Stability is decidable)lt is decidable whether an (R)-indexed fam-
ily (AL,BL)Le. () Of regular languages is a stable family.

Proof. We can assume that tihg¢ andB_ are given by DFAs. Condition& and2 of
stability are easy to check.

For agiven € Z andL € £ (R), checking conditiorBaneeds only consider’s that
are shorter thaw, which is easily done.

Checking conditiorBb is trickier. One way to do it is to consider the set of @l
such thabiy; IZ vi. This is a regular set that can be obtained effectively. Ttherset of
all correspondingau;){v; } is also regular and effective (see [5]) so that we can check
that it is included inA;, .

For condition4a, and given somé € £ (R) and some € Z, the set of al3’s such
thaty; C Byv; is regular and effective. One can then compute the correpgrset of
all (Bvi)[ui], again regular and effective, and check inclusioBjin. The complement
set of allf’s such thaw; IZ Bv; is also regular and effective, and one easily derives the
corresponding; {Bvi }'s (a finite set of suffixes afi), hence checking conditioth. O

Proof (of Theorem 3.2BincePEP™Yis r.e., itis sufficient to prove that it is also co-r.e.
For this we observe that, by Propositions 3.5 and 3BER™Y instance is negative if,
and only if, there exists a stable familp_,BL) . (r) satisfyinge € Ar. One can ef-
fectively enumerate all familie@\,BL ), <, (g Of regular languages and check whether
they are stable (Proposition 3.7) (and have Ar). If the PEP™Y instance is negative,
this procedure will eventually terminate, e.g., when itsiders the blocker family. O

Remark 3.8.Computing the blocker family for a negatiREP™9 instance cannot be
done effectively (this is a consequence of known resultsossyl channel systems).
Thus when the procedure described above terminates, theeway to know that it

has encountered the largest blocking family. O

4 Variants and extensions
Short morphismsPEP'S is PEP"9 with the constraint that all’s andv;’s have length
<1, i.e., they must belong touU {€}.

Proposition 4.1. PEP®9 reduces tPEPT;.

Proof (Sketch)Let u,v,R be aPEP"™Y instance. For all € Z, write u; in the form
reg

ail...a}i andy; in the formb?...b™. Letk = max{lj,m | i € Z}. One builds PEPY

instancas, Vv, R by letting%’ s {1,2,... )k}, U(i,p) d:efaip if p<l;,andu'(i, p) defe

otherwise. Similarlyy (i, p) is V", the pth letter inv;, ore. We now letR d:'th(R) where
h: % — % is the morphism defined bly(i) = (i,1)(i,2)...(i,k). Finally u,V,R is a

PEPZY instance that is positive iff, v, Ris positive. i
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Constraining ¢ and . PEPY-"®Yis like PEP"Y except that the constraiRC * now
applies taug: a solution is some € ¥* with ug € R (andug C Vg). Similarly, PEPY-"¢9
has the constraint apply tg;, while PEP"Y-"®9 has two constraint$y;, R, C I'*, that
apply to, respectively and simultaneously,andvg.

Proposition 4.2. PEP"-"®¢ reduces tdPEP"9,

Proof. Letu,v, Ry, R> be aPEP“-"®9instance. LeR d:Efu*l(Rl) NV 1(Ry). (Recall that
the image of a reguld® by an inverse morphism is regular and can easily be consttuct
from R.) By definitiono € Riff uy € Ry andvg € Ro. Thus thePEP™? instanceu,v,R

is positive iffu,v,Ry, Ry is. O

Reductions exist in the other direction, as the next two @sdns show.

Proposition 4.3. PEP™Y reduces tdPEPY-"¢9,

Proof (Sketch)Letu,v,R be aPEP"™9instance. W.l.o.g., we may assume thatl =
2. Define aPEPY-"*Yinstanceas,V,R by lettingV : * — (T UZ)* be given by % vi
and keeping/ = u unchanged. LeR’ gef h=1(R) whereh: (T UZ)* — * is the erasing
morphism that suppresses letters framNote thatv; € R iff 6 = h(v;) € R, so that
u,Vv,R is a positivePEP'-"*9instance iffu, v, Ris a positivePEP"9instance. 0

Proposition 4.4. PEPZ] reduces tdPEP'-"*S,

Proof (Sketch)Letu,v,R be aPEPTY instance. W.l.o.g., we assurlie= {1,2,...,k}

and let’ d:'sf{O} UZ with g: 2* — Z* the associated erasing morphism. We also assume

rNy = andlet” Erus’, withh: M — 5* as erasing morphism.

With u,v,R, we associate REP"-"*¢instanceu’,Vv',R based or®’ andl"’, and de-

fined byuy defe A 4f12.. k and, fori € 5, u ey andv/ ef LettingR = h~(R)

ensures that; € R iff g(o) € R Clearly, if u; C Vg, thenugq) T Vy(q). Conversely, if
Uy C Vg, itis possible to find @ € g~1(o’) that satisfies(; C Vj: this is just a matter of
inserting enough Q’s at the appropriate places (and thiherewe use the assumption
that allu;’s andv;’s have length< 1). O

Now, sincePEP"-"*9andPEP"-"*9are special cases BEP"-"*9 and sincePEP";
is a special case ¢fEP™9Y, Propositions 4.1, 4.2, 4.3 and 4.4 entail the following.

Theorem 4.5. PEP'™®Y, PEP;ef, PEPY-'®d PEPY-"®d and PEPYW-"®9 are inter-reducible.

Context-free constraints and Presburger constraiR&P is the extension oPEP"9
where we allow the constraiR to be any context-free language (say, given in the
form of a context-free grammarPEPY" is PEP restricted todeterministiccontext-
free constraintsPEP"™®Sis the extension wherR C Z* can be any language defined
by a Presburger constraint over the number of occurrenceadlf letter fron® (or,
equivalently, the commutative image Bfis a semilinear subset of the commutative
monoidNZ).
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Theorem 4.6. PEPY PEPf and PEPP™Sare undecidable.

Proof. The (classic)PCP problem reduces t8EPY" or PEPP™®Shy associating, with
an instances,v: =* — *, the constrainR. C 3" defined by

oeRs ey |ug| > |Vo| ando # €.

Obviously,us C Vg ando € R iff ug = Vg. Observe thaR- is easily defined in the
quantifier-free fragment of Presburger logic. FurthermengceR- can be recognized
by a counter machine with a single counter, it is indeed datestic context-free. O

5 From PEP™9to lossy channel systems

We now reducePEP™? to ReachLcs, the reachability problem for lossy channel sys-
tems.

Systems composed of several finite-state components coitating via several
channels (all of them lossy) can be simulated by systems avéimgle channel and
a single component (see, e.g., [15, Section 5]). Hence waalgére a lossy channel
system (a LCS) as a tupe= (Q,M,{c},A) whereQ = {q1,qp, ...} is a finite set of
control statesM = {a;, &y, ...} is a finitemessage alphabet is the name of the single
channe] andA = {8y, ...} is the finite set ofransition rules Rules inA arewriting

rules of the formq ¢ g (whereu € M* is any sequence of messages)ieading rules

q A g'. We usually omit writing ¢” in rules since there is only one channel, and no
possibility for confusion.

The behaviour ofSis given in the form of a transition system. @onfiguration
of Sis a pair(qg,v) € Q x M* of a state and a channel contents. Transitions between
configurations are obtained from the rules. Formatlyy) — (', V) is a valid transition

iff A contains a reading rule of the fonmﬂ g andv=uv, orA contains a writing rule

of the formq ALY g andVv = vu for someu’ C u. The intuition behind this definition
is that a reading rule consumadrom the head of the channel while a writing rule
appends a (nondeterministically chosen) subsequénafeu, and the rest ofi is lost.
See, e.9., [3, 15] for more details on LCS's.

Remark 5.1.This behaviour is calledvrite-lossybecause messages can only be lost
when they are appended to the channel, but once insidhey remain there until a
reading rule consumes them. This is different from, drgnt-lossysemantics, where
messages are lost when consumed (see [14]), or from the dsfiaition of LCS'’s,
where messages can be lost at any time. These differencesrapetely inessential
when one considers questions like reachability or terrfanatind authors use the def-
inition that is technically most convenient for their pusgoIn this paper, as in [1], the
write-lossy semantics is the most convenient one. O

Remark 5.2.Below we use extended rules of the fomﬁ‘ﬂ g. These are a shorthand

notation for pairs of “consecutive” ruleqs[—”> sands g wheresis an extra interme-
diary state that is not used anywhere else (and that we maylistinig in Q). O
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ReachlLcs, thereachability problem for LCS;ds the question, given a LCSand
two states), g € Q, whether there exists a sequence of transitior&gaing from({q, €)
to (d,€). The rest of this section proves the following theorem.

Theorem 5.3. PEP™9 reduces tReachLcs.

Remark 5.4.SinceReachLcs is decidable [3], Theorem 5.3 provides another proof that
PEP™Yis decidable. 0

Letu,v,Rbe aPEP™%instance and € Rbe a solution. We say is adirectsolution
if up C Vv, for every prefixp of . An equivalent formulation iso =iy...im is a direct
solution iff there are words,, ... ., v, such that:
1Lv Ly forallk=1,....m,

2. Ui, ... Uiy, :\/1...\/m,
3 Uiy . Uy | < vy forallk=1,....m.

A codirect solution is defined in a similar way, with the difference tha now
require|u;, ...u | > [V;...v| for all k=1,...,m (i.e., theu;'s are ahead of the&’s
instead of lagging behind).

We letPEPSY and PEPL.y. denote the questions whetheP&P'™9 instance has a

r codir

direct (resp. codirect) solution. ObviousBEP:® andPEP ., are equivalent problems

since an instance,v,R has a codirect solution iff its mirror imageV, R had a direct
solution.

Proposition 5.5. PEPg? (and PEP ;) reduce toReachLcs.

codir.

Proof (Idea).Let u,v,R be aPEPy? instance. Recall thaR is given via some NFA
ar = (Q,Z,d, qinit, F). With this instance, one associates a LES (Q,I", {c},A) with

a graph structuréQ,A) inherited fromag. The difference is that an edge> sin ag

gives rise to a transition rule™™ sin S With such rulesS can write the sequence
Vi, Vo,... Onc, readu;, U,, ... in lock-step fashion, and finally can move from the ini-
tial configuration(gjnit,€) to some final configurationf, &) with f € F iff the PEP"™9
instance has a direct solution. Restricting to direct $ohst is what ensures that the
V; ...V, prefix that has been written on the channel is always longeruf)...u,. O

If we now look at a general solution toREP™Y instance (more preciselyREP'

instance) it can be decomposed as a succession of altgruiatict and codirect solu-
tions to subproblems that are constrained by residudss of
Formally, assumel, v,R is aPEPrf‘f instance ana = iy...ip iS a solution. Then

there are words/,...,Vi, with vi, C v;, for k=1,...,m, and such thati, ...u;, =

V...V Now, for 0< k < m, definedy der Ui ... Ui, | — |V} ... Vi|. Then obviouslydg =
dm = 0. o is a direct solution ifds < 0 for all k. It is codirect ifdg > 0 for all k. In
general,dx may oscillate between positive and negative values. Baesall u;'s and
vi’s have length< 1, the differencely, 1 — dk is in {—1,0,1}. Hencedy cannot change
sign without being zero. In summary, the following holds:

Lemmab.6. A PEPf‘f instance yv,R is positive iff there are states,q, ..., m in
AR With Gp = Ginit, Gm € F, and such that, for ald < i < m, uv, Ry is a positivePEP)
instance and W, Ry 1 is a positivePEPrcf,%ir instance (where Rs the regular language

recognized byag when the initial state is changed tpand the final states tfg;1}).
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With Lemma 5.6, one may prove Theorem 5.3 by extending thetoaction prov-
ing Proposition 5.5. Now the LCS looks for a sequence of adtting direct and codirect
solutions. In direct mode, it proceeds as earlier until setateqy;. 1 is reached. It may
then switch to codirect mode. For this, it checks that thennbhis empty (see below),
guesses nondeterministicatly, 2, storesypi 1 andgyi, 2 in its finite memory, and now
looks for a codirect solution to,Vv, Ry 1. This is done by working on the mirror prob-
lem U, v, and moving backward fromp;, 2 to gpi+1. Whengyi 1 is reached (which can
be checked since it has been stored when switching modg)atisible to switch back
to direct mode, starting from statp;j > (which was stored too), again after checking

that the channel is empty. The emptiness checks use statnidée] e.g., ruleg i q
that write a special symbol¢ " and consume it immediately.

6 Reachability for unidirectional systems

6.1 Unidirectional systems

ReachUcs is the reachability problem for UCS, i.e., systems of two porments com-
municatingunidirectionally via one reliable and one lossy channel, as illustrated in
Fig. 1. A UCS has the forn$= (Q1, Q2, M, {r,1}, A1, Ap). The Qq1,A; pair defines
the sender component, with rules of the foqnﬁ!—”> g orq 1y g. TheQy,A;, pair has
ru 1u .. . . . .

rulesqg — q or g — ¢, defining the receiver component. A configuration is a tuple
(01,02, V1, V2) with control states); andag, for the components, contentsfor channel

r, andv, for 1.

The operational semantics is as expected. A qﬁ.'e‘i q (resp.q uy q) from A
gives rise to all transitionsq, gz, v1,V2) — (d,02,v1U,V2) (resp. all{g,qp,v1,V2) —

(d,02,v1,voU') for ' Cu). Aruleq L g (respq L d) from A, gives rise to all transi-

tions(a, @, uvi, V2) — (qu, ', va,V2) (resp. alqu, d, va, uve) — (01, q',v1,Vz)). Observe
that message losses only occur when writing to chahnel

Remark 6.1.A consequence of unidirectionality is that a ryos,gp,vi,v2) — --- —
(dy,05,V;,V,) can always be reordered so that it first uses only transifioms A; that
fill the channels, followed by only transitions frofw that consume from them. O

Theorem 6.2. [5] ReachLcs reduces tReachUcs.

6.2 From unidirectional systems toPEP"9
We now show thaPEP"™is expressive enough to encolleachUcs.
Theorem 6.3. ReachUcs reduces tdPEP™®,

Consider arReachUcs instance that asks whether one can go fr@gqp, €, €) to
(as,d;,€,€)! in some UCSS= (Q,Q2,M, {r,1},A1,4z). Without loss of generality,

1 For simplification purposes, this proof consid&schUcs instances where the channels are
empty in the starting and ending configurations. This is no real loss of@épesince the
generalReachUcs problem easily reduces to the restricted problem.
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we assume that the rules $only read or write at most one message: formally, we
write Mg for MU {€} and denote with (3) € Mg (resp.B(d) € Mg) the messages that rule
o writes to, or reads fromy; (resp.1). Observe that whether(d) andp(d) are read or
written depends on wheth&belongs ta\; or A,. Observe also that there is at least one
€ amonga (d) andf(d).

Assume that th®eachUcs instance is positive and that a witness mufirst uses a
sequence of rules, ... dm € A}, followed by a sequenacg ...y € A (this special form
is explained in Remark 6.1). Thanfirst writesw = a(d;)...0(dy) to r, then reads
W =a(y1)...a(y) from r, and we conclude that = w'. Simultaneously, it writes a
subwordw” of B(31)...B(8m) to 1, and reads it in the for(y1) ... B(vi)-

We are now ready to express this aBEP™Y problem. Lets LA U, (assuming

A1NAy = @) andl %M. The morphisms are given by

0 d:ef{s(a) if 5 Ay, @) d:ef{s(as) if 5 Ay,

€ otherwise, € otherwise.

Now write Ry for the set of all sequencés. .. dm € A} that form a connected path from
go to gf in Qq, andRy for the set of all sequences. ..y € A; that form a connected
path fromqp to g} in Q.. Let Rz contains all rules € A; UA; with a(d) = ¢, and alll
sequenced.y in A1A; with a(8) = a(y). Ry andR; are regular subsets 6f, while Rg
is even finite.

We now letR %' (Ry 1 R2) N RE, wherexx denotes the shuffle of two languages
(recall that this is regularity preserving). We conclude fioof of Theorem 6.3 with:

Lemma 6.4. [5] u,v,R is a positivePEP"™9 instance iff theReachUcs instance is posi-
tive.

By combining with Theorems 6.3 and 6.2 we obtain the equia@ginter-reduci-
bility) of our three problemsPEP™9, ReachLcs andReachUcs. This has two important
new corollaries:

Corollary 6.5. ReachUcs is decidable (but not primitive recursive).

Corollary 6.6. PEP™Yis (decidable but) not primitive recursive.

7 Concluding remarks

We introducedPEP'Y, a variant of Post Correspondence Problem based on emigeddin
(a.k.a. subword) rather than equality. Furthermore, aleegonstraint can be imposed
on the allowed solutions, which makes the problem nonétivi

PEP™9 was introduced while consideringeachUcs, a verification problem for
channel systems where a sender may send messages to arrgueivgh one reliable
and one lossy channel, and where no communication is allawé other direction.

Our main results are (1) a non-trivial proof tHEP™9 is decidable, and (2) three
non-trivial reductions showing th®EP™9, ReachUcs and ReachLcs are equivalent.
ReachLcs is the now well-known verification problem for lossy chansgdtems, where
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all channels are lossy but where no unidirectionality fetstn applies. The equivalence
between the three problems has two unexpected consequirstesvs thaReachUcs

is decidable, and th&EP"™9 is not primitive recursive. We also show that (BP9
andPEPg’, an important variant, are inter-reducible.

Beyond the applications to the theory of channel systemsqiaginal motivation),
the discovery oPEP™Y s interesting in its own right. Indeed, in recent years tte-|
ature has produced many hardness proofs that rely on redadtiomReachLcs. We
expect that such results, existing or yet to come, are essg@ove by reducing from
PEP'9, or from PEP’, than fromReachLcs.
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