
Post Embedding Problem Is Not Primitive Recursive,
With Applications To Channel Systems⋆

P. Chambart and Ph. Schnoebelen

LSV, ENS Cachan, CNRS
61, av. Pdt. Wilson, F-94230 Cachan, France

email: {chambart|phs}@lsv.ens-cachan.fr

Abstract. We introducePEP, the Post Embedding Problem, a variant ofPCP

where one compares strings with the subword relation, andPEP
reg, a further vari-

ant where solutions are constrained and must belong to a given regularlanguage.
PEP

reg is decidable but not primitive recursive. This entails the decidability of
reachability for unidirectional systems with one reliable and one lossy channel.

Keywords: Post correspondence problem; Lossy channel systems; Higman’s Lemma.

1 Introduction

Post correspondence problem,or shortlyPCP, can be stated as the question whether
two morphismsu,v : Σ∗ → Γ∗ agree non-trivially on some input, i.e., whetheru(σ) =
v(σ) for some non-emptyσ∈Σ+. This undecidable problem plays a central role in com-
puter science because it is very often easier and more natural to prove undecidability by
reduction fromPCP than from, say, the halting problem for Turing machines.

In this paper we introducePEP, a variant ofPCP where one asks whetheru(σ) is a
subwordof v(σ) for someσ. The subword relation, also called embedding, is denoted

“⊑”: w ⊑ w′ def
⇔ w can be obtained fromw′ by erasing some letters, possibly all of

them, possibly none. We also introducePEP
reg, an extension ofPEP where one adds

the requirement that a solutionσ belongs to a regular languageR⊆ Σ∗.
As far as we know,PEP andPEP

reg have never been considered in the literature [13,
9]. This is probably becausePEP is trivial (Prop. 3.1). However, and quite surprisingly,
adding a regular constraint makes the problem considerablyharder. In this paper we
show thatPEP

reg is decidable but that it is not primitive recursive.

Channel systems.What led us to considerPEP
reg are verification problems for chan-

nel systems, i.e., systems of finite-state machines that communicate asynchronously
via unbounded FIFO channels. These systems are Turing-powerful in general but sev-
eral restricted families or variants have decidable verification problems. For example
lossychannel systems, where messages can be lost nondeterministically, have decidable
reachability and termination problems [7, 3, 15]. For systems with one reliable channel
(no message losses), reachability is easily decidable if the system isunidirectional: one

⋆ Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.

2 P. Chambart and Ph. Schnoebelen

q1

q2q3

r!a

l!d

r!b

l!c p1 p2

p3p4

r?c

l?a

l?c

r?b

l?b

r?a

r?d

channelr (reliable)

channell (lossy)

a b d a c

b c

Fig. 1.A unidirectional channel system with onereliable and onelossy channel

sender sends messages to a receiver via the reliable channel, but no communication is
possible in the other direction. With two (reliable) unidirectional channels between the
sender and the receiver, reachability is undecidable. The open question that motivated
our study isReachUcs, i.e., reachability for channel systems withunidirectional com-
munication through one reliableand one unreliablechannels, as illustrated in Figure 1.

It is easy to reducePEP andPEP
reg to ReachUcs. It turns out that reductions from

ReachUcs to PEP
reg also exist. More surprisingly, we are able to reducePEP

reg to
ReachLcs, the reachability problem for (classical) lossy channel systems, and to reduce
ReachLcs to ReachUcs. Finally, all three problems are equivalent.

Summary of our contributions.1. We introducePEP
reg, a new decidable variant of the

PCP problem that is based on the subword relation. A surprising fact is that the regu-
larity constraint makesPEP

reg very different fromPEP, and highly non-trivial.
2. We prove thatPEP

reg is equivalent to (i.e., inter-reducible with)ReachUcs and
ReachLcs, two verification problems for systems of communicating automata. This pro-
vides the decidability ofReachUcs (and a new decidability proof forReachLcs).
3. This shows thatPEP

reg is not primitive recursive (sinceReachLcs is not either [15]).
This last point is quite interesting. In recent years, several problems coming from

various areas have been shown to be not primitive recursive by reductions fromReach-
Lcs: see, e.g., [2, 4, 6, 8, 10–12]. This is a clear indication that ReachLcs and equivalent
problems occupy a specific niche that had not been identified previously. Discovering
a simple and natural problem likePEP

reg amid this class will help extend the range of
problems that can be connected to the class:PEP

reg can be used to simplify existing
reduction proofs, and make some future proofs easier to obtain.

Outline of the paper.Section 2 recalls the necessary definitions and notations. We prove
thatPEP

reg is decidable in Section 3 and explore variants and extensions in Section 4.
The reductions betweenPEP

reg and ReachLcs or ReachUcs are given in sections 5
and 6. Proofs omitted for lack of space can be found in the longversion of this paper [5].

2 Notations and definitions

Words. We writeu,v,w, t,σ,ρ,α,β, . . . for words, i.e., finite sequences of letters such as
a,b, i, j, . . . from alphabetsΣ,Γ, . . ., and denote withu.v, or uv, the concatenation ofu
andv. Thelengthof u is written|u|. A morphismfrom Σ∗ to Γ∗ is a maph : Σ∗ → Γ∗ that

Post Embedding Problem Is Not Primitive Recursive 3

respects the monoidal structure, i.e., withh(ε) = ε andh(σ.ρ) = h(σ).h(ρ). A morphism
h is completely defined by its imageh(1), h(2), . . . , onΣ = {1,2, . . .}. We often simply
write h1,h2, . . ., andhσ, instead ofh(1),h(2), . . ., andh(σ).

Quotients. Let L be a language andm a word: m\L
def
= {w|m.w ∈ L} is the (right)

quotientof L by m. WhenL ⊆ Σ∗, we writeL (L) for the set{m\L | m∈ Σ∗} of all
quotients ofL. It is well-known that ifR is a regular language, thenL (R) is finite and
only contains regular languages (that still have their quotients inL (R)). L (R) can be
built effectively from a canonical DFA forR just by varying the initial state.

Embeddings.Given two wordsu= a1 . . .an andv= b1 . . .bm, we writeu⊑ v whenu is a
subwordof v, i.e., whenu can be obtained by erasing some letters (possibly none) from
v. For example,abba⊑ abracadabra. Equivalently,u⊑ v whenu can be embedded in
v, i.e., when there exists an order-preserving injective maph : {1, . . . ,n} → {1, . . . ,m}
such thatai = bh(i) for all i = 1, . . . ,n. It is well-known that the subword relation is a
partial ordering on words, and it is a well-quasi-ordering (Higman’s Lemma) when we
consider words over a fixed finite alphabet. This means that any set of words has a finite
number of minimal elements (minimal w.r.t.⊑).

Upward-closure.A languageL⊆ Γ∗ is upward-closedif u∈ L andu⊑ v imply v∈ L. It
is downward-closedif its complement is upward-closed. Higman’s Lemma entailsthat
upward-closed languages (hence also downward-closed languages) are regular.

Splitting words.Whenu⊑ v, we writev[u] for the longestv1 such thatv is somev0.v1

with u⊑ v0. Hencev[u] is the longest suffix ofv that can be retained if one has to re-
move some prefix containingu. Dually, for anyu andv, we writeu{v} for the shortest
u1, such thatu can be written as someu0.u1 with u0 ⊑ v. Henceu{v} is the shortest
suffix of u that can be obtained if one may only remove prefixes that are contained inv.
Observe thatu{v} is always defined whilev[u] is only defined whenu⊑ v.

When reasoning about embedding and concatenation, a naturaland simple tool is
the following.

Lemma 2.1 (Simple Decomposition Lemma).If u.w⊑ v.t then either u⊑ v or w⊑ t.

However, Lemma 2.1 only works one way. For deeper analyses, we shall need the fol-
lowing more powerful tool.

Lemma 2.2 (Complete Decomposition Lemma).

u.w⊑ v.t if and only if

{
u⊑ v and w⊑ v[u].t

or u 6⊑ v and u{v}.w⊑ t.

3 PEP: Post correspondence with embedding

The problem we are considering is a variant of Post correspondence problem where
equality is replaced by embedding, and where an additional regular constraint is im-
posed over the solution.

4 P. Chambart and Ph. Schnoebelen

Problem PEP
reg

Instance: Two finite alphabetsΣ andΓ, two morphismsu,v : Σ∗ → Γ∗, and a regular
languageR⊆ Σ∗.

Answer: Yes if and only if there exists aσ ∈ Rsuch thatuσ ⊑ vσ.

In the above definition, the regular constraint applies toσ but this is inessential and
our results still hold when the constraint applies touσ, or vσ, or both (see Section 4).

For complexity issues, we assume that the constraintR in aPEP
reg instance is given

as a nondeterministic finite-state automaton (NFA)AR. By a reductionbetween two
decision problems, we mean a logspace many-one reduction. We say two problems are
equivalentwhen they are inter-reducible.

PEP is the special case ofPEP
reg whereR is Σ+, i.e., where there are no constraints

over the form of a non-trivial solution. As far as we know,PEP andPEP
reg have never

been considered in the literature and this is probably becausePEP is trivial:

Proposition 3.1. There is aσ ∈ Σ+ such that uσ ⊑ vσ if and only if there is some i∈ Σ
such that ui ⊑ vi .

This is a direct corollary of Lemma 2.1. A consequence is thatPEP is decidable in
deterministic logarithmic space.

Surprisingly, adding a regularity constraint makes the problem much harder, as will
be proved later. As of now, we focus on proving the following main result.

Theorem 3.2 (Main Result).PEP
reg is decidable.

In the rest of this section, we assume a givenPEP
reg instance made ofu,v : Σ∗ → Γ∗

andR⊆ Σ∗. We consider someL (R)-indexed families of languages inΓ∗:

Definition 3.3 (Blocking family). AnL (R)-indexed family(AL,BL)L∈L (R) of languages
in Γ∗ is ablocking family if for all L ∈ L (R):

σ ∈ L andα ∈ AL imply αuσ 6⊑ vσ, (B1)

σ ∈ L andβ ∈ BL imply uσ 6⊑ βvσ. (B2)

The terminology “blocking” comes from the fact that theα prefix “blocks” solutions
in L to α.uσ ⊑ vσ. For BL, the situation is dual: addingβ ∈ BL is not enough to allow
solutions inL to uσ ⊑ β.vσ.

There is a largest blocking family, called theblocker languages, or blocker family,
(XL,YL)L∈L (R), given by:

XL
def
= {α ∈ Γ∗ | αuσ 6⊑ vσ for all σ ∈ L}, (B3)

YL
def
= {β ∈ Γ∗ | uσ 6⊑ βvσ for all σ ∈ L}. (B4)

A blocking family provides information about the absence ofsolutions to several
variants of ourPEP

reg instance. For example, theu,v,R instance itself is positive iff
ε 6∈ XR iff ε 6∈YR.

For proving that a given family is blocking, we use a criterion called “stability”.

Post Embedding Problem Is Not Primitive Recursive 5

Definition 3.4 (Stable family). An L (R)-indexed family(AL,BL)L∈L (R) of languages
is stableiff, for all L ∈ L (R):

1. AL ⊆ Γ∗ is upward-closed and BL ⊆ Γ∗ is downward-closed,
2. if ε ∈ L, thenε 6∈ AL ∪BL,
3. for all i ∈ Σ andα ∈ AL:

(a) if α.ui ⊑ vi then vi [α.ui] ∈ Bi\L,
(b) if α.ui 6⊑ vi then(α.ui){vi} ∈ Ai\L,

4. for all i ∈ Σ andβ ∈ BL:
(a) if ui ⊑ β.vi then(β.vi)[ui] ∈ Bi\L,
(b) if ui 6⊑ β.vi then ui{β.vi} ∈ Ai\L.

Recall thatAL andBL, being respectively upward- and downward-closed, must be reg-
ular languages. Observe also thatε ∈ BL iff BL 6= ∅, while ε ∈ AL iff AL = Γ∗.

Proposition 3.5 (Soundness).A stable family is a blocking family.

Proof. Assume that(AL,BL)L∈L (R) is stable. We prove that it satisfies (B1) and (B2) by
induction on the length ofσ.

Base case:σ = ε. Henceuσ = vσ = ε. Assumingαuσ ⊑ vσ requiresα = ε but if σ ∈ L,
stability implies thatε 6∈ AL. σ ∈ L also implies thatBL is empty so thatuσ 6⊑ βvσ
is vacuously true.

Inductive case: assume thatσ is somei.ρ with i ∈ Σ andρ ∈ Σ∗. Recall thatσ ∈ L iff
ρ ∈ i\L.
Let α ∈ AL. If αui ⊑ vi , thenvi [αui] ∈ Bi\L by stability. Henceuρ 6⊑ (vi [αui])vρ
by ind. hyp. Thenαuσ = αuiuρ 6⊑ vivρ = vσ by Lemma 2.2. If, on the other hand,
αui 6⊑ vi , then(αui){vi} ∈ Ai\L by stability, hence(αui){vi}uρ 6⊑ vρ by ind. hyp.,
entailingαuσ 6⊑ vσ by Lemma 2.2.
For β ∈ BL the reasoning is similar. Ifui ⊑ βvi , then(βvi)[ui] ∈ Bi\L by stability,
henceuρ 6⊑ (βvi)[ui]vρ by ind. hyp., henceuσ = uiuρ 6⊑ βvivρ = βvσ by Lemma 2.2.
If, on the other hand,ui 6⊑ βvi , thenui{βvi}∈Ai\L by stability, henceui{βvi}uρ 6⊑ vρ
by ind. hyp., henceuσ 6⊑ βvσ. ⊓⊔

The criterion is also sufficient:

Proposition 3.6 (Completeness).The blocker family(XL,YL)L∈L (R) is stable.

Proof. Clearly, as defined by (B3) and (B4) and for anyL ∈ L (R), XL is upward-closed
andYL is downward-closed. Similarly,ε 6∈ XL andε 6∈YL whenε ∈ L.

It remains to check conditions3 and4 for stability. We consider four cases:

3a Assume thatαui ⊑ vi for somei in Σ and someα in someXL. If, by way of con-
tradiction, we assume thatvi [α.ui] 6∈Yi\L then, by (B4), there is someρ ∈ i\L such
thatuρ ⊑ vi [α.ui]vρ. Thusαuiuρ ⊑ vivρ by Lemma 2.2, i.e.,αuσ ⊑ vσ writing σ for
i.ρ. But, sinceσ ∈ L, this contradictsα ∈ XL.

4a A similar reasoning applies if we assume thatui ⊑ βvi for somei in Σ and some
β in someYL while (βvi)[ui] 6∈ Yi\L: we derive from (B4) thatuρ ⊑ (βvi)[ui]vρ for
someρ ∈ i\L. Henceuiuρ ⊑ βvivρ by Lemma 2.2, a contradiction sincei.ρ ∈ L.

6 P. Chambart and Ph. Schnoebelen

3b If we assume thatαui 6⊑ vi for α ∈ XL and(αui){vi} 6∈ Xi\L then, by (B3), there is
someρ ∈ i\L s.t.(αui){vi}uρ ⊑ vρ. Thenαuiuρ ⊑ vivρ by Lemma 2.2, a contradic-
tion sincei.ρ ∈ L.

4b Similarly, assuming thatui 6⊑ βvi while ui{βvi} 6∈ Ai\L, we derive(ui{βvi})uρ ⊑
vivρ, i.e.,uiuρ ⊑ βvivρ, another contradiction. ⊓⊔

Proposition 3.7 (Stability is decidable).It is decidable whether anL (R)-indexed fam-
ily (AL,BL)L∈L (R) of regular languages is a stable family.

Proof. We can assume that theAL andBL are given by DFA’s. Conditions1 and2 of
stability are easy to check.

For a giveni ∈ Σ andL ∈ L (R), checking condition3aneeds only considerα’s that
are shorter thanvi , which is easily done.

Checking condition3b is trickier. One way to do it is to consider the set of allα’s
such thatαui 6⊑ vi . This is a regular set that can be obtained effectively. Thenthe set of
all corresponding(αui){vi} is also regular and effective (see [5]) so that we can check
that it is included inAi\L.

For condition4a, and given someL ∈ L (R) and somei ∈ Σ, the set of allβ’s such
that ui ⊑ βvi is regular and effective. One can then compute the corresponding set of
all (βvi)[ui], again regular and effective, and check inclusion inBi\L. The complement
set of allβ’s such thatui 6⊑ βvi is also regular and effective, and one easily derives the
correspondingui{βvi}’s (a finite set of suffixes ofui), hence checking condition4b. ⊓⊔

Proof (of Theorem 3.2).SincePEP
reg is r.e., it is sufficient to prove that it is also co-r.e.

For this we observe that, by Propositions 3.5 and 3.6, aPEP
reg instance is negative if,

and only if, there exists a stable family(AL,BL)L∈L (R) satisfyingε ∈ AR. One can ef-
fectively enumerate all families(AL,BL)L∈L (R) of regular languages and check whether
they are stable (Proposition 3.7) (and haveε ∈ AR). If the PEP

reg instance is negative,
this procedure will eventually terminate, e.g., when it considers the blocker family. ⊓⊔

Remark 3.8.Computing the blocker family for a negativePEP
reg instance cannot be

done effectively (this is a consequence of known results on lossy channel systems).
Thus when the procedure described above terminates, there is no way to know that it
has encountered the largest blocking family. ⊓⊔

4 Variants and extensions

Short morphisms.PEP
reg
≤1 is PEP

reg with the constraint that allui ’s andvi ’s have length
≤ 1, i.e., they must belong toΓ∪{ε}.

Proposition 4.1. PEP
reg reduces toPEP

reg
≤1.

Proof (Sketch).Let u,v,R be aPEP
reg instance. For alli ∈ Σ, write ui in the form

a1
i . . .al i

i andvi in the formb1
i . . .bmi

i . Let k = max{l i ,mi | i ∈ Σ}. One builds aPEP
reg
≤1

instanceu′,v′,R′ by lettingΣ′ def
= Σ×{1,2, . . . ,k}, u′(i, p)

def
= ap

i if p≤ l i , andu′(i, p)
def
= ε

otherwise. Similarly,v′(i, p) is vp
i , thepth letter invi , or ε. We now letR′ def

= h(R) where
h : Σ → Σ′ is the morphism defined byh(i) = (i,1)(i,2) . . .(i,k). Finally u′,v′,R′ is a
PEP

reg
≤1 instance that is positive iffu,v,R is positive. ⊓⊔

Post Embedding Problem Is Not Primitive Recursive 7

Constraining uσ and vσ. PEP
u_reg is like PEP

reg except that the constraintR⊆ Γ∗ now
applies touσ: a solution is someσ ∈ Σ∗ with uσ ∈ R (anduσ ⊑ vσ). Similarly,PEP

v_reg

has the constraint apply tovσ, while PEP
uv_reg has two constraints,R1,R2 ⊆ Γ∗, that

apply to, respectively and simultaneously,uσ andvσ.

Proposition 4.2. PEP
uv_reg reduces toPEP

reg.

Proof. Let u,v,R1,R2 be aPEP
uv_reg instance. LetR

def
= u−1(R1)∩v−1(R2). (Recall that

the image of a regularRby an inverse morphism is regular and can easily be constructed
from R.) By definitionσ ∈ R iff uσ ∈ R1 andvσ ∈ R2. Thus thePEP

reg instanceu,v,R
is positive iffu,v,R1,R2 is. ⊓⊔

Reductions exist in the other direction, as the next two propositions show.

Proposition 4.3. PEP
reg reduces toPEP

v_reg.

Proof (Sketch).Let u,v,R be aPEP
reg instance. W.l.o.g., we may assume thatΣ∩Γ =

∅. Define aPEP
v_reg instanceu′,v′,R′ by lettingv′ : Σ∗ → (Γ∪Σ)∗ be given byv′i

def
= i.vi

and keepingu′ = u unchanged. LetR′ def
= h−1(R) whereh : (Γ∪Σ)∗ → Γ∗ is the erasing

morphism that suppresses letters fromΣ. Note thatv′σ ∈ R′ iff σ = h(v′σ) ∈ R, so that
u′,v′,R′ is a positivePEP

v_reg instance iffu,v,R is a positivePEP
reg instance. ⊓⊔

Proposition 4.4. PEP
reg
≤1 reduces toPEP

u_reg.

Proof (Sketch).Let u,v,R be aPEP
reg
≤1 instance. W.l.o.g., we assumeΣ = {1,2, . . . ,k}

and letΣ′ def
= {0}∪Σ with g : Σ′∗ → Σ∗ the associated erasing morphism. We also assume

Γ∩Σ′ = ∅ and letΓ′ def
= Γ∪Σ′, with h : Γ′∗ → Σ∗ as erasing morphism.

With u,v,R, we associate aPEP
u_reg instanceu′,v′,R′ based onΣ′ andΓ′, and de-

fined byu′0
def
= ε, v′0

def
= 1.2. . .k, and, fori ∈ Σ, u′i

def
= i.ui andv′i

def
= vi . LettingR′ = h−1(R)

ensures thatu′σ ∈ R′ iff g(σ) ∈ R. Clearly, if u′σ ⊑ v′σ, thenug(σ) ⊑ vg(σ). Conversely, if
uσ′ ⊑ vσ′ , it is possible to find aσ ∈ g−1(σ′) that satisfiesu′σ ⊑ v′σ: this is just a matter of
inserting enough 0’s at the appropriate places (and this is where we use the assumption
that allui ’s andvi ’s have length≤ 1). ⊓⊔

Now, sincePEP
u_regandPEP

v_reg are special cases ofPEP
uv_reg, and sincePEP

reg
≤1

is a special case ofPEP
reg, Propositions 4.1, 4.2, 4.3 and 4.4 entail the following.

Theorem 4.5. PEP
reg, PEP

reg
≤1, PEP

u_reg, PEP
v_reg andPEP

uv_reg are inter-reducible.

Context-free constraints and Presburger constraints.PEP
cf is the extension ofPEP

reg

where we allow the constraintR to be any context-free language (say, given in the
form of a context-free grammar).PEP

dcf is PEP
cf restricted todeterministiccontext-

free constraints.PEP
Pres is the extension whereR⊆ Σ∗ can be any language defined

by a Presburger constraint over the number of occurrences ofeach letter fromΣ (or,
equivalently, the commutative image ofR is a semilinear subset of the commutative
monoidN

Σ).

8 P. Chambart and Ph. Schnoebelen

Theorem 4.6. PEP
dcf, PEP

cf andPEP
Presare undecidable.

Proof. The (classic)PCP problem reduces toPEP
dcf or PEP

Presby associating, with
an instanceu,v : Σ∗ → Γ∗, the constraintR≥ ⊆ Σ+ defined by

σ ∈ R≥
def
⇔ |uσ| ≥ |vσ| andσ 6= ε.

Obviously,uσ ⊑ vσ andσ ∈ R≥ iff uσ = vσ. Observe thatR≥ is easily defined in the
quantifier-free fragment of Presburger logic. Furthermore, sinceR≥ can be recognized
by a counter machine with a single counter, it is indeed deterministic context-free. ⊓⊔

5 From PEP
reg to lossy channel systems

We now reducePEP
reg to ReachLcs, the reachability problem for lossy channel sys-

tems.
Systems composed of several finite-state components communicating via several

channels (all of them lossy) can be simulated by systems witha single channel and
a single component (see, e.g., [15, Section 5]). Hence we define here a lossy channel
system (a LCS) as a tupleS= (Q,M,{c},∆) whereQ = {q1,q2, . . .} is a finite set of
control states, M = {a1,a2, . . .} is a finitemessage alphabet, c is the name of the single
channel, and∆ = {δ1, . . .} is the finite set oftransition rules. Rules in∆ arewriting

rules, of the formq
c!u
−→ q′ (whereu∈ M

∗ is any sequence of messages), orreading rules

q
c?u
−→ q′. We usually omit writing “c” in rules since there is only one channel, and no

possibility for confusion.
The behaviour ofS is given in the form of a transition system. Aconfiguration

of S is a pair〈q,v〉 ∈ Q× M
∗ of a state and a channel contents. Transitions between

configurations are obtained from the rules. Formally,〈q,v〉−→〈q′,v′〉 is a valid transition

iff ∆ contains a reading rule of the formq
?u
−→ q′ andv= uv′, or ∆ contains a writing rule

of the formq
!u
−→ q′ andv′ = vu′ for someu′ ⊑ u. The intuition behind this definition

is that a reading rule consumesu from the head of the channel while a writing rule
appends a (nondeterministically chosen) subsequenceu′ of u, and the rest ofu is lost.
See, e.g., [3, 15] for more details on LCS’s.

Remark 5.1.This behaviour is calledwrite-lossybecause messages can only be lost
when they are appended to the channel, but once insidec they remain there until a
reading rule consumes them. This is different from, e.g.,front-lossysemantics, where
messages are lost when consumed (see [14]), or from the usualdefinition of LCS’s,
where messages can be lost at any time. These differences arecompletely inessential
when one considers questions like reachability or termination, and authors use the def-
inition that is technically most convenient for their purpose. In this paper, as in [1], the
write-lossy semantics is the most convenient one. ⊓⊔

Remark 5.2.Below we use extended rules of the formq
!u?v
−−→ q′. These are a shorthand

notation for pairs of “consecutive” rulesq
!u
−→ s ands

?v
−→ q′ wheres is an extra interme-

diary state that is not used anywhere else (and that we may omit listing in Q). ⊓⊔

Post Embedding Problem Is Not Primitive Recursive 9

ReachLcs, the reachability problem for LCS’s, is the question, given a LCSS and
two statesq,q′ ∈ Q, whether there exists a sequence of transitions inSgoing from〈q,ε〉
to 〈q′,ε〉. The rest of this section proves the following theorem.

Theorem 5.3. PEP
reg reduces toReachLcs.

Remark 5.4.SinceReachLcs is decidable [3], Theorem 5.3 provides another proof that
PEP

reg is decidable. ⊓⊔

Let u,v,Rbe aPEP
reg instance andσ ∈Rbe a solution. We sayσ is adirectsolution

if uρ ⊑ vρ for every prefixρ of σ. An equivalent formulation is:σ = i1 . . . im is a direct
solution iff there are wordsv′1, . . . ,v

′
m such that:

1. v′k ⊑ vik for all k = 1, . . . ,m,
2. ui1 . . .uim = v′1 . . .v′m,
3. |ui1 . . .uik| ≤ |v′1 . . .v′k| for all k = 1, . . . ,m.

A codirect solution is defined in a similar way, with the difference thatwe now
require |ui1 . . .uik| ≥ |v′1 . . .v′k| for all k = 1, . . . ,m (i.e., theui ’s are ahead of thev′i ’s
instead of lagging behind).

We letPEP
reg
dir andPEP

reg
codir denote the questions whether aPEP

reg instance has a
direct (resp. codirect) solution. Obviously,PEP

reg
dir andPEP

reg
codir are equivalent problems

since an instanceu,v,R has a codirect solution iff its mirror imagẽu, ṽ, R̃ had a direct
solution.

Proposition 5.5. PEP
reg
dir (andPEP

reg
codir) reduce toReachLcs.

Proof (Idea).Let u,v,R be aPEP
reg
dir instance. Recall thatR is given via some NFA

AR = 〈Q,Σ,δ,qinit ,F〉. With this instance, one associates a LCSS= 〈Q,Γ,{c},∆〉 with

a graph structure(Q,∆) inherited fromAR. The difference is that an edger
i
−→ s in AR

gives rise to a transition ruler
!vi ?ui−−→ s in S. With such rules,S can write the sequence

v′1,v
′
2, . . . on c, readui1,ui2, . . . in lock-step fashion, and finally can move from the ini-

tial configuration〈qinit ,ε〉 to some final configuration〈 f ,ε〉 with f ∈ F iff the PEP
reg

instance has a direct solution. Restricting to direct solutions is what ensures that the
v′1 . . .v′k prefix that has been written on the channel is always longer thanui1 . . .uik. ⊓⊔

If we now look at a general solution to aPEP
reg instance (more precisely aPEP

reg
≤1

instance) it can be decomposed as a succession of alternating direct and codirect solu-
tions to subproblems that are constrained by residuals ofR.

Formally, assumeu,v,R is a PEP
reg
≤1 instance andσ = i1 . . . im is a solution. Then

there are wordsv′1, . . . ,v
′
m with v′k ⊑ vik for k = 1, . . . ,m, and such thatui1 . . .uim =

v′1 . . .v′m. Now, for 0≤ k≤ m, definedk
def
= |ui1 . . .uik|− |v′1 . . .v′k|. Then obviouslyd0 =

dm = 0. σ is a direct solution ifdk ≤ 0 for all k. It is codirect if dk ≥ 0 for all k. In
general,dk may oscillate between positive and negative values. But since all ui ’s and
vi ’s have length≤ 1, the differencedk+1−dk is in {−1,0,1}. Hencedk cannot change
sign without being zero. In summary, the following holds:

Lemma 5.6. A PEP
reg
≤1 instance u,v,R is positive iff there are states q0, q1, . . . , q2m in

AR with q0 = qinit , q2m∈ F, and such that, for all0≤ i < m, u,v,R2i is a positivePEP
reg
dir

instance and u,v,R2i+1 is a positivePEP
reg
codir instance (where Ri is the regular language

recognized byAR when the initial state is changed to qi and the final states to{qi+1}).

10 P. Chambart and Ph. Schnoebelen

With Lemma 5.6, one may prove Theorem 5.3 by extending the construction prov-
ing Proposition 5.5. Now the LCS looks for a sequence of alternating direct and codirect
solutions. In direct mode, it proceeds as earlier until somestateq2i+1 is reached. It may
then switch to codirect mode. For this, it checks that the channel is empty (see below),
guesses nondeterministicallyq2i+2, storesq2i+1 andq2i+2 in its finite memory, and now
looks for a codirect solution tou,v,R2i+1. This is done by working on the mirror prob-
lem ũ, ṽ, and moving backward fromq2i+2 to q2i+1. Whenq2i+1 is reached (which can
be checked since it has been stored when switching mode) it ispossible to switch back
to direct mode, starting from stateq2i+2 (which was stored too), again after checking

that the channel is empty. The emptiness checks use standardtricks, e.g., rulesq
!# ?#
−−→ q

that write a special symbol #6∈ Γ and consume it immediately.

6 Reachability for unidirectional systems

6.1 Unidirectional systems

ReachUcs is the reachability problem for UCS, i.e., systems of two components com-
municatingunidirectionally via one reliable and one lossy channel, as illustrated in
Fig. 1. A UCS has the formS= (Q1, Q2, M, {r,l}, ∆1, ∆2). TheQ1,∆1 pair defines

the sender component, with rules of the formq
r!u
−→ q′ or q

l!u
−→ q′. TheQ2,∆2 pair has

rulesq
r?u
−→ q′ or q

l?u
−→ q′, defining the receiver component. A configuration is a tuple

〈q1,q2,v1,v2〉 with control statesq1 andq2 for the components, contentsv1 for channel
r, andv2 for l.

The operational semantics is as expected. A ruleq
r!u
−→ q′ (resp.q

l!u
−→ q′) from ∆1

gives rise to all transitions〈q,q2,v1,v2〉 −→ 〈q′,q2,v1u,v2〉 (resp. all〈q,q2,v1,v2〉 −→

〈q′,q2,v1,v2u′〉 for u′ ⊑ u). A ruleq
r?u
−→ q′ (resp.q

l?u
−→ q′) from ∆2 gives rise to all transi-

tions〈q1,q,uv1,v2〉 −→ 〈q1,q′,v1,v2〉 (resp. all〈q1,q,v1,uv2〉 −→ 〈q1,q′,v1,v2〉). Observe
that message losses only occur when writing to channell.

Remark 6.1.A consequence of unidirectionality is that a run〈q1,q2,v1,v2〉 −→ ·· · −→
〈q′1,q

′
2,v

′
1,v

′
2〉 can always be reordered so that it first uses only transitionsfrom ∆1 that

fill the channels, followed by only transitions from∆2 that consume from them. ⊓⊔

Theorem 6.2. [5] ReachLcs reduces toReachUcs.

6.2 From unidirectional systems toPEP
reg

We now show thatPEP
reg is expressive enough to encodeReachUcs.

Theorem 6.3. ReachUcs reduces toPEP
reg.

Consider anReachUcs instance that asks whether one can go from〈q0,q′0,ε,ε〉 to
〈qf ,q′f ,ε,ε〉

1 in some UCSS= (Q1,Q2,M,{r,l},∆1,∆2). Without loss of generality,

1 For simplification purposes, this proof considersReachUcs instances where the channels are
empty in the starting and ending configurations. This is no real loss of generality since the
generalReachUcs problem easily reduces to the restricted problem.

Post Embedding Problem Is Not Primitive Recursive 11

we assume that the rules inS only read or write at most one message: formally, we
write Mε for M∪{ε} and denote withα(δ) ∈ Mε (resp.β(δ) ∈ Mε) the messages that rule
δ writes to, or reads from,r (resp.l). Observe that whetherα(δ) andβ(δ) are read or
written depends on whetherδ belongs to∆1 or ∆2. Observe also that there is at least one
ε amongα(δ) andβ(δ).

Assume that theReachUcs instance is positive and that a witness runπ first uses a
sequence of rulesδ1 . . .δm∈ ∆∗

1, followed by a sequenceγ1 . . .γl ∈ ∆∗
2 (this special form

is explained in Remark 6.1). Thenπ first writesw = α(δ1) . . .α(δm) to r, then reads
w′ = α(γ1) . . .α(γl) from r, and we conclude thatw = w′. Simultaneously, it writes a
subwordw′′ of β(δ1) . . .β(δm) to l, and reads it in the formβ(γ1) . . .β(γl).

We are now ready to express this as aPEP
reg problem. LetΣ def

= ∆1∪∆2 (assuming

∆1∩∆2 = ∅) andΓ def
= M. The morphisms are given by

u(δ)
def
=

{
β(δ) if δ ∈ ∆2,

ε otherwise,
v(δ)

def
=

{
β(δ) if δ ∈ ∆1,

ε otherwise.

Now writeR1 for the set of all sequencesδ1 . . .δm∈ ∆∗
1 that form a connected path from

q0 to qf in Q1, andR2 for the set of all sequencesγ1 . . .γl ∈ ∆∗
2 that form a connected

path fromq′0 to q′f in Q2. Let R3 contains all rulesδ ∈ ∆1∪∆2 with α(δ) = ε, and all
sequencesδ.γ in ∆1∆2 with α(δ) = α(γ). R1 andR2 are regular subsets ofΓ∗, while R3

is even finite.
We now letR

def
= (R1 ⊲⊳ R2)∩R∗

3, where⊲⊳ denotes the shuffle of two languages
(recall that this is regularity preserving). We conclude the proof of Theorem 6.3 with:

Lemma 6.4. [5] u,v,R is a positivePEP
reg instance iff theReachUcs instance is posi-

tive.

By combining with Theorems 6.3 and 6.2 we obtain the equivalence (inter-reduci-
bility) of our three problems:PEP

reg, ReachLcs andReachUcs. This has two important
new corollaries:

Corollary 6.5. ReachUcs is decidable (but not primitive recursive).

Corollary 6.6. PEP
reg is (decidable but) not primitive recursive.

7 Concluding remarks

We introducedPEP
reg, a variant of Post Correspondence Problem based on embedding

(a.k.a. subword) rather than equality. Furthermore, a regular constraint can be imposed
on the allowed solutions, which makes the problem non-trivial.

PEP
reg was introduced while consideringReachUcs, a verification problem for

channel systems where a sender may send messages to a receiver through one reliable
and one lossy channel, and where no communication is allowedin the other direction.

Our main results are (1) a non-trivial proof thatPEP
reg is decidable, and (2) three

non-trivial reductions showing thatPEP
reg, ReachUcs and ReachLcs are equivalent.

ReachLcs is the now well-known verification problem for lossy channelsystems, where

12 P. Chambart and Ph. Schnoebelen

all channels are lossy but where no unidirectionality restriction applies. The equivalence
between the three problems has two unexpected consequences: it shows thatReachUcs

is decidable, and thatPEP
reg is not primitive recursive. We also show that (3)PEP

reg

andPEP
reg
dir , an important variant, are inter-reducible.

Beyond the applications to the theory of channel systems (our original motivation),
the discovery ofPEP

reg is interesting in its own right. Indeed, in recent years the liter-
ature has produced many hardness proofs that rely on reductions fromReachLcs. We
expect that such results, existing or yet to come, are easierto prove by reducing from
PEP

reg, or fromPEP
reg
dir , than fromReachLcs.

References

1. P. A. Abdulla, C. Baier, S. Purushothaman Iyer, and B. Jonsson.Simulating perfect channels
with probabilistic lossy channels.Information and Computation, 197(1–2):22–40, 2005.

2. P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability and complexity results
for timed automata via channel machines. InProc. ICALP 2005, vol. 3580 ofLect. Notes
Comp. Sci., pp. 1089–1101. Springer, 2005.

3. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels.Information and
Computation, 127(2):91–101, 1996.

4. R. Amadio and Ch. Meyssonnier. On decidability of the control reachability problem in the
asynchronousπ-calculus.Nordic Journal of Computing, 9(2):70–101, 2002.

5. P. Chambard and Ph. Schnoebelen. Post embedding problem is notprimitive recursive,
with applications to channel systems. Research Report LSV-07-28, Lab. Specification and
Verification, ENS de Cachan, Cachan, France, September 2007.

6. S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. InProc. LICS
2006, pp. 17–26. IEEE Comp. Soc. Press, 2006.

7. A. Finkel. Decidability of the termination problem for completely specificiedprotocols.
Distributed Computing, 7(3):129–135, 1994.

8. D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Non-primitive recursive decid-
ability of products of modal logics with expanding domains.Annals of Pure and Applied
Logic, 142(1–3):245–268, 2006.

9. V. Halava, M. Hirvensalo, and R. de Wolf. Marked PCP is decidable.Theoretical Computer
Science, 255(1–2):193–204, 2001.

10. B. Konev, F. Wolter, and M Zakharyaschev. Temporal logics over transitive states. InProc.
CADE 2005, vol. 3632 ofLect. Notes Comp. Sci., pp. 182–203. Springer, 2005.

11. S. Lasota and I. Walukiewicz. Alternating timed automata. InProc. FOSSACS 2005, vol.
3441 ofLect. Notes Comp. Sci., pp. 250–265. Springer, 2005.

12. J. Ouaknine and J. Worrell. On the decidability and complexity of Metric Temporal Logic
over finite words.Logical Methods in Comp. Science, 3(1):1–27, 2007.

13. K. Ruohonen. On some variants of Post’s correspondence problem. Acta Informatica,
4(19):357–367, 1983.

14. Ph. Schnoebelen. Bisimulation and other undecidable equivalencesfor lossy channel sys-
tems. InProc. TACS 2001, vol. 2215 ofLect. Notes Comp. Sci., pp. 385–399. Springer,
2001.

15. Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity.
Information Processing Letters, 83(5):251–261, 2002.

