
Toward a Compositional Theory of Leftist Grammars
and Transformations★

P. Chambart and Ph. Schnoebelen

LSV, ENS Cachan, CNRS
61, av. Pdt. Wilson, F-94230 Cachan, France

Abstract. Leftist grammars [Motwaniet al., STOC 2000] are special semi-Thue
systems where symbols can only insert or erase to their left. We develop atheory
of leftist grammarsseen as word transformersas a tool toward rigorous analyses
of their computational power. Our main contributions in this first paper are(1)
constructions proving that leftist transformations are closed under compositions
and transitive closures, and (2) a proof that bounded reachability isNP-complete
even for leftist grammars with acyclic rules.

1 Introduction

Leftist grammars were introduced by Motwaniet al. to study accessibility and safety
in protection systems [7]. In this framework, leftist grammars are used to show that re-
stricted accessibility grammars have decidable accessibility problems (unlike the more
general access-matrix model).

Leftist grammars are both surprisingly simple and surprisingly complex. Simplicity
comes from the fact that they only allow rules of the form “a→ ba” and “cd→ d” where
a symbol inserts, resp. erases, another symbol to its leftwhile remaining unchanged.
But the combination of insertion and deletion rules makes leftist grammars go beyond
context-sensitive grammars, and the decidability result comes with a high complexity-
theoretical price [5]. Most of all, what is surprising is that apparently leftist grammars
had not been identified as a relevant computational formalism until 2000.

The known facts on leftist grammars and their computationaland expressive power
are rather scarce. Motwaniet al. show that it is decidable whether a given word can
be derived (accessibility) and whether all derivable wordsbelong to a given regular
language (safety) [7]. Jurdziński and Lorýs showed that leftist grammars can define
languages that are not context-free [6] while leftist grammars restricted to acyclic rules
are less expressive since they can only recognize regular languages. Then Jurdziński
showed aPSPACE lower bound for accessibility in leftist grammars [4], before im-
proving this to a nonprimitive-recursive lower bound [5].

Jurdzínski’s results rely on encoding classical computational structures (linear-boun-
ded automata [4] and Ackermann’s function [5]) in leftist grammars. Devising such
encodings is difficult because leftist grammars are very hard to control. Thus, for com-
puting Ackermann’s function, devising the encoding is actually not the hardest part: the

★ Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.



harder task is to prove that the constructed leftist grammarcannot behave in unexpected
ways. In this regard, the published proofs are necessarily incomplete, hard to follow, and
hard to fully acknowledge. The final results and intermediary lemmas cannot easily be
adapted or reused.

Our Contribution. We develop a compositional theory of leftist grammars and leftist
transformations (i.e., operations on strings that are computed by leftist grammars) that
provides fundamental tools for the analysis of their computational power. Our main
contributions are effective constructions for the composition and the transitive closure
of leftist transformations. The correctness proofs for these constructions are based on
new definitions (e.g., for greedy derivations) and associated lemmas.

A first application of the compositional theory is given in Section 6 where we prove
theNP-completeness of bounded reachability questions, even when restricted to acyclic
leftist grammars.

A second application, and the main reason for this paper, is our forthcoming con-
struction proving that leftist grammars can simulate lossychannel systems and “com-
pute” all multiply-recursive transformations and nothingmore (based on [3]), thus pro-
viding a precise measure of their computational power. Finally, after our introduction
of Post’s Embedding Problem [1, 2], leftist grammars are another basic computational
model that will have been shown to capture exactly the notionof multiply-recursive
computation.

As further comparison with earlier work, we observe that, ofcourse, the complex
constructions in [4, 5] are built modularly. However, the modularity is not made fully ex-
plicit in these works, the interfacing assumptions are incompletely stated, or are mixed
with the details of the constructions, and correctness proofs cannot be given in full.

Outline of the Paper.Basic notations and definitions are recalled in Section 2. Section 3
defines leftist grammars and proves a generalized version ofthe completeness of greedy
derivations. Sections 4 introduces leftist transformers and their sequential compositions.
Section 5 specializes on the “simple” transformers that we use in Section 6 for our
encoding of3SAT. Finally Section 7 shows that so-called “anchored” transformers are
closed under the transitive closure operation, this in an effective way. For lack of space,
several proofs have been omitted in this extended abstract:they can be found in the long
version of this paper, freely available at thearXiv.

2 Basic Definitions and Notations

Words. We usex,y,u,v,w,α,β, . . . to denote words, i.e., finite strings of symbols taken
from some alphabet. Concatenation is denoted multiplicatively with ε (the empty word)
as neutral element, and the length ofx is denoted∣x∣.

The congruence on words generated by the equivalencesa≈ aa (for all symbolsa
in the alphabet) is called thestuttering equivalenceand is also denoted≈: every wordx
has a minimal and canonical stuttering-equivalentx′ obtained by repeatedly eliminating
symbols inx that are adjacent to a copy of themselves.

We say thatx is asubwordof y, denotedx⊑ y, if x can be obtained by deleting some
symbols (an arbitrary number, at arbitrary positions) fromy. We further writex ⊑Σ y



when all the symbols deleted fromy belong toΣ (NB: we do not requirey∈ Σ∗), and
let⊒ denote the inverse relation⊑−1.

Relations and Relation Algebra.We see a relationRbetween two setsX andY as a set
of pairs, i.e., someR⊆ X×Y. We writex R yrather than(x,y) ∈ R. Two relationsRand

R′ can be composed, denoted multiplicatively withR.R′, and defined byx (R.R′) y
def
⇔

∃z.
(

x R z∧ z R′ y
)

.

The unionR+R′, also denotedR∪R′, is just the set-theoretic union.Rn is then-th

powerR.R. . .Rof RandR−1 is the inverse ofR: x R−1 y
def
⇔ y R x. The transitive closure

S

n=1,2,...R
n of RassumesY =X and is denotedR+, while its reflexive-transitive closure

is R+∪ IdX, denotedR∗.
Below we often use notations from relation algebra to state simple equivalences.

E.g., we write “R=R′” and “R⊆S” rather than “x R yiff x R′ y” and “x R yimpliesx S y”.
Our proofs often rely on well-known basic laws from relationalgebra, like(R.R′)−1 =
R′−1.R−1, or (R+R′).R′′ = R.R′′+R′.R′′, without explicitly stating them.

3 Leftist Grammars

A leftist grammar(an LGr) is a tripleG = (Σ,P,g) whereΣ∪ {g} = {a,b, . . .} is a
finite alphabet, g ∕∈ Σ is afinal symbol(also called “axiom”), andP= {r, . . .} is a set of
production rules that may beinsertion rulesof the forma→ ba, anddeletion rulesof
the formcd→ d. For simplicity, we forbid rules that insert or delete the axiom g (this
is no loss of generality [6, Prop. 3]).

Leftist grammars are not context-free (deletions are contextual), or even context-
sensitive (deletions are not length-preserving). For our purposes, we consider them
as string rewrite systems, more precisely semi-Thue systems. Writing Σg for Σ∪{g},
the rules ofP define a 1-step rewrite relation in the standard way: foru,u′ ∈ Σ∗

g, we
write u ⇒r,p u′ wheneverr is some ruleα → β, u is someu1αu2 with ∣u1α∣ = p and
u′ = u1βu2. We often write shortlyu ⇒r u′, or evenu ⇒ u′, when the position or the
rule involved in the step can be left implicit. On the other hand, we sometimes use a
subscript, e.g., writingu⇒G v, when the underlying grammar has to be made explicit.

A derivation is a sequenceπ of consecutive rewrite steps, i.e., is someu0 ⇒r1,p1

u1 ⇒
r2,p2 u2 ⋅ ⋅ ⋅ ⇒

rn,pn un, often abbreviated asu0 ⇒
n un, or evenu0 ⇒

∗ un. A subse-
quence(ui−1 ⇒

r i ,pi ui)i=m,m+1,...,l of π is a subderivation. As with all semi-Thue sys-
tems, steps (and derivations) are closed under adjunction:if u⇒ u′ thenvuw⇒ vu′w.

Two derivationsπ1 = (u ⇒∗ u′) and π2 = (v ⇒∗ v′) can be concatenated in the
obvious way (denotedπ1.π2) if u′ = v. They areequivalent, denotedπ1 ≡ π2, if they
have same extremities, i.e., ifu= v andu′ = v′.

We say thatu∈ Σ∗ is accepted by Gif there is a derivation of the formug⇒∗ g and
we writeL(G) for the set of accepted words, i.e., the language recognizedby G.

We say thatI ⊆ Σ∗ is aninvariant for an LGrG= (Σ,P,g) if u∈ I andug⇒ vgentail
v∈ I . Knowing thatI is an invariant forG is used in two symmetric ways: (1) fromu∈ I
andug⇒∗ vgone deducesv∈ I , and (2) fromug⇒∗ vgandv ∕∈ I one deducesu ∕∈ I .



3.1 Graphs and Types for Leftist Grammars

When dealing with LGr’s, it is convenient to write insertion rules under the simpler
form “a b”, and deletion rules as “d c”, emphasizing the fact thata (resp.d) is not
modified during the insertion ofb (resp. the deletion ofc) on its left. Fora∈ Σg, we let

ins(a) def
= {b ∣ P∋ (a b)} anddel(a) def

= {b ∣ P∋ (a b)} denote the set of symbols
that can be inserted (respectively, deleted) bya. We write ins+(a) for the smallest set
that containsb and ins+(b) for all b ∈ ins(a), while del+(b) is defined similarly. We
say thata is inactivein a LGr if del(a)∪ ins(a) =∅.

It is often convenient to view LGr’s in a graph-theoretical way. Formally, thegraph
of G= (Σ,P,g) is the directed graphτG having the symbols fromΣg as vertices and the
rules fromP as edges (coming in two kinds, insertions and deletions). Furthermore, we
often decorate such graphs with extra bookkeeping annotations.

We say thatG “has typeτ” when τG is a sub-graph ofτ. Thus a “type” is just a
restriction on what are the allowed symbols and rules between them. Types are often
given schematically, grouping symbols that play a similar role into a single vertex. For

Σ g
insertion:

deletion:

Fig. 1.Universal type (schematically).

example, Fig. 1 displays schematically the type (parametrized by the alphabet) observed
by all LGr’s.

3.2 Leftmost, Pure and Eager Derivations

We speak informally of a “letter”, say a, when we really mean “an occurrence of the
symbola” (in some word). Furthermore, we follow letters along stepsu⇒ v, identifying
the letters inu and the corresponding letters inv. Hence a “letter” is also a sequence of
occurrences in consecutive words along a derivation.

A lettera is an-th descendantof another letterb (in the context of a derivation) ifa
has been inserted byb (whenn= 1), or by a(n−1)-th descendant ofb.

Given a stepu ⇒r,p v, we say that thep-th letter inu, written u[p], is theactive
letter: the one that inserts, or deletes, a letter to its left. This is often emphasized by
writing the step under the form(u=)u1au2 ⇒ u′1au2(= v) (assumingu[p] = a).

A letter is inert in a derivation if it is not activein any stepof the derivation. A set
of letters is inert if it only contains inert letters. A derivation is leftmostif every step
u1au2 ⇒ u′1au2 in the derivation is such thatu1 is inert in the rest of the derivation.

A letter isusefulin a derivationπ = (u⇒∗ v) if it belongs tou or v, or if it inserts
or deletes a useful letter alongπ. This recursive definition is well-founded: since let-
ters only insert or delete to their left, the “inserts-or-deletes” relation between letters is
acyclic. A derivationπ is pure if all letters inπ are useful. Observe that ifπ is not pure,



it necessarily inserts at some step some lettera (called auseless letter) that stays inert
and will eventually be deleted.

A derivation iseagerif, informally, deletions occur as soon as possible. Formally,
π = (u0 ⇒

r1,p1 u1 ⋅ ⋅ ⋅ ⇒
rn,pn un) is not eager if there is someui−1 of the formw1baw2

whereb is inert in the rest ofπ and is eventually deleted, whereP contains the rule
a b, and wherer i is not a deletion rule.1

A derivation isgreedyif it is leftmost, pure and eager. Our definition generalizes[4,
Def. 4], most notably because it also applies to derivationsug⇒∗ vg with nonemptyv.
Hence a subderivationπ′ of π is leftmost, eager, pure, or greedy, whenπ is.

The following proposition generalizes [4, Lemma 7].

Proposition 3.1 (Greedy derivations are sufficient).Every derivationπ has an equiv-
alent greedy derivationπ′.

Proof. With a derivationπ of the formu0 ⇒
r1,p1 u1 ⇒

r2,p2 u2 ⋅ ⋅ ⋅⇒
rn,pn un, we associate

its measure µ(π) def
= ⟨n, p1, . . . , pn⟩, a (n+ 1)-tuple of numbers. Measures are linearly

ordered with the lexicographic ordering, giving rise to a quasi-ordering, denoted≤µ,
between derivations. A derivation is calledµ-minimalif any equivalent derivation has
greater or equal measure.

We can now prove Prop. 3.1 along the following lines: first prove that every deriva-
tion has aµ-minimal equivalent, then show thatµ-minimal derivations are greedy. ⊓⊔

Observe that≤µ is compatible with concatenation of derivations: ifπ1 ≤µ π2 then
π.π1.π′ ≤µ π.π2.π′ when these concatenations are defined. Thus any subderivation of a
µ-minimal derivation isµ-minimal, hence also greedy.

µ-minimality is stronger than greediness, and is a powerful and convenient tool for
proving Prop. 3.1. However, greediness is easier to reason with since it only involves
local properties of derivations, whileµ-minimality is “global”. These intuitions are re-
flected by, and explain, the following complexity results.

Theorem 3.2. 1. Greediness(deciding whether a given derivationπ in the context of a
given LGr G is greedy) is inL.
2. µ-Minimality (deciding whether it is µ-minimal) iscoNP-complete, even if we restrict
to acyclic LGr’s.

Proof. 1. Being leftmost or eager is easily checked in logspace (i.e., is inL). Checking
non-purity can be done by looking for alast inserted useless letter, hence is inL too.
2. µ-minimality is obviously incoNP. Hardness is proved as Coro. 6.9 below, as a
byproduct of the reduction we use for theNP-hardness of Bounded Reachability. ⊓⊔

4 Leftist Grammars as Transformers

Some leftist grammars are used as computing devices rather than recognizers of words.
For this purpose, we require a strict separation between input and output symbols and
speak ofleftist transformers, or shortly LTr’s.

1 Eagerness does not require thatr i deletesb: other deletions are allowed, only insertions are
forbidden.



4.1 Leftist Transformers

Formally, an LTr is a LGrG= (Σ,P,g) whereΣ is partitioned asA⊎B⊎C, and where
symbols fromA are inactive inP and are not inserted byP (see Fig. 2). This is denoted
G : A ⊢ C. HereA contains theinput symbols, B the temporary symbols, andC the
output symbols, andG is more conveniently written asG= (A,B,C,P,g). When there
is no need to distinguish between temporary and output symbols, we writeG under the

form G= (A,D,P,g), whereD
def
= B∪C contains the“working” symbols,

A D g

Fig. 2.Type of leftist transformers.

A consequence of the restrictions imposed on LTr’s is the following:

Fact 4.1 A∗D∗ is an invariant in any LTr G= (A,D,P,g).

With G= (A,B,C,P,g), we associate atransformation(a relation between words)
RG ⊆ A∗×C∗ defined by

u RG v
def
⇔ ug⇒∗

G vg∧ u∈ A∗ ∧ v∈C∗

and we say thatG realizes RG. Finally, aleftist transformationis any relation on words
realized by some LTr. By necessity, a leftist transformation can only relate words written
using disjoint alphabets (this is not contradicted byε RG ε).

Leftist transformations respect some structural constraints. In this paper we shall
use the following properties:

Proposition 4.2 (Closure for leftist transformations). If G : A ⊢ C is a leftist trans-
former, then RG = (⊒A .≈ .RG.≈).

4.2 Composition

We say that two leftist transformationsR1 ⊆ A∗
1×C∗

1 andR2 ⊆ A∗
2×C∗

2 arechainable
if C1 = A2 andA1∩C2 =∅. Two LTr’s are chainable if they realize chainable transfor-
mations.

Theorem 4.3. The composition R1.R2 of two chainable leftist transformations is a left-
ist transformation. Furthermore, one can build effectively a linear-sized LTr realizing
R1.R2 from LTr’s realizing R1 and R2.

For a proof, assumeG1 = (A1,B1,C1,P1,g) andG2 = (A2,B2,C2,P2,g) realizeR1 and
R2. Beyond chainability, we assume thatA1∪B1 andB2∪C2 are disjoint, which can be
ensured by renaming the intermediary symbols inB1 andB2. The composed LTrG1.G2

is given by

G1.G2
def
= (A1,B1∪C1∪B2,C2,P1∪P2,g).



A1 D1 (⊇ A2) D2

g
P1 P2

P1 P2

P1

P1

P2

P2

Fig. 3.The type ofG1.G2.

Σ g A C g

Fig. 4.Types of insertion grammars (left) and simple leftist transformers (right).

This is indeed a LTr fromA1 toC2. See Fig. 3 for a schematics of its type. SinceG1.G2

has all rules fromG1 andG2 it is clear that(⇒G1 +⇒G2)⊆⇒G, from which we deduce
RG1.RG2 ⊆ RG1.G2. Furthermore, the inclusion in the other direction also holds:

Lemma 4.4 (Composition Lemma).RG1.G2 = RG1.RG2.

Remark 4.5 (Associativity).The composition(G1.G2).G3 is well-defined if and only if
G1.(G2.G3) is. Furthermore, the two expressions denote exactly the same result. ⊓⊔

5 Simple Leftist Transformations

As a tool for Sections 6 and 7, we now introduce and study restricted families of leftist
grammars (and transformers) where deletion rules are forbidden (resp., only allowed on
A).

An insertion grammaris a LGrG= (Σ,P,g) whereP only contain insertion rules.
See Fig. 4 for a graphic definition. For an arbitrary leftist grammarG, we denote with
Gins the insertion grammar obtained fromG by keeping only the insertion rules.

The insertion relation IG ⊆ Σ∗ × Σ∗ associated with an insertion grammarG =

(Σ,P,g) is defined byu IG v
def
⇔ ug⇒∗

G vg. Obviously,IG ⊆ ⊑Σ. Observe thatIG is not
necessarily a leftist transformation since it does not require any separation between in-
put and output symbols.

A simpleleftist transformer is an LTrG= (A,B,C,P,g) whereB=∅ and where no
rule in P erases symbols fromC. See Fig. 4 for a graphic definition. We give, without
proof, an immediate consequence of the definition:

Lemma 5.1. Let G= (A,∅,C,P,g) be a simple LTr and assume ug⇒k
G vg for some

u∈ A∗ and v∈C∗. Then k= ∣u∣+ ∣v∣.

Given a simple LTrG = (A,∅,C,P,g) and two wordsu = a1 ⋅ ⋅ ⋅an ∈ A∗ andv =
c1 ⋅ ⋅ ⋅cm ∈ C∗, we say that a non-decreasing maph : {1, . . . ,n} → {1, . . . ,m} is a G-
witnessfor u andv if P contains the rulesch(i) ai andc j+1 c j (for all i = 1, . . . ,n
and j = 1, . . . ,m, with the convention thatcm+1 = g). Finally, we writeu ∇G v when



such aG-witness exists. Clearly,∇G ⊆ RG. Indeed, whenG is a simple transformer,∇G

can be used as a restricted version ofRG that is easier to control and reason about.

Lemma 5.2. Let G= (A,∅,C,P,g) be a simple LTr. Then RG = ∇G.IGins.

Combining Lemma 5.2 withIdC∗ ⊆ IGins ⊆ ⊑C, we obtain the following weaker but
simpler statement.

Corollary 5.3. Let G= (A,∅,C,P,g) be a simple LTr. Then∇G ⊆ RG ⊆ ∇G.⊑C.

5.1 Union of Simple Leftist Transformers

We now consider the combination of two simple LTr’sG1 = (A,∅,C1,P1,g) andG2 =
(A,∅,C2,P2,g) that transform from a sameA to disjoint output alphabets, i.e., with

C1∩C2 =∅. We define theirunionwith G1+G2
def
= (A,∅,C1∪C2,P1∪P2,g). This is

clearly a simple LTr with(RG1 +RG2)⊆ RG1+G2. It further satisfies:

Lemma 5.4. If u RG1+G2 v then u(RG1 +RG2) v′ for some v′ ⊑ v.

Proof. Assumeu RG1+G2 v. With Cor. 5.3, we obtainu∇G1+G2 v′ for somev′= c1 ⋅ ⋅ ⋅cm⊑
v. HenceG1+G2 has insertion rulesc j+1 c j for all j = 1, . . . ,m, and deletion rules
of the formch(i) u[i]. SinceC1 andC2 are disjoint, either all these rules are inG1 (and
u ∇G1 v′), or they are all inG2 (andu ∇G2 v′). Henceu (RG1 +RG2) v′. ⊓⊔

6 Encoding3SAT with Acyclic Leftist Transformers

This section proves the following result.

Theorem 6.1. Bounded ReachabilityandExact Bounded Reachabilityin leftist gram-
mars areNP-complete, even when restricting to acyclic grammars.

(Exact) Bounded Reachability is the question whether thereexists an-step deriva-
tion u⇒n v (respectively, a derivationu⇒≤n v of non-exact length at mostn) between
givenu andv. These questions are among the simplest reachability questions and, since
we consider that the inputn is given in unary,2 they are obviously inNP for leftist
grammars (and all semi-Thue systems).

Consequently, our contribution in this paper is theNP-hardness part. This is proved
by encoding3SAT instances in leftist grammars where reaching a given finalv amounts
to guessing a valuation that satisfies the formula. While the idea of the reduction is easy
to grasp, the technicalities involved are heavy and it wouldbe difficult to really prove
the correctnessof the reduction without relying on a compositional framework like the
one we develop in this paper. It is indeed very tempting to “prove” it by just running an
example.

Rather than adopting this easy way, we shall describe the reduction as a composition
of simple leftist transformers and use our composition theorems to break down the

2 It is natural to begin with this assumption when considering fundamental aspects of reachabil-
ity since writingn more succinctly would blur the complexity-theoretical picture.



correctness proof in smaller, manageable parts. Once the ideas underlying the reduction
are grasped, a good deal of the reasoning is of the type-checking kind: verifying that
the conditions required for composing transformers are met.

Throughout this section we assume a generic3SAT instanceΦ =
Vm

i=1Ci with m
3-clauses onn Boolean variables inX = {x1, . . . ,xn}. Each clause has the formCi =
W3

k=1 εi,kxi,k for some polarityεi,k ∈ {+,−} and xi,k ∈ X. (There are two additional
assumptions onΦ that we postpone until the proof of Coro. 6.5 for clarity.) Weuse
standard model-theoretical notation like∣= Φ (validity), or σ ∣= Φ (entailment) whenσ
is a Boolean formula or a Boolean valuation of some variables.

We write σ[x 7→ b] for the extension of a valuationσ with (x,b), assumingx ∕∈
Dom(σ). Finally, for a valuationθ : X → {⊤,⊥} and somej = 0, . . . ,n, we writeθ j to
denote the restrictionθ∣{x1,...,x j} of θ on the firstj variables.

6.1 Associating an LTrGΦ with Φ

For the encoding, we use an alphabetΣ= {T j
i ,U

j
i ,T

′ j
i ,U

′ j
i ∣ i = 1, . . . ,m∧ j = 0, . . . ,n},

i.e., 4(n+ 1) symbols for each clause. The choice of the symbols is that aU means
“Undetermined” and aT means “True”, or determined to be valid.

For j = 0, . . . ,n, letVj
def
= {U j

1 , . . . ,U
j

m,T
j

1 , . . . ,T
j

m},V ′
j

def
= {U ′ j

1, . . . ,U
′ j
m,T

′ j
1, . . . ,T

′ j
m},

andWj
def
= Vj ∪V ′

j , so thatΣ is partitioned in levels withΣ =
Sn

j=0Wj . With eachx j ∈ X
we associate two intermediary LTr’s:

G⊤
j

def
= (Wj−1,∅,Vj ,Pj ,g), G⊥

j
def
= (Wj−1,∅,V ′

j ,P
′
j ,g)

with sets of rulesPj andP′
j . The rules forG⊤

j are given in Fig. 5: some deletion rules are
conditional, depending on whetherx j appears in the clausesC1, . . . ,Cm. The rules for
G⊥

j are obtained by switching primed and unprimed symbols, and by having conditional

rules based on whether¬x j appears in theCi ’s. One easily checks thatG⊤
j and G⊥

j

T j
1

U j
1

T j
2

U j
2

⋅ ⋅ ⋅

⋅ ⋅ ⋅

T j
m

U j
m

g

T j−1
1 T ′ j−1

1 T j−1
2 T ′ j−1

2 ⋅ ⋅ ⋅ T j−1
m T ′ j−1

m

U j−1
1 U ′ j−1

1 U j−1
2 U ′ j−1

2 ⋅ ⋅ ⋅ U j−1
m U ′ j−1

m

T j
1

T j
2

...
...

T j
m

U j−1
1

U ′ j−1
1

U j−1
2

U ′ j−1
2

U j−1
m

U ′ j−1
m

(if x j ∣=C1)

(if x j ∣=C2)

(if x j ∣=Cm)

Fig. 5.Pj , the rules forG⊤
J : Fixed part on left, conditional part on right.

are indeed simple transformers. They have same inputs and disjoint outputs so that
the union(G⊤

j +G⊥
j ) : Wj−1 ⊢Wj is well-defined. Hence the following composition is

well-formed:
GΦ

def
= (G⊤

1 +G⊥
1 ).(G

⊤
2 +G⊥

2 ) ⋅ ⋅ ⋅(G
⊤
n +G⊥

n ).

We conclude the definition ofGΦ with an intuitive explanation of the idea behind the re-
duction.GΦ operates on the wordu0 =U0

1 ⋅ ⋅ ⋅U
0
m where eachU0

i stands for “the validity



of clause Ci is undetermined at step0 (i.e., at the beginning)”. At step j, G⊤
j +G⊥

j picks

a valuation forx j : G⊤
j picks “x j =⊤” while G⊥

j picks “x j =⊥”. This transformsU j−1
i

intoU j
i , andT j−1

i into T j
i , moving them to the next level. Furthermore, an undetermined

U j−1
i can be transformed intoT j

i if Ci is satisfied byx j . In addition, and becauseG⊤
j

andG⊥
j must have disjoint output alphabets, the symbols in theVj ’s come in two copies

(hence theV ′
j ’s) that behave identically when they are input in the transformer for the

next step.
The reduction is concluded with the following claim that we prove by combining

Corollaries 6.5 and 6.8 below.

Φ is satisfiable iffU0
1U0

2 ⋅ ⋅ ⋅U
0
mg⇒2mn

GΦ
Tn

1 Tn
2 ⋅ ⋅ ⋅Tn

mg

iff U0
1U0

2 ⋅ ⋅ ⋅U
0
mg⇒≤2mn

GΦ
Tn

1 Tn
2 ⋅ ⋅ ⋅Tn

mg (Correctness)

iff U0
1U0

2 ⋅ ⋅ ⋅U
0
mg⇒∗

GΦ
Tn

1 Tn
2 ⋅ ⋅ ⋅Tn

mg.

Observe finally thatGΦ is an acyclic grammar in the sense of [6], that is to say,
its rules define an acyclic “may-act-upon” relation between symbols. Such grammars
are much weaker than general LGr’s since, e.g., languages recognized by LGr’s with
acyclic deletion rules (and arbitrary insertion rules) areregular [6].

Remark 6.2.The construction ofGΦ from Φ, mostly amounting to copying operations
for theG⊤

j ’s andG⊥
j ’s, to type-checking and sets-joining operations for the composition

of the LTr’s, can be carried out in logarithmic space. ⊓⊔

6.2 Correctness of the Reduction

We say that a wordu is j-cleanif it has exactlymsymbols and ifu[i]∈{T j
i ,T

′ j
i ,U

j
i ,U

′ j
i }

for all i = 1, . . . ,m. It is ⊤-homogeneous(resp.⊥-homogeneous) if it does not contain
any (resp., only contains) primed symbols.

Let 0≤ j ≤ n andθ j be a Boolean valuation ofx1, . . . ,x j : we say that aj-cleanu
respects(Φ under)θ j when, for alli = 1, . . . ,m, θ j ∣=Ci whenu[i] is determined (i.e.,
∈ T j

i +T ′ j
i ). Finally u codes(Φ under)θ j if additionally eachu[i] is determined when

θ j ∣=Ci . Thus, a wordu that codes someθ j exactly lists (via determined symbols) the
clauses ofΦ made valid byθ j , and the only flexibility inu is in using the primed or the
unprimed copy of the symbols. Hence there is only onej-cleanu codingθ j that is⊤-
homogeneous, and only one that is⊥-homogeneous. Ifu respectsθ j instead of coding
it, more latitude exists since symbols may be undetermined even if the corresponding
clause is valid underθ j .

Assume that, for somej ∈ {1, . . . ,n}, u j−1 codesθ j−1 andu j codesθ j . Write b for
θ(x j) (NB: b∈ {⊤,⊥}).

Lemma 6.3. If u j is b-homogeneous then uj−1 ∇Gb
j
u j .

Proof. Let h
def
= Id{1,...,m}. We claim thath is aGb

j -witness foru j−1 andu j , i.e., thatGb
j

contains the required insertion and deletion rules.



Insertions. Gb
j has all insertion rulesg u j [m] u j [m−1] . . . u j [1] (leftmost

rules in Fig. 5) sinceu j is b-homogeneous.
Deletions.Gb

j has all deletion rulesu j [i] u j−1[i]. Firstly, both undetermined symbols

U i
j andU ′ i

j may delete their counterpartsU i
j−1 andU ′ i

j−1, and similarly for the deter-
mined symbols (the unconditional deletion rules in Fig. 5).This is used ifCi is not more
valid underθ j than underθ j−1. Secondly, ifCi is valid underθ j but not underθ j−1, then
x j ∣=Ci (or¬x j ∣=Ci , depending onb) and the conditional rules in Fig. 5 allow a deter-

minedT j
i (or T ′ j

i depending onb) to deleteU j−1
i or U ′ j−1

i . ⊓⊔

Lemma 6.4. If u j is b-homogeneous, then uj−1g⇒2m
Gb

j
u jg.

Proof. Fromu j−1 ∇Gb
j
u j (Lemma 6.3) we deduceu j−1 RGb

j
u j , i.e.,u j−1g⇒∗

Gb
j
u jg, by

Lemma 5.2, and thenu j−1g⇒2m
Gb

j
u jg by Lemma 5.1. ⊓⊔

Corollary 6.5. If Φ is satisfiable, then U01 ⋅ ⋅ ⋅U
0
mg⇒2mn

GΦ
Tn

1 ⋅ ⋅ ⋅Tn
mg.

Proof. SinceΦ is satisfiable,θ ∣= Φ for some valuationθ. For j = 1, . . . ,m, we writeb j

for θ(x j) and letu j be the onlyj-cleanb j -homogeneous word that codes forθ j .
We now make two assumptions onΦ that are no loss of generality. First we require

that no clauseCi contains both a literal and its negation, hence noCi is tautologically

valid. Thenu0
def
= U0

1 ⋅ ⋅ ⋅U
0
m codes the empty valuationθ0. Second, we require thatΦ

is only satisfiable withbn = ⊤ (which can be easily ensured by adding a few extra
variables). Then necessarilyun = Tn

1 ⋅ ⋅ ⋅Tn
m.

Lemma 6.4 givesu0g ⇒2m

G
b1
1

u1g ⇒2m

G
b2
2

u2g⋅ ⋅ ⋅ ⇒2m
Gbn

n
ung. Since⇒Gb

j
⊆⇒G j⊆⇒GΦ

for all b and j, we deduceu0g⇒2mn
GΦ

ung as claimed. ⊓⊔

Fix someθ, somej ∈ {1, . . . ,n} and letb= θ(x j).

Lemma 6.6. If u respectsθ j−1 and u∇Gb
j
v, then v respectsθ j .

Proof. Write l for ∣v∣. From u ∇Gb
j

v (witnessed by someh) we deduce thatGb
j has

insertion rulesg v[l ] v[l − 1] . . . v[1]. Inspecting Fig. 5, we conclude that
necessarilyl ≤ m. Since deletion rulesv[h(i)] u[i] are required for alli = 1, . . . ,m,
we further see from Fig. 5 thath is injective, so thatl ≥ m. Finally l = m, h= Id{1,...,m},
v is j-clean andb-homogeneous.

Now, knowing thatGb
j contains the rulesv[i] u[i], we show thatv respectsθ j .

Suppose, by way of contradiction, that it does not. Thus there is somei ∈ {1, . . . ,m}

with v[i] =T j
i (assumingb=⊤w.l.o.g.) whileθ j ∕∣=Ci (so thatθ j−1 ∕∣=Ci). Fromθ j ∕∣=Ci

we deduce thatx j ∕∣=Ci . HenceGb
j does not have the conditional rulesT j

i U j−1
i and

T j
i U ′ j−1

i . Thusu[i] ∕∈ {U j−1
i ,U ′ j−1

i }. But thenu does not respectθ j−1, contradicting
our assumption. ⊓⊔

We immediately deduce:



Lemma 6.7. If x RGb
j

y and there is some u⊑ x that respectsθ j−1, then there is some

v⊑ y that respectsθ j .

Proof. From the Closure Property 4.2, we getu RGb
j

y. Then, fromRGb
j
⊆ ∇Gb

j
. ⊑

(Coro. 5.3) we deduceu ∇Gb
j
v for somev⊑ y. Now v respectsθ j thanks to Lemma 6.6.

⊓⊔

Corollary 6.8. If U 0
1 ⋅ ⋅ ⋅U

0
mg⇒∗

GΦ
Tn

1 ⋅ ⋅ ⋅Tn
mg, thenΦ is satisfiable.

Proof. Write u0 for U0
1 ⋅ ⋅ ⋅U

0
m andun for Tn

1 ⋅ ⋅ ⋅Tn
m. From the definition ofGΦ and the

Composition Lemma 4.4, we deduce that there exist some wordsu1, . . . ,un−1 such that
u j−1 RG⊤

j +G⊥
j

u j for all j = 1, . . . ,n.

With Lemma 5.4, we further deduce that there exist some wordsu′1, . . . ,u
′
n and

Boolean valuesb1, . . . ,bn such thatu′j ⊑ u j andu j−1 R
G

bj
j

u′j for all j = 1, . . . ,n. Hence

alsou′j−1 R
G

bj
j

u′j by Prop. 4.2 (and lettingu′0 = u0).

Write θ for [x1 7→ b1, . . . ,xn 7→ bn]. With Lemma 6.7, induction onj, and sinceu′0
respectsθ0, we further deduce that there exists some wordsu′′1, . . . ,u

′′
n such that, for all

j = 1, . . . ,n, u′′j ⊑ u′j andu′′j respectsθ j . From∣u′′n∣= m (it respectsθ) andu′′n ⊑ un, we
deduce thatu′′n = un. Finally, θ ∣= Φ sinceu′′n respectsθ andu′′n = un = Tn

1 ⋅ ⋅ ⋅Tn
m. ⊓⊔

Corollary 6.9. µ-Minimality of a derivation iscoNP-hard.

Proof (Sketch).We defineG′
Φ by taking GΦ, addingk extra symbolsa1, . . . ,ak, and

adding the following two sets of rules:
(1) all ai−1 ai andai−1 ai for i = 1, . . . ,k (with the convention thata0 is Tn

1 );
(2) all ak U0

i for i = 1, . . . ,m.
Observe thatG′

Φ is acyclic. It has a derivationπ : U0
1 ⋅ ⋅ ⋅U

0
mg⇒2m+2k Tn

1 ⋅ ⋅ ⋅Tn
mg of

the following form:

U0
1 ⋅ ⋅ ⋅U

0
mg⇒m U0

1 ⋅ ⋅ ⋅U
0
mTn

1 ⋅ ⋅ ⋅Tn
mg⇒k U0

1 ⋅ ⋅ ⋅U
0
makak−1 ⋅ ⋅ ⋅a1Tn

1 ⋅ ⋅ ⋅Tn
mg

⇒m akak−1 ⋅ ⋅ ⋅a1Tn
1 ⋅ ⋅ ⋅Tn

mg⇒k Tn
1 ⋅ ⋅ ⋅Tn

mg.

This derivation uses the extra symbols to bypass the normal behaviour ofGφ. If k is
large enough, i.e.,k> m(n−1), π is µ-minimal if, and only if,Φ is not satisfiable. ⊓⊔

7 Anchored Leftist Transformers and Their Transitive Closure

When b1,b2 ∈ B are two different working symbols, and(A,B,C,P,g) is a LTr, we
call G= (A,B,C,b1,b2,P,g) ananchoredLTr, or shorly an ALTr. With an ALTrG we
associate ananchored tranformation SG ⊆ A∗×C∗ defined by

u SG v
def
⇔ b1ug⇒∗

G b2vg.

Here theanchors b1,b2 are used to control what happens at the left-hand end of trans-
formed words. Mostly, they ensure that the derivationb1ug⇒∗ b2vggoes all the way to



the left and erasesb1 rather than stopping earlier. One intuitive way of seeingSG is that
it is a variant ofRG restricted to derivations that replace the anchors.

A first difficulty for building the transitive closure of an anchored transformation
SG ⊆ A∗×C∗ is that the input and output sets are disjoint (a requirementthat allowed
the developments of Sections 4 and 5). To circumvent this, weassume w.l.o.g. that
A andC are two different copies of a same set, equipped with a bijective renaming
h̄ : C∗ → A∗. Then, the closureSG.(h̄.SG)

∗ behaves like we would wantS+G to behave.
For the rest of this section, we assumeh is a bijection betweenC andA. W.l.o.g., we

write A andC under the formsA= {a1, . . . ,an} andC = {c1, . . . ,cn} so thath(ci) = ai

for all i = 1, . . . ,n. Then h is lifted as a (bijective) morphism̄h : C∗ → A∗ that we
sometimes see as a relation between words.

The exact statement we prove in this section is the following:

Theorem 7.1 (Transitive Closure).Let G: A⊢C be an ALTr such that SG = SG.⊑C.
Then there exists an ALTr G(+) : A⊢C such that SG(+) = SG.(h̄.SG)

∗.
Furthermore, it is possible to build G(+) from G using only logarithmic space.

Let b1,b2 ∕∈ A∪C. The ALTrRb2,b1

def
= (C,b2,b1,A,PR,g) with

PR

def
=

{

g ai ,ai a j ,ai b1

ai ci ,b1 b2

∣

∣

∣

∣

for all i, j = 1, . . . ,n

}

is called arenamer (of C to A), and often shortly writtenR. Observe thatR : C ⊢ A is
indeed an ALTr. It further satisfiesSR = ≈ .⊑ .h̄.

We shall now glue an ALTrG : A ⊢C with the renamerR : C ⊢ A into some larger
LGr H. But before this can be done we need to put some wrapping control on G (and
onR) that will let us track what comes fromG insideH ’s derivations.

Formally, given an ALTrG = (A,B,C,b1,b2,P,g) and two new anchor symbols

�1,�2 ∕∈ Σg, we letΣ�

def
= {�1,�2} and define a new ALTrFG,�1,�2 (or shortly justFG)

for “wrapping G with�1,�2”, and given byFG,�1,�2

def
= (A,B,C,�1,�2,P′,g) where

– A
def
= A∪A′∪{b1,b′1}, A′,b′1 being a copy ofA,b1,

– B
def
= {�1,�2}∪B∖{b1},

– C
def
= C∪{b2}∪C′∪B′

∖{b′1}, B′ andC′ being copies ofB andC.

Finally, letD
def
= C∪B andD′ def

= C′∪B′. (The copies are denoted by priming the original
symbols, and a primed set likeA′ = {a′ ∣ a∈ A} is just the set of corresponding primed
symbols.) The rules inP′ are derived from the rules ofP in the following way.

kept: P′ retains all rules ofP that do not erase a letter inA∪{b1},
replace: P′ has a ruled′ a for each ruled a in P that erases a letter inA∪{b1},
mirror: P′ has a ruled d′ for eachd ∈ D,
clean: P′ has all rulesd′ e′ and�2 a′ for d′,e′ ∈ D′

∖{b′1} anda′ ∈ A′∪{b′1},
b-rules: P′ has the rules�2 �1 and all rulesd′

�2 for d′ ∈ D′
∖{b′1}.

We now relate the derivations inG and the derivations inFG. For this, assumeu∈
(A+b1)

∗ andv∈ (C+b2)
+.



Lemma 7.2. 1. If u.g ⇒+
G v.g then for all wordsα ∈ (A′+b′1)

∗ there exists a symbol
β ∈C′∪{b′2} such that�1.α.u.g⇒+

FG
�1.α.β.v.g⇒+

FG
�2.β.v.g.

2. Reciprocally, for allα ∈ (A′+b′1)
∗, for all β ∈ (C′+b′2)

+ if �1.α.u.g⇒+
FG

�2.β.v.g
then u.g⇒+

G v.g.

Thus we can relate anchored derivations inFG with anchored derivations inG via:

Corollary 7.3. Let u∈ (A+b1)
∗ and v∈ (C+b2)

+. Then b1.u.g⇒+
G b2.v.g if and only

if there existsβ ∈ (C′ ∪{b′2}) such that�1.α.b1.u.g⇒+
FG

�2.β.b2.v.g. In other words,
u SG v iff α.b1.u SFG β.b2.v for someβ ∈ (C′∪{b′2}).

We may now glue the wrapped versions ofG and its associatedR. Recall thatFG =

(A,B,C,�1,�2,P′,g). We denote the set of new symbols withΣ def
= A∪B∪C and ob-

serve thatFR (short forFRb2,b1
,�2,�1), being some(C∪C′∪{b2,b′2},Σ�,A,�2,�1,P′

R
,g),

does not use more symbols. LetH
def
= (Σ,PH ,g) be the LGr such that andPH = P′∪P′

R
.

Essentially,H is a union of the two wrapping ALTr’s. Note thatH is not a LTrsince it
does not respect any distinction between input, intermediary, and output symbols.

Lemma 7.4. Let α,β ∈ A′+ and u,v ∈ A∗. If �1.α.u.g ⇒∗
H �1.β.v.g and SG = (⊑A

.SG.⊑C) then u⊑A .(SG.h̄)∗ v.

We now extendH to turn it into an ALTrH ′ : Ȧ ⊢ A∪A′, introducing again new
copies, denoted ˙a, . . . , of previously used symbols and writing ˙u = ȧ1ȧ2 . . . ȧn for the
dotted copy of someu= a1a2 . . .an. Formally,

H ′ def
= (Ȧ,B∪B′∪C∪C′∪{�1,�2,�̇1,�̇2},A∪A′

,�̇1,�̇2,P
′′
,g)

whereP′′ extendsPH by the rules�̇2 �̇1, �1 �̇2, and alla ȧ for a∈ A.
The anchored transformationSH ′ computed byH ′ is captured by the following:

Lemma 7.5. Let u,v∈ A∗. Thenu̇ SH ′ �1.β.v for someβ ∈ A′+ iff u [h̄.⊑A .(SG.h̄)∗] v.

We are nearly done. There only remains to composeH ′ with a LTr that checks for
the presence of�1.β (and then erases it). For this last step, we shall use furtherdotted
copiesΣ̈,

...
Σ, . . . , of the previously used symbols.

Formally, we define two new ALTr’sT1 andT2: see full version. The rules ofT1

ensure that it satisfies

u ST1 v iff u= �1.α.b1.u
′ andü IT ins

1
v. (T1-spec)

RegardingT2, let u∈ (Ä∪ Ä′ ∪{b̈1, b̈′1})
∗ andv∈

...
A∗. If ü′ is the largest subword ofu

such thatu′ ∈ A∗, then

u ST2 v iff
...
u′ ⊑...

A v. (T2-spec)

Combining (T1-spec) and (T2-spec) we obtain

u ST1.ST2 v iff u= �1.α.b1.u
′ and

...
u′ ⊑...

A v.

Composing these LTr’s asH ′.T1.T2 yields a resultingG(+) : Ȧ ⊢
...
A, which, up to a bi-

jective change of symbols, is what we need to build to prove Theorem 7.1.



8 Conclusion

In this paper we introduce a notion of transformations computed by leftist grammars and
define constructions showing how these transformations areeffectively closed under
sequential composition and transitive closure.

These operations require that some “typing” assumptions are satisfied (e.g., we only
know how to build a transitive closure on leftist transformers that are “anchored”) which
may be seen as a lack of elegance and generality of the theory,but which we see as an
indication that leftist grammars are very hard to control and reason about.

Anyway, the restrictive assumptions are not a problem for our purposes: we intend
to rely on the compositional foundations for building, in a modular way, complex leftist
grammars that are able to simulate lossy channel systems. Here the modularity is essen-
tial not so much forbuildingcomplex grammars. Rather, it is essential for proving their
correctness by a divide-and-conquer approach, in the way weproved the correctness of
our encoding of3SAT instances in Section 6.

As another direction for future work, we would like to mention that the proof that
accessibility is decidable for LGr’s (see [7]) has to be fixedand completed.

Acknowledgements.Sylvain Schmitz helped tremendously with his numerous remarks
and suggestions.

References

1. P. Chambart and Ph. Schnoebelen. Post embedding problem is notprimitive recursive, with
applications to channel systems. InProc. FST&TCS 2007, volume 4855 ofLecture Notes in
Computer Science, pages 265–276. Springer, 2007.

2. P. Chambart and Ph. Schnoebelen. Theω-regular Post embedding problem. InProc. FOS-
SACS 2008, volume 4962 ofLecture Notes in Computer Science, pages 97–111. Springer,
2008.

3. P. Chambart and Ph. Schnoebelen. The ordinal recursive complexity of lossy channel systems.
In Proc. LICS 2008, pages 205–216. IEEE Comp. Soc. Press, 2008.

4. T. Jurdzínski. On complexity of grammars related to the safety problem.Theoretical Com-
puter Science, 389(1–2):56–72, 2007.

5. T. Jurdzínski. Leftist grammars are nonprimitive recursive. InProc. ICALP 2008, volume
5126 ofLecture Notes in Computer Science, pages 51–62. Springer, 2008.

6. T. Jurdzínski and K. Lorýs. Leftist grammars and the Chomsky hierarchy.Mathematical
Systems Theory, 41(2):233–256, 2007.

7. R. Motwani, R. Panigrahy, V. A. Saraswat, and S. Venkatasubramanian. On the decidability
of accessibility. InProc. STOC 2000, pages 306–315. ACM Press, 2000.


