Toward a Compositional Theory of Leftist Grammars
and Transformations*

P. Chambart and Ph. Schnoebelen

LSV, ENS Cachan, CNRS
61, av. Pdt. Wilson, F-94230 Cachan, France

Abstract. Leftist grammars [Motwanét al, STOC 2000] are special semi-Thue
systems where symbols can only insert or erase to their left. We devéiepiy

of leftist grammarseen as word transformees a tool toward rigorous analyses
of their computational power. Our main contributions in this first paperBre
constructions proving that leftist transformations are closed undepasitions
and transitive closures, and (2) a proof that bounded reachabilitiisomplete
even for leftist grammars with acyclic rules.

1 Introduction

Leftist grammars were introduced by Motwaetial. to study accessibility and safety
in protection systems [7]. In this framework, leftist grasmsiare used to show that re-
stricted accessibility grammars have decidable accéissimioblems (unlike the more
general access-matrix model).

Leftist grammars are both surprisingly simple and surpglsi complex. Simplicity
comes from the fact that they only allow rules of the foran-$ ba” and “cd — d” where
a symbol inserts, resp. erases, another symbol to itsvlefe remaining unchanged
But the combination of insertion and deletion rules makéssteggrammars go beyond
context-sensitive grammars, and the decidability resurttes with a high complexity-
theoretical price [5]. Most of all, what is surprising is ttzgparently leftist grammars
had not been identified as a relevant computational formalistil 2000.

The known facts on leftist grammars and their computatiandl expressive power
are rather scarce. Motwast al. show that it is decidable whether a given word can
be derived (accessibility) and whether all derivable wdsdkong to a given regular
language (safety) [7]. Jurdski and Lorg showed that leftist grammars can define
languages that are not context-free [6] while leftist graarswestricted to acyclic rules
are less expressive since they can only recognize reguiguémes. Then Jurdmki
showed aPSPACE lower bound for accessibility in leftist grammars [4], befdm-
proving this to a nonprimitive-recursive lower bound [5].

Jurdzhski's results rely on encoding classical computatiorrakcstires (linear-boun-
ded automata [4] and Ackermann’s function [5]) in leftisagmmars. Devising such
encodings is difficult because leftist grammars are verg kacontrol. Thus, for com-
puting Ackermann’s function, devising the encoding is atijunot the hardest part: the

* Work supported by the Agence Nationale de la Recherche, grant AN&=TIN-001.

harder task is to prove that the constructed leftist grantaanot behave in unexpected
ways. In this regard, the published proofs are necessadiniplete, hard to follow, and

hard to fully acknowledge. The final results and intermgdiammas cannot easily be
adapted or reused.

Our Contribution. We develop a compositional theory of leftist grammars afiiste
transformations (i.e., operations on strings that are edetpby leftist grammars) that
provides fundamental tools for the analysis of their corapahal power. Our main
contributions are effective constructions for the comfimsiand the transitive closure
of leftist transformations. The correctness proofs fostheonstructions are based on
new definitions (e.g., for greedy derivations) and assedisdmmas.

A first application of the compositional theory is given incBen 6 where we prove
theNP-completeness of bounded reachability questions, even vestricted to acyclic
leftist grammars.

A second application, and the main reason for this papewnrigasthcoming con-
struction proving that leftist grammars can simulate lodsgnnel systems and “com-
pute” all multiply-recursive transformations and nothingre (based on [3]), thus pro-
viding a precise measure of their computational power. IFinafter our introduction
of Post’s Embedding Problem [1, 2], leftist grammars aretlagobasic computational
model that will have been shown to capture exactly the natomultiply-recursive
computation.

As further comparison with earlier work, we observe thatcadirse, the complex
constructions in [4, 5] are built modularly. However, thedutarity is not made fully ex-
plicit in these works, the interfacing assumptions are npletely stated, or are mixed
with the details of the constructions, and correctnessfproannot be given in full.

Outline of the PaperBasic notations and definitions are recalled in Section 2tiGe3
defines leftist grammars and proves a generalized versitre @ompleteness of greedy
derivations. Sections 4 introduces leftist transformacstheir sequential compositions.
Section 5 specializes on the “simple” transformers that e in Section 6 for our
encoding of3SAT. Finally Section 7 shows that so-called “anchored” tramsfrs are
closed under the transitive closure operation, this in gectfe way. For lack of space,
several proofs have been omitted in this extended absth@egtcan be found in the long
version of this paper, freely available at treXi v.

2 Basic Definitions and Notations

Words. We usex,y,u,v,w,a, 3,... to denote words, i.e., finite strings of symbols taken
from some alphabet. Concatenation is denoted multipliebtiwith € (the empty word)
as neutral element, and the lengtxa$ denotedx|.

The congruence on words generated by the equivalemsesa (for all symbolsa
in the alphabet) is called thetuttering equivalencand is also denoted: every wordx
has a minimal and canonical stuttering-equivaiéuaibtained by repeatedly eliminating
symbols inx that are adjacent to a copy of themselves.

We say thak is asubwordof y, denotedk C y, if x can be obtained by deleting some
symbols (an arbitrary number, at arbitrary positions) franwe further writex Cs y

when all the symbols deleted frogbelong to~ (NB: we do not requirey € >*), and
let O denote the inverse relatian1.

Relations and Relation Algebrale see a relatioR between two set¥ andY as a set

of pairs, i.e., som&C X x Y. We writex R yrather thar(x,y) € R. Two relationdR and

R can be composed, denoted multiplicatively wRiR, and defined b (RR) yi’éf

Jz(xRzA zRYy).
The unionR+ R, also denotedRU R, is just the set-theoretic unioR" is then-th

powerRR...Rof RandR ! is the inverse oR: x R™! yi’gy R x The transitive closure
Un=12.. R"of Rassume¥ = X and is denote®", while its reflexive-transitive closure
is R" Uldx, denotedR*.

Below we often use notations from relation algebra to statmle equivalences.
E.g., we write R=R" and “RC S'rather than X Ryiff x R y"and “x R yimpliesx S y.
Our proofs often rely on well-known basic laws from relataigebra, like RR) ™! =
R-1R%, or (R+R).R' =RR'+R.R/, without explicitly stating them.

3 Leftist Grammars

A leftist grammar(an LGr) is a tripleG = (X,P,g) whereXuU {g} = {a,b,...} is a
finite alphabet g ¢ X is afinal symbokalso called &xiont), andP = {r,...} is a set of
production rules that may kiasertion rulesof the forma — ba, anddeletion rulesof

the formcd — d. For simplicity, we forbid rules that insert or delete théamx g (this

is no loss of generality [6, Prop. 3]).

Leftist grammars are not context-free (deletions are counéd), or even context-
sensitive (deletions are not length-preserving). For awppses, we consider them
as string rewrite systems, more precisely semi-Thue systévniting 2 for U {g},
the rules ofP define a 1-step rewrite relation in the standard way:uar 2, we
write u ="P U’ whenever is some rulex — B, u is someu;au, with |u;a| = p and
U = u1Bup. We often write shortlyu =" u’, or evenu = u’, when the position or the
rule involved in the step can be left implicit. On the othenthawe sometimes use a
subscript, e.g., writingl =g v, when the underlying grammar has to be made explicit.

A derivationis a sequence of consecutive rewrite steps, i.e., is some=-"1P1
up ="2P2 yy... =MPny, . often abbreviated ag =" u,, or evenug =* uUn. A subse-
tems, steps (and derivations) are closed under adjundtians U thenvuw=- vu'w.

Two derivationsmy = (u=* u) and = (v =* V') can be concatenated in the
obvious way (denotedt;. 1) if U = v. They areequivalent denotedrmy = T, if they
have same extremities, i.e. li=vandu = V.

We say thati € ¥* is accepted by @& there is a derivation of the formg=-* g and
we writeL(G) for the set of accepted words, i.e., the language recoghiy &1

We say that C >* is aninvariantfor an LGrG = (Z,P,g) if u€ | andug=- vgentail
v e |. Knowing thatl is an invariant foiG is used in two symmetric ways: (1) frooe |
andug =-* vgone deduceg € |, and (2) fromug=-* vgandv ¢ | one deduces ¢ I.

3.1 Graphs and Types for Leftist Grammars

When dealing with LGr’s, it is convenient to write insertiomles under the simpler
form “a— b”, and deletion rules asi--+ ¢”, emphasizing the fact that(resp.d) is not

modified during the insertion df (resp. the deletion af) on its left. Fora € >4, we let

ins(a) d:‘Ef{b | P> (a— b)} anddel(a) d:‘Ef{b | P> (a--+>b)} denote the set of symbols

that can be inserted (respectively, deletedpbye writeins™ (a) for the smallest set
that containg andins™ (b) for all b € ins(a), while del” (b) is defined similarly. We
say thata is inactivein a LGr if del(a) Uins(a) = &.

It is often convenient to view LGr’s in a graph-theoreticaywFormally, thegraph
of G=(Z,P,g) is the directed grapt having the symbols frorq as vertices and the
rules fromP as edges (coming in two kinds, insertions and deletions}hEtmore, we
often decorate such graphs with extra bookkeeping anonatati

We say thatG “has typet” when tg is a sub-graph of. Thus a “type” is just a
restriction on what are the allowed symbols and rules betvwieem. Types are often
given schematically, grouping symbols that play a simitde into a single vertex. For

insertion:
39
deletion: ot

Fig. 1. Universal type (schematically).

example, Fig. 1 displays schematically the type (paramedrby the alphabet) observed
by all LGr's.

3.2 Leftmost, Pure and Eager Derivations

We speak informally of a “lettér say a, when we really mean “an occurrence of the
symbola”’ (in some word). Furthermore, we follow letters along steps v, identifying
the letters iru and the corresponding lettersvinHence a “letter” is also a sequence of
occurrences in consecutive words along a derivation.

A letterais an-th descendanof another letteb (in the context of a derivation) d
has been inserted ty(whenn = 1), or by a(n— 1)-th descendant df.

Given a stepu ="P v, we say that thep-th letter inu, written u[p], is theactive
letter: the one that inserts, or deletes, a letter to its left. Thisften emphasized by
writing the step under the forfu =)u;aw = Ujau (= v) (assumingi[p| = a).

A letter isinert in a derivation if it is not activén any stepof the derivation. A set
of letters is inert if it only contains inert letters. A deaiion isleftmostif every step
uwaw, = Wjaw, in the derivation is such thag is inert in the rest of the derivation.

A letter isusefulin a derivationmt= (u =" v) if it belongs tou or v, or if it inserts
or deletes a useful letter alorrg This recursive definition is well-founded: since let-
ters only insert or delete to their left, the “inserts-otedes” relation between letters is
acyclic. A derivationtis pureif all letters inTtare useful. Observe thatiifis not pure,

it necessarily inserts at some step some lett@alled auseless lettgrthat stays inert
and will eventually be deleted.

A derivation iseagerif, informally, deletions occur as soon as possible. Folynal
= (Up ="1PL Uy --- =P uy) is not eager if there is some_; of the formw;baws
whereb is inert in the rest oft and is eventually deleted, wheRecontains the rule
a--»b, and where; is not a deletion rulé.

A derivation isgreedyif it is leftmost, pure and eager. Our definition generaliZzes
Def. 4], most notably because it also applies to derivatians>* vg with nonemptyv.
Hence a subderivation' of mtis leftmost, eager, pure, or greedy, wheis.

The following proposition generalizes [4, Lemma 7].

Proposition 3.1 (Greedy derivations are sufficient)Every derivationthas an equiv-
alent greedy derivation'.

Proof. With a derivationrtof the formug ="1:P1 u; ="2:P2 y, ... =Py, we associate

its measure (1) oer (n, p1, ..., Pn), & (n+ 1)-tuple of numbers. Measures are linearly
ordered with the lexicographic ordering, giving rise to asjtordering, denotee,
between derivations. A derivation is callgeminimalif any equivalent derivation has
greater or equal measure.

We can now prove Prop. 3.1 along the following lines: firstyarthat every deriva-
tion has gi-minimal equivalent, then show thgtminimal derivations are greedy. O

Observe that, is compatible with concatenation of derivationsrif <, T, then
.0 <, TLTL.7C when these concatenations are defined. Thus any subdemivdta
i-minimal derivation igi-minimal, hence also greedy.

p-minimality is stronger than greediness, and is a powerifd| @nvenient tool for
proving Prop. 3.1. However, greediness is easier to reasthnsimce it only involves
local properties of derivations, whijeminimality is “global”. These intuitions are re-
flected by, and explain, the following complexity results.

Theorem 3.2. 1. Greedinesg$deciding whether a given derivatianin the context of a
given LGr G is greedy) is ih.

2. =Minimality (deciding whether it is p-minimal) isNP-complete, even if we restrict
to acyclic LGr’s.

Proof. 1. Being leftmost or eager is easily checked in logspace {.&nL). Checking
non-purity can be done by looking forlast inserted useless letter, hence id.itoo.

2. p-minimality is obviously incoNP. Hardness is proved as Coro. 6.9 below, as a
byproduct of the reduction we use for tN®-hardness of Bounded Reachability. O

4 Leftist Grammars as Transformers

Some leftist grammars are used as computing devices radrerécognizers of words.
For this purpose, we require a strict separation betweeut @apd output symbols and
speak ofeftist transformersor shortly LTr's.

1 Eagerness does not require thatleletesh: other deletions are allowed, only insertions are
forbidden.

4.1 Leftist Transformers

Formally, an LTr is a LGIG = (£, P,g) whereX is partitioned a®wBwC, and where
symbols fromA are inactive irP and are not inserted ¥ (see Fig. 2). This is denoted
G : At C. HereA contains thanput symbolsB the temporary symbojsandC the
output symbolsandG is more conveniently written & = (A B,C,P,g). When there
is no need to distinguish between temporary and output skanle writeG under the

form G = (A,D,P,g), whereD ®'BUC contains théworking” symbols

O
A< D30

Fig. 2. Type of leftist transformers.

A consequence of the restrictions imposed on LTr’s is thiefdhg:

Fact 4.1 A*D* is an invariant in any LTr G= (A,D,P,g).

With G = (A,B,C,P,g), we associate ransformation(a relation between words)
Rs C A* x C* defined by

u%vgugééngueA*/\veC*

and we say thab realizes R. Finally, aleftist transformatioris any relation on words
realized by some LTr. By necessity, a leftist transfornratian only relate words written
using disjoint alphabets (this is not contradicteceldys €).

Leftist transformations respect some structural corssain this paper we shall
use the following properties:

Proposition 4.2 (Closure for leftist transformations). If G : A+ C is a leftist trans-
former, then R = (Ja. =~ .Rg. =).

4.2 Composition

We say that two leftist transformatiofy C A7 x Cj andR, C Aj x C; arechainable
if C1 = Az andA; NCy = @. Two LTr's are chainable if they realize chainable transfor
mations.

Theorem 4.3. The composition RR; of two chainable leftist transformations is a left-
ist transformation. Furthermore, one can build effectvallinear-sized LTr realizing
R;.Rx from LTr's realizing R and R.

For a proof, assumé&; = (A1,B1,Cy,P1,9) andG, = (A2,B2,Cz, P2, g) realizeR; and
R>. Beyond chainability, we assume thtu B, andB; UC; are disjoint, which can be
ensured by renaming the intermediary symbolBirandB,. The composed LT&;.G;
is given by

G1.G def (Al, B1UCLUB,,Co,PLUP,, g).

)

T<+—9

Fig. 4. Types of insertion grammars (left) and simple leftist transformerstjrigh

This is indeed a LTr fron\; to C,. See Fig. 3 for a schematics of its type. SiteG,
has all rules fronG; andG; it is clear that =g, + =g,) C=, from which we deduce
Rg,-Ra, € Rg,.g,. Furthermore, the inclusion in the other direction alsalbol

Lemma 4.4 (Composition Lemma)Rg, ¢, = Rg;.Ra,.

Remark 4.5 (AssociativityJhe compositior{G;1.G;).Gs is well-defined if and only if
G1.(G2.G3) is. Furthermore, the two expressions denote exactly the sasult. O

5 Simple Leftist Transformations

As a tool for Sections 6 and 7, we now introduce and studyicéstr families of leftist
grammars (and transformers) where deletion rules areddeli (resp., only allowed on
A).

An insertion grammaiis a LGrG = (Z, P, g) whereP only contain insertion rules.
See Fig. 4 for a graphic definition. For an arbitrary leftisrgmarG, we denote with
G"s the insertion grammar obtained fra@by keeping only the insertion rules.

The insertion relation g C >* x 2* associated with an insertion grammar=
(Z,P,g) is defined by Ig vE ug =g vg. Obviously,lg C Cs. Observe thalg is not
necessarily a leftist transformation since it does notirecany separation between in-
put and output symbols.

A simpleleftist transformer is an LTG = (A, B,C, P, g) whereB = & and where no
rule in P erases symbols froi@. See Fig. 4 for a graphic definition. We give, without
proof, an immediate consequence of the definition:

Lemma5.1. Let G= (A,2,C,P,g) be a simple LTr and assume ugé vg for some
u € A" and ve C*. Then k= |u] + |v].

Given a simple LTiG = (A,,C,P,g) and two wordsu = a; ---a, € A" andv =
C1---Cm € C*, we say that a non-decreasing mtap{1,...,n} — {1,...,m} is aG-
witnessfor u andv if P contains the rulesy;, --+ & andcj,1 —cj (foralli=1,...,n
andj =1,...,m, with the convention thaty,1 = g). Finally, we writeu Og v when

such aG-witness exists. Clearlys C Rs. Indeed, whert is a simple transformerjg
can be used as a restricted versiofRgfthat is easier to control and reason about.

Lemmab5.2. Let G= (A, &,C,P,g) be a simple LTr. Thend&= Ug.Igins.

Combining Lemma 5.2 withdc: C Igns € Cc, we obtain the following weaker but
simpler statement.

Corollary 5.3. Let G= (A, &,C,P,g) be a simple LTr. Thehl; C Rs C [s. Cc.

5.1 Union of Simple Leftist Transformers

We now consider the combination of two simple LTés = (A, &,C1,P1,9) andG, =
(A,2,Cy, P, 0) that transform from a sam& to disjoint output alphabets, i.e., with
C1NC, = @. We define theiunionwith G, + G, def (A,2,CLUC, PLUP,, Q). This is
clearly a simple LTr with(Rg, + Rs,) € Rg, +c,. It further satisfies:

Lemma5.4. If uRg,+c, Vthen u(Rg, +Rg,) V for some VC v.

Proof. Assumeu Rg, g, v. With Cor. 5.3, we obtain Cg, 4, V forsomev =c¢; - - - ¢ C
v. HenceG; + G has insertion rulesj 1 — c;j for all j = 1,...,m, and deletion rules
of the formey;) -+ uli]. SinceC; andC; are disjoint, either all these rules areGa (and
u g, V), or they are all irG; (andu [, V). Henceu (Rg, + Rg,) V. |

6 Encoding3SAT with Acyclic Leftist Transformers

This section proves the following result.

Theorem 6.1. Bounded Reachabilitgnd Exact Bounded Reachability leftist gram-
mars areNP-complete, even when restricting to acyclic grammars.

(Exact) Bounded Reachability is the question whether thgigts an-step deriva-
tion u="v (respectively, a derivation ==" v of non-exact length at mos) between
givenu andv. These questions are among the simplest reachabilityignestnd, since
we consider that the input is given in unary. they are obviously irNP for leftist
grammars (and all semi-Thue systems).

Consequently, our contribution in this paper is Nfe-hardness part. This is proved
by encodin@3SAT instances in leftist grammars where reaching a given Viaahounts
to guessing a valuation that satisfies the formula. Whiledba bf the reduction is easy
to grasp, the technicalities involved are heavy and it wanddlifficult to really prove
the correctnessof the reduction without relying on a coritiposl framework like the
one we develop in this paper. It is indeed very tempting toVpf it by just running an
example.

Rather than adopting this easy way, we shall describe thetied as a composition
of simple leftist transformers and use our composition tees to break down the

2 |tis natural to begin with this assumption when considering fundamergat#sof reachabil-
ity since writingn more succinctly would blur the complexity-theoretical picture.

correctness proof in smaller, manageable parts. Onceéhs ithderlying the reduction
are grasped, a good deal of the reasoning is of the type-tiieklnd: verifying that
the conditions required for composing transformers are met

Throughout this section we assume a gen88AT instance® = A" ; Ci with m
3-clauses om Boolean variables ifX = {xi,...,%,}. Each clause has the for@ =
vﬁzlsi‘,kxi’k for some polarityg; x € {+,—} andx x € X. (There are two additional
assumptions o that we postpone until the proof of Coro. 6.5 for clarity.) e
standard model-theoretical notation liked (validity), or o = ® (entailment) whero
is a Boolean formula or a Boolean valuation of some variables

We write o[x — b] for the extension of a valuatioa with (x,b), assumingx ¢
Dom(o). Finally, for a valuatiord : X — {T, L} and somg =0,...,n, we write6; to
denote the restrictioy , _;} of 6 on the firstj variables.

6.1 Associating an LTrGg with ®

For the encoding, we use an alphabet {T.) U/, T .U’} |i=1,....mA[j=0,....n},
i.e., 4n+ 1) symbols for each clause. The choice of the symbols is thatracans
“Undetermlnedand aT means Tru€’, or determmed to be valid.

Forj=0,...,n letv; € (U, ... UL T, ... Thh v E Ut u T T
andw; derJ UV’ so thatz is partitioned in levels witl = J]_oW;. With eachx; € X
we associate two intermediary LTr’s:

T def def
G €(W_1,2,V},P,g), G = (Wj-1,2,V/,P},0)

with sets of rule®; andP!. The rules foiG] are given in Fig. 5: some deletion rules are
conditional, depending on whethey appears in the claus€,...,Cy. The rules for
GjL are obtained by switching primed and unprimed symbols, grithlsing conditional

rules based on whetherx; appears in th&€;'s. One easily checks thzﬁjT and GjL

j i i T T -1
T]_l T/]_l TJ_l T/J—l e j—1 -I—/j 1 i : : v>U1
hooat A e T, T X =Co e
T].J TZI‘\ o /Tm\ Tj (f >>>> ’_ C) '>U2j_1
; ; g 2 IXJ — 2 il
U1'><U£‘é Hu"/ : N
; R ey i1
1 Y i (it 1)1 T (i xj =Cm) Un
Uy ~uUp ~U; U, Urln U LU S T "U/rjﬁl

Fig.5.Pj, the rules forGJT: Fixed part on left, conditional part on right.

are indeed simple transformers. They have same inputs ajmndioutputs so that
the union(GjT +GJ¥) :Wi_1 - W, is well-defined. Hence the following composition is
well-formed: o

Go = (G] +G1).(G2 +G2)-++(Gy +Gp)-
We conclude the definition @4 with an intuitive explanation of the idea behind the re-
duction.Gg operates on the wonah = U? - --UQ where eacty? stands for the validity

of clause is undetermined at ste(i.e., at the beginning) At step j, GJ-T + GjL picks

a valuation forx;: G| picks “x; = T” while G- picks “xj = L”. This transformaJ; ~*
intoU/, andT;~*into T/, moving them to the next level. Furthermore, an undeterchine
Ui”1 can be transformed intg’ if C; is satisfied byx;. In addition, and becauss/
andG:- must have disjoint output alphabets, the symbols inAfecome in two copies
(hence the/j”s) that behave identically when they are input in the trarmskr for the
next step.

The reduction is concluded with the following claim that weye by combining
Corollaries 6.5 and 6.8 below.

@ is satisfiable iftUPU7 - -URg =&o" T/'T)- - Tog
iff UPUY---USg =52 Ty Tig (Correctness)
iff UPUZ---URg =g, IS Tng.

Observe finally thatse is an acyclic grammar in the sense of [6], that is to say,
its rules define an acyclictiay-act-upohrelation between symbols. Such grammars
are much weaker than general LGr’s since, e.g., languagegmi&ed by LGr’s with
acyclic deletion rules (and arbitrary insertion rules) rgular [6].

Remark 6.2.The construction o6 from ®, mostly amounting to copying operations
fortheG/’s andel’s, to type-checking and sets-joining operations for th@position
of the LTr’s, can be carried out in logarithmic space. ad

6.2 Correctness of the Reduction

We say that a word s j-cleanif it has exactlymsymbols and ififi] {T.), T’} ,U},U"}
foralli=1,...,m. Itis T-homogeneou@esp.L-homogeneoysdf it does not contain
any (resp., only contains) primed symbols.

Let 0< j <nandBj be a Boolean valuation of, ..., x;: we say that g-cleanu
respectd® under)8; when, for alli = 1,...,m, 8; = C; whenuli] is determined (i.e.,
€ T)+T')). Finally u codeg(® under)®; if additionally eachu(i] is determined when
8j = Ci. Thus, a wordu that codes som@; exactly lists (via determined symbols) the
clauses ofp made valid by8j, and the only flexibility inu is in using the primed or the
unprimed copy of the symbols. Hence there is only prodeanu coding8; that isT-
homogeneous, and only one thatlishomogeneous. lfi respect®; instead of coding
it, more latitude exists since symbols may be undetermiwed & the corresponding
clause is valid unded;.

Assume that, for somge {1,...,n}, uj_; codesBj_; andu; codesd;. Write b for
B(xj) (NB:be {T,L}).

Lemma 6.3. If uj is b-homogeneous then y [y uj.
J

contains the required insertion and deletion rules.

Insertions. Gb has all insertion ruleg — uj[m| — uj[m—1] — ... — u;[1] (leftmost
rules in Fig. 5) sincey; is b-homogeneous.
Deletions. Gb has all deletion rules;[i] --+ uj_1][i]. Firstly, both undetermined symbols

U andU"J may delete their counterpaitf ; andU’;_;, and similarly for the deter-
mined symbols (the unconditional deletion rules in FigThjis is used iC; is not more
valid underB; than undeB;_;. Secondly, ifC; is valid unde®; but not unde®;_,, then

Xj = Gi (or —x;j |= G, depending o) and the conditional rules in Fig. 5 allow a deter-

minedT,! (or T"/ depending om) to deleteU;] ~* oru’/ ™. i

Lemma 6.4. If uj is b-homogeneous, thef yg :>é?,‘ u;g.

Proof. Fromu;_; DGb uj (Lemma 6.3) we deduag 1 Ry Uj, i.e.,Uj-19 =, U;0, by
I j

Lemma 5.2, and themj_19 :> ujg by Lemma5.1. a

Corollary 6.5. If ® is satisfiable, then §---USg =g T"- - - Tig.

Proof. Since® is satisfiablep = ® for some valuatio®. Forj =1,...,m, we writeb;
for 8(x;) and letu; be the onlyj-cleanbj-homogeneous word that codes 6t

We now make two assumptions dnthat are no loss of generality. First we require
that no claus€; contains both a literal and its negation, henceCnés tautologically

valid. Thenug d_erf~~-U,% codes the empty valuatiody. Second, we require tha
is only satisfiable withb, = T (which can be easily ensured by adding a few extra
variables). Then necessarily = T,"--- T

2 2 2 i
Lemma 6.4 givesipg = Tl u1g :>G“Q2 uxg- - :>G'§n ung. S|nce:>GE,g:>Gj§:GcD
2
for all b and j, we deduceipg :>2m” unhg as claimed. O

Fix some6, somej € {1,...,n} and letb = 8(x;).

Lemma 6.6. If u respectdj_; and ully v, then v respect§;.
J

Proof. Write | for |v|. Fromu [y v (witnessed by som&) we deduce thaGﬁ’ has

J
insertion rulesg — Vv[l] — v[l — 1] — ... — V[1]. Inspecting Fig. 5, we conclude that
necessarilyf < m. Since deletion rules[h(')] -> ufi] are required forall=1,...,m,

Vis j-clean andb- homogeneous
Now, knowing thatG? contains the rules(i] --+ uli], we show thav respectsd;.
Suppose, by way of contradiction, that it does not. Thusetfi@some € {1,...,m}

with v[i] = TJ (assumingp =T w.l.0.g.) whiled; = C; (so tha®j_ = C;). From® béC.
we deduce tha; [~ G. HenceGP does not have the conditional rufgé--» U/~ * and

T > U/ Thusuli] ¢ (U]~ 17U’,' 1. But thenu does not respe€; 1, contradicting
our assumption. O

We immediately deduce:

Lemma 6.7. If x Ry y and there is some W x that respect$);_1, then there is some
J
v L y that respect$);.

Proof. From the Closure Property 4.2, we geRy y. Then, fromRy C . &
]] J

(Coro. 5.3) we deduce [, v for somev C y. Now v respect®); thanks to Lemma 6.6.
J
O

Corollary 6.8. IfUP---USg =5, Tf'---Thg, then® is satisfiable.

Proof. Write ug for U?---UQ anduy for T'--- T. From the definition oGy and the
Composition Lemma 4.4, we deduce that there exist some wards , u,_1 such that
Ui-1Rgr gu ujforall j=1,....n.
] J
With Lemma 5.4, we further deduce that there exist some wafds.,uy, and
Boolean value$,, ..., b, such thau’j C uj anduj_1 Rij u’j forall j=1,...,n. Hence
i

alsouj_; Rij uj by Prop. 4.2 (and lettingy = o).

Write 6 fJor (X1 — b1,..., X% — bp]. With Lemma 6.7, induction orj, and sincal,
respectd, we further deduce that there exists some wergs. ., uy; such that, for all
i=1,...,n, uj’ C uj anduj respect®;. From|ug| = m (it respects$) anduy C un, we
deduce thati; = un. Finally, 8 |= @ sinceuy, respect® anduy, = up =T,"--- Tp. O

Corollary 6.9. p-Minimality of a derivation ioNP-hard.

Proof (Sketch)We defineGy, by taking Go, addingk extra symbolsay, ..., a, and
adding the following two sets of rules:
(1) allai_1 — & andaj_1 --> & fori = 1,...,k (with the convention thadg is T;");
(2 allag--»U0fori=1,...,m

Observe thaG), is acyclic. It has a derivatiorn: U?---UQg =2™2 T1...Thg of
the following form:

ud...u%g="uf. U0t T =k Ul Ulaka - & T - T g
=m akak—l"'alT]_n"'Tmng =K Tln...an3|g.

This derivation uses the extra symbols to bypass the norefaviour ofGe. If k is
large enough, i.ek > m(n— 1), 1tis p-minimal if, and only if,® is not satisfiable. O

7 Anchored Leftist Transformers and Their Transitive Closure

When by, b, € B are two different working symbols, an@\, B,C,P,g) is a LTr, we
call G = (A,B,C, by, by, P,g) ananchoredLTr, or shorly an ALTr. With an ALTrG we
associate aanchored tranformation SC A* x C* defined by

usv® biug=-¢ bovg.

Here theanchors h, b, are used to control what happens at the left-hand end of-trans

formed words. Mostly, they ensure that the derivatigpng =-* bovg goes all the way to

the left and erasds, rather than stopping earlier. One intuitive way of seefgds that
it is a variant ofRg restricted to derivations that replace the anchors

A first difficulty for building the transitive closure of an elmored transformation
Ss € A* x C* is that the input and output sets are disjoint (a requirertieattallowed
the developments of Sections 4 and 5). To circumvent thisasgame w.l.0.g. that
A andC are two different copies of a same set, equipped with a bigpcenaming
h:C* — A*. Then, the closur&s.(h.Sg)* behaves like we would walﬁg to behave.

For the rest of this section, we assulmis a bijection betwee@ andA. W.l.0.g., we
write A andC under the form#\ = {ay,...,a,} andC = {ci,...,Cqy} so thath(ci) = g
foralli =1,....,n. Thenh is lifted as a (bijective) morphisrh : C* — A* that we
sometimes see as a relation between words.

The exact statement we prove in this section is the following

Theorem 7.1 (Transitive Closure).Let G: A+ C be an ALTr such that$S= Ss. Cc.
Then there exists an ALTr(& : A+ C such that §4) = Ss.(h.Sg)*.

Furthermore, it is possible to build @) from G using only logarithmic space.

Letby, by ¢ AUC. The ALTY Ry, p, & (C, by, by, A, Pr,g) with

P [97@A A b gy
8- Gi,by - by

is called arenamer (of C to A)and often shortly writteiR. Observe thaR: CF Ais
indeed an ALTT. It further satisfi&g = ~ . C .h.

We shall now glue an ALTG : A+ C with the renameR : C+ A into some larger
LGr H. But before this can be done we need to put some wrappingadamG (and
onR) that will let us track what comes fro@ insideH’s derivations.

Formally, given an ALTrG = (A,B,C,bs,by,P g) and two new anchor symbols

01,02 & Zg, We let3g dzef{Dl, 02} and define a new ALTFg o, o, (or shortly justg)

for “wrapping G with1, 02", and given byFg o, 0, gef (A,B,C,01,02,P',g) where

AT AUAU {by,b}}, A',b] being a copy of\, by,

~BE(01, 02} UB {by},

-c¥cu {b2} UC'UB'~ {b}}, B" andC’ being copies oB andC.

Finally, letD ®'cuBandd’ E'c'uB. (The copies are denoted by priming the original
symbols, and a primed set liké = {a’ | a € A} is just the set of corresponding primed

symbols.) The rules iR are derived from the rules & in the following way.

kept: P’ retains all rules oP that do not erase a letter AU {b; },

replace: P' has a ruled’ -+ a for each ruled --» ain P that erases a letter lhU {b; },
mirror: P’ has a ruled — d’ for eachd € D,

clean: P’ has all ruled’ --» € andz--» & for d’,€ € D’ . {b}} anda’ € A U{b/},
b-rules: P’ has the rulesi, --> 01 and all rulesd” — O for d’ € D'\ {b] }.

We now relate the derivations @ and the derivations ifg. For this, assuma €
(A+by)* andve (C+bp)™.

Lemma 7.2. 1. If u.g =§ v.g then for all wordsa € (A’ +b))* there exists a symbol
B eC'U{b,} such thatd;.a.u.g={_ 01.0.8.v.g={ 02.p.v.0.

2. Reciprocally, for allr € (A’ +b)*, for all B € (C' +b5)* if Or.0.ug=¢_ 02.8.v.g
then ug =¢ v.g.

Thus we can relate anchored derivation&gwith anchored derivations iG via:

Corollary 7.3. Letue (A+bp)* and ve (C+hby)*. Then h.u.g :»g b,.v.g if and only
if there exist € (C' U{bS}) such that;.a.by.u.g :»;’G O2.B.bz.v.g. In other words,
u S Vviff o.bi.u S B.bo.v for somef € (C'U{b,}).

We may now glue the wrapped versiong®énd its associate. Recall thatg =

(A,B,C,01,02,P',g). We denote the set of new symbols wER AUBUC and ob-

serve thakg (shortforFg,, , .0,,0,), being soméCuUC U{bz, b5}, 2, A, 02,01, P}, 9),

does not use more symboals. e (Z,P4,9) be the LGr such that arfey = P’ UPy.

EssentiallyH is a union of the two wrapping ALTr's. Note thik is not a LTrsince it
does not respect any distinction between input, intermmgdiad output symbols.

Lemma7.4. Leta,f € AT and uv € A*. If O1.0.u.g =, 01..v.g and & = (Ca
.. Cc) then uCp .(Sg.h)* v.

We now extencH to turn it into an ALTrH’ : A+ AUA, introducing again new
copies, denoted, ..., of previously used symbols and writinig="a;a;. .. a, for the
dotted copy of soma = aja;...a,. Formally,

H' €' (A,.BUB' UCUC' U {01, 07,01, 00}, AUA, 01, 02, P,)

whereP” extendsPy by the rules, --» 01, 01 — O, and alla--» afora e A.
The anchored transformaticy: computed byH’ is captured by the following:

Lemma 7.5. Let uv € A*. Thenu Sy O1.p.v for some € A iff u [H. Ca .(SG.H)*] V.

We are nearly done. There only remains to comgaswith a LTr that checks for
the presence dfl;.3 (and then erases it). For this last step, we shall use fudibied
copiesy, 3, ..., of the previously used symbols.

Formally, we define two new ALTr'§; andT,: see full version. The rules dh
ensure that it satisfies

u Sy viff u=0Og.0.by.tf andu"ITlins V. (T1-spec)

RegardingT,, letu e (AUA U {by,b}})* andv € A™. If I/ is the largest subword af
such that € A*, then

u S, viff u Coa V. (T2-spec)
Combining {T1-spec) andTe-spec) we obtain
u Sy, .Sy, viff u=01.a.by.U andu’ Coa V.

Composing these LTr's dd’.T1.T, yields a resultings™) : A+ A, which, up to a bi-
jective change of symbols, is what we need to build to proveofém 7.1.

8 Conclusion

In this paper we introduce a notion of transformations coegby leftist grammars and
define constructions showing how these transformationefieetively closed under
sequential composition and transitive closure.

These operations require that some “typing” assumptiansatisfied (e.g., we only
know how to build a transitive closure on leftist transforsihat are anchored) which
may be seen as a lack of elegance and generality of the thedryhich we see as an
indication that leftist grammars are very hard to contral eeason about.

Anyway, the restrictive assumptions are not a problem ferpauposes: we intend
to rely on the compositional foundations for building, in adnlar way, complex leftist
grammars that are able to simulate lossy channel systemstieemodularity is essen-
tial not so much fobuildingcomplex grammars. Rather, it is essential for proving their
correctness by a divide-and-conquer approach, in the wayrexed the correctness of
our encoding 0BSAT instances in Section 6.

As another direction for future work, we would like to memtithat the proof that
accessibility is decidable for LGr’s (see [7]) has to be fised completed.

AcknowledgementsSylvain Schmitz helped tremendously with his numerous rema
and suggestions.

References

1. P. Chambart and Ph. Schnoebelen. Post embedding problempsgmitive recursive, with
applications to channel systems. Proc. FST&TCS 200A0lume 4855 of_ecture Notes in
Computer Scienc@ages 265—-276. Springer, 2007.

2. P. Chambart and Ph. Schnoebelen. d@hegular Post embedding problem. Pnoc. FOS-
SACS 2008volume 4962 ofLecture Notes in Computer Sciengages 97-111. Springer,
2008.

3. P.Chambart and Ph. Schnoebelen. The ordinal recursiveexitymf lossy channel systems.
In Proc. LICS 2008pages 205-216. IEEE Comp. Soc. Press, 2008.

4. T. Jurdzhski. On complexity of grammars related to the safety probl@meoretical Com-
puter Science389(1-2):56—72, 2007.

5. T. Jurdzihski. Leftist grammars are nonprimitive recursive. Rroc. ICALP 2008 volume
5126 ofLecture Notes in Computer Scienpages 51-62. Springer, 2008.

6. T. Jurdziski and K. Long. Leftist grammars and the Chomsky hierarctylathematical
Systems Theory1(2):233-256, 2007.

7. R. Motwani, R. Panigrahy, V. A. Saraswat, and S. VenkatasubramaOn the decidability
of accessibility. InProc. STOC 2000pages 306—315. ACM Press, 2000.

