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Abstract. Blocker and coblocker sets are regular languages involved in the al-
gorithmic solution of the Regular Post Embedding Problem. We investigate the
computability of these languages and related decision problems.

1 Introduction

Post's Embedding Problenfshortly PEP, named by analogy with Post’s Correspon-
dence Problem) is the question whether two morphisms onswokd 2* — I agree
non-trivially on some input, i.e., whetha(x) is a (scattered) subword wufx) for some

x € 2+, Thesubwordordering, also calleeémbeddingis denoted t=": xC 'y Elx can
be obtained frony by erasing some letters, possibly all of them, possibly none

PEP is trivial if there are no restrictions on the form of solut®& But when one
looks for solutionsx as above belonging to a regular langu&)€ >*, the problem
(hereafter called thRegularPost Embedding Problem, BEP"™?) becomes very inter-
esting: decidable but surprisingly hard [1].

The Regular Post Embedding Problem was introduced in [1H8revit is shown
thatPEP™is expressive enough to encode problems on lossy chanrnehsysn fact,
encodings in both directions exist, heneEP™9 is exactly at levelF.w in the Fast
Growing Hierarchy. Thus, although it is decidabREP™? is not primitive-recursive,
and not even multiply-recursive (see [3] and the refereticesein). Finally,PEP™9
is an abstract problem that is inter-reducible with a graist of decidable problems
having the samé&w complexity: metric temporal logic [4], alternating onesck timed
automata [5, 6], leftist grammars [7, 8], products of modaids [9], etc.

Blockers and coblockersThe original decision algorithm fd?EP™9relies on so-called
“blocker” and “coblockel sets [1]. Write Sol. for the set{x € L | u(x) C v(x)} of
solutions in someonstraintlanguagd- C ~* and define:

def

X ={ael"|vxeLl,a.u(x) Zv(x)}, (left L-blockers)
X/ d:‘”'f{o( el |vxelL,u(x).aZv(x)}, (right L-blockers)
A\ d:ef{cx el |vxelL,u(x) Za.v(x)}, (left L-coblockers)
Y Lo e | vxe Lux) Z v(x).a}. (right L-coblockers)

* Work supported by the Agence Nationale de la Recherche, grant AN&=TIN-001.



2 P. Chambart and Ph. Schnoebelen

A key observation is that, in order to decide whetBel is empty or not, it is sim-
pler to reason about blocker and coblocker sets (see [lioB8e®} for more details
on the decision algorithm). Rather than considering whatlae solutions, the blocker
and coblocker sets provide information on what latituddl@aged/required by the so-
lutions, in particular by the most permissive ones. As a igpease, they can tell us
whether a giverPEP™? instance is solvable since

Sol =giff ee X iff ec X iff ecY iff ecY/. (1)
Working with blocker sets rather than solutions sets hasham advantages:

— First, blocker and coblocker sets behave smoothly as aifumot the constraint set
L. This allows compositional reasoning w.Lt. The “Stability Inequations” (see
long version of this paper) is the main example, but therexasee. For instance,
assumd. is the product (concatenation) of two languagdes: L;.L,. ClearlySol
containsSol ,.Sol ,. However the containment is strict in general, and it is not
possible to expresSo| as a function ool , andSol,. By contrast, the following
holds:

X, =riff (x(1 UYL,)N (YL’l UX,) =T 2)

— Second, blocker and coblocker sets are always regular daysgy unlike thé&ol
sets [10]. This makes them easier to handle algorithmicadfyresenting them via
FSA's or regular expressions. In particular, compositioeasoning as exemplified
in Equation (2) can easily be turned into simple and effecdilgorithms.

Our contribution. In this paper we consider the computability of the blocked an
coblocker setXg andYg for R a regular constraint language. This is a natural ques-
tion in view of the decision algorithm fd?EP"9, where lower approximations of these
sets are enumerated. More importantly, and as we explairedtidh 7, it is another
step in our attempts at enlarging the class of known decidatablems that combine
Post-embedding and regular constraints.

We prove that blocker sets are not computhbihile, quite unexpectedly, coblocker
sets are computable. Concerning blocker sets, and singedmmot be computed, we
consider decision problems that are weaker than compityakilg., whether a blocker
set is empty, infinite, whether is it contained in (“safetyd) contains (“cosafety”), a
given set. A summary of our results will be found in Fig. 3 ¢g&t 3). In addition,
we answer a question raised by [10] and prove that the retgut#rPost-embedding
languages is undecidable.

Comparison with existing workThis work continues our exploration of the Regular
Post Embedding Problem. The problem was introduced andcegdrdecidable in [1].
The links between lossy channels &P are clarified in [2] where it is also shown
that looking for infinite solutions within am-regular constraint set can be reduced to

1 Here, and in the rest of the paper, we say informally that regular set¥likee ‘computable’
when we really mean that an index for them can be computed uniforntty iroindex forl.
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looking for finite solutions. In [10] it is shown how to courdlations, and how to check
whether a regular property entails Post embedding. Thakblcsets are not computable
was claimed in [1, Remark 3.8] without any details or proafer(comments on the
difference between blocker and coblocker sets).

Outline of the paper.Section 2 recalls the necessary definitions and notatiars, a
proves a few useful lemmas on subwords. Section 3 formaligdiices the problems
we address. Then Section 4 shows how to compute cobloclemdgte Section 5 con-
siders what can be computed on blocker sets. The undedtgabgults in that section
are proved by a reduction from lossy counter machines destin Section 6. Proofs
omitted in the main text can be found in the full version oftbktended abstract.

2 Notations and definitions

Words and their morphismsWe write x,y,w,t,o,p,a,B,... for words, i.e., finite se-
quences of letters such agh,i, j,... from alphabet<,I",.... With x.y, or xy, we de-
note the concatenation mfandy. With € we denote the empty word. Thengthof x is
written |x|.

A morphismfrom>* to " is a mapu: 2* — I'* that respects the monoidal structure,
i.e., withu(e) = € andu(x.y) = u(x).u(y). A morphismu is completely defined by its
imageu(a), u(b), ..., onX ={a,b,...}. Most of the time, we shall writag, up, ..., and
Uy, instead ofu(a), u(b), ..., andu(x).

The mirror image of a word is denotedk, e.g.,abvc: bca The mirror image of a

language. is L d:ef{ﬂ x € L}. The mirror image of a morphisin denoted], is defined
ef —— —

by t(a) . u(a), so thatti(x) = u(xX).

Subword ordering.Given two wordsx andy, we writex C y whenx is a (scattered)
subwordof vy, i.e., whenx can be obtained by erasing some letters (possibly none)
fromy. For exampleabbaC abracadalra. The subword relation is a partial ordering,
compatible with the monoidal structure x, andxy C X'y whenx C X andy C Y.
Higman’s Lemma further states that, over a finite alphathet,subword relation is a
well-quasi-ordering, i.e., it is well-founded and all amiins (sets of incomparable
words) are finite.

Section 6 relies on the following lemma (see long versiorhi paper for a proof):

Lemma 2.1 (Elimination Lemma).
If xwC y and X C wy then xxC yy.
If x C yw and wxC y then xXxC yy.

Upward-closed and downward-closed languagaddanguagd. C I* is upward-closed

if xelLandxCy imply y € L. It is downward-closedf x € L andy C x imply

y € L (equivalently, if its complement is upward-closed). HigrisedLemma entails that
upward-closed languages and downward-closed languagesegular [11]. In fact,

upward-closed languages can be denoted by very simplearegupressions since
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they obviously reside at level 1/2 of the Straubing-Thék#erarchy [12]. Downward-
closed languages too can be denoted by simple regular sipne$13, 14]. In Section 4
we use %-products”, defined as concatenationsabdmsthat are either of the form
a+ ¢ for somea € I, or of the formA* for some sub-alphabe& C I'. For example,

with I = {a,b, c}, the set of subwords @bacis (a-+¢).(b+¢€).(a+¢€).(c+¢€) and the

set of words that do not haab as a subword igb, c}*.{a,c}*. Any downward-closed
language is, in a unique way, a finite union of maximgdroducts.

3 Blockers and coblockers

In the rest of the paper, we consider a genkfi® instance given by somgv: >* —
. Recall that, for a regular constraint &€ >*, the (left) blocker and coblocker sets
Xr andYg are defined by:

Eaer |vxeRawZwl,  YrE{ael™|xeRuZ a.v).

Observe thakg is upward-closed and is downward-closed. Hence both are regular.

Remark 3.1.In the rest of the paper, starting with Def. 3.2 below, werieisbur atten-
tion to theleft setsX, andY.. This is no loss of generality in view of the symmetry be-
tween the left-handed and the right-handed notiaris:a rightL-blocker (or coblocker)

if, and only if, & is a leftL-blocker (resp., coblocker) in the mirror instange. a0

For blocker and coblocker sets, we consider questionsahgerin generality from just
checking onax for membership, to computing the whole set.

Definition 3.2 (Decision problems for blocker and coblockesets).We consider ques-
tions where one is given two morphisms ux* — ' and a regular language R >*
as inputs, with possibly some additional input in the forra wforda € I'*, or a regular
“safe” set SC I'*.
e Blockers_Membership: doesa € Xg?
e Blockers_Emptiness: does Xq = ©?
e Blockers_Universality: does Xk =I*?
e Blockers_Safety: does )k C S?
o Blockers_Cosafety: does SC Xg?
e Blockers_Finiteness: is Xg finite?
e Blockers_Cofiniteness: is Xg cofinite?, i.e., ig* <\ Xg finite?

The same decision probler@sBlockers_Membership, CoBlockers_Safety, ..., are
defined for coblocker sets.

Finally, Blockers_Computation and CoBlockers_Computation ask one tacompute
a representation of X (resp., %) under the form of a regular expression or a FSA.
(These are not decision problems).

Remark 3.3.The restriction taegular safe setsSis a natural assumption that is both
expressive and tractable. However, in our setting wherekisloand coblocker sets are
upward-closed (resp., downward-closed), the expressivepis even larger. Indeed,
for any L, Xg C L iff Xg C SwhereS is the upward-closure df. Thus, and since
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| Blockers |  Coblockers |
Membership decidable (Coro. 4.2) decidable (Coro. 4.2)
Safety undecidable (Theo. 5.3) |decidable (Theo. 4.3)
Cosafety decidable (Coro. 4.2) decidable (Coro. 4.2)
Emptiness undecidable (Theo. 5.3) |decidable (Theo. 4.3)
Universality decidable (Coro. 4.2) trivial
Finiteness undecidable (Theo. 5.3) |decidable (Theo. 4.3)
Cofiniteness undecidable (Theo. 5.2) trivial
Computation ‘ no ‘ yes (Theo. 4.3) ‘

Fig. 1. Computability for blocker and coblocker sets. See Remark 3.5 abaypleaity.

the upward-closure df is always regular, our positive results automatically ggpl
any class of safe sets for which the upward and downward idestan be effectively
computed (e.g., context-free languages [15]). ad

Remark 3.4 (Relations among problent&fety is a general problem that subsumes
Emptiness andMembership. Cosafety subsumedniversality and (non-Membership.
Blockers_Universality reduces tdBlockers Membership sinceXg = I'* iff € € Xg. Co-
Blockers_Universality is trivial sinceYgr = I'* iff R= @. Finiteness and Cofiniteness
are natural counting questionSiniteness coincides withEmptiness for blocker sets
(assuming” is not empty) and more generally for all upward-closed sét$ifiteness
and Universality coincide for downward-closed sets in general, and cobloskts in
particular).

There are no other obvious reductions between the abovsialegiroblems (e.g.,
Finiteness andCofiniteness are in general unrelated).

Regarding computability of the blocker and coblocker sgliserve that since these
sets are regular, the decidability®ffety andCosafety would entail their computability
(see also Section 4). Conversely, all the decision probleted above can easily be
answered from an FSA description of the sets. Hence ouridagsoblems can be
seen as different special cases of the gert@ltadkers_ Computation andCoBlockers_-
Computation problems. O

Remark 3.5 (On the complexity of blocker and coblocker i) All the non-trivial
problems listed in Def. 3.2 are more general thdEP™9. This was made precise in
Remark 3.4 except fdfoBlockers_Finiteness, but it is easy to provide a reduction from
CoBlockers_Emptiness to CoBlockers_Finiteness: add one extra symbol 10, ensuring
that Y is finite iff it is empty. Hence all the above problems are aisteas hard as
PEP"™9 and none of them is multiply-recursive. 0

4 Computing coblocker sets

We start with the computability results. They can be obthivia reductions t&®EP"™?:

Lemma 4.1. Blockers_Cosafety and CoBlockers_Cosafety many-one reduce to (the
complement ofPEP™9,
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Proof. Blockers_Cosafety: with u, v, R and S we associate #EP"™Y instanceu’,V :
>* — I'* and a regular constraif® C 2'*. Assume w.l.0.g. thaZ andl" are disjoint

alphabets and lex’ %fs Ur. u andV are extensions ol andv with u(y) =yand

V(y)=¢forallyer. Finally letR ®'SR this is indeed a regular subsetXf.

Now, U',V,R is a positivePEP™Y instance iffu C V, for somex € R, iff ugy C \/0,y
for somea € Sand somg/ € R, iff u&.ug, C v&.\/y, iff a.uy C vy for somea € Sandy,
i.e., iff somea € Sis notinXg, i.e.,SZ Xg.

CoBlockers_Cosafety: the same idea works provided we léty) =€ andV'(y) =y. O

SincePEP'™Y s decidable, and thanks to Remark 3.4, Lemma 4.1 entails:

Corollary 4.2. For blocker and coblocker set§osafety, Universality and Member-
ship are decidable.

We are now ready to proceed to the main computability result:
Theorem 4.3. The coblocker setR¥and Y, are computable.

Our proof simply leverages the decidability 66Blockers_Cosafety (Coro. 4.2) with
the VIGL Lemma (here specialized to words with embeddings).

Lemma 4.4 (VJGL Lemma, see Theo. 2 of [16])Let (U;); be an enumeration of
upward-closed languages on some finite alphabet. One caputena finite represen-
tation for the Y's if, and only if, one can decide whether®P = & for x-products P
(wheniand P are inputs).

Here, computing “a finite representation” means computiedfinite basis, i.e, the set
of minimal words, but this can easily be transformed intogutar expression or an FSA
representation. The VJGL-Lemma is based on a generic #igothat, in the case of
words with embedding, computes such finite bases using afeda non-intersection
with *x-products.

Another wording of the VJGL-Lemma is given by the followingrollary.

Corollary 4.5. 1. If (U;); are upward-closed languages with a decidable safety prob-
lem, then they are computable.

2. Equivalently, if V;); are downward-closed languages with a decidable cosafety-pr
lem, then they are computable.

Proof. UNP = @ is equivalent tdJ; C (2* \ P), a safety question. a

We now prove Theorem 4.3: The coblocker sétsare downward-closed and have a
decidable cosafety problem (Coro. 4.2). Hence they are atabfe by Coro. 4.5.2.
Then Theorem 4.3 accounts for all the positive results otoosigr sets in Fig. 3.

5 Blocker sets are not computable

It is not possible to effectively compute the blocker s¥tsfrom givenu,v,R, even
thoughXg is known to be regular. This is shown with Lemma 5.1, our maigative
result (proved in Section 6):
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Lemma 5.1. Blockers_Cofiniteness is Zg-hard andBlockers_ Emptiness is I‘I(l’-hard.
With Lemma 5.1, we are in a position to prove all the undedidghbesults in Fig. 3:

Theorem 5.2. Blockers_Cofiniteness is Zg-complete.

Proof (Sketch)Membership ins$ can be seen by writing the cofinitenessXgf un-
der the form3n € N,=" C Xg and relying on the decidability dBlockers_Cosafety
(Coro. 4.2). a

Theorem 5.3. Blockers_Safety, Blockers_Emptiness andBlockers_Finiteness are I'I(lJ-
complete.

Proof. Thel‘lg-hardness OBlockers_Emptiness (Lemma 5.1) also applies Blockers_-
Finiteness (since the two problems coincide) aBtbckers_Safety (a more general prob-
lem), see Remark 3.4.

For upper bounds, we observe tlidbckers_Safety (hence alsdBlockers_ Empti-
ness) is in M? since it can be written under the forvia € I'*, (0 € SV a ¢ Xg) (recall
thata ¢ Xg is decidable). a

6 Lossy counter machines

Lossy counter machines, for short,LCM's, were introduced by R. Mayr [17]. They
are a variant of Minsky counter machines (with zero-testtéments and decrements)
where counters arlessy i.e., they may decrease non-deterministically. We onlg g
streamlined presentation of LCM’s here and refer to [17 f@Bmore details.

LetM = (Q,C, A, ginit) be a Minsky counter machine with finite set of control states
Q 3 ainit, finite set of counter€, and finite set of transitions rulés Four counters are
sufficient for our purposes so we = {c3,C,C3,C4}. A configuration ofM is some

T=(q,n1,N2,N3,N4) € Conf(M) d:‘EfQ x N4, with size denotedt|, beingny 4+ +nz +

ny. We (partially) ordeiConf(M) with

def
(qa nl7n2an3an4) S (ql7nél_vn/23n§37n21) < = q//\nl S n?l_/\ oAy S n:l-'

An initial stateqini; € Q is fixed, and the initial configuration ignj; def (Qinit, 0,0,0,0).
Observe that the only way to have< Tjyj; is with T = Tjjt.

A transition ruled is a directed edge between statedvpflabeled by an operation

ope OP e« {++,--,=0?}, and denoteddq,op,q’). The rules inA give rise to two

different transition relations between configurationsstistepst 2, ¢ are defined in

the expected way. Formally, with= (qi,0p,02), there is a stefq, ny,nz, N3, ng) LA
(d,ny,m,, 5, ny) if, and only if, the following three conditions are satisfied
l.ar=qgandg =d;

2.0pis somec++ or ¢- - or ¢=0?, andn/ = n; for all i # k;

3. if opis ¢ctt+ thenn, = n+1; if opis ¢-- thenn, = ny—1; if opis ¢=0? then
0=rng=ny.
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These so-callefderfect stepdescribe the operational semanticd/bivhen its coun-
ters are not assumed to be lossy. Then a second operatiomahtes, with transitions

denoted imssyﬂ, is derived in the following way:

5 def _ &
T 2issyT & 121" for somet” > 1. 3)

Thesedossy stepslescribe the behavior ™ when its counters are assumed to be lossy.
In the usual way, th& superscript on transitions is omitted when irrelevaossy runs
denoted i>|ossyrn, are sequences of chained lossy S&PS:ossyT1 —lossy " - * Tn. We
write Reaclyssy(M) for the set of configurations that can be reached via lossy ofin
M, starting from;pjt.

We rely on known undecidability results on LCM’s and use tiofving two prob-
lems:

LCM_Infinite: the question whethdReackyssy(M) is infinite, for a given LCMM;
LCM_Unbounded_Counter: the question whetheReaclpssy(M) contains configura-
tions with arbitrarily large values for the first countar

These two problems are a variant of one another, and theyaaily seen to be inter-
reducible. The following theorem is from [17, 18]:

Theorem 6.1. LCM_Infinite andLCM_Unbounded_Counter are ﬂ‘l)—complete.

6.1 From lossy counters to Post-embedding

With a LCM M = (Q,C, A, ginit) we associate BEP instanceu,v: Z* — I'* that will

be used in three different reductions (with different ceaist language®;,R>,Rs C

>*). Herel d:‘EfQUC is used to encode the configurationsMf a configuratiornt =

(9,m, Nz, N3, ng) is encoded by the word c>c53cy*q, denoted T]. Observe thaft] C
[T]iff t<T.

We further le 2T UAUOPUQUT whereQ = {d] g€ Q} andC = {ty,¢p,T3,Ca}
are copies of) andC, with new symbols obtained by overlining the original syrsbo
from QUC. We define two morphismsg v : 2* — '™ with

def def . def . def
u((g,op.q)) =a,  v((gopd)) =d, u@) =a, v(©) =,
u(g++) L', vierh) e, ue--) e, ve--) Ee
How u andv evaluate on the rest @ will be defined later when it becomes relevant.

With every transition rul® = (g,op,q') in A, we associate a languaBg C >* given

via the following regular expressions:

Réd_ef Cr* - Tk1*-0p-T*---C4*- O if opis ¢+t Or ¢k -,
R T Ck—1" " Tkg1™ - Ca* -0 if op is c=07?.
2 Lossy steps could also be defingidectly without deriving them from perfect steps, but the
indirect definition is very convenient as it permits reasoning simultamgouasboth kinds of
steps for the same counter machine.



Computing Blocker Sets for the Regular Post Embedding Problem

These definitions ensure that, whea Rs, ux andvy are the encodings of related con-
figurations. We let the reader check that the following maezjse statement holds:

Lemma 6.2.
1. If xe Ry, then y = [1] and = [T'] for some configurations 1’ such thatt S

2. Reciprocally, ift LA T/, then[T] = ux and [T'] = v« for some (unique) x Rs.

def

We further defindRy &' Usea Rs andRy = (Ra)*: these languages are regular.

Lemma 6.3. Leta € ' . If ux.a C [Tinit |.Vx for some x€ Ry, thena C [1] for some
T € Reaclpssy(M).

Proof. We assume = € andx # €, otherwisex C [Tinit | trivially. Thusx € Ry must be
of the formx=x;...x, withn>0andx € Ry foralli=1,...,n. By Lemma 6.2}y is
some[Tto].[T1]... [Tn-1] @andvy is some[t}].[T5] ... [14] such that, forall=1,...,n,
Ti_1 — T} is a perfect step df/.

We now use the assumption thata C [Tinit|.Vx. Sincea # €, ux embeds into
a strict prefix, denotedv, of [Tinit].vx. Note thatuy containsn > 0 symbols fromQ
and ends with one of them, while has at mosh (it is shorter thantjnit |.vx that has
n-+ 1 symbols fromQ and ends with one of them). Heneenecessarily has symbols
from Q anduy.a T [Tinit|.Vx can be decomposed &s| C [t]] (i.e., 1 < T/) for all
i=1...,n—1, with also[tg] C [Tinit| (hencetp = Tinit) anda C [1;,]. Combining
with Tj_1 — T/ we deduceti_1 —ossy Ti for i = 1,...,n— 1. Finally Tinit = To —lossy
T+ —lossy Tn—1 — Ty, is @ lossy run oM, so thatr, € Reachpssy(M). O

There is a converse to Lemma 6.3:
Lemma 6.4. If T € Reaclyssy(M), there exists somesRy such that u.[T] T [Tinit ] . Vx.

Proof. Sincet € Reaclyssy(M) there exists a lossy rumhit = To —iossyT1 —lossy” - Tn =
T. We show, by induction on=0,1,...,n, thatuy.[Ti] C [Tinit].Vx for somex; € Ryu.
The base casé= 0, is dealt withxg = € sincetg = Tinit.
For the casé > 0, we know by ind. hyp. that there is some; € Ry with

U1+ [Tica] & [Tinit [y 4)
The lossy stepi_1 —0ssyTi implies the existence of a perfect step; — T with T > 1

(Equation (3)). Thugti_1] = uy and[1"] = v, for somey € Ry (Lemma 6.2).
Fromt; <1/, we deduce

Uy [Ti] C [Ti—1].Wy. (5)
We now put together Equations (4) and (5). The Eliminatiomb® yields
Uy, -Uy.[Ti ] & [Tinit | .Vx_; - Wy, (6)

so that setting d:Efxi,l.y concludes our proof. We observe thiat Ry sincexi_1 € Ry
andy € Ra. a

9
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6.2 ReducingLCM_Infinite and LCM_Unbounded_Counter to blockers problems

For the next step in the reduction, we extenahdv on QUC (= I') with

def C1 if Y= Ci, def
=TT — =vyforallyerl.
U(y) 1(y) {8 if y I~ {Cl}7 V(y) ytor Y

Whena € I'*, we shall writer (a) rather tharnuy to emphasize the fact thatonly re-
tains thec; symbols ofa and erases the rest. Below, we rely on a few obvious progertie
of this erasing morphism, such ag(a) C a, ory (af3) = 14 (Ba), and in particular the
following:

Fact6.5 Forall B € M and xy € Z*, x.c1.14 (B) C y.B implies xc1 C y.

Finally, we letRy def Qinit-Rv and R, def R;.I"*. This provides two different reduc-
tions, with properties captured by Lemmas 6.6 and 6.8.

Lemma 6.6. Leta € I'*. The following are equivalent:
Do g X,

(2) there exists x Ry such that y.a C v,

(3) there exists € Reaclpssy(M) such thatx C [T].

Proof (Sketch)(1) < (2) by definition ofx,gl. Then, given the definitions ¢%;, u and
v, Lemma 6.3 shows “(2}> (3)" (note thatu(qinit) = € andv(Qinit) = Ginit = [Tinit])-
Finally, Lemma 6.4 shows “(3}> (2)". O

In particular,x,g1 is cofinite iff M does not satisfy CM_Infinite.
Corollary 6.7. Blockers_Cofiniteness is Zg-hard.

Lemma 6.8. Leta € I'*. The following are equivalent:
(1) o ¢ X,

(2) there exists ¥ Ry such that y.o T v,

(3) there exists € Reaclpssy(M) such thatr (o) T ([T]).

Proof. (1) < (2) by definition ofXg, .

(3) = (2): Assumer (a) C 1, ([T]) for somet € Reachyssy(M). Then,m (a) C [T] so
that, by Lemma 6.6, there exists some R; with uy. 1 (a) C vy. Appendinga to the
right yieldsuy. 15 (00).00 = Ux.Ugq.0 E Vy.O0l = Vy. Vg Lettingyd:efx.a (€ Rp) proves (2).
(2) = (3): Assumeuy.a C vy, for somey € Ry of the formx.3 with x e Ry andp € I'*. We
assumeay (a) # € since otherwisey (a) T 14 ([Tinit ] ) holds trivially. Fromuy.a C vy,
we deduce

Ux. T, ()T (B) = Uk T, (B). T () = Uy T (O) £ Uy T Wy = Vg = V..

From uy. 1 (0).74 (B) C .3, one deducesy.Ty (a) C v (using Fact 6.5 and the as-
sumption thatry (a) # €). Thus there exists & € Reaclyssy(M) with 1 (a) C [T]
(Lemma 6.3), hence; (a) C 4 ([T]). O
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In other words ¢ Xg, iff there is a reachable configuration where thecounter is
larger than, or equal to, the numberafsymbols ina. ThusX{Q2 = o iff M satisfies
LCM_Unbounded_Counter.

Corollary 6.9. Blockers_Emptiness is I'Ig-hard.

As an aside, the reduction from LCM’s can be used to prove T&dd below. The
regularity problem for Post-embedding languages is a abfjurestion sinc&ok is not
always regular, and since comparisons with a regblae possible:

Theorem 6.10 ([10]).The questions, for § * a regular language, whetherS Sok,
and whether S@lC S, are decidable.

Theorem 6.11. The question whether, forw: 2* — ' and a regular RC ¥, Sok is
a regular language, iig-complete.

The proof forzg—hardness simply adapts our previous reduction, providingandR

such thaSok is regular iffReachyssy(M) is finite, then relying on Theo. 6.1.

7 Concluding remarks

The decidability ofPEP™9is the decidability of existential questions of the form
Ix e R:u(x) C v(X) (Q1)

for regularR's. This result is fragile and does not extend easily. Whenloaks for

solutions satisfying more expressive constraints, egjerchinistic context-free, or also

Presburger-definable, the problem becomes undecidable [Ahother direction, com-
bining two embeddings quickly raises undecidable questiery., the following ques-
tions are undecidable [10, Theo. 4.1]:

Ixe =t 1 (ur(X) CE vi(X) Auz(X) E va(X)), (Q2)
Ix e T (Ur(X) C va(X) AU(X) Z va(X)). (Q3)

Remark that, by Theorem 6.10, the following universal goess decidable [10]:
VX e R:u(x) C v(X). (Q4)
This suggests considering questions like

vx e RIX € R 1 u(xX) C v(xX), (Q5)
Ixe RVX € R 1 u(xX) C v(xX). (Q6)

The undecidability of (Q5) is clear since alrealipckers_ Emptiness is undecidable.

X
X

The (un?)decidability of (Q6) is still open. We believe ters and coblockers may

play a useful role here. Indeed, by analogy with blockersmag define

AR E (a | eRAUX TV}, B {B|v¥xeRuX) C BV}

11
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Note that membership iAr (or in Bg), being an instance of (Q5), is decidable. Fur-
thermore Br is upward-closed andg is finite (unlesR is empty). Now, the following
observation:

(IxeRWX e R :1u(xX) Cv(xX)) iff ((Ar \YR)U(Br \Xg) # @)

provides a direct link between (Q6) and blocker-like largesa We leave this as a
suggestion for future investigations.
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