
Computing Blocker Sets for the Regular Post
Embedding Problem⋆

P. Chambart and Ph. Schnoebelen

LSV, ENS Cachan, CNRS
61, av. Pdt. Wilson, F-94230 Cachan, France

email: {chambart|phs}@lsv.ens-cachan.fr

Abstract. Blocker and coblocker sets are regular languages involved in the al-
gorithmic solution of the Regular Post Embedding Problem. We investigate the
computability of these languages and related decision problems.

1 Introduction

Post’s Embedding Problem(shortly PEP, named by analogy with Post’s Correspon-
dence Problem) is the question whether two morphisms on words u,v : Σ∗ → Γ∗ agree
non-trivially on some input, i.e., whetheru(x) is a (scattered) subword ofv(x) for some

x∈ Σ+. Thesubwordordering, also calledembedding, is denoted “⊑”: x⊑ y
def
⇔ x can

be obtained fromy by erasing some letters, possibly all of them, possibly none.
PEP is trivial if there are no restrictions on the form of solutions. But when one

looks for solutionsx as above belonging to a regular languageR⊆ Σ∗, the problem
(hereafter called theRegularPost Embedding Problem, orPEPreg) becomes very inter-
esting: decidable but surprisingly hard [1].

The Regular Post Embedding Problem was introduced in [1, 2] where it is shown
thatPEPreg is expressive enough to encode problems on lossy channel systems. In fact,
encodings in both directions exist, hencePEPreg is exactly at levelFωω in the Fast
Growing Hierarchy. Thus, although it is decidable,PEPreg is not primitive-recursive,
and not even multiply-recursive (see [3] and the referencestherein). Finally,PEPreg

is an abstract problem that is inter-reducible with a growing list of decidable problems
having the sameFωω complexity: metric temporal logic [4], alternating one-clock timed
automata [5, 6], leftist grammars [7, 8], products of modal logics [9], etc.

Blockers and coblockers.The original decision algorithm forPEPreg relies on so-called
“blocker” and “coblocker” sets [1]. WriteSolL for the set{x ∈ L | u(x) ⊑ v(x)} of
solutions in someconstraintlanguageL ⊆ Σ∗ and define:

XL
def
={α ∈ Γ∗ | ∀x∈ L,α.u(x) 6⊑ v(x)}, (left L-blockers)

X′
L

def
={α ∈ Γ∗ | ∀x∈ L,u(x).α 6⊑ v(x)}, (right L-blockers)

YL
def
={α ∈ Γ∗ | ∀x∈ L,u(x) 6⊑ α.v(x)}, (left L-coblockers)

Y′
L

def
={α ∈ Γ∗ | ∀x∈ L,u(x) 6⊑ v(x).α}. (right L-coblockers)

⋆ Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.

2 P. Chambart and Ph. Schnoebelen

A key observation is that, in order to decide whetherSolL is empty or not, it is sim-
pler to reason about blocker and coblocker sets (see [1, Section 3] for more details
on the decision algorithm). Rather than considering what are the solutions, the blocker
and coblocker sets provide information on what latitude is allowed/required by the so-
lutions, in particular by the most permissive ones. As a special case, they can tell us
whether a givenPEPreg instance is solvable since

SolL = ∅ iff ε ∈ XL iff ε ∈ X′
L iff ε ∈YL iff ε ∈Y′

L. (1)

Working with blocker sets rather than solutions sets has twomain advantages:

– First, blocker and coblocker sets behave smoothly as a function of the constraint set
L. This allows compositional reasoning w.r.t.L. The “Stability Inequations” (see
long version of this paper) is the main example, but there aremore. For instance,
assumeL is the product (concatenation) of two languages:L = L1.L2. ClearlySolL
containsSolL1.SolL2. However the containment is strict in general, and it is not
possible to expressSolL as a function ofSolL1 andSolL2. By contrast, the following
holds:

XL1.L2 = Γ∗ iff
(
X′

L1
∪YL2

)
∩

(
Y′

L1
∪XL2

)
= Γ∗

. (2)

– Second, blocker and coblocker sets are always regular languages, unlike theSolL
sets [10]. This makes them easier to handle algorithmically, representing them via
FSA’s or regular expressions. In particular, compositional reasoning as exemplified
in Equation (2) can easily be turned into simple and effective algorithms.

Our contribution. In this paper we consider the computability of the blocker and
coblocker setsXR andYR for R a regular constraint language. This is a natural ques-
tion in view of the decision algorithm forPEPreg, where lower approximations of these
sets are enumerated. More importantly, and as we explain in Section 7, it is another
step in our attempts at enlarging the class of known decidable problems that combine
Post-embedding and regular constraints.

We prove that blocker sets are not computable1 while, quite unexpectedly, coblocker
sets are computable. Concerning blocker sets, and since they cannot be computed, we
consider decision problems that are weaker than computability, e.g., whether a blocker
set is empty, infinite, whether is it contained in (“safety”), or contains (“cosafety”), a
given set. A summary of our results will be found in Fig. 3 (section 3). In addition,
we answer a question raised by [10] and prove that the regularity of Post-embedding
languages is undecidable.

Comparison with existing work.This work continues our exploration of the Regular
Post Embedding Problem. The problem was introduced and proved decidable in [1].
The links between lossy channels andPEPreg are clarified in [2] where it is also shown
that looking for infinite solutions within anω-regular constraint set can be reduced to

1 Here, and in the rest of the paper, we say informally that regular sets likeXL are “computable’”
when we really mean that an index for them can be computed uniformly from an index forL.

Computing Blocker Sets for the Regular Post Embedding Problem 3

looking for finite solutions. In [10] it is shown how to count solutions, and how to check
whether a regular property entails Post embedding. That blocker sets are not computable
was claimed in [1, Remark 3.8] without any details or proofs (nor comments on the
difference between blocker and coblocker sets).

Outline of the paper.Section 2 recalls the necessary definitions and notations, and
proves a few useful lemmas on subwords. Section 3 formally introduces the problems
we address. Then Section 4 shows how to compute coblocker sets, while Section 5 con-
siders what can be computed on blocker sets. The undecidability results in that section
are proved by a reduction from lossy counter machines described in Section 6. Proofs
omitted in the main text can be found in the full version of this extended abstract.

2 Notations and definitions

Words and their morphisms.We write x,y,w, t,σ,ρ,α,β, . . . for words, i.e., finite se-
quences of letters such asa,b, i, j, . . . from alphabetsΣ,Γ, With x.y, or xy, we de-
note the concatenation ofx andy. With ε we denote the empty word. Thelengthof x is
written |x|.

A morphismfrom Σ∗ to Γ∗ is a mapu : Σ∗ → Γ∗ that respects the monoidal structure,
i.e., with u(ε) = ε andu(x.y) = u(x).u(y). A morphismu is completely defined by its
imageu(a), u(b), . . . , onΣ = {a,b, . . .}. Most of the time, we shall writeua,ub, . . ., and
ux, instead ofu(a),u(b), . . ., andu(x).

The mirror image of a wordx is denoted̃x, e.g.,ãbc= bca. The mirror image of a

languageL is L̃
def
= {x̃ | x∈ L}. The mirror image of a morphismu, denoted̃u, is defined

by ũ(a)
def
= ũ(a), so that̃u(x) = ũ(x̃).

Subword ordering.Given two wordsx andy, we writex ⊑ y whenx is a (scattered)
subwordof y, i.e., whenx can be obtained by erasing some letters (possibly none)
from y. For example,abba⊑ abracadabra. The subword relation is a partial ordering,
compatible with the monoidal structure:ε ⊑ x, andxy⊑ x′y′ whenx ⊑ x′ andy ⊑ y′.
Higman’s Lemma further states that, over a finite alphabet, the subword relation is a
well-quasi-ordering, i.e., it is well-founded and all antichains (sets of incomparable
words) are finite.

Section 6 relies on the following lemma (see long version of this paper for a proof):

Lemma 2.1 (Elimination Lemma).
If xw⊑ y and x′ ⊑ wy′ then xx′ ⊑ yy′.
If x ⊑ yw and wx′ ⊑ y′ then xx′ ⊑ yy′.

Upward-closed and downward-closed languages.A languageL ⊆ Γ∗ is upward-closed
if x ∈ L and x ⊑ y imply y ∈ L. It is downward-closedif x ∈ L and y ⊑ x imply
y∈ L (equivalently, if its complement is upward-closed). Higman’s Lemma entails that
upward-closed languages and downward-closed languages are regular [11]. In fact,
upward-closed languages can be denoted by very simple regular expressions since

4 P. Chambart and Ph. Schnoebelen

they obviously reside at level 1/2 of the Straubing-ThérienHierarchy [12]. Downward-
closed languages too can be denoted by simple regular expressions [13, 14]. In Section 4
we use “∗-products”, defined as concatenations ofatomsthat are either of the form
a+ ε for somea ∈ Γ, or of the formA∗ for some sub-alphabetA ⊆ Γ. For example,
with Γ = {a,b,c}, the set of subwords ofabacis (a+ ε).(b+ ε).(a+ ε).(c+ ε) and the
set of words that do not haveab as a subword is{b,c}∗.{a,c}∗. Any downward-closed
language is, in a unique way, a finite union of maximal∗-products.

3 Blockers and coblockers

In the rest of the paper, we consider a genericPEP instance given by someu,v : Σ∗ →
Γ∗. Recall that, for a regular constraint setR⊆ Σ∗, the (left) blocker and coblocker sets
XR andYR are defined by:

XR
def
={α ∈ Γ∗ | ∀x∈ R,α.ux 6⊑ vx}, YR

def
={α ∈ Γ∗ | ∀x∈ R,ux 6⊑ α.vx}.

Observe thatXR is upward-closed andYR is downward-closed. Hence both are regular.

Remark 3.1.In the rest of the paper, starting with Def. 3.2 below, we restrict our atten-
tion to theleft setsXL andYL. This is no loss of generality in view of the symmetry be-
tween the left-handed and the right-handed notions:α is a rightL-blocker (or coblocker)
if, and only if, α̃ is a leftL̃-blocker (resp., coblocker) in the mirror instanceũ, ṽ. ⊓⊔

For blocker and coblocker sets, we consider questions that range in generality from just
checking oneα for membership, to computing the whole set.

Definition 3.2 (Decision problems for blocker and coblockersets).We consider ques-
tions where one is given two morphisms u,v : Σ∗ → Γ∗ and a regular language R⊆ Σ∗

as inputs, with possibly some additional input in the form ofa wordα ∈ Γ∗, or a regular
“safe” set S⊆ Γ∗.
• Blockers_Membership: doesα ∈ XR?
• Blockers_Emptiness: does XR = ∅?
• Blockers_Universality: does XR = Γ∗?
• Blockers_Safety: does XR ⊆ S?
• Blockers_Cosafety: does S⊆ XR?
• Blockers_Finiteness: is XR finite?
• Blockers_Cofiniteness: is XR cofinite?, i.e., isΓ∗

rXR finite?
The same decision problemsCoBlockers_Membership, CoBlockers_Safety, . . . , are

defined for coblocker sets.
Finally, Blockers_Computation andCoBlockers_Computation ask one tocompute

a representation of XR (resp., YR) under the form of a regular expression or a FSA.
(These are not decision problems).

Remark 3.3.The restriction toregular safe setsS is a natural assumption that is both
expressive and tractable. However, in our setting where blocker and coblocker sets are
upward-closed (resp., downward-closed), the expressive power is even larger. Indeed,
for any L, XR ⊆ L iff XR ⊆ S whereS is the upward-closure ofL. Thus, and since

Computing Blocker Sets for the Regular Post Embedding Problem 5

Blockers Coblockers

Membership decidable (Coro. 4.2) decidable (Coro. 4.2)
Safety undecidable (Theo. 5.3) decidable (Theo. 4.3)
Cosafety decidable (Coro. 4.2) decidable (Coro. 4.2)
Emptiness undecidable (Theo. 5.3) decidable (Theo. 4.3)
Universality decidable (Coro. 4.2) trivial
Finiteness undecidable (Theo. 5.3) decidable (Theo. 4.3)
Cofiniteness undecidable (Theo. 5.2) trivial

Computation no yes (Theo. 4.3)

Fig. 1. Computability for blocker and coblocker sets. See Remark 3.5 about complexity.

the upward-closure ofL is always regular, our positive results automatically apply to
any class of safe sets for which the upward and downward closures can be effectively
computed (e.g., context-free languages [15]). ⊓⊔

Remark 3.4 (Relations among problems).Safety is a general problem that subsumes
Emptiness andMembership. Cosafety subsumesUniversality and (non-)Membership.
Blockers_Universality reduces toBlockers_Membership sinceXR = Γ∗ iff ε ∈ XR. Co-
Blockers_Universality is trivial sinceYR = Γ∗ iff R = ∅. Finiteness andCofiniteness

are natural counting questions.Finiteness coincides withEmptiness for blocker sets
(assumingΓ is not empty) and more generally for all upward-closed sets (Cofiniteness

andUniversality coincide for downward-closed sets in general, and coblocker sets in
particular).

There are no other obvious reductions between the above decision problems (e.g.,
Finiteness andCofiniteness are in general unrelated).

Regarding computability of the blocker and coblocker sets,observe that since these
sets are regular, the decidability ofSafety andCosafety would entail their computability
(see also Section 4). Conversely, all the decision problemslisted above can easily be
answered from an FSA description of the sets. Hence our decision problems can be
seen as different special cases of the generalBlockers_Computation andCoBlockers_-
Computation problems. ⊓⊔

Remark 3.5 (On the complexity of blocker and coblocker problems).All the non-trivial
problems listed in Def. 3.2 are more general thanPEPreg. This was made precise in
Remark 3.4 except forCoBlockers_Finiteness, but it is easy to provide a reduction from
CoBlockers_Emptiness to CoBlockers_Finiteness: add one extra symbol toΓ, ensuring
that YR is finite iff it is empty. Hence all the above problems are at least as hard as
PEPreg and none of them is multiply-recursive. ⊓⊔

4 Computing coblocker sets

We start with the computability results. They can be obtained via reductions toPEPreg:

Lemma 4.1. Blockers_Cosafety and CoBlockers_Cosafety many-one reduce to (the
complement of)PEPreg.

6 P. Chambart and Ph. Schnoebelen

Proof. Blockers_Cosafety: with u, v, R and S we associate aPEPreg instanceu′,v′ :
Σ′∗ → Γ∗ and a regular constraintR′ ⊆ Σ′∗. Assume w.l.o.g. thatΣ andΓ are disjoint

alphabets and letΣ′ def
= Σ∪Γ. u′ andv′ are extensions ofu andv with u′(γ) = γ and

v′(γ) = ε for all γ ∈ Γ. Finally letR′ def
= S.R, this is indeed a regular subset ofΣ′∗.

Now, u′,v′,R′ is a positivePEPreg instance iffu′x ⊑ v′x for somex∈ R′, iff u′αy ⊑ v′αy
for someα ∈ Sand somey∈ R, iff u′α.u′y ⊑ v′α.v′y, iff α.uy ⊑ vy for someα ∈ Sandy,
i.e., iff someα ∈ S is not inXR, i.e.,S 6⊆ XR.

CoBlockers_Cosafety: the same idea works provided we letu′(γ) = ε andv′(γ) = γ. ⊓⊔

SincePEPreg is decidable, and thanks to Remark 3.4, Lemma 4.1 entails:

Corollary 4.2. For blocker and coblocker sets,Cosafety, Universality and Member-
ship are decidable.

We are now ready to proceed to the main computability result:

Theorem 4.3. The coblocker sets YR and Y′R are computable.

Our proof simply leverages the decidability ofCoBlockers_Cosafety (Coro. 4.2) with
the VJGL Lemma (here specialized to words with embeddings).

Lemma 4.4 (VJGL Lemma, see Theo. 2 of [16]).Let (Ui)i be an enumeration of
upward-closed languages on some finite alphabet. One can compute a finite represen-
tation for the Ui ’s if, and only if, one can decide whether Ui ∩P = ∅ for ∗-products P
(when i and P are inputs).

Here, computing “a finite representation” means computing the finite basis, i.e, the set
of minimal words, but this can easily be transformed into a regular expression or an FSA
representation. The VJGL-Lemma is based on a generic algorithm that, in the case of
words with embedding, computes such finite bases using an oracle for non-intersection
with ∗-products.

Another wording of the VJGL-Lemma is given by the following corollary.

Corollary 4.5. 1. If (Ui)i are upward-closed languages with a decidable safety prob-
lem, then they are computable.
2. Equivalently, if(Vi)i are downward-closed languages with a decidable cosafety prob-
lem, then they are computable.

Proof. Ui ∩P = ∅ is equivalent toUi ⊆ (Σ∗
rP), a safety question. ⊓⊔

We now prove Theorem 4.3: The coblocker setsYR are downward-closed and have a
decidable cosafety problem (Coro. 4.2). Hence they are computable by Coro. 4.5.2.
Then Theorem 4.3 accounts for all the positive results on coblocker sets in Fig. 3.

5 Blocker sets are not computable

It is not possible to effectively compute the blocker setsXR from given u,v,R, even
thoughXR is known to be regular. This is shown with Lemma 5.1, our main negative
result (proved in Section 6):

Computing Blocker Sets for the Regular Post Embedding Problem 7

Lemma 5.1. Blockers_Cofiniteness is Σ0
1-hard andBlockers_Emptiness is Π0

1-hard.

With Lemma 5.1, we are in a position to prove all the undecidability results in Fig. 3:

Theorem 5.2. Blockers_Cofiniteness is Σ0
1-complete.

Proof (Sketch).Membership inΣ0
1 can be seen by writing the cofiniteness ofXR un-

der the form∃n ∈ N,Γ≥n ⊆ XR and relying on the decidability ofBlockers_Cosafety

(Coro. 4.2). ⊓⊔

Theorem 5.3. Blockers_Safety, Blockers_Emptiness andBlockers_Finiteness areΠ0
1-

complete.

Proof. TheΠ0
1-hardness ofBlockers_Emptiness (Lemma 5.1) also applies toBlockers_-

Finiteness (since the two problems coincide) andBlockers_Safety (a more general prob-
lem), see Remark 3.4.

For upper bounds, we observe thatBlockers_Safety (hence alsoBlockers_Empti-
ness) is in Π0

1 since it can be written under the form∀α ∈ Γ∗,(α ∈ S∨α 6∈ XR) (recall
thatα 6∈ XR is decidable). ⊓⊔

6 Lossy counter machines

Lossy counter machinesor, for short,LCM’s, were introduced by R. Mayr [17]. They
are a variant of Minsky counter machines (with zero-test, increments and decrements)
where counters arelossy, i.e., they may decrease non-deterministically. We only give a
streamlined presentation of LCM’s here and refer to [17, 18]for more details.

Let M = (Q,C,∆,qinit) be a Minsky counter machine with finite set of control states
Q∋ qinit , finite set of countersC, and finite set of transitions rules∆. Four counters are
sufficient for our purposes so we fixC = {c1,c2,c3,c4}. A configuration ofM is some

τ = (q,n1,n2,n3,n4) ∈ Conf(M)
def
= Q×N

4, with size, denoted|τ|, beingn1 +n2+n3+
n4. We (partially) orderConf(M) with

(q,n1,n2,n3,n4) ≤ (q′,n′1,n
′
2,n

′
3,n

′
4)

def
⇔ q = q′∧n1 ≤ n′1∧·· ·∧n4 ≤ n′4.

An initial stateqinit ∈ Q is fixed, and the initial configuration isτinit
def
= (qinit ,0,0,0,0).

Observe that the only way to haveτ ≤ τinit is with τ = τinit .
A transition ruleδ is a directed edge between states ofM, labeled by an operation

op∈ OP
def
= C×{++,--,=0?}, and denoted(q,op,q′). The rules in∆ give rise to two

different transition relations between configurations. First, stepsτ δ
−→ τ′ are defined in

the expected way. Formally, withδ = (q1,op,q2), there is a step(q,n1,n2,n3,n4)
δ
−→

(q′,n′1,n
′
2,n

′
3,n

′
4) if, and only if, the following three conditions are satisfied:

1. q1 = q andq2 = q′;
2. op is someck++ or ck-- or ck=0?, andn′i = ni for all i 6= k;
3. if op is ck++ thenn′k = nk + 1; if op is ck-- thenn′k = nk − 1; if op is ck=0? then
0 = nk = n′k.

8 P. Chambart and Ph. Schnoebelen

These so-calledperfect stepsdescribe the operational semantics ofM when its coun-
ters are not assumed to be lossy. Then a second operational semantics, with transitions

denotedτ δ
−→lossyτ′, is derived2 in the following way:

τ δ
−→lossyτ′ def

⇔ τ δ
−→ τ′′ for someτ′′ ≥ τ′. (3)

Theselossy stepsdescribe the behavior ofM when its counters are assumed to be lossy.
In the usual way, theδ superscript on transitions is omitted when irrelevant.Lossy runs,
denotedτ0

∗
−→lossyτn, are sequences of chained lossy stepsτ0 −→lossyτ1 −→lossy · · ·τn. We

write Reachlossy(M) for the set of configurations that can be reached via lossy runs of
M, starting fromτinit .

We rely on known undecidability results on LCM’s and use the following two prob-
lems:

LCM_Infinite: the question whetherReachlossy(M) is infinite, for a given LCMM;
LCM_Unbounded_Counter: the question whetherReachlossy(M) contains configura-

tions with arbitrarily large values for the first counterc1.

These two problems are a variant of one another, and they are easily seen to be inter-
reducible. The following theorem is from [17, 18]:

Theorem 6.1. LCM_Infinite andLCM_Unbounded_Counter are Π0
1-complete.

6.1 From lossy counters to Post-embedding

With a LCM M = (Q,C,∆,qinit) we associate aPEP instanceu,v : Σ∗ → Γ∗ that will
be used in three different reductions (with different constraint languagesR1,R2,R3 ⊆

Σ∗). HereΓ def
= Q∪C is used to encode the configurations ofM: a configurationτ =

(q,n1,n2,n3,n4) is encoded by the wordcn1
1 cn2

2 cn3
3 cn4

4 q, denoted⌈τ⌉. Observe that⌈τ⌉ ⊑
⌈τ′⌉ iff τ ≤ τ′.

We further letΣ def
= Γ∪∆∪OP∪Q∪C whereQ= {q | q∈Q} andC= {c1,c2,c3,c4}

are copies ofQ andC, with new symbols obtained by overlining the original symbols
from Q∪C. We define two morphismsu,v : Σ∗ → Γ∗ with

u((q,op,q′))
def
= q, v((q,op,q′))

def
= q′, u(ci)

def
= ci , v(ci)

def
= ci ,

u(ci++)
def
= ε, v(ci++)

def
= ci , u(ci--)

def
= ci , v(ci--)

def
= ε.

How u andv evaluate on the rest ofΣ will be defined later when it becomes relevant.
With every transition ruleδ = (q,op,q′) in ∆, we associate a languageRδ ⊆ Σ∗ given

via the following regular expressions:

Rδ
def
=

{
c1

∗ · · ·ck−1
∗ ·op·ck

∗ · · ·c4
∗ ·δ if op is ck++ or ck--,

c1
∗ · · ·ck−1

∗ ·ck+1
∗ · · ·c4

∗ ·δ if op is ck=0?.

2 Lossy steps could also be defineddirectly without deriving them from perfect steps, but the
indirect definition is very convenient as it permits reasoning simultaneously on both kinds of
steps for the same counter machine.

Computing Blocker Sets for the Regular Post Embedding Problem 9

These definitions ensure that, whenx∈ Rδ, ux andvx are the encodings of related con-
figurations. We let the reader check that the following more precise statement holds:

Lemma 6.2.
1. If x∈ Rδ, then ux = ⌈τ⌉ and vx = ⌈τ′⌉ for some configurationsτ,τ′ such thatτ δ

−→ τ′.
2. Reciprocally, ifτ δ

−→ τ′, then⌈τ⌉ = ux and⌈τ′⌉ = vx for some (unique) x∈ Rδ.

We further defineR∆
def
=

S

δ∈∆ Rδ andRM
def
= (R∆)∗: these languages are regular.

Lemma 6.3. Let α ∈ Γ∗. If ux.α ⊑ ⌈τinit⌉.vx for some x∈ RM, thenα ⊑ ⌈τ⌉ for some
τ ∈ Reachlossy(M).

Proof. We assumeα 6= ε andx 6= ε, otherwiseα ⊑ ⌈τinit⌉ trivially. Thusx∈RM must be
of the formx = x1 . . .xn with n > 0 andxi ∈ R∆ for all i = 1, . . . ,n. By Lemma 6.2,ux is
some⌈τ0⌉.⌈τ1⌉ . . .⌈τn−1⌉ andvx is some⌈τ′1⌉.⌈τ′2⌉ . . .⌈τ′n⌉ such that, for alli = 1, . . . ,n,
τi−1 −→ τ′i is a perfect step ofM.

We now use the assumption thatux.α ⊑ ⌈τinit⌉.vx. Sinceα 6= ε, ux embeds into
a strict prefix, denotedw, of ⌈τinit⌉.vx. Note thatux containsn > 0 symbols fromQ
and ends with one of them, whilew has at mostn (it is shorter than⌈τinit⌉.vx that has
n+1 symbols fromQ and ends with one of them). Hencew necessarily hasn symbols
from Q andux.α ⊑ ⌈τinit⌉.vx can be decomposed as⌈τi⌉ ⊑ ⌈τ′i⌉ (i.e., τi ≤ τ′i) for all
i = 1, . . . ,n− 1, with also⌈τ0⌉ ⊑ ⌈τinit⌉ (henceτ0 = τinit) andα ⊑ ⌈τ′n⌉. Combining
with τi−1 −→ τ′i we deduceτi−1 −→lossy τi for i = 1, . . . ,n− 1. Finally τinit = τ0 −→lossy

τ1 · · · −→lossyτn−1 −→ τ′n is a lossy run ofM, so thatτ′n ∈ Reachlossy(M). ⊓⊔

There is a converse to Lemma 6.3:

Lemma 6.4. If τ∈Reachlossy(M), there exists some x∈RM such that ux.⌈τ⌉⊑ ⌈τinit⌉.vx.

Proof. Sinceτ∈Reachlossy(M) there exists a lossy runτinit = τ0−→lossyτ1−→lossy· · ·τn =
τ. We show, by induction oni = 0,1, . . . ,n, thatuxi .⌈τi⌉ ⊑ ⌈τinit⌉.vxi for somexi ∈ RM.

The base case,i = 0, is dealt withx0 = ε sinceτ0 = τinit .
For the casei > 0, we know by ind. hyp. that there is somexi−1 ∈ RM with

uxi−1.⌈τi−1⌉ ⊑ ⌈τinit⌉.vxi−1. (4)

The lossy stepτi−1 −→lossyτi implies the existence of a perfect stepτi−1 −→ τ′ with τ′ ≥ τi

(Equation (3)). Thus⌈τi−1⌉ = uy and⌈τ′⌉ = vy for somey∈ R∆ (Lemma 6.2).
Fromτi ≤ τ′, we deduce

uy.⌈τi⌉ ⊑ ⌈τi−1⌉.vy. (5)

We now put together Equations (4) and (5). The Elimination Lemma yields

uxi−1.uy.⌈τi⌉ ⊑ ⌈τinit⌉.vxi−1.vy, (6)

so that settingxi
def
= xi−1.y concludes our proof. We observe thatxi ∈RM sincexi−1 ∈RM

andy∈ R∆. ⊓⊔

10 P. Chambart and Ph. Schnoebelen

6.2 ReducingLCM_Infinite and LCM_Unbounded_Counter to blockers problems

For the next step in the reduction, we extendu andv onQ∪C (= Γ) with

u(γ) def
= π1(γ) =

{
c1 if γ = c1,

ε if γ ∈ Γ r{c1},
v(γ) def

= γ for all γ ∈ Γ.

Whenα ∈ Γ∗, we shall writeπ1(α) rather thanuα to emphasize the fact thatu only re-
tains thec1 symbols ofα and erases the rest. Below, we rely on a few obvious properties
of this erasing morphism, such asπ1(α)⊑ α, or π1(αβ) = π1(βα), and in particular the
following:

Fact 6.5 For all β ∈ Γ∗ and x,y∈ Σ∗, x.c1.π1(β) ⊑ y.β implies x.c1 ⊑ y.

Finally, we letR1
def
= qinit .RM andR2

def
= R1.Γ∗. This provides two different reduc-

tions, with properties captured by Lemmas 6.6 and 6.8.

Lemma 6.6. Let α ∈ Γ∗. The following are equivalent:
(1) α 6∈ X′

R1
,

(2) there exists x∈ R1 such that ux.α ⊑ vx,
(3) there existsτ ∈ Reachlossy(M) such thatα ⊑ ⌈τ⌉.

Proof (Sketch).(1) ⇔ (2) by definition ofX′
R1

. Then, given the definitions ofR1, u and
v, Lemma 6.3 shows “(2)⇒ (3)” (note thatu(qinit) = ε andv(qinit) = qinit = ⌈τinit⌉).
Finally, Lemma 6.4 shows “(3)⇒ (2)”. ⊓⊔

In particular,X′
R1

is cofinite iff M does not satisfyLCM_Infinite.

Corollary 6.7. Blockers_Cofiniteness is Σ0
1-hard.

Lemma 6.8. Let α ∈ Γ∗. The following are equivalent:
(1) α 6∈ X′

R2
,

(2) there exists y∈ R2 such that uy.α ⊑ vy,
(3) there existsτ ∈ Reachlossy(M) such thatπ1(α) ⊑ π1(⌈τ⌉).

Proof. (1)⇔ (2) by definition ofX′
R2

.
(3)⇒ (2): Assumeπ1(α) ⊑ π1(⌈τ⌉) for someτ ∈ Reachlossy(M). Then,π1(α) ⊑ ⌈τ⌉ so
that, by Lemma 6.6, there exists somex∈ R1 with ux.π1(α) ⊑ vx. Appendingα to the

right yieldsux.π1(α).α = ux.uα.α ⊑ vx.α = vx.vα. Lettingy
def
= x.α (∈ R2) proves (2).

(2)⇒ (3): Assumeuy.α⊑ vy for somey∈R2 of the formx.β with x∈R1 andβ∈Γ∗. We
assumeπ1(α) 6= ε since otherwiseπ1(α) ⊑ π1(⌈τinit⌉) holds trivially. Fromuy.α ⊑ vy,
we deduce

ux.π1(α).π1(β) = ux.π1(β).π1(α) = uy.π1(α) ⊑ uy.α ⊑ vy = vx.vβ = vx.β.

From ux.π1(α).π1(β) ⊑ vx.β, one deducesux.π1(α) ⊑ vx (using Fact 6.5 and the as-
sumption thatπ1(α) 6= ε). Thus there exists aτ ∈ Reachlossy(M) with π1(α) ⊑ ⌈τ⌉
(Lemma 6.3), henceπ1(α) ⊑ π1(⌈τ⌉). ⊓⊔

Computing Blocker Sets for the Regular Post Embedding Problem 11

In other words,α 6∈ X′
R2

iff there is a reachable configuration where thec1 counter is
larger than, or equal to, the number ofc1 symbols inα. ThusX′

R2
= ∅ iff M satisfies

LCM_Unbounded_Counter.

Corollary 6.9. Blockers_Emptiness is Π0
1-hard.

As an aside, the reduction from LCM’s can be used to prove Theo. 6.11 below. The
regularity problem for Post-embedding languages is a natural question sinceSolR is not
always regular, and since comparisons with a regularSare possible:

Theorem 6.10 ([10]).The questions, for S⊆ Σ∗ a regular language, whether S⊆ SolR,
and whether SolR ⊆ S, are decidable.

Theorem 6.11. The question whether, for u,v : Σ∗ → Γ∗ and a regular R⊆ Σ∗, SolR is
a regular language, isΣ0

1-complete.

The proof forΣ0
1-hardness simply adapts our previous reduction, providingu, v andR

such thatSolR is regular iffReachlossy(M) is finite, then relying on Theo. 6.1.

7 Concluding remarks

The decidability ofPEPreg is the decidability of existential questions of the form

∃x∈ R : u(x) ⊑ v(x) (Q1)

for regularR’s. This result is fragile and does not extend easily. When onelooks for
solutions satisfying more expressive constraints, e.g., deterministic context-free, or also
Presburger-definable, the problem becomes undecidable [1]. In another direction, com-
bining two embeddings quickly raises undecidable questions, e.g., the following ques-
tions are undecidable [10, Theo. 4.1]:

∃x∈ Σ+ : (u1(x) ⊑ v1(x)∧u2(x) ⊑ v2(x)), (Q2)

∃x∈ Σ+ : (u1(x) ⊑ v1(x)∧u2(x) 6⊑ v2(x)). (Q3)

Remark that, by Theorem 6.10, the following universal question is decidable [10]:

∀x∈ R : u(x) ⊑ v(x). (Q4)

This suggests considering questions like

∀x∈ R∃x′ ∈ R′ : u(xx′) ⊑ v(xx′), (Q5)

∃x∈ R∀x′ ∈ R′ : u(xx′) ⊑ v(xx′). (Q6)

The undecidability of (Q5) is clear since alreadyBlockers_Emptiness is undecidable.
The (un?)decidability of (Q6) is still open. We believe blockers and coblockers may
play a useful role here. Indeed, by analogy with blockers, wemay define

AR
def
= {α | ∀x∈ R,α.u(x) ⊑ v(x)}, BR

def
= {β | ∀x∈ R,u(x) ⊑ β.v(x)}.

12 P. Chambart and Ph. Schnoebelen

Note that membership inAR (or in BR), being an instance of (Q5), is decidable. Fur-
thermore,BR is upward-closed andAR is finite (unlessR is empty). Now, the following
observation:

(
∃x∈ R∀x′ ∈ R′ : u(xx′) ⊑ v(xx′)

)
iff

(
(AR′ rYR)∪ (BR′ rXR) 6= ∅

)

provides a direct link between (Q6) and blocker-like languages. We leave this as a
suggestion for future investigations.

References

1. P. Chambart and Ph. Schnoebelen. Post embedding problem is notprimitive recursive, with
applications to channel systems. InProc. FST&TCS 2007, volume 4855 ofLecture Notes in
Computer Science, pages 265–276. Springer, 2007.

2. P. Chambart and Ph. Schnoebelen. Theω-Regular Post Embedding Problem. InProc. FOS-
SACS 2008, volume 4962 ofLecture Notes in Computer Science, pages 97–111. Springer,
2008.

3. P. Chambart and Ph. Schnoebelen. The ordinal recursive complexity of lossy channel sys-
tems. InProc. LICS 2008, pages 205–216. IEEE Comp. Soc. Press, 2008.

4. J. Ouaknine and J. Worrell. On the decidability and complexity of Metric Temporal Logic
over finite words.Logical Methods in Comp. Science, 3(1):1–27, 2007.

5. P. A. Abdulla, J. Deneux, J. Ouaknine, K. Quaas, and J. Worrell. Universality analysis for
one-clock timed automata.Fundamenta Informaticae, 89(4):419–450, 2008.

6. S. Lasota and I. Walukiewicz. Alternating timed automata.ACM Trans. Computational
Logic, 9(2), 2008.

7. T. Jurdzínski. Leftist grammars are nonprimitive recursive. InProc. ICALP 2008, volume
5126 ofLecture Notes in Computer Science, pages 51–62. Springer, 2008.

8. P. Chambart and Ph. Schnoebelen. Toward a compositional theoryof leftist grammars and
transformations. InProc. FOSSACS 2010, volume 6014 ofLecture Notes in Computer Sci-
ence, pages 237–251. Springer, 2010.

9. D. Gabelaia et al. Non-primitive recursive decidability of products ofmodal logics with
expanding domains.Annals of Pure and Applied Logic, 142(1–3):245–268, 2006.

10. P. Chambart and Ph. Schnoebelen. Pumping and counting on the Regular Post Embedding
Problem. InProc. ICALP 2010, Lecture Notes in Computer Science. Springer, 2010.

11. L. H. Haines. On free monoids partially ordered by embedding.J. Combinatorial Theory,
76:94–98, 1969.

12. J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of Computing
Systems, 30(4):383–422, 1997.

13. A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS,part I: Completions. In
Proc. STACS 2009, Leibniz International Proceedings in Informatics, pages 433–444, 2009.

14. P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using forward reacha-
bility analysis for verification of lossy channel systems.Formal Methods in System Design,
25(1):39–65, 2004.

15. J. van Leeuwen. Effective constructions in well-partially-orderedfree monoids.Discrete
Mathematics, 21(3):237–252, 1978.

16. J. Goubault-Larrecq. On a generalization of a result by Valk and Jantzen. Research Report
LSV-09-09, Laboratoire Spécification et Vérification, ENS Cachan, France, May 2009.

17. R. Mayr. Undecidable problems in unreliable computations.Theoretical Computer Science,
297(1–3):337–354, 2003.

18. Ph. Schnoebelen. Lossy counter machines: A survey. InProc. RP 2010, Lecture Notes in
Computer Science. Springer, 2010.

