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Abstract. The pairwise reachability problem for a multi-threaded pro-
gram asks, given control locations in two threads, whether they can be
simultaneously reached in an execution of the program. The problem is
important for static analysis and is used to detect statements that are
concurrently enabled. This problem is in general undecidable even when
data is abstracted and when the threads (with recursion) synchronize
only using a finite set of locks. Popular programming paradigms that
limit the lock usage patterns have been identified under which the pair-
wise reachability problem becomes decidable. In this paper, we consider
a new natural programming paradigm, called contextual locking, which
ties the lock usage to calling patterns in each thread: we assume that
locks are released in the same context that they were acquired and that
every lock acquired by a thread in a procedure call is released before the
procedure returns. Our main result is that the pairwise reachability prob-
lem is polynomial-time decidable for this new programming paradigm as
well.

1 Introduction

In static analysis of sequential programs [7], such as control-flow analysis, data-
flow analysis, points-to analysis, etc., the semantics of the program and the data
that it manipulates is abstracted, and the analysis concentrates on computing
fixed-points over a lattice using the control-flow in the program. For instance, in
flow-sensitive context-sensitive points-to analysis, a finite partition of the heap
locations is identified, and the analysis keeps track of the set of possibilities of
which variables point may point to each heap-location partition, propagating this
information using the control-flow graph of the program. In fact, several static
analysis questions can be formulated as reachability in a pushdown system that
captures the control-flow of the program (where the stack is required to model
recursion) [10].

In concurrent programs, abstracting control-flow is less obvious, due to the
various synchronization mechanisms used by threads to communicate and or-
chestrate their computations. One of the most basic questions is pairwise reach-
ability : given two control locations pc1 and pc2 in two threads of a concurrent
program, are these two locations simultaneously reachable? This problem is very
basic to static analysis, as many analysis techniques would, when processing pc1,
take into account the interference of concurrent statements, and hence would



like to know if a location like pc2 is concurrently reachable. Data-races can also
be formulated using pairwise reachability, as it amounts to asking whether a
read/write to a location (or an abstract heap region) is concurrently reachable
with a write to the same location (or region). More sophisticated verification
techniques like deductive verification can also utilize such an analysis. For in-
stance, in an Owicki-Gries style proof [8] of a concurrent program, the invariant
at pc1 must be proved to be stable with respect to concurrent moves by the
environment, and hence knowing whether pc2 is concurrently reachable will help
determine whether the statement at pc2 need be considered for stability.

Pairwise reachability of control locations is hence an important problem.
Given that individual threads may employ recursion, this problem can be mod-
eled as reachability of multiple pushdown systems that synchronize using the
synchronization constructs in the concurrent program, such as locks, barriers,
etc. However, it turns out that even when synchronization is limited to using
just locks, pairwise reachability is undecidable [9]. Consequently, recently, many
natural restrictions have been identified under which pairwise reachability is
decidable.

One restriction that yields a decidable pairwise reachability problem is nested
locking [5, 4]: if each thread performs only nested locking (i.e. locks are released
strictly in the reverse order in which they are acquired), then pairwise reachabil-
ity is known to be decidable [5]. The motivation for nested locking is that many
high-level locking constructs in programming languages naturally impose nested
locking. For instance the synchronize(o) { ...} statement in Java acquires
the lock associated with o, executes the body, and releases the lock, and hence
nested synchronized blocks naturally model nested locking behaviors. The use-
fulness of the pairwise reachability problem was demonstrated in [5] where the
above decision procedure for nested locking was used to find bugs in the Daisy
file system. Nested locking has been generalized to the paradigm of bounded lock
chaining for which pairwise reachability has also been proved to be decidable [2,
3].

In this paper, we study a different restriction on locking, called contextual
locking. A program satisfies contextual locking if each thread, in every context,
acquires new locks and releases all these locks before returning from the context.
Within the context, there is no requirement of how locks are acquired and re-
leased; in particular, the program can acquire and release locks in a non-nested
fashion or have unbounded lock chains.

The motivation for contextual locking comes from the fact that this is a very
natural restriction. First, note that it’s very natural for programmers to release
locks in the same context they were acquired; this makes the acquire and release
occur in the same syntactic code block, which is a very simple way of managing
lock acquisitions.

Secondly, contextual locking is very much encouraged by higher-level locking
constructs in programming languages. For example, consider the code fragment
of a method, in Java [6] shown in Figure 1. The above code takes the lock
associated with done followed later by a lock associated with object r. In order



public void m() {

synchronized(done) {

...

synchronized(r) {

...

while (done=0)

try {

done.wait();

}

...

}

Fig. 1. Synchronized blocks in Java

to proceed, it wants done to be equal to 1 (a signal from a concurrent thread,
say, that it has finished some activity), and hence the thread waits on done,
which releases the lock for done, allowing other threads to proceed. When some
other thread issues a notify, this thread wakes up, reacquires the lock for done,
and proceeds.

Notice that despite having synchronized blocks, the wait() statement causes
releases of locks in a non-nested fashion (as it exhibits the sequence acq lock done;
acq lock r; rel lock done; acq lock done; rel lock r; rel lock done). However, note
that the code above does satisfy contextual locking ; the locks m acquires are
all released before the exit, because of the synchronized-statements. Thus, we
believe that contextual locking is a natural restriction that is adhered to in many
programs.

The main result of this paper is that pairwise reachability is decidable under
the restriction of contextual locking. It is worth pointing out that this result
does not follow from the decidability results for nested locking or bounded lock
chains [5, 2]. Unlike nested locking and bounded lock chains, contextual lock-
ing imposes no restrictions on the locking patterns in the absence of recursive
function calls; thus, programs with contextual locking may not adhere to the
nested locking or bounded lock chains restrictions. Second, the decidability of
nested locking and bounded lock chains relies on a non-trivial observation that
the number of context switches needed to reach a pair of states is bounded by a
value that is independent of the size of the programs. However, such a result of
a bounded number of context switches does not seem to hold for programs with
contextual locking. Thus, the proof techniques used to establish decidability are
different as well.

We conclude this introduction with a brief outline of the proof ideas behind
our decidability result. We observe that if a pair of states is simultaneously
reachable by some execution, then they are also simultaneously reachable by
what we call a well-bracketed computation. A concurrent computation of two
threads is not well-bracketed, if in the computation one process, say P0, makes
a call which is followed by the other process (P1) making a call, but then P0



returns from its call before P1 does (but after P1 makes the call). We then
observe that every well-bracketed computation of a pair of recursive programs
can simulated by a single recursive program. Thus, decidability in polynomial
time follows from observations about reachability in pushdown systems [1].

The rest of the paper is organized as follows. Section 2 introduces the model
of concurrent pushdown systems communicating using locks and presents its
semantics. Our main decidability result is presented in Section 3. Conclusions
are presented in Section 4.

2 Model

Pushdown Systems. For static analysis, recursive programs are usually modeled
as pushdown systems. Since we are interested in modeling threads in concurrent
programs we will also need to model locks for communication between threads.
Formally,

Definition 1. Given a finite set Lcks, a pushdown system (PDS) P using Lcks
is a tuple (Q,Γ, qs, δ) where

– Q is a finite set of control states.
– Γ is a finite stack alphabet.
– qs is the initial state.
– δ = δint ∪ δcll ∪ δrtn ∪ δacq ∪ δrel is a finite set of transitions where
• δint ⊆ Q×Q.
• δcll ⊆ Q× (Q× Γ ).
• δrtn ⊆ (Q× Γ )×Q.
• δacq ⊆ Q× (Q× Lcks).
• δrel ⊆ (Q× Lcks)×Q.

For a PDS P, the semantics is defined as a transition system. The configuration
of a PDS P is the product of the set of control states Q and the stack which is
modeled as word over the stack alphabet Γ. For a thread P using Lcks, we have
to keep track of the locks being held by P. Thus the set of configurations of P
using Lcks is ConfP = Q× Γ ∗ × 2Lcks where 2Lcks is the powerset of Lcks.

Furthermore, the transition relation is no longer just a relation between con-
figurations but a binary relation on 2Lcks ×ConfP since the thread now executes
in an environment, namely, the free locks (i.e., locks not being held by any other
thread). Formally,

Definition 2. A PDS P = (Q,Γ, qs, δ) using Lcks gives a labeled transition
relation −→P⊆ (2Lcks × (Q × Γ ∗ × 2Lcks)) × Labels × (2Lcks × (Q × Γ ∗ × 2Lcks))
where Labels = {int, cll, rtn} ∪ {acq(l), rel(l) | l ∈ Lcks} and −→P is defined as
follows.

– fr : (q, w, hld)
int−→P fr : (q′, w, hld) if (q, q′) ∈ δint.

– fr : (q, w, hld)
cll−→P fr : (q′, wa, hld) if (q, (q′, a)) ∈ δcll.



– fr : (q, wa, hld)
rtn−→P fr : (q′, w, hld) if ((q, a), q′) ∈ δrtn.

– fr : (q, w, hld)
acq(l)−→ P fr \ {l} : (q′, w, hld ∪ {l}) if (q, (q′, l)) ∈ δacq and l ∈ fr.

– fr : (q, w, hld)
rel(l)−→P fr ∪ {l} : (q′, w, hld \ {l}) if ((q, l), q′) ∈ δrel and l ∈ hld.

2.1 Multi-pushdown systems

Concurrent programs are modeled as multi-pushdown systems. For our paper,
we assume that threads in a concurrent program communicate only through
locks which leads us to the following definition.

Definition 3. Given a finite set Lcks, a n-pushdown system (n-PDS) CP com-
municating via Lcks is a tuple (P1, . . . ,Pn) where each Pi is a PDS using Lcks.

Given a n-PDS CP, we will assume that the set of control states and the
stack symbols of the threads are mutually disjoint.

Definition 4. The semantics of a n-PDS CP = (P1, . . . ,Pn) communicating
via Lcks is given as a labeled transition system T = (S, s0,−→) where

– S is said to be the set of configurations of CP and is the set (Q1 × Γ ∗1 ×
2Lcks)× · · · × (Qn × Γ ∗n × 2Lcks) where Qi is the set of states of Pi and Γi is
the stack alphabet of Pi.

– s0 is the initial configuration and is ((qs1, ε, ∅), · · · , (qsm, ε, ∅)) where qsi is
the initial state of Pi.

– The set of labels on the transitions is Labels × {1, . . . , n} where Labels =

{int, cll, rtn} ∪ {acq(l), rel(l) | l ∈ Lcks}. The labeled transition relation
(λ,i)−→

is defined as follows

((q1, w1, hld1), · · · (qn, wn, hldn))
(λ,i)−→ ((q′1, w

′
1, hld

′
1), · · · (q′n, w′n, hld

′
n))

iff

Lcks \ ∪1≤r≤nhldr : (qi, wi, hldi)
λ−→Pi Lcks \ ∪1≤r≤nhld

′
r : (q′i, w

′
i, hld

′
i)

and for all j 6= i, qj = q′j , wj = w′j and hldj = hld′j.

Notation: Given a configuration s = ((q1, w1, hld1), · · · , (qn, wn, hldn)) of a
n-PDS CP, we say that Confi(s) = (qi, wi, hldi),CntrlSti(s) = qi,Stcki(s) =
wi, LckSti(s) = hldi and StHti(s) = |wi|, the length of wi.

Computations. A computation of the n-PDS CP, Comp, is a sequence s0
(λ1,i1)−→

· · · (λm,im)−→ sm such that s0 is the initial configuration of CP. The label of the com-
putation Comp, denoted Label(Comp), is said to be the word (λ1, i1) · · · (λm, im).

The transition sj
(cll,i)−→ sj+1 is said to be a procedure call by thread i. Similarly, we

can define procedure return, internal action, acquisition of lock l and release of

lock l by thread i. A procedure return sj
(rtn,i)−→ sj+1 is said to match a procedure

call s`
(cll,i)−→ s`+1 iff ` < j, StHti(s`) = StHti(sj+1) and for all ` + 1 ≤ p ≤ j,

StHti(s`+1) ≤ StHti(sp).



Example 1. Consider the two-threaded program showed in Figure 2. For sake of
convenience, we only show the relevant actions of the programs. Figure 3 shows
computations whose labels are as follows:

Label(Comp1) = (cll, 0)(acq(l1), 0)(cll, 1)(acq(l2), 0)(rel(l1), 0)(acq(l1), 1)
(rel(l2), 0)(rtn, 0)(rel(l1), 1)(rtn, 1)

and

Label(Comp2) = (cll, 0)(acq(l1), 0)(cll, 1)(acq(l2), 0)(rel(l1), 0)(acq(l1), 1)
(rel(l1), 1)(rtn, 1)(rel(l2), 0)(rtn, 0).

respectively.

int a(){

acq l1;

acq l2;

if (..) then{

....

rel l2;

....

rel l1;

};

else{

.....

rel l1

.....

rel l2

};

return i;

};

public void P0() {

n=a();

}

int b(){

acq l1;

rel l1;

return j;

};

public void P1() {

l=a();

}

Fig. 2. A 2-threaded programs with threads P0 and P1

2.2 Contextual locking

In this paper, we are considering the pairwise reachability problem when the
threads follow the discipline of contextual locking. Informally, this means that –

– every lock acquired by a thread in a procedure call must be released before
the corresponding return is executed, and

– the locks held by a thread just before a procedure call is executed are not
released during the execution of the procedure.



s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Comp1

Comp2

cll acq(l1) cll acq(l2) rel(l1) acq(l1) rel(l2) rtn rel(l1) rtn

cll acq(l1) cll acq(l2) rel(l1) acq(l1) rel(l1) rtn rel(l2) rtn

Fig. 3. Computations Comp1 and Comp2. Transitions of P0 are shown as solid edges
while transition of P1 are shown as dashed edges; hence the process ids are dropped
from the label of transitions. Matching calls and returns are shown with dotted edges.

Formally,

Definition 5. A thread i in a n-PDS CP = (P1, . . . ,Pn) is said to follow con-

textual locking if whenever s`
(cll,i)−→ s`+1 and sj

(rtn,i)−→ sj+1 are matching procedure

call and return along a computation s0
(λ1,i)−→ s1 · · ·

(λm,i)−→ sm, we have that

LckSti(s`) = LckSti(sj) and for all ` ≤ r ≤ j. LckSti(s`) ⊆ LckSti(sr).

Example 2. Consider the 2-threaded program shown in Figure 2. Both the threads
P0 and P1 follow contextual locking. The program P2 in Figure 4 does not follow
contextual locking.

int a(){

acq l1;

rel l2;

return i;

};

public void P2(){

acq l2;

n=a();

rel l1;

}

Fig. 4. A program that does not follow contextual locking.



Example 3. Consider the 2-threaded program in Figure 5. The two threads P3
and P4 follow contextual locking as there is no recursion! However, the two
threads do not follow either the discipline of nested locking [5] or of bounded
lock chaining [2]. Hence, algorithms of [5, 2] cannot be used to decide the pairwise
reachability question for this program. Notice that the computations of this pair
of threads require an unbounded number of context switches as the two threads
proceed in lock-step fashion. The locking pattern exhibited by these threads can
present in any program with contextual locking as long as this pattern is within
a single calling context (and not across calling contexts). Such locking patterns
when used in a non-contextual fashion form the crux of undecidability proofs for
multi-threaded programs synchronizing with locks [5].

public void P3(){

acq l1;

while (true){

acq l2;

rel l1;

acq l3;

rel l2;

acq l1;

rel l3;

}

}

public void P4(){

acq l3;

while (true){

acq l1;

rel l3;

acq l2;

rel l1;

acq l3;

rel l2;

}

}

Fig. 5. A 2-threaded program with unbounded lock chains

3 Pairwise reachability

The pairwise reachability problem for a multi-threaded program asks whether
two given states in two threads can be simultaneously reached in an execution
of the program. Formally,

Given a n-PDS CP = (P1, . . . ,Pn) communicating via Lcks, indices 1 ≤ i, j ≤ n
with i 6= j, and control states qi and qj of threads Pi and Pj respectively, let
Reach(CP, qi, qj) denote the predicate that there is a computation s0 −→
· · · −→ sm of CP such that CntrlSti(sm) = qi and CntrlStj(sm) = qj . The
pairwise control state reachability problem asks if Reach(CP, qi, qj) is true.

The pairwise reachability problem for multi-threaded programs communicating
via locks was first studied in [9], where it was shown to be undecidable. Later,
Kahlon et. al. [5] showed that when the locking pattern is restricted the pairwise
reachability problem is decidable. In this paper, we will show that the problem is
decidable for multi-threaded programs in which each thread follows contextual
locking. Before we show this result, note that it suffices to consider programs
with only two threads [5].



Proposition 1. Given a n-PDS CP = (P1, . . . ,Pn) communicating via Lcks, in-
dices 1 ≤ i, j ≤ n with i 6= j and control states qi and qj of Pi and Pj respectively,
let CPi,j be the 2-PDS (Pi,Pj) communicating via Lcks. Then Reach(CP, qi, qj)
iff Reach(CPi,j , qi, qj).

Thus, for the rest of the section, we will only consider 2-PDS.

3.1 Well-bracketed computations

The key concept in the proof of decidability is the concept of well-bracketed
computations, defined below.

Definition 6. Let CP = (P0,P1) be a 2-PDS via Lcks and let Comp = s0
(λ1,i1)−→

· · · (λm,im)−→ sm be a computation of CP. Comp is said to be non-well-bracketed if
there exist 0 ≤ `1 < `2 < `3 < m and i ∈ {0, 1} such that

– s`1
(cll,i)−→ s`1+1 and s`3

(retn,i)−→ s`3+1 are matching call and returns of Pi, and

– s`2
(cll,i)−→ s`2+1 is a procedure call of thread P1−i whose matching return either

occurs after `3 + 1 or does not occur at all.

Furthermore, the triple (`1, `2, `3) is said to be a witness of non-well-bracketing
of Comp.

Comp is said to be well-bracketed if it is not non-well-bracketed.

Example 4. Recall the 2-threaded program from Example 1 shown in Figure 2.
The computation Comp1 (see Figure 3) is non-well-bracketed, while the com-
putation Comp2 (see Figure 3) is well-bracketed. On the other hand, all the
computations of the 2-threaded program in Example 3 (see Figure 5) are well-
bracketed as the two threads are non-recursive.

The importance of well-bracketing for contextual locking is that if there is a
computation that simultaneously reaches control states p ∈ P0 and q ∈ P1 then
there is a well-bracketed computation that simultaneously reaches p and q.

Lemma 1. Let CP = (P0,P1) be a 2-PDS communicating via Lcks such that
each thread follows contextual locking. Given control states p ∈ P0 and q ∈ P1,
we have that Reach(CP, p, q) iff there is a well-bracketed computation swb0 −→
· · · −→ swbr of CP such that CntrlSt0(swbr ) = p and CntrlSt1(swbr ) = q.

Proof. Let Compnwb = s0
(λ1,i1)−→ · · · (λm,im)−→ sm be a non-well-bracketed com-

putation that simultaneously reaches p and q. Let `mn be smallest `1 such that
there is a witness (`1, `2, `3) of non-well-bracketing of Compnwb. Observe now
that it suffices to show that there is another computation Compmod of the same
length as Compnwb that simultaneously reaches p and q and

– either Compmod is well-bracketed,



– or if Compmod is non-well-bracketed, then for each witness (`′1, `
′
2, `
′
3) of non-

well-bracketing of Compmod, it must be the case `′1 > `mn.

We show how to construct Compmod.Observe first that any witness (`mn, `2, `3)
of non-well-bracketing of Compnwb must necessarily agree in the third compo-
nent `3. Let `rt denote this component. Let `sm be the smallest `2 such that
(`mn, `2, `rt) is a witness of non-well-bracketing of Compmod. Thus, the transition
s`mn −→ s`mn+1 and s`rt −→ s`rt+1 are matching procedure call and return of
some thread Pr while the transition s`sm −→ s`sm+1 is a procedure call of c′ by
thread P1−r whose return happens only after `rt. Without loss of generality, we
can assume that r = 0.

Let u, (cll, 0), v1, (cll, 1), v2, (rtn, 0) and w be such that Label(Compnwb) =
u(cll, 0)v1(cll, 1)v2(rtn, 0)w. and length of u is `mn + 1, of u(cll, 0)v1 is `sm + 1.
and of u(cll, 0)v1(cll, 1)v2 is `rt + 1. Thus, (cll, 0) and (rtn, 0) are matching call
and return of thread P0 and (cll, 1) is a call of the thread P1 whose return does
not happen in v2.

We construct Compmod as follows. Intuitively, Compmod is obtained by “rear-
ranging” the sequence Label(Compnwb) = u(cll, 0)v1(cll, 1)v2(rtn, 0)w as follows.
Let v2|0 and v2|1 denote all the “actions” of thread P0 and P1 respectively
in v2. Then Compmod is obtained by rearranging u(cll, 0)v1(cll, 1)v2(rtn, 0)w to
u(cll, 0)v1(v2|0)(rtn, 0)(cll, 1)(v2|1)w. This is shown in Figure 6.

s0 · · · s`mn s`mn+1 · · · s`sm s`sm+1 s`rt s`rt+1

u v1 v2

Compnwb

s0 · · · s`mn s`mn+1 · · · s′r s′r+1 s′r+2
u v1 v2|0 v2|1

Compmod

cll cll rtn

cll rtn cll

Fig. 6. Computations Compnwb and Compmod. Transitions of P0 are shown as solid
edges and transitions of P1 are shown as dashed edges; hence process ids are dropped
from the label of transitions. Matching calls and returns are shown with dotted edges.
Observe that all calls of P1 in v1 have matching returns within v1.

The fact that if Compmod is non-well-bracketed, then there is no witness
(`′1, `

′
2, `
′
3) of non-well-bracketing with `′1 ≤ `mn will follow from the following

observations on Label(Compnwb).



† v1 cannot contain any returns of P1 which have a matching call that occurs
in u (by construction of `mn).

†† All calls of P1 in v1 must return either in v1 or after c′ is returned. But the
latter is not possible (by construction of `sm). Thus, all calls of P1 in v1 must
return in v1.

Formally, Compmod is constructed as follows. We fix some notation. For
each 0 ≤ j ≤ m, let Confj0 = Conf0(sj) and Confj1 = Conf1(sj). Thus sj =

(Confj0,Conf
j
1).

1. The first `sm + 1 transitions of Compmod are the same as Compnwb, i.e.,
initially Compmod = s0 −→ · · · −→ s`sm .

2. Consider the sequence of transitions s`sm
(λsm+1,ism+1)−→ · · · (λrt+1,irt+1)−→ s`rt+1

in
Comp. Let k be the number of transitions of P0 in this sequence and let

`sm ≤ j1 < · · · < jk ≤ `rt be the indices such that sjn
(λjn+1,0)−→ sjn+1. Note

that it must be the case that for each 1 ≤ n ≤ k

Conf`sm0 = Confj10 , Conf
jn+1
0 = Conf

jn+1

0 and Confjk+1
0 = Confrt+1

0 .

For 1 ≤ n ≤ k, let

s′`sm+n = (Confjn+1
0 ,Conf`sm1 ).

Observe now that, thanks to contextual locking, the set of locks held by P1

in Conf`sm1 is a subset of the locks held by P1 in Conf
`jn+1

1 for each 1 ≤ n ≤ k.
Thus we can extend Compmod by applying the k transitions of P0 used to
obtain sjn −→ sjn+1 in Compnwb. In other words, Compmod is now

s0 −→ · · · −→ s`sm
(λj1+1,0)−→ s′`sm+1 · · ·

(λjk+1,0)−→ s′`sm+k.

Note that s′`sm+k = (Confrt+1
0 ,Conf`sm1 ). Thus the set of locks held by P0 in

s′`sm+k is exactly the set of locks held by P0 at Conf`mn
0 .

3. Consider the sequence of transitions s`sm
(λsm+1,ism+1)−→ · · · (λrt+1,irt+1)−→ s`rt+1

in
Comp. Let t be the number of transitions of P1 in this sequence and let

`sm ≤ j1 < · · · < jt ≤ `rt be the indices such that sjn
(λjn+1,1)−→ sjn+1. Note

that it must be the case that for each 1 ≤ n ≤ t,

Confj11 = Conf`sm1 , Confjn+1
1 = Conf

jn+1

1 and Confjt+1
1 = Confrt+1

1 .

For 1 ≤ n ≤ t, let

s′`sm+k+n = (Confrt+1
0 ,Confjn+1

1 ).

Observe now that, thanks to contextual locking, the set of locks held by P0

in Conf`rt+1
0 is exactly the set of locks held by P0 at Conf`mn

0 and the latter

is a subset of the locks held by P0 in Conf
`jn+1

1 for each 1 ≤ n ≤ t. Thus



we can extend Compmod by applying the t transitions of P1 used to obtain
sjn −→ sjn+1 in Compnwb. In other words, Compmod is now

s0 −→ · · · −→ s′`sm+k
(λj1+1,1)−→ s′`sm+k+1 · · ·

(λjt+1,1)−→ s′`sm+k+t.

Observe now that the extended Compmod is a sequence of rt + 1 transitions

and that the final configuration of Compmod, s
′
`sm+k

(λj1+1,1)
= (Confrt+1

0 ,Confrt+1
1 )

is exactly the configuration srt+1.
4. Thus, now we can extend Compmod as

s0 −→ · · · −→ s′`sm+k+t = srt+1
(λrt+2,irt+2)−→ · · · (λm,im)−→ sm.

Clearly Compmod has the same length as Compnwb and simultaneously reaches
p and q.

The lemma follows. ut

3.2 Algorithm for deciding the pairwise reachability

We are ready to show that the problem of checking pairwise reachability is
decidable.

Theorem 1. There is an algorithm that given a 2-threaded program CP =
(P0,P1) communicating via Lcks and control states p and q of P0 and P1 respec-
tively decides if Reach(P, p, q) is true or not. Furthermore, if m and n are the
sizes of the programs P0 and P1 and ` the number of elements of Lcks, then this
algorithm has a running time of 2O(`)O((mn)3).

Proof. The main idea behind the algorithm is to construct a single PDS Pcomb =
(Q,Γ, qs, δ) which simulates all the well-bracketed computations of CP. Pcomb
simulates a well-bracketed computation as follows. The set of control states of
Pcomb is the product of control states of P0 and P1. The single stack of Pcomb
keeps track of the stacks of P0 and P1: it is the sequence of those calls of the well-
bracketed computation which have not been returned. Furthermore, if the stack
of Pcomb is w then the stack of P0 is the projection of w onto the stack symbols
of P0 and the stack of P1 is the projection of w onto the stack symbols of P1.
Thus, the top of the stack is the most recent unreturned call and if it belongs to
Pi, well-bracketing ensures that no previous unreturned call is returned without
returning this call.

Formally, Pcomb = (Q,Γ, qs, δ) is defined as follows. Let P0 = (Q0, Γ0, qs0, δ0)
and P1 = (Q1, Γ1, qs1, δ1). Without loss of generality, assume that Q0 ∩Q1 = ∅
and Γ0 ∩ Γ1 = ∅.

– The set of states Q is (Q0 × 2Lcks)× (Q1 × 2Lcks).
– Γ = Γ0 ∪ Γ1.
– qs = ((qs0, ∅), (qs1, ∅)).



– δ consists of three sets δint, δcll and δrtn which simulate the internal actions,
procedure calls, and returns and lock acquisitions and releases of the threads
as follows. We explain here only the simulation of actions of P0 (the simula-
tion of actions of P1 is similar).
• Internal actions. If (q0, q

′
0) is an internal action of P0, then for each

hld0, hld1 ∈ 2Lcks and q1 ∈ Q1

(((q0, hld0), (q1, hld1)), ((q′0, hld0), (q1, hld1))) ∈ δint.

• Lock acquisitions. Lock acquisitions are also modeled by δint. If (q0, (q
′
0, l))

is a lock acquisition action of thread P0, then for each hld0, hld1 ∈ 2Lcks

and q1 ∈ Q1,

(((q0, hld0), (q1, hld1)), ((q′0, hld0∪{l}), (q1, hld1))) ∈ δint if l /∈ hld0∪hld1.

• Lock releases. Lock releases are also modeled by δint. If ((q0, l), q
′
0) is

a lock release action of thread P0, then for each hld0, hld1 ∈ 2Lcks and
q1 ∈ Q1,

(((q0, hld0), (q1, hld1)), ((q′0, hld0 \ {l}), (q1, hld1))) ∈ δint if l ∈ hld0.

• Procedure Calls. Procedure calls are modeled by δcll. If (q0, (q
′
0, a)) is a

procedure call of thread P0 then hld0, hld1 ∈ 2Lcks and q1 ∈ Q1,

(((q0, hld0), (q1, hld1)), (((q′0, hld0), (q1, hld1)), a)) ∈ δcll.

• Procedure Returns. Procedure returns are modeled by δrtn. If (q0, (q
′
0, a))

is a procedure call of thread P0 then hld0, hld1 ∈ 2Lcks and q1 ∈ Q1,

((((q0, hld0), (q1, hld1)), a), ((q′0, hld0), (q1, hld1))) ∈ δrtn.

It is easy to see that (p, q) is reachable in CP by a well-bracketed computation
iff there is a computation of Pcomb which reaches ((p, hld0), (q, hld1)) for some
hld0, hld1 ∈ 2Lcks. The complexity of the results follows from the observations
in [1] and the size of Pcomb. ut

4 Conclusions

The paper investigates the problem of pairwise reachability of multi-threaded
programs communicating using only locks. We identified a new restriction on
locking patterns, called contextual locking, which requires threads to release
locks in the same calling context in which they were acquired. Contextual locking
appears to be a natural restriction adhered to by many programs in practice. The
main result of the paper is that the problem of pairwise reachability is decidable
in polynomial time for programs in which the locking scheme is contextual.
Therefore, in addition to being a natural restriction to follow, contextual locking
may also be more amenable to practical analysis. We observe that these results



do not follow from results in [5, 4, 2, 3] as there are programs with contextual
locking that do not adhere to the nested locking principle or the bounded lock
chaining principle. The proof principles underlying the decidability results are
also different. Our results can also be mildly extended to handling programs
that release locks a bounded stack-depth away from when they were acquired
(for example, to handle procedures that call a function that acquires a lock, and
calls another to release it before it returns).

There are a few open problems immediately motivated by the results in this
paper. First, decidability of model checking with respect to fragments of LTL
under the contextual locking restriction remains open. Next, while our paper
establishes the decidability of pairwise reachability, it is open if the problem of
checking if 3 (or more) threads simultaneously reach given local states is decid-
able for programs with contextual locking. Finally, from a practical standpoint,
one would like to develop analysis algorithms that avoid to construct the cross-
product of the two programs to check pairwise reachability.

For a more complete account for multi-threaded programs, other synchro-
nization primitives such as thread creation and barriers should be taken into ac-
count. Combining lock-based approaches such as ours with techniques for other
primitives is left to future investigation.
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