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Abstract Since the 1980s, two approaches have been developed for analyzing security

protocols. One of the approaches relies on a computational model that considers issues

of complexity and probability. This approach captures a strong notion of security, guar-

anteed against all probabilistic polynomial-time attacks. The other approach relies on

a symbolic model of protocol executions in which cryptographic primitives are treated

as black boxes. Since the seminal work of Dolev and Yao, it has been realized that this

latter approach enables significantly simpler and often automated proofs. However, the

guarantees that it offers with respect to the more detailed computational models have

been quite unclear.

For more than twenty years the two approaches have coexisted but evolved mostly

independently. Recently, significant research efforts attempt to develop paradigms for

cryptographic systems analysis that combines the best of both worlds. There are two

broad directions that have been followed. Computational soundness aims to establish

sufficient conditions under which results obtained using symbolic models imply security

under computational models. The direct approach aims to apply the principles and the

techniques developed in the context of symbolic models directly to computational ones.

In this paper we survey existing results along both of these directions. Our goal is to

provide a rather complete summary that could act as a quick reference for researchers

who want to contribute to the field, want to make use of existing results, or just want

to get a better picture of what results already exist.
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1 Introduction

Background. Security protocols are short distributed programs designed to achieve

various security goals, such as data privacy and data authenticity, even when the com-

munication between parties takes place over channels controlled by an attacker. Their

ubiquitous presence in many important applications makes designing and establishing

the security of cryptographic protocols a very important research goal. Two distinct

approaches that have evolved starting with the early 1980’s attempt to ground security

analysis of protocols on firm, rigorous mathematical foundations. These two approaches

are known as the computational (or the cryptographic) approach and the symbolic (or

the Dolev-Yao, or the formal methods) approach. Each approach relies on mathematical

models for the executions of protocols/primitives in adversarial environments, formally

define security properties expected from cryptographic systems, and develop methods

for rigorously proving that given constructions meet these requirements.

The central features of the computational approach are detailed, bit-level models for

system executions and a powerful adversary: security is assessed against arbitrary prob-

abilistic polynomial time machines. It is generally acknowledged that security proofs

in this model offer powerful security guarantees. A serious downside of this approach

however is that proofs for even moderately-sized protocols are usually long, difficult,

tedious, and highly error prone.

In contrast, symbolic methods employ a highly abstract view of the execution

where the messages exchanged by parties are symbolic terms. Furthermore, primitives

are assumed absolutely secure, which in turn leads to severe restrictions on the power

of the adversary. For instance, it is postulated the plaintext underlying a ciphertext

can only be recovered if the adversary has or can derive the appropriate decryption

key. The resulting models are considerably simpler than those of the computational

approach, proofs are therefore also simpler, and can sometimes benefit from machine

support. An important problem with this approach is that the high level of abstraction

renders unclear the security guarantees that this approach offers.

A recent synergy. Due perhaps to the widely different set of tools and techniques,

the two approaches have coexisted and developed independently for many years. The

lack of interaction between the two communities also meant that the relation between

models, security results and guarantees using the two approaches was only superficially

understood. Abadi and Rogaway were the first to demonstrate that establishing close

relations between the models is not only possible, but also that it holds significant

promise. Through their work it became clear that it is possible to employ the tools and

methods specific to the symbolic approach to directly obtain computational security

guarantees. The crucial implication is that such guarantees can be obtained without

making use of the typical computational proofs. This realization motivated a significant

amount of follow-up work. We now know of several different approaches that leverage on

technologies specific to the symbolic approach to simplify, avoid, or simply improve the

rigorousness of computational proofs. The aim of this paper is to survey the plethora

of papers that tackle this problem and briefly summarize their contribution. We hope

that this survey will help researchers working in this field to get a better picture of all

the different results. In addition, this survey should act as a fast reference for those

researchers who want to enter the field or want to make use of existing results.
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This survey. Existing results that span the gap between computational and symbolic

security fall along two general directions. The first approach is known as the “compu-

tational soundness” approach. Here, the idea is to show that under certain conditions

symbolic models are sound abstractions of cryptographic models, w.r.t. certain security

properties. The second direction is called the “direct approach”. In this line of research

symbolic methods are applied directly to computational models. Although we survey

both of these directions, we place more emphasis on computational soundness. This

line of research is the ”older” of the two, and had received significantly more attention.

Next we describe the structure of our paper.

Computational soundness. Research on computational soundness was initiated by

Abadi and Rogaway [AR00]. They considered the case of a passive adversary that

eavesdrops on communication between honest parties. The basic question that they

answer is under which conditions messages that are equivalent symbolically are also

equivalent computationally. The setting they consider only uses symmetric encryption.

Follow-up work treats variations of this questions with respect to different notions of

symbolic equivalence, different sets of primitives, slightly more powerful adversaries,

and within the context of particular applications. We describe the results for the passive

adversary case in Section 2.

In Section 3 we survey results on computational soundness in the presence of active

adversaries. These are adversaries who have absolute control over the communication

network, and who may actively interfere with the execution of the protocol. There

are two main approaches and a few variations and generalizations that we discuss. All

of these are based on faithfulness results that show deep connections between com-

putational and symbolic executions of protocols: essentially, assuming appropriately

strong secure implementations, the actions of a computational adversary do not go

beyond those of a symbolic one. One set of results that we describe in Section 3.1

and Section 3.2 are based on so-called trace mapping lemmas. Such lemmas state that

each computational execution trace is the image of a symbolic execution. Using trace

mapping, certain security properties proved using symbolic models find immediate

translation in computational ones. A recent result described in Section 3.3 goes even

further: not only traces can be transferred but it is shown that whenever two sym-

bolic processes are observationally equivalent then the corresponding computational

processes are computationally indistinguishable. This extends the scope of such results

to an even larger set of security properties.

A second important direction uses the concept of simulatability. Roughly speaking,

in such settings security is defined by relating a real system with an idealized version of

the same system. The idea is to show that for any attack against the real system there

exists an analogous attack against the idealized one. Since the ideal system is secure by

construction it follows that no attack is possible against the real system. The desired

connection between symbolic and computational models can therefore be obtained by

showing a simulatability relation between an idealized, symbolic cryptographic system

and a real, cryptographic implementation of such a system. In Section 3.4 we give some

background regarding the general notion of simulatability. Then, in Section 3.5, we

describe how simulatability had been applied in the context of a cryptographic library.

In the same section we describe various applications of the simulatable cryptographic

library.

The direct approach. In the remaining sections we describe a different direction

for getting “the best of both worlds”. These approaches aim at applying symbolic
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techniques directly to obtain computational security guarantees, without making use

of abstract models.

One direction that we describe in Section 4 is to design logics with semantics given

in terms of computational models. Proofs can then be carried out using well-designed

proof rules which are shown to be computationally sound. Such a logic is obviously

not complete and there might be security properties which hold but cannot be proven

using the axioms of the logic. Nevertheless, the proof rules turn out to be powerful

enough to allow proofs of a large range of properties and protocols. In the same section

we describe work on a type system which ensures computational security. Then, in

Section 5 we discuss a second technique which consists in introducing symbolic calculi

that can be (provably) securely implemented at the cryptographic level. These symbolic

calculi do not make explicit use of cryptography but provide high-level constructs

such as confidential and authentic channels which are implemented using a secure

cryptographic protocol. Finally, in Section 6 we discuss work using proof assistants

for cryptographic proofs. We describe work that relies on the general purpose proof

assistant Coq which mainly checks the correctness of the proof as well as work on the

special purpose tool CryptoVerif which moreover achieves a high level of automation.

Concluding remarks can be found in Section 7.

The survey is summarized in Table 1. This table gives a convenient overview of the

paper with references to the results that are included in this survey.
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Security proof in symbolic models implies proof in computational ones

Passive adversary Active adversary

Soundness of pattern equivalence

– Symmetric encryption [AR00]
– Completeness result [MW02,MW04a,

HG03]
– Public key encryption [Her03,Her05]
– Symmetric encryption with composed

keys [LC04]
– Handling key cycles [Lau02,ABHS05]
– Key dependent message [BHHO08]
– Information-theoretic security [ABS05]
– Hash functions [GvR06] and complete-

ness [GvR08]
– Modular exponentiation [BLMW07] and

bilinear pairings [Maz07,KM09]
– Offline guessing attacks [AW05a]
– Cryptographically controlled access to

XML [AW05b,AW08]
– Adaptive adversary [MP05]

Soundness of static equivalence

– Framework and application to ciphers,
lists and, xor [BCK05,BCK09]

– Offline guessing attacks [ABW06]
– Formal indistinguishability rela-

tions [BMS06]
– Adaptive adversary [KM07]

Soundness of secure information flow

– static analysis; symmetric encryp-
tion [Lau01,Lau03]

– type system; symmetric encryp-
tion [LV05,SA06,CEL07]

– cryptographically masked flows [Lau08]

Soundness of trace-based properties

– Public key encryption [MW04b]
– with signatures [CW05,JLM05]
– with hash functions [CKKW06,JLM06]
– Non-malleable commitment [GGvR08]
– Zero-knowledge proofs [BU08]

Soundness of indistinguishability-

based properties

– Nonce indistinguishability for public key
encryption and signatures [CW05]

– Nonce indistinguishability for public key
encryption and hash [JLM05,CKKW06]

– Soundness of observational equivalence
for symmetric encryption [CLC08]

A universally composable crypto-

graphic library

– Public key encryption and signa-
tures [BPW03a]

– MACs [BPW03b]
– Symmetric encryption [BP04b]
– Nonce indistinguishability [BP05b]
– Impossibility results for XOR [BP05a]

and hash functions [BPW06]
– Key dependent message secu-

rity [BPS08]
– Case studies of protocols [BP03,

BP04a,Bac04,BP06a,BD05,BMP+06,
BCJ+06]

– Towards automated proofs [Lau05,
BL06,SBB+06,SB08a,SB08b,CH06]

Computational security proof using formal methods

Computationally sound proof systems
Protocol Composition Logic

– Public key encryption [DDM+05]
– Key usability [DDMW06]
– Indistinguishability and key usabil-

ity [RDDM07,RDM08]
– Diffie-Hellman exponentiation [GS05,

GS06]

Static analysis

– Symmetric encryption [Lau04]
– with signatures [LT05]

Automated computational proofs
CryptoVerif

– Secrecy properties [Bla06,Bla07b]
– Correspondence assertions [Bla07a]
– Case study of Kerberos [BJST08]

Security of the primitives

– Formalization the random oracle
model in Coq [BCT04]

– Asymmetric encryption
schemes [CDCEL08]

Computationally sound implementations of high level languages

– Process calculus with signatures [AF06]
– Process calculus with secure channels [ACF06]
– Language with information flow policies [FR08]

Table 1 Summary of the results of symbolic methods for computational security proofs.
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2 Computational soundness: the passive adversary case

The most basic setting for computational soundness is that of passive adversaries who

can only observe the network traffic but cannot interfere with the execution of the

protocol. This is the setting considered in seminal result of Abadi and Rogaway who

were the first to show that links between symbolic and computational models can be

established [AR00,AR02]. We give the details of their work in Section 2.1 and survey

the many extensions that followed in Section 2.2. We also discuss results regarding

a slightly more powerfull adaptive adversary who is allowed to adaptively choose the

sequence of symbolic terms.

2.1 The Abadi-Rogaway result

The result of Abadi and Rogaway shows that if a symbolic notion of secrecy of data that

occurs in a message is satisfied, then a computational notion is also satisfied [AR00,

AR02]. Their result holds for a class of messages constructed as in the following section.

Formal expressions and equivalence. On the formal side, one considers a simple gram-

mar for expressions. The expressions consider two base types for keys and Booleans

which are taken from two disjoint sets Keys and Bool. Keys and Booleans can be

paired and encrypted.

M,N ::= expressions

K key (K ∈ Keys)

i bit (i ∈ Bool)

〈M,N〉 pair

{M}K encryption (K ∈ Keys)

For example the formal expression 〈K1, {〈0, K2〉}K1
〉 represents a pair: the first com-

ponent of this pair is the key K1, the second, the encryption with key K1 of the pair

consisting of the boolean constant 0 and the key K2.

Before defining the equivalence relation between terms we first need to define the

deducibility relation ⊢. Intuitively, M ⊢ N , if the adversary can learn the expression

N from the expression M . Formally, ⊢ is the smallest relation, such that

M ⊢M M ⊢ 0 M ⊢ 1

if M ⊢ N1 and M ⊢ N2 then M ⊢ 〈N1, N2〉

if M ⊢ 〈N1, N2〉 then M ⊢ N1 and M ⊢ N2

if M ⊢ {N}K and M ⊢ K then M ⊢ N

if M ⊢ N and M ⊢ K then M ⊢ {N}K

For example, if M = 〈K1, {〈0, K2〉}K1
〉, then we have that M ⊢ K2. Moreover, M ⊢ 1,

as the constants 0 and 1 are always known to the attacker.

The equivalence relation between terms is based on the equality of the patterns

associated to each term. A pattern represents the adversary’s view of a term. Patterns

extend the grammar defining terms by the special symbol �. The pattern of a term

replaces encryptions for which the key cannot be deduced by �. This idea is formally
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captured by the following function p. The function takes as arguments a term and a

set T of keys and is defined inductively as follows.

p(K,T ) = K (K ∈ Keys)

p(i, T ) = i (i ∈ Bool)

p(〈M,N〉, T ) = 〈p(M,T ), p(N,T )〉

p({M}K , T ) =



{p(M,T )}K if K ∈ T

� else

The pattern of an expression M is defined by

pattern(M) = p(M, {K ∈ Keys |M ⊢ K}).

For instance pattern(〈K1, {〈0, {1}K2
〉}K1

〉) = 〈K1, {〈0,�〉}K1
〉.

Furthermore, expressions M and N are formally indistinguishable, written M ≡ N

if and only if pattern(M) = pattern(N)σ, where σ is a bijective renaming of keys. For

example, we have that 0 6≡ 1, K0 ≡ K1, {0}K1
≡ {1}K0

and 〈K0,K0〉 6≡ 〈K0,K1〉.

Computational setting and hypotheses on the implementation. In the computational

setting, one reasons at the level of bitstrings and algorithms executed on Turing Ma-

chines, rather than on abstract terms. Expressions are interpreted as bitstrings by

instantiating each of the symbolic operations (including the constants) via appropriate

algorithms. In particular we assume a computational pairing function that takes as in-

put two bitstrings m1 and m2 and outputs their concatenation 〈m1,m2〉. The function

is such that m1 and m2 are easily extractable from 〈m1,m2〉. Furthermore, we use a

concrete encryption scheme, which is a triple of polynomial time algorithms K, E ,D for

key generation, encryption and decryption respectively. The key generation algorithm is

parameterized by a security, or complexity parameter η ∈ 1∗. Intuitively, η defines the

key length. As expected we require that Dk(Ek(m, r)) = m for any k ∈ K(η), message

m, and random bitstring r (that represents the coins of the probabilistic encryption

algorithm).

The Abadi-Rogaway result relies on a security notion for encryption schemes termed

“type-0” in the original paper [AR00]. Here, we call schemes that satisfy this notion,

which we recall bellow, simply secure. Informally, secure schemes hide all information

about encrypted plaintexts (including their length) and hide all information about the

encryption key. This notion is significantly stronger than more standard ones which

allow for ciphertexts to reveal the length of the underlying plaintext as well as partial

information about the encryption key. The stronger assumption is used for simplicity as

the Abadi-Rogaway framework can be further refined to only rely on the more standard

notions.

An encryption scheme is secure if for any security parameter η and any probabilistic

polynomial time Turing machine A (the adversary) the advantage

Adv(A) = Pr[k, k′
R
←− K(η) : AEk(·),Ek′(·)(η) = 1]−

Pr[k
R
←− K(η) : AEk(0),Ek(0)(η) = 1]

is a negligible function of η. Here, x
R
←− D denotes the random sampling of an element

of distribution D and AO is the Turing Machine A that has access to a set of oracles

O. Intuitively, one requires that an adversary cannot distinguish the case where he is

given two encryption oracles encrypting with two different keys from the case where
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he is given twice the same encryption oracle always encrypting the constant bitstring

representing 0 with the same key. Note that this security under this notion implies that

encryption needs to be randomized, so that an adversary does not see identical answers

when confronted with the second pair of (identical) oracles. In [AR02], the authors

provide constructions for such schemes from standard cryptographic assumption.

A recurrent theme in computational soundness is that of acyclic expressions. The

reason is that an encryption scheme respecting the above security definition may be

insecure as soon as the adversary is given a key cycle. We say that a key K1 encrypts a

key K2 in a formal expression M if M contains a subexpression {N}K1
and K2 occurs

in N . In this way any expression M defines a binary relation encrypts on keys. We

say that an expression contains a key cycle if and only if the corresponding encrypts

relation is cyclic. For instance M1 = {K}K contains a key cycle as K encrypts K. In

M2 = {{K1}K2
}K3

we have that K3 encrypts K1, K3 encrypts K2 and K2 encrypts

K1 and hence M2 does not contain any key cycle. In Abadi and Rogaway’s main result,

key cycles are therefore forbidden. Similar conditions can be found in most soundness

results. To better understand the problem of key cycles suppose that SE = (KG, E ,D)

is a secure encryption scheme and let SE ′ = (KG′, E ′,D′) be defined as follows:

KG′ = KG, E ′k(m, r) =



Ek(m, r) if m 6= k

〈const, k〉 if m = k
, D′

k(c) =



Dk(c) if c 6= 〈const, k〉

k if c = 〈const, k〉

where const is a constant such that for any key k, the concatenation const · k does not

belong to the set of possible ciphertexts obtained by E . Obviously, if the attacker is

given a key cycle of length 1, e.g., E ′k(k, r), the attacker directly learns the key. It is

also easy to see that SE ′ is a secure encryption scheme as it behaves as SE in nearly

all cases (in the security experiment the adversary can make a query for encrypting k

with itself only with negligible probability).

The notion of computational indistinguishability requires that an adversary cannot

distinguish two (families of) distributions, with better than negligible probability. Let

D = {Dη} and D′ = {D′
η} be two families of probability distributions. D and D′ are

computationally indistinguishable, written D ≈ D′ if for any η and any probabilistic

polynomial time Turing machine A, the advantage

Adv(A) = Pr[x
R
←− Dη : A(η, x) = 1]− Pr[x

R
←− D′

η : A(η, x) = 1]

is a negligible function of η.

Interpretation of formal expressions and soundness result. The Abadi-Rogaway result

links the notion of pattern equivalence on expressions defined in the previous sec-

tion with an appropriate notion of computational equivalence defined on distributions.

These distributions are associated to expressions using the following algorithms that

convert formal expressions into bitstrings.

Bitstrings are tagged using types “key”, “bool”, “pair” and “ciphertext”. The Ini-

tialize procedure uses K to generate actual keys for each of the key symbols that

occurs in M (that is for each key K ∈ Keys(M)). Then, then Convert procedure

implements encryption using algorithm E .
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Initializeη(M)

for K ∈ Keys(M) do τ (K)
R
←− K(η)

Convert(M)

if M = K (K ∈ Keys) then

return 〈τ (K),“key”〉

if M = b (b ∈ Bool) then

return 〈b,“bool”〉

if M = 〈M1,M2〉 then

return 〈〈Convert(M1),Convert(M2)〉, “pair”〉

if M = {M1}K then

x
R
←− Convert(M1)

y
R
←− Eτ(K)(x)

return 〈y, “ciphertext”〉

The Initialize and Convert procedures associate to a formal term M a family of

probability distributions [[M ]] = {[[M ]]η}.

Abadi and Rogaway’s main result is that for any formal expressions M and N that

do not contain key cycles, whenever the computational interpretation of the terms uses

a secure encryption scheme (as defined above), then M ≡ N implies that [[M ]] ≈ [[N ]] .

In other words, they show that pattern-based equivalence is a sound abstraction of

cryptographic indistinguishability.

2.2 Extensions of the Abadi-Rogaway result

The initial result of Abadi and Rogaway has given rise to many extensions. Some of

these extensions consider the question of completeness of their logic. Other extensions

consider different implementations of encryption (with variants of the initial patterns)

as well as other cryptographic primitives.

Completeness of the Abadi-Rogaway logic. In [MW02,MW04a], Micciancio and Warin-

schi show that the Abadi-Rogaway logic is not complete as presented in the original

paper. Here, by completeness we mean thatM 6≡ N implies that [[M ]] 6≈ [[N ]] , i.e., when-

ever two formal expressions are not equivalent, then the computational interpretation

of these two messages should be distinguishable. Micciancio and Warinschi exhibit a

counter-example by constructing a secure encryption scheme and two symbolic ex-

pressions that are not symbolically equivalent, which yet give rise to indistinguishable

probability distribution ensembles.

They show that completeness can be recovered by implementing encryption with a

scheme that is authenticated. Informally, an encryption scheme is authenticated if an

adversary cannot produce a valid ciphertext different from ciphertexts honestly pro-

duced by the parties that posses the encryption key. Gligor and Horvitz [HG03] further

refine this completeness result. They introduce a new security criterion for encryp-

tion schemes, weak key-authenticity test for expressions (WKA-EXP), which is strictly

weaker than authenticated encryption. WKA-EXP is both sufficient and necessary for

completeness.
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Public-key encryption. In [Her03,Her05], Herzog shows a similar result as Abadi and

Rogaway, but for public-key encryption. Patterns are generalized in the expected way

for expressions that use public-key encryption. The problem of key-cycles also persists

in this setting. To define a key-cycle of an expression M in the public-key setting

one constructs a graph GM : the set of vertices is the set of public/private key pairs

{(pubK1, privK1), . . . , (pubKn, privKn)}; there exists an edge from (pubKi, privKi)

to (pubKj , privKj) if pubKi encrypts privKj in M . M has no key-cycle if GM is

acyclic. Herzog presents a soundness theorem, similar to the one of Abadi and Rogaway,

whenever the encryption scheme used for the computational interpretation provides

indistinguishability under chosen-ciphertext attacks (IND-CCA2 security).

Composed keys. In [LC04], Laud and Corin extend the original soundness theorem

to allow arbitrary expressions as keys. The tricky part is again to handle key-cycles

correctly. As arbitrary expressions are used in the position of keys, the definition of

what is a key cycle is not obvious. Rather than giving an explicit definition of what is a

key-cycle, the symbolic adversary is strengthened and the formal equivalence relation

directly captures key-cycles. More precisely, an expression is not formally equivalent

to its pattern whenever a “key-cycle” is present. For instance, {〈K1,K2〉}〈K1,K2〉 6≡

� and 〈{K1}〈K1,K2〉, {K2}〈K1,K2〉〉 6≡ 〈�,�〉 while {K1}〈K1,K2〉 ≡ �, because the

second part of the key K2 does not occur anywhere else. The last equivalence may

seem surprising as it is an artefact of the particular cryptographic implementation of

composed keys. Specifically, such keys are derived using a hash function modeled as

a random oracle, and in consequence is completely random as long as a large enough

part of it (in this case K2 is not known.

Handling key cycles. Key cycles have gained a lot of attention in the context of com-

putational soundness. The reason is that there is an inherent difference between their

treatment in symbolic models (where such cycles do not cause any troubles) and the

computational model (where standard security definitions do not guarantee security in

presence of key-cycles.) There are two natural approaches to reconcile this apparent

difference.

One possibility is to strengthen the symbolic attacker. This is the direction explored

by Laud in [Lau02]. The idea is to modify the symbolic deduction relation so that

whenever a key occurs in a key cycle then it becomes known to the attacker. Laud shows

an unconditional soundness theorem in the style of Abadi and Rogaway (unconditional

in the sense that formal expressions may contain key cycles).

The second possibility is to strengthen the computational notion as to guarantee

security even in the presence of key-cycles. This is the approach adopted in [ABHS05],

Adão et al. They consider a stronger security notion, called key-dependent message

(KDM) security which demands security even in the presence of such cycles. They show

that soundness holds in a public-key setting in the presence of key cycles when a KDM

secure encryption scheme is used for the computational interpretation of encryption.

They also prove a separation between standard security notions (IND-CCA2) and KDM

security and demonstrate that IND-CCA2 security is not sufficient to provide soundness

in the presence of key-cycles. Schemes secure under the KDM notion can be easily

constructed in the random oracle model, but schemes secure in the standard model

seem much harder to construct. Recently, Boneh et al. [BHHO08] demonstrated the

existence of an asymmetric encryption scheme secure under key dependent message
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attacks in a restricted sense: their scheme does not permit the encryption of messages

that depend in arbitrary ways on the set of secret keys.

In most of the other approaches, one has to assume that key cycles cannot be

generated, even when the adversary interacts arbitrarily with the protocol. Whether a

key cycle can be generated is undecidable in the general case but it has been shown to

be NP-complete in the symbolic setting, for an active adversary and a bounded number

of sessions [CZ06].

Partial information leakage and information theoretic security. Adão et al. [ABS05]

consider different computational implementations of the encryption function. In par-

ticular they show soundness and completeness when which-key and length-key revealing

encryption schemes are used. A which-key revealing encryption scheme allows the ad-

versary to detect when two ciphertexts have been encrypted with the same key. At the

symbolic level this is reflected by indexing the boxes with the encryption key, yielding

a more precise equivalence relation. For instance, pattern({0}K ) = �K and hence we

have that 〈{0}K , {1}K 〉 6≡ 〈{0}K , {1}K′〉. A length-key revealing encryption scheme

allows the attacker to learn the length of the plaintext. At the symbolic level the boxes

are indexed with the length of the plaintext to reflect this partial information leakage.

The authors also consider the case where encryption is implemented by a one-

time pad. Whenever encryption keys are only used once they show that one obtains

soundness and completeness with respect to an information-theoretic setting. In such

a setting the equivalence is the equality of the probability distributions rather than

indistinguishable by a polynomial-time bounded adversary.

Hash functions. Garcia and van Rossum [GvR06] extend the Abadi-Rogaway logic to

hash functions. Soundness theorems for hash functions are particularly tricky as in the

symbolic model, hash functions do not leak any partial information about the hashed

message. Typical computational security definitions for hash functions provide weaker

guarantees, such as one-wayness. Garcia and van Rossum show a soundness result

when hash functions are implemented using oracle hashing. Oracle hashing has been

introduced by Canetti: it is a probabilistic hash function which requires a verification

algorithm to check whether a hash corresponds to a given message. These are hash

functions that do hide all partial information about the message that is being hashed.

In the journal version [GvR08], they extend Micciancio and Warinschi’s completeness

result to hash functions in a similar way.

Modular exponentiation. Bresson et. al [BLMW07] give an extension of the Abadi-

Rogaway logic with modular exponentiation. They show how to extend the notion of

patterns in order to capture the information that is leaked through exponentiation,

which are essentially linear dependencies between the various exponents. For example,

the symbolic secrecy notion captures the idea that an adversary can observe that in

the expression (gx, gy, g2x+y) the third term can be obtained by squaring the first

one and multiplying it with the second. Non-linear relations, as in the expression

(gx, gy, gx+xy), cannot be observed by the adversary. The soundness for the result-

ing language relies on a generalization of the Diffie-Hellman assumption which in most

relevant cases is implied by the latter.

In the same vein than [BLMW07], Mazaré [Maz07,KM09] presents an extension

the Abadi-Rogaway logic with a bilinear pairing operation. Their soundness result

assumes the hardness of the bilinear decisional Diffie-Hellman problem and an IND-CPA
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encryption scheme. The soundness result is illustrated on the Joux tripartite Diffie-

Hellman protocol, as well as the TAK-2 and TAK-3 protocols.

Offline guessing attacks. In security protocols passwords or other weak data are often

used as encryption keys. For such protocol an important security property is resis-

tance to offline guessing attacks. In such attacks an attacker first collects (possibly by

interacting with the protocol) some data. In a second phase, he guesses a password

out of a dictionary. If the attacker has a means to verify that his guess was correct

using the data he had gathered, then the protocol is subject to a guessing, or dic-

tionary attack. In [AW05a], Abadi and Warinschi have shown soundness results for

protocols that use password encryptions. They define the computational security of

a password encryption primitive: for any two passwords, any polynomially bounded

adversary, that is given these two passwords and given access to an oracle, encrypting

samples drawn from a plaintext distribution, is not able to distinguish whether the

oracle uses the first or the second password for encryption. They also define formal

and computational security of expressions against offline guessing attacks in terms of

indistinguishability. Then for symmetric, asymmetric and password encryptions with

secure implementation they show two soundness theorems. The first one is an extension

of the Abadi-Rogaway soundness theorem for indistinguishability. The second theorem

states that whenever a formal expression E hides passwords, then its computational

interpretation also hides passwords. These results hold for IND-CPA secure symmetric

and asymmetric schemes, and for password-based encryption schemes that “securely”

encrypt keys and ciphertexts of the symmetric and asymmetric schemes. In addition,

it only holds for expressions that do not contain key cycles.

Cryptographically controlled access control to XML. A compelling application of com-

putational soundness against passive adversaries was given by Abadi and Warinschi [AW05b,

AW08]. The focus of that work is the security of a scheme that uses encryption to en-

force access control policies to XML documents. The scheme, designed by Miklau and

Suciu [MS03] explains how to obtain from a given XML document and a given access

policy a so-called protection: a partially encrypted XML document which enforces the

original access policy. The guarantees for the scheme were rather informal.

Abadi and Warinschi formalize the scheme using a symbolic language for expres-

sions that extends the one of Abadi and Rogaway with secret sharing schemes. Then,

they show that secrecy as demanded by the policy used to create a certain protection on

an XML document is satisfied in a symbolic sense: data that should be secret according

to the policy is symbolically secret in the expression that describes the protection. It

then follows using the computational soundness of the language for expressions that

the same data is also computationally secret. The soundness results hold for imple-

mentations that use IND-CPA encryption schemes and n-out-of-n secure secret sharing

schemes.

Soundness against an adaptive adversary. Micciancio and Panjwani [MP05] show a

soundness result for encryption and pairing in the presence of a slightly stronger, adap-

tive adversary. Soundness is defined through the following experiment. An adversary

has access to a left-right oracle, which given on input two terms M1 and M2, returns

a sample of the computational interpretation of Mb, where b is the challenge bit of the

oracle. The adversary can interact with the oracle but is only allowed to submit queries

such that the sequence of queries (M1
1 ,M

1
2 ), . . . , (Mℓ

1 ,M
ℓ
2) sent to the oracle is such
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that 〈M1
1 , . . . ,M

ℓ
1〉 is formally equivalent, i.e. has the same pattern up to renaming, to

〈M1
2 , . . . ,M

ℓ
2〉. The adversary wins if he succeeds in outputting b with non-negligible

probability. Note that the oracle is stateful and implements terms in a consistent way,

i.e. if a key has been drawn in a previous query the same value is reused in subsequent

queries. An adaptive adversary is strictly stronger than a purely passive one as he can

choose his queries after having already obtained the implementation of some terms.

On the technical level, the fact of having an adaptive adversary raises the problem of

selective decommitment which is overcome by imposing the following condition: if a

key is used to encrypt a message it either must have been sent previously in plaintext

or it never appears in plaintext. The usefulness of an adaptive adversary is illustrated

by deriving computationally sound symbolic model for the analysis of multicast key

distribution protocols. In this model, the adversary cannot directly interact with the

protocol participants, but he can influence the control flow.

2.3 Soundness of static equivalence

Baudet, Cortier, and Kremer have considered a more general alternative to the ap-

proach described in the previous sections. They develop a framework in which sym-

bolic secrecy is expressed in terms of static equivalence, a well-established equivalence

relation from cryptographic pi-calculi[BCK05,BCK09]. This approach is more general

in that it does not depend on a particular set of primitives.

Abstract and computational algebras. Independence from a particular primitives is re-

flected in their use of an arbitrary abstract algebra to describe the messages exchanged

in a protocol. The algebra is defined over a many-sorted first-order signature equipped

with an equational theory. For instance, symmetric, deterministic encryption is modeled

by the theory Eenc generated by the classical equation dec(enc(x, y), y) = x. Equality

between two terms is generally interpreted modulo the equational theory (denoted =E

for an equational theory E). For example, dec(enc(m, k), k) =Eenc
m. Given an ab-

stract signature a computational algebra A is defined by associating to every sort s

of the abstract algebra a set of bitstrings [[s]]A ⊆ {0, 1}
∗ with an efficient procedure

for drawing random elements, and to every function f a computational function [[f ]]A.

Given a symbolic term T , a distribution [[T ]]A is associated by drawing a random ele-

ment of the corresponding sort for each name and replacing each function symbol by

its computational counterpart.

Security notions, soundness, and faithfulness. The two security notions which are con-

sidered are deducibility and static equivalence. Deducibility formalizes which are the

terms that an attacker can compute from a given sequence of terms. Static equivalence

models whether two sequences of terms can be distinguished. Both deducibility and

static equivalence are parameterized by an equational theory. In this approach, static

equivalence replaces the pattern-based formal equivalence.

To reason about the soundness of implementations Baudet et al. define soundness

for the three relations =E , ⊢E and ≈E . Soundness of =E means that whenever two

terms are symbolically equal (modulo E), any sample drawn from the distribution

implementing those terms should be equal with overwhelming probability. Soundness

of =E is generally a hypothesis which reflects that the equational theory is a reasonable

abstraction of the primitives. Similarly, they define soundness for deducibility and
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static equivalence. When a term is not deducible from a sequence of terms, then an

attacker given the distribution implementing the given sequence of terms, should be

able to output a sample of the distribution implementing the term with only negligible

property. When two sequences of terms are statically equivalent, then the distributions

associated to these sequences should be indistinguishable.

Faithfulness of those three relations on the other hand represents a strong version of

completeness. Whenever two terms are not equal, a term is deducible or two sequences

of terms are not statically equivalent, a computational adversary can show this with

overwhelming probability (rather than non-negligible probability which would be com-

pleteness). Intuitively, when the relations are faithful, for any symbolic attack there

exists an efficient computational attack.

It is shown that for many theories ≈E-soundness implies all other notions of sound-

ness and faithfulness. This emphasizes the importance of ≈E-soundness.

Examples: groups, XOR, ciphers and lists In [BCK05,BCK09], Baudet et al. con-

sider several equational theories to illustrate their framework. First they show the

≈E-soundness of an equational theory modeling groups implies the hardness of several

classical cryptographic problems: the discrete logarithm, computational Diffie-Hellman,

decisional Diffie-Hellman and RSA problems. Note that this is not a soundness result.

It shows that any candidate implementation for ≈E-soundness requires at least the

hardness of the usual cryptographic problems. Second, they show the unconditional

≈E-soundness of a theory of XOR. The soundness proof reflects the unconditional se-

curity (in the information-theoretic sense) of the One-Time Pad. Finally, they show≈E-

soundness of a theory of ciphers and lists (ciphers are deterministic, length-preserving,

symmetric encryption schemes).

Soundness of offline guessing attacks and static equivalence. In [ABW06], Abadi, Baudet

and Warinschi use the framework of [BCK05,BCK09] to show ≈E-soundness for an

equational theory useful in the context of offline guessing attacks. This theory includes

symmetric, and asymmetric encryption as well as pairing. A consequence of this sound-

ness result is its applicability to defining and reasoning about off-line guessing attacks

in terms of static equivalence. The result is an intuitively appealing implication to

computational security against off-line attacks.

Static equivalence vs formal indistinguishability relations. In [BMS06], Bana, Mohassel

and Stegers argue that the notion of static equivalence is too coarse and not sound for

many interesting equational theories. They introduce a general notion of formal indis-

tinguishability relation. This highlights that soundness of static equivalence only holds

for a restricted set of well-formed frames (in the same vein Abadi and Rogaway used

restrictions to forbid key cycles). They illustrate the unsoundness of static equivalence

for modular exponentiation.

Adaptive soundness of static equivalence. The analogue of [MP05], but for the setting

where pattern based equivalence is replaced with static equivalence, has been pro-

vided by Kremer and Mazaré [KM07] who extend the framework of [BCK05]. In this

case, adaptive soundness is defined through an experiment. The adversary interacts

with a left-right oracle, which given two symbolic terms, returns either a sample of

the concrete implementation of the first or the second term, according to the oracle’s
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challenge bit. As in [MP05], the adversary is restricted to only provide queries such

that the left-hand terms and the right-hand terms form two statically equivalent se-

quences, rather than pattern-equivalent sequences. They show adaptive soundness of

static equivalence for an equational theory modeling modular exponentiation (for a

class of well-formed frames, hence not contradicting [BMS06] and under similar as-

sumptions as in [BLMW07]), as well as symmetric encryption with composed keys

which can be computed using modular exponentiation or exclusive or.

2.4 Computationally secure information flow

A different kind of soundness results have been obtained in the area of information flow.

Informally, a program has secure information flow if the public outputs of the program

do not leak information about its confidential inputs. Classically, information flow is

defined as non-interference requiring that no information, in the information-theoretic

sense, is leaked. In particular such a definition forbids publishing the encryption of a

confidential value. Allowing encrypted confidential values to be published is generally

refered to as cryptographic declassification.

Laud [Lau01] pioneered the area of computationally secure information flow. He

proposes a computational definition of secure information flow in the presence of a prob-

abilistic polynomial time adversary. The programming language he considers contains

assignment, loops, conditional, sequential composition and application of some oper-

ators. In particular the operators contain symmetric encryption and key generation.

Laud presents a static analysis which ensures computational secure information flow

assuming an implementation that uses a which-key and repetition-concealing IND-CPA

encryption scheme. Two limitations of the paper are that keys can only be used at a

key position, and not as data, as well as the fact that one must be able to decide stat-

ically whenever two variables contain the same encryption key. These two restrictions

are relaxed in [Lau03] by refining the static analysis.

In [LV05], Laud and Vene propose a computationally sound type system which en-

sures secure information flow. A similar approach is presented by Smith and Alṕızar [SA06].

A difference is that Smith and Alṕızar allow an explicit decryption operator (and hence

require IND-CCA security to achieve soundness). However, they do not manipulate keys,

but only consider a single key which is used for encryption and decryption, but never as

plaintext. Courant, Ene and Lakhnech [CEL07] also design a cryptographically sound

type system. The basic data contain constants and uniformally sampled bitstrings.

Operations include exclusive or and applications of deterministic, length preserving

encryption, i.e. ciphers. As Smith and Alṕızar they consider a single key which is only

used for encryption and decryption. Due to the deterministic nature of ciphers, which

do not hide repetitions, subtle flows may still arise. Courant et al. show cryptographic

soundness of their typing system under the hypothesis that encryption scheme respects

the pseudo random permutation, PRP for short, security notion. Moreover, the sound-

ness result is shown in the concrete (or exact) model, rather than being asymptotic.

An abstract model for reasoning about secure information flow is the framework of

Askarov, Hedin and Sabelfeld for dealing with cryptographically-masked flows [AHS06].

Here, they consider an imperative language with encryption and decryption operations

which comes with a non-deterministic semantics, avoiding reasoning about probabili-

ties. In [Lau08], Laud investigates the computational soundness of cryptographically

masked flows and identifies the necessary restrictions and cryptographic assumptions.
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In particular, symmetric encryption needs to satisfy length- and which-key conceal-

ing KDM, as well as a key-dependent message variant of plaintext integrity. Laud also

suggests a simpler but equivalent model with a completely deterministic abstract se-

mantics. The security definition in this model is based on Abadi and Rogaway’s pattern

equivalence. The soundness result directly follows from [ABHS05], discussed earlier in

this survey.

3 Computational soundness: the active adversary case

The focus of the previous section was on the case where the adversary only observe the

network traffic and tries to gain information about the secrets used in an execution.

In this section we shift attention to the case of active adversaries, namely adversaries

that can interfere with the execution of protocols.

As explained in the previous sections the main abstraction used by symbolic models

is to represent messages (that is bitstrings) by symbolic terms. A second abstraction

which is quite important for the active setting is given by how adversarial capabilities

are treated.

In symbolic models, the adversary can build new messages using an a priori fixed

set of symbolic inference rules. For example, he can get information from a encrypted

messages only if he has the appropriate decryption key. On the other hand, in computa-

tional models the adversary is a probabilistic polynomial-time (p.p.t. for short) Turing

machine. This captures the idea that a potential adversary can perform arbitrary com-

putations while tampering with the protocol, provided it takes a reasonable, that is

polynomial, time. In particular, this assumption captures the possibility that the ad-

versary may try to guess secrets (e.g. keys). Note that in both models it is assumed that

the adversary has complete control of the network: he can intercept, send and block

messages. An additional gap between the symbolic and the computational models is in

how security properties are specified. For example, secrecy is usually stated in symbolic

models as a reachability property while in computational models, it is formalized as

the indistinguishability of adversary views.

In this section we survey three approaches developed to bridge the gap between

symbolic and computational models. Recall that the goal is to understand when security

proved using symbolic models implies meaningful security properties for protocols with

respect to computational ones. These approaches are the trace mapping approach, the

process mapping approach, and the simulation based approach.

3.1 The trace-mapping based approach

Syntax. Messages are modeled by a term algebra, given with sorts. For example, the

algebraic signature Σ may contain sorts Nonce, Label, Ciphertext, Signature, and Pair

for respectively nonces, labels, ciphertexts, signatures, and pair. Typical operations

are pairing 〈 , 〉, public key encryption { } , and signing [ ] . One may already notice

a difference with the passive case as described by Abadi and Rogaway. Probabilistic

primitives like encryption or signatures are now represented with ternary symbols in-

stead of binary symbols. The third argument explicitly models the randomness used in

these primitives and allows one for instance to capture the fact that encrypting twice

the same message m with the same key k yields different ciphertexts represented by
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{k}r1

m and {k}r2

m . We may note that some works in the passive setting, e.g. [LC04,

ABW06], also explicit randomness in a similar way.

Protocols are specified using the algebra of terms constructed over the above sig-

nature from a set X of sorted variables. The messages that are sent by participants

are specified using terms in TΣ(X), the free algebra generated by X over the signature

Σ. The individual behavior of each protocol participant is defined by a role describing

a sequence of message receptions/transmissions, and a k-party protocol is given by k

such roles.

It is worth emphasizing that the term algebra used in this setting is richer than

the algebra typically used in automatic tools for security protocols. One important

difference is that the latter typically omit the explicit randomness argument discussed

above. Furthermore, the model uses different symbolic operations for signature and

encryption. Quite often, the models for tools model signatures as encryptions with the

decryption key. Nevertheless, it can be shown that under certain conditions security

with respect to the simpler models implies security with respect to the richer models

above [CHW06].

Execution models. Two types of executions are then defined for protocols: the symbolic

and the concrete ones. In both models, the adversary has a complete control of the

network: he can intercept, send and block messages. More precisely, the adversary can

interact with the protocol through three kinds of actions.

– corrupt(a1, . . . , al): the adversary can corrupt parties by outputting a set of identi-

ties. He receives in return the secret keys corresponding to the identities. It happens

only once at the beginning of the execution.

– new(i, a1, . . . , ak): the adversary can initiate new sessions selecting the role i and

the instantiation a1, . . . , ak for the agents involved in that session.

– send(sid,m): the adversary can send a message m to a target session sid.

In the symbolic setting the honest parties and the adversary exchange elements

of a certain term algebra; the adversary can only send messages deducible from the

previously received messages following the rules described in Figure 1. These rules

correspond to the standard Dolev-Yao model, except for the treatment of randomness

where we distinguish the randomness of the adversary (adv(i)) from the randomness

used by honest agents (ag(i)).

In the concrete execution model, the honest parties and the adversary are p.p.t.

Turing machines and the messages that are exchanged are bit-strings and depend on

a security parameter η (which is used, for example to determine the length of random

nonces). A PKI-like setting is assumed such that the public keys of parties (those

for encryption and signature verification) are accessible to all parties. Encryption and

signing are implemented with an encryption scheme and a digital signature scheme

respectively. Pairing is implemented by some standard (efficiently invertible) encoding

function. Each time a session is initialized, random values are generated for the nonces

of the session.

Trace mapping. The trace mapping approach attempts to link directly concrete and

symbolic executions [MW04b]. The idea is to show that any concrete trace is the image

of a symbolic trace (with overwhelming probability). The first result of this kind estab-

lishes such a statement for protocols that use random nonces, party identities, pairing,

and asymmetric encryption under the assumption that the encryption scheme satisfies
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m ∈ S
S ⊢ m

b ∈ X.a
S ⊢ b, ek(b), vk(b)

Initial knowledge

S ⊢ m1 S ⊢ m2

S ⊢ 〈m1, m2〉

S ⊢ 〈m1, m2〉
i ∈ {1, 2}

S ⊢ mi

Pairing and unpairing

S ⊢ ek(b) S ⊢ m
i ∈ N

S ⊢ {m}
adv(i)
ek(b)

S ⊢ {m}l
ek(b) S ⊢ dk(b)

S ⊢ m

Encryption and decryption

S ⊢ sk(b) S ⊢ m
i ∈ N

S ⊢ [m]
adv(i)
sk(b)

S ⊢ [m]
ag(i)
sk(b)

i, j ∈ N

S ⊢ [m]
adv(j)
sk(b)

S ⊢ [m]lsk(b)

S ⊢ m

Signature

Fig. 1 Deduction rules for the formal adversary.

indistinguishability under chosen ciphertext attacks (IND-CCA). We refer to a property

of this type as a mapping lemma. Informally, the mapping lemma implies that all of the

behaviors of concrete adversaries are captured by those of the symbolic adversaries. For

security properties where the symbolic and the computation formulation are similar,

the lemma implies immediately that symbolic security implies computational security.

Authentication and, more generally, trace properties are examples of such properties.

For security properties for which there is a mismatch between the symbolic and the

computational formulations, similar results do not follow directly from the mapping

lemma. A prominent example is secrecy which symbolically is defined as a reachability

property and computationally as an indistinguishability property. Soundness for such

notions may still hold, but needs to be established thorough some other means. XXX

The red paragraph replaces the paragraph bellow. Consequently, any trace property

such as authentication can be transferred from symbolic models to concrete ones: when-

ever a protocol satisfies (symbolically) a trace property it also satisfies the property

computationally. However, a property such as secrecy in terms of indistinguishability,

as it is defined comonly in computational models, can generally not be proved using a

trace mapping result.

3.2 Extensions

Signatures. The mapping lemma has then been extended in a setting with signatures

and variables of sort ciphertext (to allow ciphertext forwarding) in [CW05], provided

that signatures are implemented using an existentially unforgeable scheme under chosen

message attacks. A similar result has been proved in [JLM05] where public key can also

be sent in plaintext. They also propose a general criterion for reducing the correctness

of two cryptographic schemes to the correctness of each one. This is useful when proving

soundness of symbolic models when several primitives are used.

Hash functions. The mapping lemma has then been extended in [CKKW06] (remov-

ing signatures) to hash function implemented in the random oracle. A weaker criterion,

called HASH, for hash is proposed in [JLM06]. It is shown that the mapping lemma

holds for hash functions satisfying this criteria and for asymmetric encryption (im-

plemented with an IND-CCA encryption scheme), provided that the protocol does not
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have temporary secret (each atomic value is either initially known to the intruder or will

never be revealed). The HASH criterion can be realized in the random oracle. However,

it is not known whether an actual implementation realizes the HASH criterion.

Non-Malleable Commitment. Galindo et. al. [GGvR08] have extended the mapping

lemma to commitment schemes. Commitment schemes are used in protocols like zero-

knowledge proofs or contract-signing. They consist of two phases: a first phase (com-

mitment) where the principal commits to a message without revealing any information

and a second phase (opening) where the principal reveals the message and it is possible

to verify that it corresponds to the value committed during the previous phase. They

abstract these primitives symbolically by introducing two functional symbols:

com ( ) : Term × Label→ Com

dec ( ) : Term × Label→ Dec

where Com and Dec are new sorts. The corresponding deduction rules are the two

following rules:
S ⊢ m

S ⊢ com
r(m)

S ⊢ dec
r(m)

S ⊢ m

They show that the mapping lemma holds for asymmetric encryption and commitment

provided that encryption is IND-CCA and that commitment is non-malleable against

chosen commitment attacks (NMC-CCA). NMC-CCA is a definition of security for

commitment schemes that they introduce in order to prove the mapping lemma. It

intuitively means that an attacker cannot produce a commitment c2 related to another

commitment c1 = comr1(m1) (where m1 is chosen by the attacker) even if it has access

to an oracle that can open commitments. This security notion can be realized: Galindo

et. al. propose a new commitment scheme that is NMC-CCA secure.

Zero-knowledge proof. A zero-knowledge proof is a message or a sequence of messages

that forms a proof of a statement x (e.g. “the message within the ciphertext contains

two identical nonces”) that does not reveal any information besides that x is true.

Zero-knowledge proofs can be used to prove various statements. Backes et. al have

introduced in [BMU08] an abstraction of zero-knowledge proofs for symbolic models

by introducing a small logic. A Formula is a Boolean formula over atomic formula

ZKTerm defined by:

ZKTerm = ek(βi) | αi | βi | 〈ZKTerm,ZKTerm〉 | {ek(βj)}
ρi

ZKTerm

The set of Term is enriched by a constructor ZKR
F (r, a, b) where F is a Formula and x

denotes x1, . . . , xn (where x is either r, a or b). Intuitively, R and r are the randomness

used in the formula, a represents the secret values and b the public values. ZKR
F (r, a, b)

is evaluated by replacing the αi by the ai, the βi by the bi and the ρi by the ri.

Backes and Unruh extend the mapping lemma in [BU08] for this symbolic model

of (non-interactive) zero-knowledge proofs by introducing a new definition for security

of zero-knowledge proofs called symbolically-sound zero-knowledge proof system. This

definition is rather involved. It is assumed that zero-knowledge proof are based on

circuits and proofs that a particular circuit is satisfiable. Their new security definition

requires in particular:
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– Extractability : out of a proof for a circuit C, it is possible to extract a witness, i.e.

a solution for C.

– Unpredictability : two independently produced proofs are different with overwhelm-

ing probability.

– Extraction Zero-Knowledge: this property is designed to prevent an adversary from

building a valid proof out of previous proofs.

This definition can be realized by an existing zero-knowledge protocol defined by Groth

and Ostrovsky [GO07].

Linking cryptographic and symbolic secrecy. In the symbolic model, secrecy is natu-

rally expressed as a trace property: a message is secret if it cannot be derived by the

adversary. In the computational model however, typical definitions are much stronger.

It is usually required that an attacker is not only unable to obtain the secret, but also

any partial information about the secret (which is an indistinguishability notion). Typ-

ically, secrecy of a nonce N in a protocol Π is defined in cryptographic models using

an experiment Expsec b
ExecΠ,A

(η) that we describe below. The experiment is parameterized

by a bit b and involves an adversary A. The input to the experiment is a security

parameter η. It starts by generating two random nonces n0 and n1 whose length de-

pends on the security parameter. Then the adversary A interacts with the protocol Π

where the nonce N has been instantiated by nb according to the bit selection b. The

adversary generates new sessions, sends messages and receives messages to and from

these sessions (as prescribed by the protocol). In the end, the adversary is given n0

and n1 and outputs a guess d, which is the result of the experiment. The nonce N is

computationally secret in Π if for every p.p.t. adversary A its advantage

Pr
h

Exp
sec 1
ExecΠ,A

(η) = 1
i

− Pr
h

Exp
sec 0
ExecΠ,A

(η) = 1
i

is negligible.

Pairing and asymmetric encryption. In [CW05], it is shown that, in a setting with

asymmetric encryption and pairing, whenever a nonce is deemed secret using sym-

bolic techniques, then the nonce is secret with respect to the stronger, computational

definition.

Hash functions. In [JLM06], soundness of symbolic secrecy is extended to hash func-

tions under the HASH criterion and for nonces that never appear under a hash function.

Transferring the usual symbolic secrecy definition to indistinguishability is indeed not

possible when the target secret value appears under a hash function since, unlike ci-

phertexts, hashes have to be publicly verifiable, i.e., any third party can verify if a value

h is the hash value corresponding to a given message m. Assume, for example, that

in some protocol the hash h = h(s) of some secret s is sent in clear over the network.

Then, while virtually all symbolic models would conclude that s remains secret (and

this is also a naive assumption often made in practice), a trivial attack works in compu-

tational models: given s, s′ and h, compare h with h(s) and h(s′), and therefore recover

s. Cortier et al. [CKKW06] propose a new symbolic definition for nonce secrecy in pro-

tocols that use party identities, nonces, hash functions, and public key encryption. The

definition is based on the concept of patterns presented in Section 2.1. They show that

nonces that are secret according to their symbolic criterion are also secret according
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to a standard computational definition (indistinguishability). The result holds for pro-

tocols implemented with encryption schemes that satisfy standard notions of security

(IND-CCA), and for hash functions modeled as random oracles. They also show decid-

ability (NP-completeness) of the symbolic secrecy criterion (w.r.t. a bounded number

of sessions).

3.3 Soundness of observational equivalence

We have just seen that “computational secrecy” can be soundly abstracted by a trace

property in symbolic models, in a number of particular cases. It is not clear, however,

that such a property can be expressed as a trace property in general. More generally,

several security properties cannot be defined (or cannot be naturally defined) as trace

properties such as e.g. anonymity, privacy related properties involved in electronic vot-

ing protocols [DKR06], or strong (also called “black-box”) simulatability [BPW07b,

KT08]. These security properties are usually formalized by indistinguishability proper-

ties. There is a well-known similar notion in concurrency theory: observational equiv-

alence, introduced by Milner and Hoare in the early 80s. Two processes P and Q are

observationally equivalent, denoted by P ∼o Q, if for any process O (a symbolic ob-

server) the processes P‖O and Q‖O are equally able to emit on a given channel. This

means that O cannot observe any difference between P and Q. It is shown in [CLC08]

that computational indistinguishability in presence of an active attacker is implied by

the observational equivalence of the corresponding symbolic processes, in the case of

IND-CCA-2 symmetric encryption.

3.4 The simulation based approach

A different approach towards relating computational and symbolic executions of pro-

tocols relies on the concept of simulatability. Roughly, security is defined by requiring

that a real system that supposedly implements some cryptographic system, is as secure

as an ideal version of the protocol/primitive (which typically is secure by construction).

The concrete instance of such a simulation-based setting used in computational

soundness is that of reactive simulatability/universal composability, called RSIM/UC

in short [Can01,BPW07a]. This setting relies on a general model for (polynomial-

time) executions of interactive asynchronous programs. Related models for such ex-

ecutions have been defined elsewhere, with a similar goal in mind. These works in-

clude those for a probabilistic polynomial time process calculus [LMMS98,MRST01,

RMST04,RMST06], the model of Canetti [Can01], more rigorously formalized and

further refined using the framework of Task Structured Probabilistic Input/Output

Automata (Task PIOAs) [CCK+06].

The details of such models are outside the scope of this survey. We refer to the

work of Küsters et al. for a detailed analysis and comparison of the different existent

frameworks [KDMR08].

As sketched above, the definition of security involved an ideal system maintained

by a trusted host TH. The real system is given by a set of interactive machines Mi,

one for each user i. Both systems interact with an environment Env which should be

thought of as protocols (or users) that provide input/obtain output to/from the system

that is being analyzed. Furthermore, the interaction also involves an adversary Adv. In
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the real world, the adversary interacts directly with the system (i.e. it communicates

directly with the machines M1,M2, . . . ,Mn). In the ideal world, the communication

between the adversary and the trusted host is mediated by a simulator Sim. The two

different setups are described in Figure 2.

Env

TH

Sim

Adv

Ideal world

Env

M1 M2 · · · Mn

Adv

Real world

Fig. 2 The RSIM setting: in the ideal world the interaction is between a trusted host TH, an
adversary Adv, a simulator Sim, and environment Env. In the real world, the interaction is be-
tween an actual implementation of the protocol by machines M1, M2, . . . , Mn, and environment
Env and an adversary Adv. The machines M1, M2, . . . , Mn RSIM/UC implement the system
defined by TH, if (∃Sim)(∀Adv)(∀Env) (TH | Sim | Adv | Env) ∼= (M1||M2|| . . . ||Mn | Adv | Env)

We write (rather informally) TH | Sim | Adv | Env for the result of the execu-

tion of the ideal system, i.e. for the output of the environment. Similarly, we write

(M1||M2|| . . . ||Mn) | Adv | Env for the result of the real execution.

We say that M1,M2, . . . ,Mn RSIM/UC implements the system described by TH

and we write M1||M2|| . . . ||Mn ≤
RSIM TH if there exists a simulator Sim (that medi-

ates the interaction between the adversary and the TH) such that no combination of

environment and adversary can determine whether the interaction takes place in the

ideal world, or in the real world:

(∃Sim)(∀Adv)(∀Env) (TH | Sim | Adv | Env) ∼= (M1||M2|| . . . ||Mn | Adv | Env)

In the above, the notation ∼= represents some version of indistinguishability (i.e. perfect

equality, statistical closeness, or computational indistinguishability of distributions).

The above formulation of RSIM/UC corresponds to black-box reactive simulatability

but several other variants of this definition exist, changing for instance the order of the

quantifiers. More details and a comparison of the differents flavours of this definition

are given in [KDMR08].

Preservation of integrity properties. The intuition behind the above definition is that

the protocol defined by machines M1,M2, . . . ,Mn does not leak any more information

to an adversary than the ideal version defined by TH, and thus the former is as secure as

the latter. Usually, the security of the ideal system can be assessed by simple inspection,
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or proved through some simple means, and the security of the real implementation thus

follows.

Importantly, security defined as above is composable: if M = M1||M2|| . . . ||Mn is

such that M ≤RSIM TH then M can be replaced in a system by the combination

TH | Sim without changing the behavior of the system. In particular, properties of the

ideal system should also be satisfied by the implementation [BJP02].

3.5 A composable cryptographic library

The framework for reactive simulatability sketched in the previous section has been

used by Backes, Pfitzmann, and Waidner to obtain computational soundness results.

They define an ideal cryptographic library Libideal which offers an interface through

which programs can manipulate data. Commands that can be passed to the library

include the ability to generate nonces and cryptographic keys, to encrypt and decrypt

messages, to generate and verify signatures etc. The internal workings of the library,

i.e. the semantics of all of the commands is entirely deterministic, and is based on

the ideas behind Dolev-Yao models. Roughly speaking, Libideal maintains an internal

database of symbolic terms which the programs can manipulate via handles to these

terms which it obtains from the library. A party would be able to obtain the plaintext

in an encryption only if it has handles to both the term that represents the encryption

and to the appropriate decryption key. Importantly, since the final goal is to relate

Libideal with a real implementation, the library needs to keep track of all the various

pieces of information which real cryptographic primitives may leak. The reason is that

the environment would be able to tell the difference between the real and the ideal

executions by observing such leaks. Typical examples include the length of encrypted

plaintexts, as well as the length that corresponds to the ideal terms in a real instan-

tiation. In the context of the reactive simulatability setting presented in the previous

section, Libideal plays the role of the ideal system, i.e. that of TH.

To obtain computational soundness it is sufficient to exhibit a real implementation,

i.e. a library Libreal implemented with actual cryptographic primitives, which offers

the same interface as Libideal such that Libreal ≤RSIM Libideal. In [BPW03a] Backes,

Pfitzmann, and Waidner exhibit an ideal, and a real library that are related as described

above. The cryptographic operations considered in [BPW03a] are nonce generation,

asymmetric encryption, and digital signatures. The main result is that Libreal ≤RSIM

Libideal provided that the digital signature scheme is memory-less (a signature does not

leak any information about previous signatures) and existentially unforgeable under

chosen message attack and the encryption scheme is IND-CCA secure.

Message authentication codes(MACs). The above result had been extended to a library

that includes message authentication codes [BPW03b]. The security condition under

which the desired result holds is that the MAC used in the implementation of the real

library is existentially unforgeable under chosen message attacks. In addition, given a

tag created by the MAC scheme, it must be possible to fully recover the message to

which it corresponds, and it must be possible to determine whether two tags have been

created under the same key or not, even if one does not posses the key. Finally, the

protocol where the MAC is used has to append a random nonce to the message which

is MACed.
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Symmetric encryption. Subsequent work introduced symmetric encryption among the

primitives that the simulatable cryptographic library offers [BP04b]. A RSIM/UC re-

lation between the resulting ideal system and a concrete realization requires several

restrictions on the way the library is used by the surrounding protocol. We only list

some of them. First, they of course forbid encryption cycles by assuming a key hierarchy

based on the order in which keys are used for encryption for the first time. Second, an

important issue with symmetric encryption is the so-called commitment problem which

appears when a key is used for encryption and is later revealed. Thus it is assumed

here that keys are never revealed after being used. Third, they assume authenticated

encryption schemes (i.e. the adversary is not able to compute a ciphertext that can be

validly decrypted with an unknown specific key) and they assume that ciphertexts are

tagged with key identifiers.

Transferring secrecy properties via RSIM/UC. As discussed in previous sections, in

symbolic models secrecy properties can be expressed as trace properties, while in com-

putational models they are not. Thus, transference of secrecy properties does not follow

from the preservation theorems proved for integrity properties. The result that sym-

bolic secrecy implies computational secrecy for the cryptographic library described

above appears in [BP05b]. The result holds for payload data, and for symmetric keys

(which had not been used for encryption or authentication), i.e. nonces. The precise

formulation of computational secrecy is indistinguishability based, and is similar to the

one for the trace mapping approach.

Impossibility of results of RSIM/UC soundness. The strong relation imposed between

the ideal and the real system by the RSIM/UC relation leads to several impossibility

results. In [BP05a], Backes and Pfitzmann offer impossibility results for an ideal library

that contains a model for XOR. The results are rather general, in that they are not for

a fixed abstraction of XORs. Instead, they show that if such a library is rich enough

to allow the specification of some simple protocols where secrecy of some piece of data

is desired, then a RSIM/UC concrete realization would imply that the library itself is

not abstract: using the library one is able to compute concrete cryptographic functions,

e.g. signatures. To complement the impossibility results, the authors show soundness

for the case of passive adversaries.

A second impossibility result, reminiscent of the restrictions imposed for the case

of symmetric encryption, has been obtained for the case of hashes [BPW06]. The au-

thors show several impossibility results for various restrictions on the class of protocols

that one is able to specify. The impossibility results hold for essentially all natural

abstractions of (one-way) hash functions.

One may note that these impossibility results are stated in the RSIM/UC model

and do not directly carry over to trace mapping results or soundness of observational

equivalence, even though no such soundness results for XOR are currently known.

Key Dependent Message security. As observed as early as the initial work of Abadi and

Rogaway, settings where key-dependent encryption occur either in normal executions

of protocols, or due to the malicious activities of the adversary pose a real problem to

computational soundness, especially when encryption cycles occur. The problem is that

although such settings are smoothly treated via symbolic methods, in computational

models it may be the case that encryption breaks completely. Two possible work-

arounds the problem is to either prohibit the occurrence of such situations (e.g. via
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syntactic restrictions on the protocols that are analyzed or via checking symbolically

that an adversary cannot obtain key cycles while interacting with the protocols [CZ06])

or to require that in computational settings encryption is stronger and does not break

even when used in such more esoteric ways.

The second approach has recently been taken by Backes, Pfitzmann, and Sce-

drov [BPS08]. They build on the earlier work of Black, Rogaway, and Shrimpton [BRS02]

and put forth a security notion for encryption that takes into account key-dependent

message attacks. They show that the notion can be achieved in the random oracle

model, and show that the notion is indeed sufficient to obtain soundness for the BPW

cryptographic library, even when encryption cycles occur.

Simulatability implies trace mapping. The first work that investigates the relation be-

tween the trace mapping approach and the one based on reactive simulatability is by

Backes, Dürmuth, and Küsters [BDK07]. They show that if two systems are related in

the sense of the latter, then a relation in the sense of trace mapping also holds.

Case studies. The applicability of the above described cryptographic library has been

illustrated on a number of case studies. In [BP03,BP04a], Backes et al. give a crypto-

graphically sound proof that the Needham-Schroeder protocol satisfies authentication

using the ideal library. More precisely, they show that an honest participant A only

successfully terminates a protocol with an honest participant B if B has indeed started

a protocol with A. Backes et al. have also analyzed the Otway-Rees protocol [Bac04],

which relies on symmetric encryption. Therefore the security proof also needs to show

the absence of the above discussed commitment problem. Moreover, a confidentiality

property of the established key is shown. The confidentiality property shown here is

not cryptographic key secrecy, but ensures that an adversary can never obtain a handle

to that key, which is close to deducibility in symbolic models.

In [BP06a], the authors illustrate the use of their library for showing cryptographic

key secrecy, relying on their secrecy transferring result [BP05b] described above. They

study the Yahalom protocol. The first remark is that cryptographic key secrecy, i.e.

indistinguishability of a real and a random key, is not guaranteed by the Yahalom

protocol as it ends with a key confirmation. A slightly simplified version, omitting the

last message, is then shown to guarantee key secrecy.

The approach is also illustrated on more complex protocols. In [BD05], a correctness

proof of an electronic payment protocol, a slight simplification of the 3KP protocol,

is given. In [BMP+06], a web service protocol, the WS-Reliable Messaging scenario is

analyzed and in [BCJ+06] security proofs are given for the Kerberos 5 protocol.

The above discussed case studies rely on hand proofs, but it is argued that the

proofs in the ideal system are in the scope of existing automated tools.

3.6 Towards automated proofs of simulatability

Several results study the automation of proof of simulatability in the context of the

simulatable cryptographic library of Backes, Pfitzmann and Waidner. Laud [Lau05]

proposes a type system for checking secrecy of messages handled by protocols. He

defines a language for cryptographic protocols, similar to the spi-calculus [AG97] tai-

lored to the BPW cryptographic library for symmetric and asymmetric encryption. He

presents a type system such that if a protocol types then it preserves the secrecy of the
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messages given to it by the users. In [BL06], Backes and Laud propose a mechanized

approach (implemented as a tool) for proving secrecy of payloads data in cryptographic

protocols modeled in the framework of [Lau05], for an unbounded number of sessions

using a typing system.

In [SBB+06,SB08a,SB08b], Sprenger et al. formalize the BPW model in the theo-

rem prover Isabelle/HOL for public-key encryption. Since this model is too complex to

directly analyze protocols, they propose several cryptographically sound abstractions

of the initial model, providing a proof of the soundness of the abstractions within the

Isabelle/HOL prover. As a case study, they show how the more abstract models can

be used for proving the security of the Needham-Schroeder-Lowe protocol [Low96].

Canetti and Herzog [CH06] define a mapping between protocols that use public

key encryption, in the UC-framework, and symbolic protocols such that the concrete

protocol realizes mutual authentication functionality if and only if its translation fulfills

the symbolic mutual authentication criteria. For the key exchange functionality, they

propose a new symbolic criteria such that a concrete protocol realizes the key exchange

functionality if and only if its translation fulfills the new symbolic criteria. Then they

apply an existing tool (ProVerif [Bla01]) to verify whether or not the key exchange

criteria is satisfied by known protocols.

4 Computational sound proof systems and logics

The remainder of this survey is dedicated to direct approaches: research directions that

aim to use symbolic methods and techniques in computational models. The idea is to

entirely avoid the use of execution models à la Dolev-Yao and, instead, reason directly

about computational executions. Some of these methods are inspired by and extend

symbolic methods, so unavoidably they may look superficially quite similar. For those

methods for which this is the case, we briefly outline the underlying symbolic one.

4.1 Computational Protocol Composition Logic

The Protocol Composition Logic, PCL for short, is a Floyd-Hoare like logic for proving

properties of security protocols in a compositional way. The underlying execution uses

the Dolev-Yao abstraction, so the logic does not fall in the category of approaches

treated in this section. However, the logic was the starting point for the computational

version that we describe in this section, and so it is useful to describe it. The logic

includes a modal operator ψ[P ]Xϕ which intuitively means that if the pre-condition

ψ holds and participant X executes protocol actions P then the post-condition ϕ will

hold. Protocols are described using a simple calculus for specifying roles. A role is a

sequence of actions including new nonce generation, send, receive and application of

cryptographic functions. The logic comes with a number of axioms and proof rules

which implicitly assume the presence of a Dolev-Yao like active adversary. As an ex-

ample, the two proof rules

ϕ ϕ⇒ ψ

ψ

ψ[P1]Xθ θ[P2]Xϕ

ψ[P1P2]Xϕ

allow sequential composition, given that the post-condition of a first protocol implies

the pre-condition of a second protocol. The logic also allows assume-guarantee-like
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parallel composition: provided that invariants of protocol P1 are preserved by protocol

P2 and vice-versa, properties are preserved by the parallel composition of P1 and P2.

One may note that composition is conditional (in the sense that composition preserves

a security property provided that the protocols preserve some invariant, or the post-

condition of one protocol implies the pre-condition of another protocol) in PCL as

opposed to the universal composability described in Section 3.4. Giving a complete

account of the logic is beyond the scope of this paper. A survey on PCL and the

numerous case studies carried out in this framework can be found in [DDMR07].

In [DDM+05], Datta et al. define Computational PCL, CPCL for short, by giving a

computational semantics for a variant of PCL. The protocols are hence executed in the

presence of an arbitrary PPT adversary. In [DDM+05] the only cryptographic primitive

is asymmetric encryption and the logic is equipped with two new predicates, Indist and

Possess. Intuitively, Indist expresses that a nonce is computationally indistinguishable

from a random nonce, for an arbitrary active adversary that is allowed to interact with

the protocol. Possess is used to model that a bitstring corresponding to a given term

cannot be built by the adversary using Dolev-Yao deduction rules, i.e. it supposes a

fixed algorithm for constructing this bitstring rather than an arbitrary PPT algorithm.

The main result of the paper is a soundness result showing that if a formula can be

deduced using the axioms and proof rules and if the encryption scheme is IND-CCA-2

secure, then the formula holds with overwhelming probability in the computational

semantics, i.e. in the presence of an arbitrary PPT adversary. The logic and soundness

result has been substantially extended in the following.

In [DDMW06] the logic is extended for proving the security of key exchange proto-

cols. As already noted, cryptographic key secrecy, stating that a key is indistinguishable

from a random key, is too strong if the protocol contains a key confirmation step or if

the key is to be used by another protocol. Therefore, a new, weaker security property

called key usability is presented. Intuitively, key usability holds if the established key

can be used safely afterwards. The definition is therefore parameterized by the intended

use of the key. More precisely, the property is formalized by an experiment involving

a two-stage adversary (Ae,Ac): in the first phase Ae interacts with the key exchange

protocol; in the second phase the adversary Ac receives state information of Ae and

plays a security game, e.g. IND-CPA. The definition is illustrated by showing the se-

curity of the ISO-9798-3 key exchange protocol, followed by a secure session using the

exchanged key. The secure session requires the use of an IND-CPA secure symmetric

encryption key. The case study also required the extension of the logic and soundness

theorem to symmetric encryption, Diffie-Hellman exponentiation and secure signature

schemes, requiring respectively IND-CPA secure symmetric encryption, the decisional

Diffie-Hellman assumption and a CMA secure signature scheme.

In [RDDM07], Roy et al. define a trace-based property, called secretive, which is

suitable for inductive and compositional proofs. This property guarantees a black-box

reduction from attacks on the protocol to attacks on the underlying primitives. More-

over this property implies computational secrecy properties (which is not a trace based

property) including key indistinguishability and key usability. The result is illustrated

by giving formal proofs of computational authentication and secrecy of Kerberos V5.

In [RDM08], Roy et al. further refine the logic for studying Diffie-Hellman based key

exchange protocols. The techniques are illustrated on the initial authentication of Ker-

beros V5 and IKEv2, which is the IPSEC key exchange standard.

Gupta and Shmatikov [GS05] also study a variant of PCL tailored to the analysis

of key exchange protocols. The fragment they consider only contains signatures and
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a restricted form of Diffie-Hellman exponentiation, which requires the exponentiations

to be signed. The security property they consider differs from the work discussed just

above. Gupta and Shmatikov consider indistinguishability of the key exchange protocol

and an ideal key exchange functionality together with a simulator. They define a sym-

bolic criteria which under standard security definitions (DDH and CMA) implies that

for any computational adversary, there exists a simulator, such that the transcripts

of the adversary interacting with the real and the ideal system are indistinguishable.

The method is illustrated on the authenticated Diffie-Hellman key exchange protocol.

In [GS06], they refine their results to allow adaptive corruption of long-term secrets

(but not strong adaptive corruption which reveals the entire internal state of corrupted

participants, rather than just the long term secret).

4.2 Static analysis techniques

In [Lau04], Laud presents static analysis techniques which are computationally sound

for protocols that use symmetric encryption in order to show computational secrecy

properties. The protocols are described in a basic programming language which allows

sending and receiving messages and application of encryption and decryption func-

tions, manipulation of tuples, random number generation and equality testing. The

technique consists in a protocol transformation, which is correct in the sense that an

incorrect protocol is never transformed into a correct protocol. To achieve correctness

the symmetric encryption scheme is supposed to be IND-CCA and to provide cipher-

text integrity. The protocol transformation mainly consists in removing unreachable

code, replacing bitstrings by formal terms and encryptions by encryptions of sequences

of 0s. The resulting protocol can then be analyzed using symbolic information flow

techniques. These results have been further extended in [LT05] to protocols that use

digital signatures.

5 Computationally sound implementation of higher level symbolic

constructs

The work that we discuss in this section is conceptually close to computational sound-

ness. All of these papers relate abstract symbolic languages and their concrete imple-

mentation in such a way that reasoning at the abstract layer yields meaningful results

about the actual implementation. Unlike the papers discussed in previous sections, the

abstract languages that are considered do not deal with cryptographic primitives ex-

plicitly, but use constructs or concepts that are security related. Cryptography is then

used to ensure that the implementation reflects the security concerns captured at the

higher level of abstraction.

Secure channels. Adaõ and Fournet [AF06] introduce a process calculus-based lan-

guage which has, as part of the core set of operations, built-in constructs that allow

parties to 1) make use of certificates issued by authorities and 2) communicate on

authenticated channels. At this level of abstraction, the use of cryptography is trans-

parent, and the desired security properties of these constructs are captured by their

semantics. In the next step the authors give an implementation of the two high-level

constructs described above; both implementations are based on digital signatures and
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are rather straightforward. The authors prove a soundness result that relate the two

levels of abstraction provided that the digital signature scheme used in the imple-

mentation is universally unforgeable under chosen-message attacks [GMR88] and that

the semantics of the abstract level is preserved by the implementation. It is worth

noting that the paper only studies authentication, and is not concerned with secrecy

properties.

Abadi, Corin, and Fournet [ACF06] define a process calculus which allows parties

to create and use secure (that is, secret and authenticated) channels. The desired intu-

itive security properties are captured via the semantics that they attach to processes

specified in this language. A standard notion of secrecy can be defined at this level,

and a type system is used to reason about it. Next, the authors describe a lower-level

language where cryptography occurs as part of the core operations that can be per-

formed and give a distributed implementation for the abstract processes. Interestingly,

the implementation and the results of the paper rely on a previous computational

soundness result. Indeed, the low-level implementation language is essentially the one

introduced by Laud [Lau05], which we discuss in Section 3.6. Recall that programs

written in this language that are typable preserve the secrecy of the messages sent by

the honest parties. The result of Abadi, Corin, and Fournet build on the above. They

prove that a typable process is translated into a typable program. It then follows, by

Laud’s soundness result [Lau05], that data which is secret at the abstract level is also

secret at the level of the concrete implementation (according to a computational notion

of secrecy).

Information flow. Fournet and Rezk [FR08] investigate the use of cryptography for

enforcing secure information flow for both confidentiality and integrity. In more details

their result is as follows. They first give a simple programming language with an as-

sociated language for specifying information flow policies. Satisfaction of such policies

can be checked using a type system that they also design. Next, they give a lower-level

implementation language which includes encryption and digital signing as part of the

primitives that can be used. The type system is such that programs that type-check

do not have undesired information flow, computationally. The main result of the paper

uses a typed translation of abstract programs to concrete ones. They show that if the

source program is typable then its translation is also typable. They conclude that the

implementation satisfies non-interference against probabilistic polynomial time adver-

saries.

6 The direct approach: formal cryptographic proofs

Bruno Blanchet [Bla06,Bla07b] has designed a mechanized prover, named CryptoVerif,

for security properties of cryptographic protocols. In contrast to most previous ap-

proaches, the tool does not rely on soundness results for symbolic model but directly

automate the proofs made in cryptography, based on sequences of games. The se-

curity property of protocol is specified as a game and is step by step reduced to the

game defining the security of the cryptographic primitives. CryptoVerif handles shared-

key and public-key encryption, signatures, message authentication codes, and hash

functions. It provides a general strategy for transforming games. In case the strategy

fails, it is possible to use an interactive mode where the user specifies by hand which

transformation should be used. The first version of CryptoVerif [Bla06,Bla07b] was
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designed for secrecy property. It has then been extended for proving correspondence

assertions [Bla07a]. Correspondence assertions are useful for specify properties like au-

thentication. The tool has been tested on several protocols from the literature (e.g.

Otway-Rees, Needham-Schroeder shared-key, Denning-Sacco public-key). It has been

recently used to analyze Kerberos 5, a full industrial protocol [BJST08]. The Cryp-

toVerif tool can also be used not only to automate security proofs of protocols but

also to automate security proofs of cryptographic primitives, reducing their security to

standard cryptographic assumptions [BP06b]. To illustrate their technique, they show

in particular that the Full-Domain Hash signature scheme enjoys unforgeability under

chosen-message attacks (UF-CMA) under the assumption of (trapdoor) one-wayness

of some permutations.

There have also been symbolic proofs of security for cryptographic primitives.

In [BCT04] Barthe et al. formalize the random oracle model and the generic model in

the proof assistant COQ. This formalization is used by Tarento [Tar05] to machine-

check a security proof of signature schemes against forgery attacks for arbitrary generic

adversaries. In the same vein, Courant et al. [CDCEL08] present an (incomplete) auto-

mated procedure for analyzing generic asymmetric encryption schemes in the random

oracle model. More precisely, they define a programming language to specify generic

encryption algorithms, i.e. encryption algorithms that rely on generic one-way func-

tions and hash functions. On top of this language they define a Hoare logic to establish

invariants that allow the proof of IND-CPA security. They also present a syntactic con-

dition which guarantees plaintext-awareness, which together with IND-CPA security

implies IND-CCA-2 security. Although not complete the tool has been successfully ap-

plied to the construction of Bellare-Rogaway 1993, of Pointcheval at PKC’2000 and

REACT.

7 Conclusion

In this paper we survey existing results that aim to bridge the gap between the two

approaches used in security analysis. The direct approach is rather recent and work in

this direction is in full swing. Currently, existent formalisms can tackle various game

transformation based proofs. Two important directions that need to still be explored

are game-based transformations based on rewinding (e.g. the techniques used in proving

Schnorr signature schemes) and those based on hybrid arguments, where the number

of hybrids depends on the security parameter.

On the computational soundness side, there are also many questions still open.

First, several primitives appear to be difficult to abstract (soundly) in symbolic models.

An important example is that of hash functions. In symbolic models hash functions are

usually represented by a free symbol (usually denoted by h). This formalization seems

to account for very strong security properties that cryptographic hash functions do

not necessarily have. Another example is that of symmetric encryption where symbolic

models do not seem to capture accurately the associated cryptographic behaviors.

Finally, most soundness results require strong security assumptions on the prim-

itives (e.g. IND-CCA-2 encryption in the active case), and this may seem to be un-

avoidable. Indeed, it has been shown that weaker but still standard assumptions may

indeed compromise security [War05]. Nevertheless, in practice it is not always possi-

ble to use strong secure primitives due to legacy or efficiency reasons. For example,

one might need to use deterministic encryption, in which case the encryption scheme
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cannot be IND-CCA or even IND-CPA. It would be particularly interesting to see if it

is possible to obtain computational soundness for weaker security assumptions on the

implementation of the primitives.
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ness of symbolic analysis for protocols using hash functions. In Proceedings of
the Workshop on Information and Computer Security (ICS’06), Electronic Notes
in Theoretical Computer Science, Timisoara, Romania, September 2006. Elsevier
Science Publishers.
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