
Higher-order matching and tree automata

Hubert Comon and Yan Jurski

Laboratoire Sp�eci�cation et V�eri�cation, URA 2236 du CNRS

�

Ecole Normale Sup�erieure de Cachan

61 avenue du pr�esident Wilson

94235 Cachan cedex, France

fcomon,jurskig@lsv.ens-cachan.fr

1 Introduction

A solution of an equation s = t where s; t are two terms of the simply typed

lambda calculus is an assignment � to the free variables of s; t such that �(s)

and �(t) are equal modulo �-reduction and �� equivalence. Finding a solution

(if one exists) is known as higher-order uni�cation and was shown undecidable

some time ago [5]. The higher-order matching problem consists in deciding the

existence of a solution when t does not contain any free variables. This problem

is still open.

In a classical way, we can associate to each type (and to each term of that

type) an order: basic types o have order 1 and if � = �

1

; : : : ; �

n

! o, then the

order of � is one plus the maximum of the orders of �

1

; : : : ; �

n

. If the order of

all the free variables of s is smaller or equal to n, we get a matching problem of

order n. For instance, �rst-order matching (as �rst-order uni�cation) is decidable

and there are actually either 1 or 0 solution to each matching problem. At order

two, matching is again decidable (see e.g. [7]) and the number of solutions is,

roughly, �nite (up to �-conversion and if we discard the variables whose value

is irrelevant and hence may be assigned to any term). Third-order matching is

again decidable (see [2]), however the set of solutions might be in�nite (modulo

�-conversion) as shown by the example:

x(�y:y) = a

where a is a constant of basic type. Then the solutions are the terms �x

1

:x

n

1

(a)

where n is any natural number. This example also shows that there is not nec-

essary any �nite set of most general solutions (contrary to e.g. �rst-order uni�-

cation).

4th order matching has also been shown decidable by V. Padovani [8] and

there are partial results for �fth order matching [9].

Our purpose here is to relate tree automata and higher-order matching. More

precisely, we show how to e�ectively compute an automaton which accepts the

solutions of any 4th order matching problem. This gives of course a new proof of

the decidability of 4th order matching since emptiness of the language recognized

by a �nite tree automaton can be decided (in linear time). This also provides a

representation of the set of all solutions for 3rd or 4th order matching (the known

decision algorithms do not yield such representations). This means in particular

that 4th order matching equations can be combined: using the closure properties

of recognizable languages, we may decide the emptiness of any Boolean combi-

nation of (or more generally, every �rst-order formula whose atoms are) such

matching problems. This tree-automaton approach also allows us to derive some

slightly more general results. For instance we can prove that 3rd-order matching

is NP-complete, which shows that 3rd order matching is not harder than second

order matching (which is also NP-complete). Up to now, the decision algorithms

for third order matching were (at least) doubly exponential. For instance, G.

Dowek's proof in [2] relies on a \pumping property" (which already suggest that

there are tree automata around): he shows that a minimal-height solution should

have a depth smaller than some polynomial in the data of the problem. Then

the decision algorithm simply consists in trying all terms of adequate type and

of depth bounded by this polynomial. In tree automata terms, this amounts to

check emptiness by running the automaton on all terms of depth smaller than

the number of states. This is not the best way of checking emptiness; using a

marking technique, the reachability of a �nal state can be decided in linear time.

Finally, we will try to structure the paper and the proof in such a way that the

place where the order hypothesis is used is clearly circumscribed. For instance,

the decidability proof of 4th order matching can be derived from the decidability

proof of 3rd order matching, changing only few lines in the proof. We hope that

this will give more insight on the reasons why 5th order matching is really more

di�cult than 4th order matching.

The paper tries to be self contained. It is structured as follows: section 1

contains the basic de�nitions we are using in lambda calculus. Section 2 explains

the kind of automata we are using. Section 3 is devoted to the study of some

particular matching problems: the 3rd order interpolation equations. In section

4, we show how to modify the proof of the previous section in order to show

that the set of solutions of a fourth order interpolation equation is recognizable.

In section 5, we give another proof that 3rd order matching can be reduced to

interpolation equations and we derive from this reduction the NP-completeness

of 3rd order matching. In section 6 we sketch Padovani's reduction, which yields

the recognizability of solutions of general 4th order matching problems. Finally,

we conclude in section 7 with some considerations on 5th-order matching.

2 Lambda Calculus, matching problems and interpolation

equations

In this paper, we consider the simply typed lambda calculus. For other calculi

such as e.g. polymorphic �-calculi or G�odel's system T, pattern matching is

known to be undecidable in general [3] and decidable at third order [11, 12].

2.1 Types

De�nition 1. The set T of types is the smallest set containing the constant

symbol o (basic type) and such that � ! � 2 T whenever �; � 2 T .

We assume here that there is only one basic type o. However everything can

be extended to a �nite number of basic types in a straightforward way. (It can

even be extended to calculi with subtypes induced by an ordering on the basic

types).

In order to �t with the usual notations of tree automata, a type �

1

! (�

2

!

: : : (�

n

! �) : : :) is written �

1

; : : : ; �

n

! �. Then, every type has the form

�

1

; : : : ; �

n

! o.

De�nition 2. The order O of a type � 2 T is de�ned by:

{ O(o) = 1

{ O(�

1

; : : : ; �

n

! o) = 1 +max(O(�

1

); : : : ; O(�

n

)).

Finally, Sub(�) is the set of types occurring in � (i.e. the set of subterms of

� when � is viewed as a term on the alphabet fo;!g).

2.2 Terms

De�nition 3. Let C be an alphabet of constant symbols, each symbol coming

with its type in T and X be an alphabet of variable symbols each variable also

coming with its type. Then the set of (typed) terms T (C;X) is the least set such

that:

{ X ; C � T (C;X)

{ If t 2 T (C;X) has type � (which is abbreviated t : �) and x : � 2 X , then

�x:t : � ! � 2 T (C;X)

{ If u

1

: �

1

; : : : ; u

n

: �

n

; t : �

1

; : : : ; �

n

! o 2 T (C;X), then t(u

1

; : : : ; u

n

) 2

T (C;X).

Note that this de�nition assumes that the terms are in so-called �-long form

(except may be for the constants and the variables).

Substitutions are mappings from the set of variables to the set of terms,

which preserve the types. We write fx

1

7! t

1

; : : : ; x

n

7! t

n

g the mapping which

assigns to each x

i

the term t

i

and which is the identity outside fx

1

; : : : ; x

n

g.

Substitutions will be used in post�x notation and we always assume renamings

(�-conversions) which avoid the capture of variables. If C

1

� C, a substitution is

out of C

1

if, for every variable x 2 X and every c 2 C

1

, x� does not contain any

occurrence of c.

The (one step) �-reduction is de�ned as usual as the least binary relation

�!

�

which is compatible with the term structure and such that for every term

(�xu)(v) 2 T (C;X), (�xu)(v) �!

�

ufx 7! vg.

�!

�

is strongly normalizing and con
uent on simply typed terms (see e.g.

[6]). Hence each term t has a unique normal form (up to �-conversion), which is

denoted t #.

The transitive closure (resp. re
exive and transitive) closure of a binary re-

lation ! is denoted by

+

�! (resp.

�

�!).

For each term t, the set of relevant types Sub(t) is the �nite set of types which

occur as a subterm of the type of t. For instance, assume that t : (o; o! o); o! o,

then Sub(t) = fo; o; o! o; (o; o! o); o! og. Finally, the order of a term is the

order of its type.

2.3 Pattern matching

De�nition 4. Given two terms u; v 2 T (C;X) and a set C

1

� C, a solution (resp.

a solution out of C

1

) of the equation u = v is a substitution (resp. a substitution

out of C

1

) � such that u�# =

�

v�# .

The (higher-order) pattern matching problem (resp. the matching problem

out of C

1

) is, given two terms u; v 2 T (C;X) such that v does not contain any

free variable, does there exist a solution to u = v ?

The order of a matching problem u = v is the maximal order of a free

variable in u. General second-order matching is NP-complete (we do not know

any reference to this result. Hence we sketch in the following the easy encoding

of 3-SAT into 2nd order matching). General third order matching is decidable

[1] and the known upper bound is a double exponential. Fourth order matching

is decidable [8] and the known upper bound is a tower of several exponentials

(6?).

Without loss of generality, we may assume that u; v are in normal form (which

we will do in the following). We may also restrict our attention to solutions �

which map variables to terms in normal form.

If u is an abstraction : u = �x

1

: : : �x

n

:u

0

, then, for any substitution �, u�#

= �x

1

: : : �x

n

:u

0

�# , hence v has to be an abstraction as well: v = �y

1

: : : �y

n

:v

0

and � is a solution of u = v i� � is a solution out of fx

1

; : : : ; x

n

g of u

0

= v

0

fy

1

7!

x

1

; : : : y

n

7! x

n

g Hence, at the price of going from matching to matching out of

a set of constants, hereafter called frozen constants, we may always assume that

the right hand side of a matching problem has type o.

3 Tree automata

3.1 �-terms as trees

As usual, positions in a tree are (�nite) sequences of positive integers. A set of

positions is assumed to be pre�x closed and to satisfy p � i 2 P) p � j 2 P

for every integers 1 � j � i. A tree t consists in a �nite set of positions Pos(t)

together with a labeling function t from Pos(t) into F , a set of function symbols.

Each function symbol f comes with its arity a(f). The labeling should be such

that the number of sons of a node labeled with f is exactly a(f).

We use a representation of �-terms as trees (which is similar to B�ohm trees):

the set F consists in C [X [f�x

1

: : : ; �x

n

j n � 1; x

1

; : : : ; x

n

2 Xg. The arity

of f 2 C [X is n if the type of f is �

1

; : : : ; �

n

! o. Abstractions �x

1

: : : �x

n

are

assumed to have arity one.

For instance, �x

1

�x

2

:c(�x

3

:x

3

; x

2

(x

1

)) (assumed in normal form) has the

following representation as a tree:

�x

1

�x

2

c

�

�

@

@

�x

3

x

2

x

3

x

1

In what follows, we assume that F is �nite. This is not a restriction as, for

countably in�nite alphabets, there is always another alphabet F

0

, which is �nite,

and an injective tree homomorphism h from T (F) into T (F)

0

such that h(T (F))

is recognizable by a �nite tree automaton and the size of h(t) is linear with

respect to the size of t.

1

However, for sake of clarity, we will keep the standard

notations instead of using the encodings of F .

3.2 2-automata

We will use a slight modi�cation of tree automata. The main di�erence with

the de�nitions of [13, 4] is the presence of special symbols 2

�

which should be

interpreted as any term of type � . This slight modi�cation is necessary because,

for instance, the set of all closed terms is not recognizable by a classical �nite

tree automaton: roughly, while running the automaton on a term t, one should

remember which variables are free in the term and the amount of memory which

is required is not bounded independently of t. Using B�ohm trees (in which free

variables are indicated in the node label) does not help since we would have to

check that the labels indeed correspond to free variables, which again requires

an unbounded memory.

The following de�nition is thus a slight modi�cation of the classical de�nition

of bottom-up tree automata. The only change is the addition of boxes 2

�

which

can be replaced with any term of type � .

De�nition 5. A 2-automaton A is a tuple (F ; Q;Q

f

; �) where:

{ F is a �nite alphabet of labels, including a �nite set of 0-ary special function

symbols 2

�

1

; : : : ;2

�

m

{ Q is a �nite set of states

{ Q

f

is a subset of Q; its members are the �nal states

1

For instance, if x

i

; i � 0 is the set of �rst order variables, they will be represented

using a unary tree x(i) where i is a tree representation of the integer i.

{ � is a transition relation: it is a �nite set of rules of the form

f(q

1

; : : : ; q

n

)! q

where f 2 F has arity n and q

1

; : : : ; q

n

; q 2 Q

De�nition 6. The forgetful relation v is de�ned as the least relation on terms

such that:

2

�

v u for every term u of type � .

u

1

v v

1

; : : : u

n

v v

n

) f(u

1

; : : : ; u

n

) v f(v

1

; : : : ; v

n

) for every symbol f of

adequate type.

A box-replacement of a term u is a term v such that u v v and v does not contain

any symbol 2

�

.

De�nition 7. A 2-automaton A accepts (resp.accepts in state q) a term t 2

T (C;X) if there is a term u 2 T (C[f2

�

1

; : : : ;2

�

n

g;X) and a state q

f

2 Q

f

such

that u

�

�!

�

q

f

(resp. u

�

�!

�

q) and u v t.

The language L(A) recognized by a 2-automaton A is the set of terms which

are accepted by A.

Example 1. Consider the following 2 automaton:

{ F = fa; �x

1

;2

o

; x

1

g where a is a constant and x

1

is a variable of type

o; o! o

{ Q consists of three states q

2

, q

f

and q

a

; q

f

is the �nal state.

{ � is the set of transition rules:

a! q

a

2

o

! q

2

x

1

(q

a

; q

2

)! q

a

�x

1

q

a

! q

f

The automatonA recognizes the language of solutions of x(�y

1

�y

2

:y

1

) = a (up to

�-conversion). For instance the term �x

1

:x

1

(x

1

(a; b); c) where b; c are arbitrary

terms, is accepted by A as shown by the computation of the automaton:

�x

1

:x

1

(x

1

(a;2

o

);2

o

)

�

�!

�

�x

1

:x

1

(x

1

(q

a

; q

2

); q

2

) �!

�

�x

1

:x

1

(q

a

; q

2

) �!

�

�x

1

:q

a

�!

�

q

f

Then �x

1

:x

1

(x

1

(a;2

o

);2

o

) v �x

1

:x

1

(x

1

(a; b); c).

The following result shows that we can use 2-recognizability as recognizabil-

ity:

Theorem8. The set of 2-recognizable subsets of � is closed under Boolean

operations, and the complexity of each operation is the same as for the operations

on usual tree automata.

Sketch of the proof:

The proof of this result is similar to the proof of closure properties of �nite

tree automata. We only have to be slightly more careful in the reduction of

non-determinism (which is necessary for complementation): if we have two rules

f(q; q

2

�

) ! q

1

and f(q; q

2

) ! q

3

, we cannot consider the automaton as de-

terministic. To see what happens in this case, it is better to use an algebraic

characterization of the languages: the language accepted by the 2-automaton A

is the union of L

q

f

for q

f

2 Q

f

and fL

q

; q 2 Qg is the least solution of the set

of equations:

L

q

=

n

[

i=1

f

i

(L

q

1;i

; : : : ; L

q

m

i

;i

)

where f

i

(q

1;i

; : : : ; q

m

i

;i

) ! q are the transition rules whose target is q and

f

1

; : : : ; f

n

are not boxes, and L

q

= T

�

(the whole set of terms of type �) if

some f

i

= 2

�

. Then the complement can be computed by complementing both

sides of the equations:

L

q

=

n

\

i=1

((

[

f 6=f

i

f(T

�

1

; : : : ; T

�

m

)) [(

m

i

[

l=1

f

i

(T

�

1

; : : : ; L

q

l

; : : : ; T

�

m

i

))

Then we are left to prove that the intersection (resp. union) of two recognizable

languages can be computed in polynomial time. It is quite straightforward for

the union. Concerning intersection, we have to be a bit more careful: as in the

classical case, the states of the intersection automaton contain pairs of states of

each component automaton. There are also additional rules for arguments of the

form (q; q

2

�

) or (q

2

�

; q). 3

3.3 Automata on tuples

As for classical tree automata, terms can be overlapped, yielding the notion of

recognizability of tuple of terms. Then the class of recognizable sets of tuples is,

in addition, closed under projection.

4 Third order interpolation equations

We consider �rst some particular kinds of third order matching problems, which,

as we will see, are at the heart of the problem.

De�nition 9. An interpolation equation is an equation

x(s

1

; : : : ; s

n

) = t

where s

1

; : : : ; s

n

; t are closed terms in normal form

Assume �(x) = �

1

; : : : ; �

n

! o.

In the automaton A

s

1

;:::;s

n

;t

= (F ; Q;Q

f

; �), Q only depends on t. The idea

is the following: any solution can be written �x

1

; : : : �x

n

:u. If a term of type

o, say v, occurs in u, then either it will be reduced to a subterm of t along

the reduction of ufx

1

7! s

1

; : : : x

n

7! s

n

g to t, or else v could be replaced

by any term without a�ecting the result of the reduction. (This corresponds

to Padovani's observational equivalence classes). The set of states re
ects this

property: if vfx

1

7! s

1

; : : : x

n

7! s

n

g reduces to a subterm t

0

of t, then it will be

accepted in state q

t

0

.

The alphabet F consists in

{ the constant symbols occurring in t and, more generally, every label of a

node in the tree representation of t (except the frozen constants if any)

{ the symbols x

1

; : : : ; x

n

of type �

1

; : : : ; �

n

respectively, which are assumed

to be distinct from the above symbols

{ the special symbols 2

�

for every � 2 Sub(x)

The set of states Q consists of all subterms of t, which we write q

u

(instead

of u) and a state q

2

o

. In addition, we have the �nal state q

f

.

The transition rules � consist in

{ The rules

f(q

t

1

; : : : ; q

t

n

)! q

f(t

1

;:::;t

n

)

each time q

f(t

1

;:::;t

n

)

2 Q

{ For i = 1; : : : ; n, the rules

x

i

(q

t

1

; : : : ; q

t

n

)! q

u

where u is a subterm of t such that s

i

(t

1

; : : : ; t

n

) # = u and t

j

= 2

o

whenever s

i

(t

1

; : : : ; t

j�1

;2

o

; t

j+1

; : : : ; t

n

)# = u.

{ the rule �x

1

; : : : ; �x

n

:q

t

! q

f

We claim that a term u is a solution of the interpolation equation if and only

if it is �-equivalent to a term which is accepted by A

s

1

;:::;s

n

;t

.

Example 2. Let us consider the interpolation equation

x(�y

1

�y

2

:y

1

; �y

3

:f(y

3

; y

3

)) = f(a; a)

where y

1

; y

2

are assumed to be of base type o. Then F = fa; f; x

1

;2

o

g. Q =

fq

a

; q

f(a;a)

; q

2

o

g and the rules of the automaton are:

a! q

a

f(q

a

; q

a

)! q

f(a;a)

2

o

! q

2

o

x

1

(q

a

; q

2

o

)! q

a

x

1

(q

f(a;a)

; q

2

o

)! q

f(a;a)

x

2

(q

a

)! q

f(a;a)

�x

1

�x

2

:q

f(a;a)

! q

f

For instance the term �x

1

�x

2

:x

1

(x

2

(x

1

(x

1

(a;2

o

);2

o

));2

o

) is accepted by

the automaton :

�x

1

�x

2

:x

1

(x

2

(x

1

(x

1

(a;2

o

);2

o

));2

o

)

�

�!

A

�x

1

�x

2

:x

1

(x

2

(x

1

(x

1

(q

a

; q

2

o

); q

2

o

)); q

2

o

)

�!

A

�x

1

�x

2

:x

1

(x

2

(x

1

(q

a

; q

2

o

)); q

2

o

)

�!

A

�x

1

�x

2

:x

1

(x

2

(q

a

); q

2

o

)

�!

A

�x

1

�x

2

:x

1

(q

f(a;a)

; q

2

o

)

�!

A

�x

1

�x

2

:q

f(a;a)

�!

A

q

f

And indeed, for every terms t

1

; t

2

; t

3

of type o, �x

1

�x

2

:x

1

(x

2

(x

1

(x

1

(a; t

1

); t

2

)); t

3

)

is a solution of the interpolation problem.

We �rst show an order-dependent technical lemma.

Lemma10. If E is a set of terms which is closed under subterm, then for any

second-order term s and any �rst order terms u

1

; : : : ; u

n

, s(u

1

; : : : ; u

n

) # 2 E

implies that, for each j, either u

j

2 E or else s(u

1

; : : : ; u

j�1

;2

o

; u

j+1

; : : : ; u

n

)#

= s(u

1

; : : : ; u

n

)# .

Proof. Let w = s(u

1

; : : : ; u

m

)# 2 E . Assume that u

j

=2 E for some j. We show

by induction on the size of w that

s(u

1

; : : : ; u

j�1

;2

o

; u

j+1

; : : : ; u

m

)

�

�!

�

w

Let s = �z

1

: : : �z

m

:r,

s(u

1

; : : : ; u

n

)

+

�!

�

rfz

1

7! u

1

; : : : z

m

7! u

m

g

O(r) = 1. If r = z

k

for some k, then u

k

= w and j must be distinct from k. Then

we have also rfz

1

7! u

1

; : : : ; z

j�1

7! u

j�1

; z

j

7! 2

o

; z

j+1

7! u

j+1

; : : : ; z

m

7!

u

m

g = w. If r is not a variable, r = c(r

1

; : : : ; r

k

) and w = c(w

1

; : : : ; w

k

).

Moreover, (�z

1

; : : : ; �z

m

:r

l

)(u

1

; : : : ; u

m

) # = w

i

and, by induction hypothesis,

(�z

1

; : : : ; �z

m

:r

l

)(u

1

; : : : ; u

j�1

;2

o

; u

j+1

; : : : ; u

m

)# = w

l

, which yields the result.

3

Theorem11. Let s

1

; : : : ; s

n

; t be closed terms. The automaton A

s

1

;:::;s

n

;t

ac-

cepts the set of solutions (resp. the solutions out of C

1

) up to �-conversion of

the third order equation x(s

1

; : : : ; s

n

) = t.

Proof. Assume that u is a solution (in normal form). Then (only using the

typing constraints) u is �-equivalent to some term �x

1

: : : : �x

n

:v where the

only free variables of v are x

1

; : : : ; x

n

and �(x

i

) = �(s

i

) for every i. Let �

be the substitution fx

1

7! s

1

; : : : x

n

7! s

n

g Let us show by induction on the

size of v that if w is a subterm of t and V ar(v) � V ar(w)[fx

1

; : : : ; x

n

g and

v�# = w then v is accepted in state q

w

.

Base cases When v is a constant (or a variable) (of type o) and occurs in

t, then, by construction, there is a rule v ! q

v

.

When v is a variable (of type o) not occurring in t, then v = x

i

for some

i and, by construction of the automaton, there is a rule x

i

! q

s

i

.

Induction step Now, assume that v has a size larger or equal to 2. There

are three possible constructions:

v = �z:v

1

. And z may be assumed distinct from x

i

. Then v�# = �z:v

1

�#

. Since it should be a subterm of t, z may be assumed (at the price

of an � conversion) to be bound in t and v�# = �z:w

1

where w

1

is

a subterm of t. By induction hypothesis, v

1

is accepted in state q

w

1

and there is a rule �z:q

w

1

�!

A

q

�z:w

1

. Hence v is accepted in state

q

�z:w

1

.

v = z(v

1

; :::v

m

) where z is variable . Then either z is a variable which

occurs free in some subterm of t or z = x

i

for some i. in the �rst case,

w = v�# = z(v

1

�# ; : : : v

m

�#) is a subterm of t and hence w

i

= v

i

�#

is a subterm of t for all i. Then, by induction hypothesis, each term v

i

is accepted in state q

w

i

. Finally, using the rule z(q

w

1

; : : : q

w

m

) �!

A

w,

v is accepted in state q

w

.

In the second case, w = v�# = s

i

(v

1

�# ; : : : ; v

m

�#)# . Let u

j

= v

j

�#

. O(x) = 3, hence O(s

i

) = 2 and we can apply lemma 10 with E=

the set of subterms of t: for each index j, either u

j

is a subterm of

t, in which case, by induction hypothesis, v

j

is accepted in state q

u

j

,

or else v

j

can be replaced with 2

o

without changing the result of

the reduction: let q

j

= q

u

j

if u

j

is a subterm of t and q

2

o

otherwise.

Using the rule x

i

(q

1

; : : : ; q

m

) �!

A

q

w

, v is a term accepted by the

automaton in state q

w

.

v = c(v

1

; :::; v

m

) where c is a constant. Then v�# = c(v

1

�# ; : : : v

n

�#)

and w

i

= v

i

�# is a subterm of t. By induction hypothesis, v

i

is ac-

cepted in state q

w

i

for all i and, thanks to the rule c(q

w

1

; : : : ; q

w

m

) �!

A

q

w

,

v is accepted in state q

w

.

It follows in particular that, if �x

1

; : : : ; �x

n

:v is a solution, then v is ac-

cepted by the automaton in state q

t

. Hence �x

1

; : : : ; �x

n

:v is accepted by

the automaton.

Assume that u

�

�!

A

q

f

and let us show that for any 2-replacement v of u,

�x

1

: : : �x

n

:v is a solution. Actually, we show more generally, by induction

on the size of u, that if u

�

�!

A

q

w

, then v�# = w.

Base cases If u is a constant then u = v = w (the only possible transition

from u is u �!

A

q

u

).

If u is a variable, then u must be either a variable occurring in t in

which case u = w or some variable x

i

. In the latter case, u �!

A

q

w

only

if w = s

i

= v�.

Induction step We investigate all possible constructions of u:

u = c(u

1

; : : : ; u

m

) where c is either a constant or a variable bound in t.

Then the only possible rule yielding q

w

is

c(q

1

; : : : ; q

n

) �! q

w

where q

i

= q

w

i

and w = c(w

1

; : : : ; w

m

) and every u

i

is accepted

in state q

i

. Then, by induction hypothesis, v

i

� # = w

i

and v

i

is a

2-replacement of u

i

for every i. Then let v = c(v

1

; ; v

n

). v� # =

c(w

1

; : : : ; w

n

) = w and v is a 2-replacement of u

u = �z

1

; : : : �z

m

:u

1

According to the de�nition of the automaton, there

should be a subterm �z

1

; : : : ; �z

m

:w

1

of t such that u

1

�

�!

A

q

w

1

. Then,

by induction hypothesis, there is a v

1

which is a 2-replacement of

u

1

and such that v

1

�# = w

1

and hence v�# = w, if v = �z

1

:v

1

.

u = x

i

(u

1

; : : : ; u

m

) According to the de�nition of the automaton, for

every i, u

i

�

�!

A

q

w

i

such that s

i

(w

1

; : : : ; w

m

)# = w. For every index

i such that q

w

i

is in the set of states, by induction hypothesis, there

is a term v

i

such that v

i

is a 2-replacement of u

i

and v

i

�# w

i

. For

the other indices, we may replace the occurrences of 2

o

with the

appropriate v

i

s in s

i

(w

1

; : : : ; w

n

), without modifying the result of

the reduction: s

i

(v

1

; : : : ; v

n

)# = w.

which complete the converse implication. Note that we did not use the order

assumption in this part of the proof.

3

Lemma12. The size of the automaton A

s

1

;:::;s

n

;t

is O(n�m� jtj) where m is

the maximal number of arguments of an s

i

.

Sketch of the proof: The number of states is O(jtj). Now, the total size of all

rules of the form f(q

t

1

; : : : ; q

t

m

)! q

f(t

1

;:::;t

m

)

is at most 2�jtj.

2

Finally, accord-

ing to lemma 10, for each i, the total size of all rules x

i

(q

u

1

; : : : ; q

u

m

)! q

u

is at

most jtj � (m+ 2). 3

Note that the automaton is not any tree automaton: for instance it can be

seen easily that the language has star height 1. What is more interesting for us

is the following result:

Lemma13. The existence of a solution to a system of n third order interpola-

tion equations can be decided in non-deterministic polynomial time.

Sketch of the proof: We may assume without loss of generality that there is

only one free variable in the system (otherwise, there is a solution i� there is a

solution for each of the individual systems).

In the automaton A

s

1

;:::;s

n

;t

, the set of rules can be divided in three parts:

2

The size of a rule f(q

1

; : : : ; q

m

)! q is m+ 2.

{ the looping rules of the form x

i

(q

2

o

; : : : q

2

o

; q

u

; q

2

o

; : : : ; q

2

o

) ! q

u

which

correspond to a term s

i

which is the jth projection

{ rules which increase the states: assuming that 2

o

is smaller than any other

terms and that the subterms of t are ordered using the subterm ordering,

f(q

u

1

; : : : ; q

u

m

)! q

u

) 8j; u

j

< u

where f is a constant or a variable.

{ the rule yielding the �nal state

We may decompose A

s

1

;:::;s

n

;t

as a �nite union of automata whose rules

consist in looping rules, the rule yielding the �nal state and a set of rules in

which each state occurs at most once. For all such automata, the states are

included in the set of occurrences of t plus the 2-state (but may not be included

in the original set of states: di�erent positions of the same subterm of t are now

distinghished, see the example below). For instance consider the automaton of

example 2. It is split into two automata whose rules are respectively:

a! q

a

2

o

! q

2

o

x

1

(q

a

; q

2

o

)! q

a

x

1

(q

f(a;a)

; q

2

o

)! q

f(a;a)

x

2

(q

a

)! q

f(a;a)

�x

1

�x

2

:q

f(a;a)

! q

f

and

a! q

a;1

2

o

! q

2

o

x

1

(q

a;1

; q

2

o

)! q

a;1

x

1

(q

f(a;a)

; q

2

o

)! q

f(a;a)

f(q

a;1

; q

a;2

)! q

f(a;a)

a! q

a;2

x

1

(q

a;2

; q

2

o

)! q

a;2

�x

1

�x

2

:q

f(a;a)

! q

f

Now, intersecting two automata of the above form, we get again a �nite dis-

junction of automata of the same form and whose size of productive rules is

bounded by O(n �m� (jt

1

j + jt

2

j)) (where n is the arity of x), i.e. the sum of

the sizes of the two intersected automata. If we want to check the emptiness of

the intersection, we simply guess one automaton each time there is a disjunction

and check the emptiness of the resulting automaton, whose size is O(n�m�jtj).

3

This contrasts with the result on arbitrary tree automata for which the empti-

ness of intersection is EXPTIME-complete [10].

5 Fourth order interpolation equations

Theorem 11 uses the order of the matching problem only through lemma 10.

Our purpose is then to generalize lemma 10 to fourth order, in such a way that

the proof of theorem 11 also works for fourth order.

Lemma14. Let E be a set of terms which is closed under subterm and such

that, for every k � N , for every �rst-order terms r

1

; : : : ; r

k

2 E [f2

o

g, for

every �rst order term v 2 E, then the solutions of z(r

1

; : : : ; r

k

) = v are again in

E. Assume that s(u

1

; : : : ; u

m

)# 2 E for some third order term s and that N is

larger than the largest number of arguments of any � 2 Sub(s). Then, for every

j, either u

j

2 E or else s(u

1

; : : : ; u

j�1

;2

�

; u

j+1

; : : : ; u

m

)# = s(u

1

; : : : ; u

m

)# .

Sketch of the proof. We \freeze" u

j

in the computation of s(u

1

; : : : ; u

m

)# : the

redexes involving u

j

are delayed as long as possible. We get a reduction sequence

s(u

1

; : : : ; u

m

)

�

�!

�

C[u

j

(r

1

1

; : : : ; r

k

1

); : : : u

j

(r

1

n

; : : : ; r

k

n

)]

�

�!

�

u

where C is an irreducible context, the terms r

l

i

are �rst order terms in normal

form and u 2 E . k � N and u must be of the form u = C[v

1

; : : : ; v

n

]. Hence

either n = 0 or u

j

is a solution of the system of second order interpolation

equations

z(r

1

i

; : : : ; r

k

i

) = v

i

According to lemma 10, each r

l

i

is either a subterm of v

i

or else it can be replaced

with 2

o

without changing the set of solutions. Now, r

l

i

is a subterm of v, hence

in E , as soon as it is a subterm of v

i

. Hence u

j

2 E if n > 0. 3

This suggests to use the same automaton as in the previous section, except

that the set of states has to be closed under \solutions of second-order interpo-

lation equations". The next lemma shows that this indeed yields a �nite number

of states.

Lemma15. The least set Q

N

containing t, closed by subterm and such that for

every k � N for every �rst-order terms r

1

; : : : ; r

k

2 Q

N

[f2

o

g, for every �rst

order term v 2 Q

N

, then the solutions of z(r

1

; : : : ; r

k

) = v are again in Q

N

is

�nite.

Sketch of the proof. Q

N

can be computed as a least �xed point, starting with

t and iterating the closure under subterm and under solutions of second order

interpolation equations.

A �rst iteration of the two closures gives rise to terms of the form

�z

1

; : : : ; �z

k

:C[z

i

1

; : : : ; z

i

m

]

where z

i

1

; : : : ; z

i

m

2 fz

1

; : : : ; z

k

g and C is an irreducible context such that

u = C[u

1

; : : : ; u

m

] for some subterm u of t. At the second iteration, z

1

; : : : ; z

k

belong to Q

N

(because of the closure by subterm). However, any solution of an

interpolation equation over this new set of terms has the form

�y

1

: : : �y

k

:C[y

i

1

; : : : ; y

i

m

; z

j

1

; : : : ; z

j

n

]

and we have always k + n � jtj. Actually, at any iteration, we need at most jtj

distinct variables to express the solutions (these variables may be re-used) which

yields the �niteness of Q

N

. 3

Example 3. Let t = c(a) and N = 1. Initially Q

N

= fc(a)g. Closing under

subterm gives rise to a new element: a. Then we have to solve several second-

order interpolation equations:

Interpolation equation Solutions

z(2

o

) = a �z

1

:a

z(2

o

) = c(a) �z

1

:c(a)

z(a) = a �z

1

:z

1

; �z

1

:a

z(a) = c(a) �z

1

:c(z

1

); �z

1

:c(a)

z(c(a)) = a �z

1

:a

z(c(a)) = c(a) �z

1

:z

1

; �z

1

:c(a)

Then we get the following new terms inQ

1

: f�z

1

:a; �z

1

c(a); �z

1

:z

1

; �z

1

:c(z

1

)g.

In the second step, we closed under subterm and get the two additional terms:

fz

1

; c(z

1

)g, which again lead to solve new second-order matching problems. We

get then the new terms: f�z

2

:z

1

; �z

2

:c(z

1

). (All other solutions are already in

Q

N

up to �-conversion). Finally Q

N

contains 10 elements

Remark: the size of Q

N

may be doubly exponential in the size of t.

Theorem16. The solutions (resp. the solutions out of C

1

) of a fourth-order

interpolation equation are recognized by an e�ectively computable tree automaton.

(Whose size is at most doubly exponential w.r.t. the right hand side).

Proof. The automatonA

s

1

;:::;s

n

;t

is constructed as in the previous section, except

that the set of states is now the set Q

N

of lemma 15,using for N the maximal

number of arguments of any type in Sub(x), x itself excepted. Then the alpha-

bet is larger: it should contain any symbol occurring in any state. The set of

transition rules is constructed in the same way.

Then we use exactly the same proof as for theorem 11, replacing the reference

to lemma 10 with a reference to 14. 3

Example 4. Consider the fourth order interpolation equation:

x(�y�z:y(z)) = c(a)

The set of states has been computed in example 3. Let us now precise the set of

transition rules:

a! q

a

2! q

2

c(q

a

)! q

c(a)

z

1

! q

z

1

�z

1

:q

a

! q

�z

1

:a

�z

1

q

z

1

! q

�z

1

:z

1

�z

1

:q

c(a)

! q

�z

1

:c(a)

c(q

z

1

)! q

c(z

1

)

�z

1

q

c(z

1

)

! q

�z

1

:c(z

1

)

�z

2

:q

z

1

! q

�z

2

:z

1

�z

2

:q

c(z

1

)

! q

�z

2

:c(z

1

)

�x

1

:q

c(a)

! q

f

x

1

(q

�z

1

:z

1

; q

a

)! q

a

x

1

(q

�z

1

:z

1

; q

z

1

)! q

z

1

x

1

(q

�z

1

:z

1

; q

c(a)

! q

c(a)

x

1

(q

�z

1

:z

1

; q

c(z

1

)

)! q

c(z

1

)

x

1

(q

�z

1

:a

; q

2

)! q

a

x

1

(q

�z

1

:c(a)

; q

2

)! q

c(a)

x

1

(q

�z

2

:z

1

; q

2

)! q

z

1

x

1

(q

�z

2

:c(z

1

)

; q

2

)! q

c(z

1

)

x

1

(q

�z

1

:c(z

1

)

; q

a

)! q

c(a)

x

1

(q

�z

1

:c(z

1

)

; q

z

1

)! q

c(z

1

)

For instance the following term is accepted by the automaton (the states that

at reached at each node are indicated in a frame):

�x

1

q

f

x

1

q

c(a)

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

�z

1

q

�z

1

:c(z

1

)

x

1

q

a

�

�

@

@

c

q

c(z

1

)

�z

1

q

�z

1

:z

1

a

q

a

x

1

q

z

1

x

1

q

z

1

�

�

@

@

�

�

@

@

�z

2

q

�z

2

:z

1

b

q

2

�z

1

q

�z

1

:z

1

z

1

q

z

1

z

1

q

z

1

z

1

q

z

1

6 General third order matching

Theorem17. The set of solutions of a third order matching equations is recog-

nizable and third-order matching is NP-complete

Sketch of the proof:. We can prove the theorem in two ways: either we rely on

Padovani's result relating the interpolation equations and the matching problem.

Then the result can be obtained thanks to closure properties of automata and

theorem 11. Or else, we can construct directly an automaton on tuples in the

spirit of the proof of theorem 11. Let us sketch quickly this second construction,

which will also yield a complexity result.

Consider the equation s = t. Initially the set E is empty. Then, we repeat

the following steps until s does not contain any free variable:

1. let x(s

1

; : : : ; s

n

) be an inner occurrence of a free variable in s. Let Z be the

(�nite) set of free variables in s

1

; : : : ; s

n

(these variables are bound higher

up in s).

2. Guess whether the result is signi�cant or not: if not, then replace x(s

1

; : : : ; s

n

)

with 2 in s and go on to step 1. Otherwise guess the result r in the �nite

set S(Z ; t) (which is de�ned below.

3. Add x(s

1

; : : : ; s

n

) = r (solutions out of Z) to E

4. replace x(s

1

; : : : ; s

n

) with r in s.

Finally, the set of solutions is recognized by the union for all sets E computed as

above and such that the last replacement of s yields t, of the automaton which

accepts the solutions of the system E (with the restriction on the instances).

Now, we precise S(Z ; t): it is the set of subterms of t in which some of the

subterms have been replaced with variables in Z .

Using theorem 8 and theorem 11, we get the �rst result: the set of solutions

is recognizable.

The membership of third order matching to NP is a consequence of lemma

13: if the matching equation has a solution, then it is a solution of one of the

above-computed systems E .

NP-hardness is a consequence of the lemma 18, which shows that second-

order matching is already NP-hard.

3

3

Example 5. Let us show an example of the decision procedure for third-order

matching. Consider for instance the problem

x(�z

1

:x(�z

2

:z

1

)) = c(a)

We guess �rst the result of x(�z

2

:z

1

): there are �ve possible outcome: 2 (irrele-

vant result), a, c(a), z

1

, c(z

1

). For each of them we have a system to solve:

1: x(�z

1

:2) = c(a)

2: x(�z

1

:a) = c(a) ^ x(�z

2

:z

1

) = a

3: x(�z

1

:c(a)) = c(a) ^ x(�z

2

:z

1

) = c(a)

4: x(�z

1

:z

1

) = c(a) ^ x(�z

2

:z

1

) = z

1

5: x(�z

1

:c(z

1

)) = c(a) ^ x(�z

2

:z

1

) = c(z

1

)

Where z

1

is prohibited in the solution of the second equations. The �rst and

third systems have only one solution: the constant function �x

1

:c(a). The second

system has no solution. The fourth system has in�nitely solutions (which are

recognized by the intersection automaton): �x

1

:x

n

1

(c(x

m

1

(a))) with n > 0. The

last system has no solution.

Lemma18. Second-order matching is NP-hard.

Sketch of the proof: We encode 3-SAT as follows: we consider a �rst order

variable x

P

for each propositional variable P . In addition, we have for each clause

one second-order variable x

C

whose type is o; o; o ! o and a binary constant

symbol f (for convenience we write f(u; f(v; w)) as f(u; v; w)).

For each clause C = P _Q _ R, let t

C

be the term

f(x

C

(0; 0; 0); x

C

(1; 1; 1); x

C

(x

P

; x

Q

; x

R

); x

C

(0; 0; 0)):

3

We believe that this result is well-known, but we were unable to �nd a reference.

For each clause :P_Q_R, t

C

= f(x

C

(0; 0; 0); x

C

(1; 1; 1); x

C

(1; x

Q

; x

R

); x

C

(x

P

; 0; 0))

and symmetrically for the two other cases. Then the matching problem we are

considering is

f(t

C

1

; : : : ; t

C

m

) = f(f(0; 1; 1; 0); : : : ; f(0; 1; 1; 0))

� is a solution i�, for every clause C, t

C

�# = f(0; 1; 1; 0). Each of the equations

t

C

= f(0; 1; 1; 0) is equivalent to a system of four equations. The solutions for the

�rst two equations: x

C

(0; 0; 0) = 0 and x

C

(1; 1; 1) = 1 are the three projections.

The two last equations impose a truth value for the variables, depending on the

projection; for instance x

C

(1; x

Q

; x

R

) = 1 and x

C

(x

P

; 0; 0) = 0 has three solu-

tions: x = �

1

^ x

P

= 0, x

C

= �

2

^ x

Q

= 1, x

C

= �

3

^ x

R

= 1 which correspond

to the three assignments satisfying the clause C. 3

7 General fourth order matching

We do not try here to derive the precise complexity of the problem.

Theorem19. The set of solutions of a fourth order matching problem is e�ec-

tively recognizable. Hence fourth order matching is decidable.

Sketch of the Proof It is not possible to proceed as in the last section because

the set of possible results of x(s

1

; : : : ; s

n

) is potentially in�nite. However, it might

be possible to guess a result, taking into account the actual arguments s

1

; : : : ; s

n

(which we did not do for third order matching). We follow here Padovani's tech-

nique [8]: It is possible to compute a �nite set of representatives for the third

order observational equivalence relative to the right hand side t

4

Now, instead

of guessing the result of x(s

1

; : : : ; s

n

) starting with innermost occurrences, we

start with outermost occurrences and guess the observational class of s

1

; : : : ; s

n

.

Assume we guessed v

1

; : : : ; v

n

, then we replace each s

i

with v

i

in the matching

equation and add the constraints s

i

'

t

v

i

for every i. These last equations can be

checked by enumerating all (second-order) representatives of the observational

equivalence and solve s

i

(w

1

; : : : ; w

k

)# = v

i

(w

1

; : : : ; w

k

)# (plus a system of dis-

equalities, see Padovani's proof). Note that v

i

(w

1

; : : : ; w

k

)# may still contain

occurrences of x at this stage: we have to iterate the processus. By the closure

properties of tree automata, we get the recognizability of the set of solutions. 3

Instead of giving more details on the proof (which is essentially due to

Padovani), we give below an example of how the procedure works:

4

According to [8], u '

t

v if u; v have the same type �

1

; : : : ; �

n

! o and, for every

terms w

1

; : : : ; w

n

either u

0

= u(w

1

; : : : ; w

n

)# = v

0

= v(w

1

; : : : ; w

n

)# or else neither

u

0

nor v

0

is a subterm of t. Padovani shows that the observational equivalence is a

congruence of �nite index. Computing a set of representatives for this equivalence

at order n is equivalent to nth order matching.

Example 6. Let us consider the matching equation

(M) : x(�z:x(�y:z(a))) = a

where y has order 2. To solve (M), we �rst guess a representative v of the

observationnal equivalence classes of order 3, and solve the system

(1)

�

x(v) = a

v '

a

�z:x(�y:z(a))

We have �rst to determine representatives for the observational equivalence

classes with respect to a at order 2 and 3. At order 2, this means solving the 4

following systems (b stands for any other constant) :

�

y(a) = a

y(b) = a

�

y(a) = a

y(b) 6= a

�

y(a) 6= a

y(b) = a

�

y(a) 6= a

y(b) 6= a

Representatives of the solutions are respectively :

s

2

1

= �y:a; s

2

2

= �y:y; ;; s

2

3

= �y:b

We compute then the observational equivalence representatives at order 3:

8

<

:

y(s

2

1

) = a

y(s

2

2

) = a

y(s

2

3

) = a

8

<

:

y(s

2

1

) = a

y(s

2

2

) = a

y(s

2

3

) 6= a

8

<

:

y(s

2

1

) 6= a

y(s

2

2

) = a

y(s

2

3

) = a

8

<

:

y(s

2

1

) 6= a

y(s

2

2

) = a

y(s

2

3

) 6= a

8

<

:

y(s

2

1

) = a

y(s

2

2

) 6= a

y(s

2

3

) = a

8

<

:

y(s

2

1

) = a

y(s

2

2

) 6= a

y(s

2

3

) 6= a

8

<

:

y(s

2

1

) 6= a

y(s

2

2

) 6= a

y(s

2

3

) = a

8

<

:

y(s

2

1

) 6= a

y(s

2

2

) 6= a

y(s

2

3

) 6= a

Corresponding representatives are :

s

3

1

= �y:a; s

3

2

= �y:y(a); ;; ;; ;; s

3

3

= �y:y(b); ;; s

3

4

= �y

2

:b

Then, back to solve (M), we guess a representative v of order 3, say v =

�z:z(a), then (1) becomes, after �-reduction :

8

>

>

<

>

>

:

x(v) = a

x(�y:a) = a

x(�y:a) = a

x(�y:b) 6= a

We can compute the solutions, using the automata techniques of the previous

section and we get:

�f:f(�t

1

:f(�t

2

: : : f(�t

n

:u)))

Where all t

i

are identical, except possibly for one index i

0

, and u 2 fa; t

i

0

g.

Note however that the Padovani's procedure which is sketched in the previ-

ous theorem is very expensive. Our automaton for a fourth order interpolation

equation was already doubly exponential. We have at least to guess represen-

tatives for the third order observational equivalence and to solve a system of

triply exponential size. It is an open question whether such a procedure can be

improved, as we did for third-order matching.

8 Fifth order matching and beyond

What about a possible extension to higher order matching ? Of course, we tried,

but without success, to extend our techniques. Let us describe the problems

which arise at order 5.

If we want to follow the same technique, we have to replace lemma 14 (the

only order-dependent part of the proof) with another result which works at or-

der 5. However, we would have to replace solutions of second order interpolation

equations with solutions of third order matching equations. In contrast with sec-

ond order matching which admits a �nite basis of solutions, third order matching

is not �nitary. Hence the set of states, if computed as a straightforward extension

of our construction, would be in�nite.

The next idea is to put in the states representatives of the third order obser-

vational equivalence, instead of all solutions. This would keep the set of states

�nite. Equivalently, we could consider the states of an automaton accepting

the solutions of derived third order interpolation problems instead of trying to

compute the set of solutions in extension. There are however additional prob-

lems with free variables. We can derive from theorem 16 that every solution

of a fourth-order matching problem can be expressed (via �-conversion) using

a bounded number of variables (which only depend on the matching problem).

These variables are part of the alphabet. This is no longer possible at �fth order,

as shown by the simple example:

x(�y�z:y(�z

0

:z(z

0

))) = a

A solution of this problem is the term

�x

1

:x

1

(�y

1

:x

1

(: : : x

1

(�y

n

:y

i

1

(y

i

2

(: : : (y

i

k

(a)) : : :)); u

n

) : : : ; u

2

); u

1

)

where, for some m � k, every u

i

j

(j � m) is the identity and u

i

m+1

is the

constant function a. k is arbitrarily large, hence we cannot use a bounded number

of variables. Still, there is a way to overcome this di�culty: we may say that y

i

is equivalent to y

j

if u

i

'

t

u

j

. Then there are �nitely many classes of variables,

which all behave the same way. This yields a �nite tree automaton accepting

the set of solutions (for this example). We were unable to generalize this idea

of equivalence classes of variables. Though, we did not �nd any higher-order

matching problem whose set of solutions is not recognizable.

We conjecture that the set of solutions is always recognizable (basically be-

cause the observational equivalence is of �nite index). Even if this conjecture is

true, it remains to e�ectively compute the automaton accepting the solutions.

Acknowledgements

We thank several researchers with whom we had fruitful discussions, among

them Gilles Dowek, Sophie Malecki, Tobias Nipkow, Vincent Padovani.

References

1. G. Dowek. A complete proof synthesis method for the cube of type systems.

3(3):287{315, 1993.

2. G. Dowek. Third order matching is decidable. Annals of Pure and Applied Logic,

1993.

3. G. Dowek. The undecidability of pattern matching in calculi where primitive re-

cursive functions are representable. Theoretical Comput. Sci., 107:349{356, 1993.

4. M. G�ecseg and M. Steinby. Tree Automata. Akademia Kiad�o, Budapest, 1984.

5. W. D. Goldfarb. Note on the undecidability of the second-order uni�cation prob-

lem. Theoretical Comput. Sci., 13:225{230, 1981.

6. R. Hindley and J. Seldin. Introduction to Combinators and �-calculus. Cambridge

University Press, 1986.

7. G. Huet. R�esolution d'�equations dans les langages d'ordre 1; 2; : : : !. Th�ese d'Etat,

Univ. Paris 7, 1976.

8. V. Padovani. Filtrage d'ordre sup�erieur. PhD thesis, Universit�e de Paris VII, 1996.

9. A. Schubert. Linear interpolation for the higher order matching problem. In Proc.

CAAP'97, Lille, 1997.

10. H. Seidl. Haskell overloading is DEXPTIME-complete. Inf. Process. Lett., 52:57{

60, 1994.

11. J. Springintveld. Third-order matching in the polymorphic lambda calculus. In

G. Dowek, J. Heering, K. Meinke, and B. M�oller, editors, Proc. Higher-Order Al-

gebra, Logic and Term Rewriting, volume 1074 of LNCS, Paderborn, Germany,

September 1995. Springer-Verlag.

12. J. Springintveld. Third-order matching in the presence of type constructors. In

M. Dezani-Ciancaglini and G. Plotkin, editors, Proc. 2nd Int. Conf. on Typed

Lambda Calculi and Applications, volume 902 of LNCS, Edinburgh, United King-

dom, April 1995. Springer-Verlag.

13. W. Thomas. Automata on in�nite objects. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, pages 134{191. Elsevier, 1990.

This article was processed using the L

A

T

E

X macro package with LLNCS style

