
Non-Atomic Transition Firing
in Contextual Nets?

Thomas Chatain1, Stefan Haar1, Maciej Koutny2, and Stefan Schwoon1

1 INRIA and LSV, CNRS and ENS Cachan, France
2 University of Newcastle-upon-Tyne, UK

Abstract. The firing rule for Petri nets assumes instantaneous and si-
multaneous consumption and creation of tokens. In the context of ordi-
nary Petri nets, this poses no particular problem because of the system’s
asynchronicity, even if token creation occurs later than token consump-
tion in the firing. With read arcs, the situation changes, and several dif-
ferent choices of semantics are possible. The step semantics introduced by
Janicki and Koutny can be seen as imposing a two-phase firing scheme:
first, the presence of the required tokens is checked, then consumption
and production of tokens happens. Pursuing this approach further, we
develop a more general framework based on explicitly splitting the phases
of firing, allowing to synthesize coherent steps. This turns out to define
a more general non-atomic semantics, which has important potential for
safety as it allows to detect errors that were missed by the previous se-
mantics. Then we study the characterization of partial-order processes
feasible under one or the other semantics.

1 Introduction

There are some aspects of concurrent behaviour that cannot be modeled by
sequences of actions nor by partial orders alone (c.f. [9, 11]). An example is the
‘earlier than or simultaneous’ (that is, ‘not later than’) relationship [11], for
which neither sequences nor partial orders are expressive enough. Consider, for
example, a priority system with three actions: a, b, and c such that c has higher
priority than both a and b. Initially, a and b can be executed simultaneously,
while c is blocked. Moreover, completing a or b permanently enables action c.
Using sequences of actions, we cannot capture the execution where a and b are
executed in the same run of the system, as both (ab) and (ba) would violate the
priority constraint. However, a sequence ({a, b}), representing a step in which
actions a and b are executed simultaneously, faithfully reflects a possible scenario
in which both a and b are executed. Consider now a modified system in which
executing a no longer enables action c. In such a case, two executions involving
the actions a and b are possible, namely ({a, b}) and (ab). Now, this behavior is
not reflected by the partial order in which a and b are concurrent; for in that
case, sequence (ba) would emerge as a valid system behaviour, which it is not

? This work is partially supported by the UK EPSRC project UNCOVER.



according to the above specification. To cover such cases, [12] used structures
richer than causal partial orders and, in this particular case, introduced the
notion of a ‘weak causality’ between a and b, meaning that ‘a can be earlier
than or simultaneous with b’, but ‘not later than b’. In the resulting model,
causality (partial order) is augmented with weak causality leading to stratified
order structures [8, 10, 12], which extend the standard causal partial orders if
the underlying concurrent system does not exhibit features like priorities in
the above example. Stratified order structures have been successfully applied to
model, e.g., inhibitor and priority systems and asynchronous races (see, e.g. [12,
14, 16]). Extensions of the standard partial order model of concurrency to cover
features such as priorities as well as inhibitor and read arcs in the elementary
net systems are systematically discussed in [17].

Let us turn now to the more specific model class of Petri nets. Many dis-
tributed systems allow read-only access to some data. These non-destructive
accesses can be done concurrently by several components of the system. In or-
der to model these read-only accesses with Petri nets, a classical method is to
design a loop in which some transition consumes and rewrites a token on the
same place. Nevertheless this technique is not satisfactory when one is dealing
with causal semantics because the consumption of the token artificially enforces
an order on the events accessing the same data.

In order to solve this problem, read arcs were added to Petri nets [5, 22].
This extension is now quite commonly used, and partial order semantics were
proposed for this new model [3, 4, 31, 28]. In the same vein, inhibitor arcs were
also introduced [12, 5]. Their expressive power is similar to the one of read arcs
in the case of bounded nets. Finite complete prefixes of Petri nets with read
arcs (also called contextual Petri nets) were first defined in the restricted case of
read-persistent nets [29], and later in the general case [32]. Efficient procedures
exist for the computation and analysis of finite complete prefixes for safe Petri
nets with read arcs [2, 25].

In the present paper, we push the analysis of contextual Petri nets further in
the direction of collective, or non-atomic, firing of several transitions jointly, in
one step, where a step is seen here as a set of transitions (or multi-set in the case of
non safe nets). Giving a semantics that allows this is not problematic in ordinary
Petri nets; a step is enabled iff the current marking is bigger than the sum of all
presets of its transitions, both seen as vectors whose dimension is the number
of places. With read arcs, the situation changes, and several different choices of
step semantics are possible. The one introduced in [12] can be seen as imposing
a two-phase firing scheme: first, the presence of the required tokens is checked,
then consumption and production of tokens happens. Here, we develop a more
general framework based on explicitly splitting the phases of firing, allowing to
synthesize coherent steps. This turns out to define a more general non-atomic
semantics. We will recall the fundamentals of Contextual Petri nets in Section 2,
and develop the non-atomic sequential semantics in Section 3. In Section 4, we
continue with the study of non-sequential, partial order semantics with non-
atomic firing; finally, Section 5 concludes.



•p1 • p2

• p3

p4 p5

p6

a b

c

d

Fig. 1. A contextual Petri net.

2 Contextual Petri Nets

2.1 Definition

We consider only safe contextual Petri nets (PNs), i.e. PNs where there is never
more than one token in a place. We discuss the general case in Section 5.

Definition 1 (Contextual Petri Net (PN)). A contextual Petri net is a tu-
ple (P, T, pre, cont , post ,M0) where P and T are finite sets of places and transi-
tions respectively, pre and post map each transition t ∈ T to its (nonempty) pre-

set denoted •t
def
= pre(t) ⊆ P , its (possibly empty) context denoted t

def
= cont(t) ⊆

P \ •t and its (possibly empty) postset denoted t•
def
= post(t) ⊆ P ; M0 ⊆ P is the

initial marking.

We usually denote •t
def
= •t ∪ t. For simplicity, we assume that for any transition

t, its context is disjoint from its preset and postset.
A contextual Petri net is represented as a graph with two types of nodes:

places (circles) and transitions (rectangles). Presets are represented by arrows
from places to transitions, postsets by arrows from transitions to places, and
contexts by undirected edges between places and transitions. The initial marking
is represented by tokens in places. Figure 1 shows an example of a contextual
Petri net. The transition a, for instance, has p1 in its preset, p2 in its context
and p4 in its postset.

2.2 Atomic Semantics

A marking of a safe contextual Petri net is a set M ⊆ P of marked places. A
Petri net starts in its initial marking M0. A transition t ∈ T is enabled in a



marking M if all the places of its preset and context are marked, i.e. •t∪ t ⊆M .

Then t can fire from M , leading to the marking M ′
def
= (M \ •t) ∪ t•.

Again, we consider only safe contextual Petri nets, that is we assume that if
a transition t ∈ T is enabled in a marking M , then (M \ •t) ∩ t• = ∅.

Definition 2 (Atomic semantics, a-run). We call firing sequence of N under

the atomic semantics, or a-run, any sequence σ
def
= (t1 . . . tn) of transitions for

which there exist markings M1, . . . ,Mn such that for all i ∈ {1, . . . , n}, firing ti
from Mi−1 is possible and leads to Mi.

For instance, the net in Figure 1 has two possible firing sequences: (a) and
(bc). However, it is never possible to fire d because that would require to fire
both a and b first, and firing one of a, b disables the other.

3 Non-atomic Semantics

In this section, we discuss two semantics for concurrent firing of multiple tran-
sitions. One is the well-known step semantics [11], in which multiple transitions
can fire simultaneously. This is typically the case of a and b in the net of Fig-
ure 1, which are enabled simultaneously and have disjoint presets, but cannot
fire together according to the atomic semantics. The step semantics can be in-
terpreted as first checking whether all members of a set of transitions can fire,
and then firing them either simultaneously or one by one, in any order. We then
introduce a new, so-called interval semantics, which allows a more liberal choice
of checking and firing transitions in a set.

We present the semantics under the assumption that the underlying net is
safe even under these two semantics, which allow more possibilities than the
atomic one.

3.1 Step Semantics

We first recall the step semantics [11].

Definition 3 (Step semantics, s-run). Let N be a PN. We call s-run of N

any sequence σ
def
= (T1 . . . Tn) of sets of transitions for which there exist markings

M1, . . . ,Mn such that for all i ∈ {1, . . . , n},

– every t ∈ Ti is enabled in Mi−1,
– the presets of the transitions in Ti are disjoint, and
– Mi = (Mi−1 \

⋃
t∈Ti

•t) ∪
⋃

t∈Ti
t•.

In the example of Figure 1, the step semantics allows one to fire a and b in one
step since they are both enabled in the initial state and •a ∩ •b = ∅. This gives
the s-run ({a, b}) in addition to the others which were already possible under the
atomic semantics; for instance the a-run involving b followed by c, (denoted (bc)
for the atomic semantics), is simply rewritten as the s-run ({b}{c}) under the



step semantics. However, transition d remains dead since none of these s-runs
contains all of a, b, and c.

The intuitive model underlying the step semantics is that all the transitions
in the step can first check, in any order, whether they are enabled and not in
conflict with one another. Once the checks have been performed, they can all
fire, again in any order. Put differently, if we denote the checking phase of a
transition t by t− and its firing phase by t+, then every step consists of any
permutation of the actions of type t− (for all transitions t in the step), followed
by any permutation of the actions t+. The notion introduced in Definition 4
formalizes this intuition.

Definition 4 (s±-run). For every s-run (T1 . . . Tn) of a contextual Petri net
N , every concatenation u−1 .u

+
1 . · · · .u−n .u+n of sequences u−i and u+i , is a s±-run

of N , where every u−i is a permutation of the set {t− | t ∈ Ti} and every u+i is
a permutation of the set {t+ | t ∈ Ti} (remember that Ti is a set of transitions
of N).

For example, the s-run ({b}{c}) yields the s±-run (b−b+c−c+) and the s-
run ({a, b}) yields four s±-runs: (a−b−a+b+), (a−b−b+a+), (b−a−a+b+) and
(b−a−b+a+).

3.2 Splitting Transitions for Understanding Steps

Definition 4 formalizes a new semantics of PNs, in which the firing of a transition
does not happen atomically, but in two steps, the checking of the pre-conditions
and the actual execution. In this section, we generalize this idea.

The left-hand side of Figure 2 shows a part of the net in Figure 1, which
consists of transition a with its preset {p1}, context {p2}, and postset {p4}. The
construction on the right-hand side of 2 illustrates the idea of splitting firing
transitions into two phases:

– Every transition t is split into t− and t+.
– Every place p is duplicated to pc (meaning token in p available for consump-

tion) and pr (meaning token in p available for reading).

Similar ideas about splitting transitions can be found in several works, for in-
stance in [27].

Intuitively, if we apply this construction to all transitions from Figure 1, then
the s±-runs of that net correspond to a-runs of the newly constructed net. The
following Definition 5 provides the precise details of the construction.

Definition 5 (split(N)). For every contextual Petri net N = (P, T, pre, cont ,

post ,M0), we define the contextual Petri net split(N)
def
= (P ′, T ′, pre ′, cont ′, post ′,

M ′0) where

– T ′ contains two copies, denoted t− and t+ of every transition t ∈ T .
– P ′ contains two copies, denoted pc and pr of every place p ∈ P , plus one

place pt per transition t ∈ T .



p1 p2

p4

a

pc1 pr1 pc2 pr2

pa

pc4 pr4

a−

a+

Fig. 2. The splitting of transition a (left) into a− and a+ (right).

– •t−
def
= {pc | p ∈ •t}

– t−
def
= {pr | p ∈ t}

– t−
• def

= {pt}
– •t+

def
= {pr | p ∈ •t} ∪ {pt}

– t+
def
= ∅

– t+
• def

= {pc | p ∈ t•} ∪ {pr | p ∈ t•}}
– M ′0

def
= {pc | p ∈M0} ∪ {pr | p ∈M0}

We now formally prove the intuition mentioned above:

Lemma 1. Every s±-run σ± of N is a a-run of split(N). Moreover σ± reaches
the marking {pc | p ∈M} ∪ {pr | p ∈M}, where M is the marking of N reached
after the s-run σ from which σ± is obtained.

Proof. We proceed by induction on the length of σ. The case σ = () is triv-
ial. Now, let σ± = u−1 .u

+
1 . · · · .u−n .u+n be a s±-run obtained from a s-run

σ = (T1 . . . Tn), assume the property true for u−1 .u
+
1 . · · · .u

−
n−1.u

+
n−1 and de-

note Mn−1 the marking reached after (T1 . . . Tn−1). By induction hypothesis,
u−1 .u

+
1 . · · · .u

−
n−1.u

+
n−1 reaches the marking {pc | p ∈ Mn−1} ∪ {pr | p ∈

Mn−1} of split(N). The fact that Tn is a valid step from Mn−1 implies that⋃
t∈Tn

•t ⊆ Mn−1 and that the presets of the transitions in Tn are disjoint.
This allows one to fire all the t−, t ∈ Tn in any order and reach the marking
{pc | p ∈ Mn−1 \

⋃
t∈Tn

•t} ∪ {pr | p ∈ Mn−1} ∪ {pt | t ∈ Tn} of split(N). Now
the t+, t ∈ Tn, are all enabled and their presets are disjoint. They can in turn
be fired in any order, reaching the desired marking of split(N). ut

Note that the converse of Lemma 1 does not hold. For instance, for the net
N from Figure 1, the net split(N) admits the a-run a−b−b+c−c+a+, which is
not an s±-run of N .



3.3 Interval Semantics

We have seen that the construction split(N) admits firing sequences that cannot
be mapped back to executions under either the atomic or the step semantics.
In this section, we shall introduce a new, so-called interval semantics, which is
more general than the step semantics, and whose interpretation on a net N does
correspond to the feasible executions in split(N).

Definition 6 (Interval semantics, i-run). Every a-run of split(N) is called
i-run of N , or run of N under the interval semantics.

Coming back to the example of Figure 1, transition d can fire under the inter-
val semantics, for instance after the i-run a−b−b+c−c+a+d−d+ where transitions
b and c complete the firing during the period in which a fires. Under the atomic
semantics, a and b are in conflict, which prevents d from firing. Under the step
semantics, a and b can fire in the same step, but then c cannot fire. Under the
interval semantics, d can also fire.

Recall that we introduced t− and t+ to represent different phases during the
execution of transition t. An obvious question is whether the new semantics can
lead to runs in which a transition ‘gets stuck’ during its execution. The following
Lemma 2 affirms that this is not the case: once t− is fired, nothing can hinder
t+ from firing, too.

Definition 7 (complete i-run). An i-run is complete if every t− is matched
by a t+.

Lemma 2. Every i-run can be completed: for every i-run σ, there exists a suffix
µ which matches all the unmatched t−, and such that σµ is an i-run.

Proof. As long as a t− is unmatched, •t+ remains included in the marking:
no other transition consumes these tokens. Hence it suffices to fire all the t+

corresponding to the unmatched t−, in any order. ut

3.4 Comparison of Sequential Semantics

This section provides a brief summary and comparison of the previously dis-
cussed semantics. To simplify the comparison, we first need a technical defini-
tion that allows to represent atomic runs in a form comparable to i-runs. The
following Definition 8 simply makes explicit the assumption that the firing of a
transition is atomic: in terms of i-runs, every t− is immediately followed by the
corresponding t+.

Definition 8 (a±-run). For every a-run (t1 . . . tn), the sequence t−1 t
+
1 . . . t

−
n t

+
n

is called an a±-run.

We can now turn to comparing the different sequential semantics based on
(complete) i-runs. It is immediate that every a±-run of a contextual Petri net N



•q1

q2

•
p

• r1

r2

a b

•q1

q2

•
p

• r1

r2

a b

Fig. 3. Example illustrating the effect of read-arcs on partial-order semantics.

is an s±-run of N . Also, by Lemma 1, every s±-run is an i-run, and by Lemma 2,
every i-run can be made complete.

Let N be a PN, and denote by AtomicN the set of its a±-runs, by StepN

the set of its s±-runs, and by IntervalN the set of its i-runs. Then we have the
following relation:

AtomicN ⊆ StepN ⊆ IntervalN

Note that, in general, the subset inclusions are strict, as we have seen in
previous examples. The strictness holds even when N does not contain any
read arcs. E.g., if N contains three enabled transitions a, b, c, whose presets are
all disjoint, then a−b−c−a+b+c+ ∈ StepN \ AtomicN and a−b−a+c−b+c+ ∈
IntervalN \ StepN . However, the set of reachable markings remains the same
under all three semantics when no read arcs are present.

4 Non-Atomicity and Partial Order Semantics

Consider a PN N with read arcs such as in the left part of Figure 3. It is easy to
see that if one replaces a read arc in a net by a pair of arrows forming a loop (see,
e.g., the net N ′ in the right-hand side of Figure 3), then any a-run of N remains
an a-run of N ′, and vice versa, and that both nets have the same reachable
markings. However, one of the reasons why read arcs have attracted the attention
of the Petri net community is that they change the step semantics of the net. E.g.,
both nets admit the s-runs ({a}{b}) and ({b}{a}), but N additionally admits the
s-run ({a, b}). The splitting operation provided in the previous section preserves
this difference: split(N ′) admits the two s-runs (a−a+b−b+) and (b−b+a−a+),
while split(N) admits additional runs, e.g. (a−b−a+b+).

We first present processes as partial-order semantics for nets under atomic
semantics. These definitions are standard [3, 4, 31, 28]. Then, as well as for the
sequential semantics, we define the partial-order semantics of a net N under the
non-atomic semantics by applying partial-order atomic semantics to split(N).
This gives processes where every transition firing is split into two events e− and
e+. These processes give sufficiently detailed information to understand how a
scenario can or cannot be fired under non-atomic semantics.



•p1 • p2

• p3

p5

p6

e1 b

e2c

Fig. 4. A process representing the a-run (bc) of the contextual Petri net of Figure 1.
Technically, the condition labeled p1 is coded as (⊥, p1), the event e1 (labeled b) is
coded as ({(⊥, p2)}, {(⊥, p1)}, b) and e2 as ({(⊥, p3)}, {(⊥, p1), (e1, p5)}, c).

Anyway, in the end, we propose an abstract view of the processes where the
e− and e+ are abstracted back to a single event e. These abstract processes
strictly generalize the processes of the original net under atomic semantics. We
characterize the conditions under which an abstract process is feasible under any
of the atomic, step or interval semantics.

4.1 Processes Under Atomic Semantics

Processes are a way to represent an execution of a Petri net so that the ac-
tions (called events) are not totally ordered like in firing sequences, but only
partially ordered by weak (or conditional) and strong (or unconditional) causal-
ity relations which indicate the dependencies between events due to creation,
consumption and reading of tokens.

An execution of a Petri net N is represented as a labeled Petri net where
every transition, called event and labeled by a transition t of N , stands for an
occurrence of t, and every place, called condition and labeled by a place p of
N , refers to a token produced by an event in place p or to a token of the initial
marking. The arcs represent the creation and consumption of tokens.

Figure 4 shows a process representing the a-run (bc) of the contextual Petri
net of Figure 1.

Because fresh conditions are created for the tokens created by each event,
every condition has either no input arc (if it is an initial condition) or a single
input arc, coming from the event that created the token. Symmetrically, each
place has no more than one output arc since a token can be consumed by only
one event in an execution.

We will define the mapping Π from the a-runs of a safe Petri net to their
partial order representation as processes. We use a canonical coding like in [6].
This coding is illustrated in Figure 4.

Each process will be a set E of events. Every event e is itself a triple
(•e, e, τ(e)) that codes an occurrence of the transition τ(e) in the process. •e



and e are sets of pairs b
def
= (•b, π(b)). Such a pair is called a condition and refers

to the token that has been created by the event •b in the place π(b). We say that

the event e
def
= (•e, e, τ(e)) consumes the conditions in •e and reads the conditions

in e. It also creates the set {(e, p) | p ∈ τ(e)
•} of conditions, which we denote

e•. A virtual initial event ⊥ is used as •b for initial conditions. By convention

⊥• def
= {⊥} ×M0.
To summarize the coding of the processes, it is convenient to define a set

DN , such that all the events that appear in the processes of a contextual Petri
net N , are elements of DN .

Definition 9 (DN). We define DN as the smallest set satisfying:

for all B1, B2 ⊆
⋃

e∈DN∪{⊥} e
• such that π|B1∪B2

is injective,
for all t ∈ T ,

π(B1) = •t ∧ π(B2) = t =⇒ (B1, B2, t) ∈ DN .

Notice that this inductive definition is initialized by the fact that ⊥ ∈ DN ∪{⊥}.

We need a last notion before defining the mapping Π from a-runs to pro-
cesses: the set of conditions that remain at the end of a set E of events (meaning
that they have been created by an event of E, and no event of E has consumed

them) is ↑(E)
def
=

⋃
e∈E∪{⊥} e

• \
⋃

e∈E
•e. Because N is safe, the restriction of π

to ↑(E) will be injective when E is a process and π(↑(E)) will be the marking
reached at the end of E.

Definition 10. The function Π that maps each firing sequence (t1 . . . tn) to a
process is defined as follows:

– Π(ε)
def
= ∅

– Π((t1 . . . tn+1))
def
= E ∪ {e}, where

• E def
= Π((t1 . . . tn)) and

• the event e
def
= (π−1|↑(E)(

•tn+1), π−1|↑(E)(tn+1), tn+1) represents the last firing

of the sequence.

Causality. We define the relation→ on the events as: e→ e′
def⇐⇒ e•∩•e′ 6= ∅.

The reflexive transitive closure →∗ of → is called the unconditional or strong
causality relation.

If two events e and f are causally related (e→∗ f), then:

– e occurs in every process where f occurs, and
– if a process contains e and f , then e occurs before f .

Because of the read arcs, two events e and f may satisfy the second item even
without being in strong causal relation. This happens when e reads a condition
that is consumed by f . This phenomenon is captured by the relation  defined

as e f
def⇐⇒ e∩ •f 6= ∅. Combining → and  , we get the conditional or weak

causality, denoted ↗, and defined as e↗ f
def⇐⇒ (e→ f) ∨ (e f).

For every event e, we denote dee def
= {f ∈ E | f →∗ e}, and for all set E of

events, dEe def
=

⋃
e∈Edee.



Branching processes, conflicts, unfoldings. Each process represents one ex-
ecution of the net. One often uses the partial order representation to represent
also sets of executions. This is done simply by superimposing several processes
and merging their common prefixes; technically, this operation is nothing but
the set union of the processes. The result is called a branching process. The most
obvious difference between branching processes and processes is that branching
processes may contain two distinct events e and e′ which have a common pre-
condition (•e∩ •e′ 6= ∅). This is called a conflict and implies that e and e′ never
occur together in the same process, since, in a process each condition corresponds
to a precise occurrence of a token in a place, created by an event and possibly
consumed by another one.

For branching processes of contextual Petri nets, another source of incompat-
ibilities between events needs to be considered: contrary to the strong causality
relation →, the weak causality relation ↗ may have some cycles. The events
involved in such cycle are incompatible because, when an event is added to a
process, it is never the predecessor by ↗ of an older event. This situation arises
between the events representing an occurrence of a and an occurrence of b from
the initial marking of the net of Figure 1, and corresponds to the fact that the
firing of one disables the other in the atomic semantics.

The maximal branching process, obtained by superimposing all the processes
of a net N , is called the unfolding of N .

4.2 Processes Under Non-Atomic Semantics

In Section 3, we have defined non-atomic sequential semantics of a contextual
Petri net N using the construction split(N): every (complete) run σ of split(N)
under atomic semantics is interpreted as a run of N under non-atomic semantics.

We can now move very naturally to partial order non-atomic semantics.

Definition 11 ((Complete) split process). For every (complete) i-run σ of
a contextual Petri net N , Π(σ) is called a (complete) split process of N .

Figure 5 represents a split process of the contextual Petri net N of Figure 1.
Weak and strong causality relations in the split process show precisely what are
the interleavings of the a−, a+, b−, b+, c−, c+ which make possible a scenario
where a, b and c occur.

This representation as split process has the interest of showing a very detailed
view of the execution of a contextual Petri net under non-atomic semantics. We
propose now a more abstract representation with only one event per transition
firing. This representation generalizes the partial order semantics under atomic
semantics, in the sense that every process under the atomic semantics is an
abstraction of a split process.

The intuition behind the abstraction is the following. We remark that in a
complete split process E of N , every event e− ∈ E representing an occurrence
of a transition t− of split(N) creates a unique condition b corresponding to a



•
pc1

•
pr1

•
pc2

•
pr2

•
pc3

•
pr3

pc4 pr4 pc5pr5

pc6 pr6

a−

pa

a+

b−

pb

b+

c−

pc

c+

Fig. 5. A process of the splitting of the contextual Petri net N of Figure 1. Transitions
a− and b− are concurrent, as well as a+ and c+. Hence the process represents the
4 i-runs (a−b−b+c−c+a+), (a−b−b+c−a+c+), (b−a−b+c−c+a+) and (b−a−b+c−a+c+).
After this process, transition d (split to d−d+) becomes fireable.

token in pt, and this condition is consumed by a unique event e+ representing
the occurrence of t+.

The abstraction merges e− and e+ and deletes b. It also merges the two copies
of the created tokens (occurrences of pc and pr).

Figure 6 shows the abstraction of the complete split process of Figure 5.

Definition 12 (Abstract processes, abstr , α). We define the abstraction of
a complete split process E as:

abstr(E)
def
= {α(e+) | e+ ∈ E+}

where E+ is the set of events of E representing the occurrence of a transition
t+ of split(N), and α is defined inductively by:

– α(⊥)
def
= ⊥ and

– α(e+)
def
= ({(α(f+), p) | (f+, pc) ∈ •e−},
{(α(f+), p) | (f+, pr) ∈ e−},
t)

where t is the transition of N such that e+ represents an occurrence of t+.



•p1 • p2

• p3

p4 p5

p6

a b

c

Fig. 6. The abstraction of the split process of Figure 5. This abstract process is feasible
only under the interval semantics. With the atomic semantics, a and b cannot fire
together. With the step semantics, they can fire ‘simultaneously’. But this consumes
the token in p1 which is required to enable c.

We call abstr(E) an abstract process of N under interval semantics.

Notice that the elements in abstr(E) are members of the set DN (Defini-
tion 9); this means they have the same shape as the events that occur in the
processes of N under atomic semantics.

What is more: abstractions of processes of a±-runs coincide with processes
of a-runs.

Theorem 1. For every a-run (t1 . . . tn), the process of (t1 . . . tn) is also the
abstraction of the split process of the a±-run (t−1 t

+
1 . . . t

−
n t

+
n ):

abstr(Π((t−1 t
+
1 . . . t

−
n t

+
n ))) = Π((t1 . . . tn)) .

Proof. We first remark that the final conditions ↑(abstr(E)) of the abstraction
of a complete split process E are the (α(f+), p) with (f+, pc) ∈ ↑(E) (or equiv-
alently (f+, pr) ∈ ↑(E)): by definition of the abstraction, the conditions in
abstr(E) are the (α(f+), p) with p ∈ t• and t+ = τ(f+); and those that are
final in abstr(E) are those that are not consumed by any other α(e+), which
(by definition of α(e+) and because E is complete) is equivalent to saying that
(f+, pc) is not consumed by any e− of E.

Then we prove the theorem by induction on the size of the a-run, using the in-
ductive definitions of Π and α. The occurrences of t− and t+ at the end of the a±-
run are represented in Π((t−1 t

+
1 . . . t

−
n t

+
n )) by two events e− and e+, and α maps

precisely e+ to the event e of Π((t1 . . . tn)) which represents the firing of tn: the
conditions in •e− being by definition final conditions of Π((t−1 t

+
1 . . . t

−
n−1t

+
n−1)),

the (α(f+), p) which occur in the definition of α(e+) are the final conditions of
Π((t1 . . . tn−1)) which occur in the definition of the event e in Π((t1 . . . tn)). ut

A direct consequence of this theorem is that every process of N under the
atomic semantics, is also an abstract process of N .



We can also notice that the map α, and by consequence the abstraction abstr
itself, are injective.

An important thing for the following is how the abstraction preserves the
weak and strong causality relations.

Lemma 3. We have explained when defining the abstraction that every event
representing an occurrence of a t− in a split process of N is followed in the process
by a uniquely defined event representing the occurrence of the corresponding t+.
We use the notation e− and e+ to identify this correspondence. Moreover this
pair of events appears in the abstraction as the event α(e+), which we denote e.
Similarly, for every pair of conditions (e+, pc), (e+, pc), merged in the abstraction
to the condition (α(e+), p), we denote bc and br and b.

Using these notations, we have the following properties:

– for every e, e− → e+

– for every e and f , e→ f ⇐⇒ e+ → f−.
–  occurs in a split process only between an e− and an f+. It is preserved

by the abstraction: e f ⇐⇒ e−  f+.

Proof.

– The causality e− → e+ simply comes from the condition representing the
token created by e− in place pt, and consumed by e+.

– e→ f implies that there exists a condition b ∈ e• ∩ •f . If b ∈ e• ∩ •f , then

bc ∈ e+• ∩ •f−; the other case is b ∈ e• ∩ f and implies br ∈ e+• ∩ •f−. In

both cases, we have e+
• ∩ •f− 6= ∅, and then e+ → f−.

– The only case where a condition is read by an event and consumed by another
in a split process is when the condition (call it br) represents a token in a
pr, and br ∈ e− ∩ •f+ for some e and f . This appears in the abstraction as
a place b ∈ e ∩ •f . ut

4.3 Characterization of Abstract Processes Feasible with the
(Atomic, Step, Interval) Semantics

We propose a direct characterization of the abstract processes without using
split processes. We have already remarked that abstract processes are subsets
of DN ; now we give the conditions under which a subset of DN is an abstract
process for one or the other semantics.

Theorem 2 (Atomic semantics). Every set E ⊆ DN of events is an abstract
process of N under the atomic semantics iff

– dEe ⊆ E (i.e. E is causally closed),
– for every e, e′ ∈ E, e 6= e′ =⇒ •e ∩ •e′ = ∅ (i.e. E contains no conflict),

and
– the restriction ↗|E of ↗ to E is acyclic (i.e. its transitive closure ↗|E+ is

irreflexive).



Proof. Since abstract processes of N coincide with processes under the atomic
semantics (see Theorem 1), this amounts to expressing the conditions under
which a set E ⊆ DN of events is a process of N under the atomic semantics,
which is a classical result of previous works about partial order semantics of
contextual nets [3, 4, 31, 28].

Briefly, the idea is that, by the inductive definition of the events of a process
(see Definition 10), all the processes are causally closed and contain no conflicts.
Also, when an event e is added to a process (again like in Definition 10), it has
no successor by↗ in the process. The consequence is that the processes contain
no cycle of ↗.

Conversely, every set E of events that satisfies our three conditions is a
process: it suffices to take the events of E in a sequence (e1 . . . e|E|) compatible
with the weak causality relation (i.e. such that ei ↗ ej implies i < j). This is

possible because ↗ is acyclic. We get that the sequence σ
def
= (π(e1) . . . π(e|E|))

is a a-run of N and Π(σ) = E. ut

Theorem 3 (Step semantics). Every set E ⊆ DN of events is an abstract
process of N under the step semantics iff

– dEe ⊆ E,
– for every e, e′ ∈ E, e 6= e′ =⇒ •e ∩ •e′ = ∅, and
– the composition ↗|E+ →|E of relations ↗|E+ and →|E is irreflexive.

Proof. Here the principle is the one developed for stratified order structures [8,
10, 12]. Consider a step to be executed after an s±-run represented by a split
process E′. The events corresponding to all the t− are added first to the split
process (first layer), and then the events corresponding to the t+ (second layer).
In the split process, the (weak and strong) causal dependencies involving the new
events go only from the events of E′ to the new events and from the first layer
to the second layer. After abstraction, the two layers are merged into a single
one, among which only weak causal dependencies may exist and may even have
cycles (like the events labeled a and b in Figure 6). But no causal dependency
exists from the new events to the old ones, which implies that ↗|E+ →|E is
irreflexive on the abstract process E.

Conversely, every set E of events that satisfies our three conditions is an
abstract process of N under the step semantics: the fact that ↗|E+ →|E be
irreflexive allows one to partition the events of E into sets Ei such that only
 dependencies are possible between the events of an Ei, and the other causal
dependencies go only from an Ei to an Ej with i < j. The sequence of Ei gives
a sequence of steps whose split process is mapped to E by the abstraction. ut

Theorem 4 (Interval semantics). Every set E ⊆ DN of events is an abstract
process of N under the interval semantics iff

– dEe ⊆ E,
– for every e, e′ ∈ E, e 6= e′ =⇒ •e ∩ •e′ = ∅, and
– ↗|E →|E+ is acyclic (i.e. (↗|E →|E+)+ is irreflexive).



Proof. E is an abstract process of N under the interval semantics iff it is the ab-
straction of a process E′ of split(N) under the atomic semantics. The abstraction
mapping abstr being injective, it defines a unique candidate for E′. One checks
easily that E′ ⊆ Dsplit(N). We know that E′ is a process of split(N) iff it satisfies
the conditions recalled in Theorem 2. It remains to show that they are equiv-
alent to the conditions of the present theorem applied to E = abstr(E′). The
equivalence of the conditions about the causal pasts (dE′e ⊆ E′ iff dEe ⊆ E) and
about absence of conflicts are straightforward. The more interesting point is the
correspondence between the acyclicity conditions: ↗|E →|E+ is acyclic iff ↗|E′

is acyclic. This point derives from the properties of preservation of weak and
strong causality by abstraction given in Lemma 3: they give immediately that
every cycle for↗|E →|E+ yields a cycle in↗|E′ . The converse also holds because
 appears in E only between an e− and an f+, as e−  f+. Hence, if this weak
causality dependency is concatenated with another one, giving e−  f+ ↗ g,
then the causal dependency f+ ↗ g must be strong: f+ → g. In the end, this
implies that every cycle of the↗|E′ relation provides a cycle of the↗|E′ →|E′

+

relation. By Lemma 3, this cycle yields a cycle for ↗|E →|E+ in the abstracted
process. ut

Summary. As a summary, we just want to confirm, at the level of abstract
processes, our intuition that the interval semantics is more permissive than the
step semantics, which is in turn more permissive than the atomic semantics.
Namely, we compare the conditions about cycles of causality dependencies that
appear in the three theorems above. It is true that if ↗|E →|E+ has a cycle,
the cycle contains at least one strong causality dependency e→ f and we have
f↗|E+ →|E f . It is also true that if f↗|E+ →|E f , then f↗|E+f .

When there is no read arc, anyway, they all collapse (at the level of abstract
or split processes).

Theorem 5. For every Petri net N without read arcs (i.e. t = ∅ for all t), the
abstract processes under the three semantics coincide.

Proof. In this case the weak and strong causality relations coincide, and, be-
cause the strong causality relation is acyclic by construction of the events, the
conditions of acyclicity in the three previous theorems are all automatically ver-
ified. ut

4.4 The End

One could now wonder what happens if split(N) be itself interpreted under step
or interval semantics. The answer is: nothing; and this gives an end to our story!
By its structure, split(N) has the property that the three semantics generate
the same abstract processes (and the same split processes too, since abstraction
is injective).



Theorem 6. For every contextual occurrence net N , every abstract process of
split(N) under the interval semantics is also an abstract process of split(N)
under the step and atomic semantics.

Proof. We show that for every set of events E ⊆ Dsplit(N), if ↗|E has a cycle,
then ↗|E →|E+ has a cycle too. By Lemma 3,  appears in E only between
an e− and an f+, as e−  f+. Hence, if this weak causality dependency is con-
catenated with another one, giving e−  f+ ↗ g, then the causal dependency
f+ ↗ g must be strong: f+ → g. In the end, this implies that every cycle of the
↗|E relation provides a cycle of the ↗|E →|E+ relation. ut

5 Discussion

We have shown, within a general framework obtained by an adequate splitting of
transitions, how a novel non-atomic firing semantics emerges for contextual nets,
and studied the resulting concurrent processes, which provide a deeper insight
into complex dynamics of distributed systems.

A key motivation for the research presented in this paper comes from con-
current behaviours as exhibited by systems with a semantics that cannot be
captured by sequences of actions (i.e., the atomic semantics). While the step se-
mantics of, e.g., [8, 10, 15, 26] provides an expressive operational semantics, it still
does not represent the most general case. It was argued in [30], and analysed
in detail in [11], that the most general observational semantics can be repre-
sented by the interval semantics. Invariant structures for such a semantics have
been proposed in [10, 19], and analysed in detail in [13]. A calculus for temporal
reasoning about interval semantics was introduced in [1] where thirteen basic
relations between time intervals that are qualitative rather than quantitative
(no exact numeric spans are represented) were investigated. These relations and
the operations on them form an interval algebra for which several distinct sub-
algebras of different expressiveness and tractability have since been investigated,
e.g., in [23, 21].

An example of recent application of concurrency semantics based on step se-
quences was the paper [7] which investigated the behaviour of GALS (Globally
Asynchronous Locally Synchronous) systems in the context of VLSI circuits.
The specification of a system was given in the form of a Petri net N , and the
aim was to re-design the system to optimize signal management, by grouping
together concurrent events. More precisely, by looking at the concurrent reacha-
bility graph of N (i.e., one based on the step semantics), one aims at discovering
events that appear in ‘bundles’, so that they all can be executed in a single
clock tick (in effect, pruning the concurrent reachability graph). The result-
ing bundling is envisaged to reduce signal management, reducing the cost of
scheduling and control, and improving system performance. The paper proposes
a method that derives a combination of bundles that represents the temporal
activities the designer requires. Careful selection of bundles is essential so that
the pruned behaviour of the fully asynchronous model still exhibits some char-
acteristics of its parent and is persistent. Step semantics and step persistence



are hence important features that will guarantee true persistent behaviour for
mixed synchronous-asynchronous (GALS) models.

An interesting question from a practical point of view is how to construct
abstract processes resp. the abstract unfolding automatically. One possibility
requiring little work would be to translate a net N into split(N), then unfold
it with the tool Cunf, which efficiently generates the unfolding for the atomic
semantics [24]. The resulting unfolding could then be transformed into an ab-
stract unfolding by merging pairs of conditions labeled pc, pr and pairs of events
labeled t−, t+, respectively; the pairs to merge are identified uniquely by def-
inition of the abstraction. A more intriguing question is whether the abstract
unfolding can also be generated directly from the net N . A starting point are
the results presented in Section 4.3, which characterize the events that belong
to the unfolding. However, checking those conditions directly would be ineffi-
cient. Existing unfolding tools compute, e.g., a concurrency relation that allows
to identify possible events more quickly, see, e.g., [2]. Transferring these results
does not seem straightforward, and moreover, the issue of how to compute a
finite marking-complete prefix of the unfolding would require attention. These
questions promise to be interesting future work.

We have restricted ourselves to safe nets for technical simplicity and hence
readability. However, there are no major obstacles for extending our work to non
safe contextual nets. Unfoldings can be defined easily for the very large class of
semi-weighted nets [20, 3]. Simply, we lose uniqueness of the process representing
a firing sequence, which prevents us from using our function Π (Definition 10).
More importantly, in split processes of safe nets, for every condition (f+, pr)
consumed by an event e+, the corresponding (f+, pc) is consumed by e−. For
non safe nets, an e+ may consume another condition labeled pr, created by
another event, say f ′. This would induce ‘superfluous’ causality between f ′ and
e+. Taking this into account would make Lemma 3 and the following more
tedious.

Future work should also include more general non-atomic semantics, in par-
ticular for boolean nets [18].

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

2. P. Baldan, A. Bruni, A. Corradini, B. König, C. Rodŕıguez, and S. Schwoon. Effi-
cient unfolding of contextual petri nets. Theor. Comput. Sci., 449:2–22, 2012.

3. P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures, and processes. Information and Computation, 171(1):1–49, 2001.

4. N. Busi and G. M. Pinna. Non sequential semantics for contextual P/T nets. In
Application and Theory of Petri Nets, volume 1091 of Lecture Notes in Computer
Science, pages 113–132. Springer, 1996.

5. S. Christensen and N. D. Hansen. Coloured Petri nets extended with place capac-
ities, test arcs and inhibitor arcs. In Application and Theory of Petri Nets, volume
691 of Lecture Notes in Computer Science, pages 186–205. Springer, 1993.



6. J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28(6):575–591,
1991.

7. J. Fernandes, M. Koutny, M. Pietkiewicz-Koutny, D. Sokolov, and A. Yakovlev.
Step persistence in the design of GALS systems. In Application and Theory of Petri
Nets and Concurrency. Proceedings, volume 7927 of Lecture Notes in Computer
Science, pages 190–209. Springer, 2013.

8. H. Gaifman and V. R. Pratt. Partial order models of concurrency and the com-
putation of functions. In Proceedings, Symposium on Logic in Computer Science,
pages 72–85. IEEE Computer Society, 1987.

9. R. Janicki. Relational structures model of concurrency. Acta Inf., 45(4):279–320,
2008.

10. R. Janicki and M. Koutny. Invariants and paradigms of concurrency theory. In
PARLE 1991, volume 506 of Lecture Notes in Computer Science, pages 59–74.
Springer, 1991.

11. R. Janicki and M. Koutny. Structure of concurrency. Theoretical Computer Science,
112(1):5–52, 1993.

12. R. Janicki and M. Koutny. Semantics of inhibitor nets. Inf. Comput., 123(1):1–16,
1995.

13. R. Janicki and M. Koutny. Fundamentals of modelling concurrency using discrete
relational structures. Acta Inf., 34:367–388, 1997.

14. G. Juhás, R. Lorenz, and S. Mauser. Synchronous + concurrent + sequential =
earlier than + not later than. In Sixth International Conference on Application
of Concurrency to System Design (ACSD 2006), pages 261–272. IEEE Computer
Society, 2006.

15. G. Juhás, R. Lorenz, and S. Mauser. Causal semantics of algebraic Petri nets
distinguishing concurrency and synchronicity. Fundam. Inform., 86(3):255–298,
2008.

16. H. C. M. Kleijn and M. Koutny. Process semantics of general inhibitor nets. Inf.
Comput., 190(1):18–69, 2004.

17. J. Kleijn and M. Koutny. Causality in extensions of petri nets. T. Petri Nets and
Other Models of Concurrency, 7:225–254, 2013.

18. J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny, and G. Rozenberg. Step semantics
of boolean nets. Acta Informatica, 50(1):15–39, 2013.

19. L. Lamport. The mutual exclusion problem: part I - a theory of interprocess
communication. J. ACM, 33(2):313–326, 1986.

20. J. Meseguer, U. Montanari, and V. Sassone. On the semantics of place/transition
Petri nets. Mathematical Structures in Computer Science, 7(4):359–397, 1997.

21. D. D. Monica, V. Goranko, A. Montanari, and G. Sciavicco. Expressiveness of the
interval logics of allen’s relations on the class of all linear orders: Complete clas-
sification. In IJCAI 2011, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, pages 845–850. IJCAI/AAAI, 2011.

22. U. Montanari and F. Rossi. Contextual nets. Acta Inf., 32(6):545–596, 1995.
23. B. Nebel and H. Bürckert. Reasoning about temporal relations: A maximal

tractable subclass of allen’s interval algebra. J. ACM, 42(1):43–66, 1995.
24. C. Rodŕıguez. Verification Based on Unfoldings of Petri Nets with Read Arcs. PhD

thesis, Laboratoire Spécification et Vérification, ENS Cachan, France, Dec. 2013.
25. C. Rodŕıguez and S. Schwoon. Verification of petri nets with read arcs. In CON-

CUR 2012 - Concurrency Theory - 23rd International Conference. Proceedings,
volume 7454 of Lecture Notes in Computer Science, pages 471–485. Springer, 2012.

26. W. Vogler. A generalization of trace theory. RAIRO Infornatique théorique et
applications, 25(2):147–156, 1991.



27. W. Vogler. Fairness and partial order semantics. Inf. Process. Lett., 55(1):33–39,
1995.

28. W. Vogler. Partial order semantics and read arcs. Theoretical Computer Science,
286(1):33–63, 2002.

29. W. Vogler, A. L. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets
with read arcs. In CONCUR, volume 1466 of LNCS, pages 501–516, 1998.

30. N. Wiener. A contribution to the theory of relative position. Proc. of the Cambridge
Philosophical Society, 33(2):313–326, 1914.

31. J. Winkowski. Processes of contextual nets and their characteristics. Fundamenta
Informaticae, 36(1), 1998.

32. J. Winkowski. Reachability in contextual nets. Fundamenta Informaticae, 51(1-
2):235–250, 2002.


