
Computational Soundness of Indistinguishability
Properties without Computable Parsing

Hubert Comon-Lundh1, Masami Hagiya2, Yusuke Kawamoto1, and
Hideki Sakurada3

1 LSV, CNRS, ENS Cachan and INRIA, France,
{comon,kawamoto}@lsv.ens-cachan.fr?

2 University of Tokyo, Japan, hagiya@is.s.u-tokyo.ac.jp
3 NTT Communication Science Laboratories, NTT Corporation, Japan,

sakurada@theory.brl.ntt.co.jp

Abstract. We provide a symbolic model for protocols using public-key
encryption and hash function, and prove that this model is computation-
ally sound: if there is an attack in the computational world, then there
is an attack in the symbolic (abstract) model. Our original contribution
is that we deal with the security properties, such as anonymity, which
cannot be described using a single execution trace, while considering an
unbounded number of sessions of the protocols in the presence of active
and adaptive adversaries. Our soundness proof is different from all ex-
isting studies in that it does not require a computable parsing function
from bit strings to terms. This allows us to deal with more cryptographic
primitives, such as a preimage-resistant and collision-resistant hash func-
tion whose input may have different lengths.

1 Introduction

There are two main approaches to the analysis of protocol security. The first
considers an attacker modeled as a probabilistic polynomial-time (PPT) inter-
active Turing machine (ITM) and a protocol is an unbounded number of copies
of ITMs. The attacker is assumed to control the network and can schedule the
communications and send fake messages. The security property is defined as an
indistinguishability game: the protocol is secure if, for any attacker A, the prob-
ability that A gets an advantage in this game is negligible. A typical example is
the anonymity property, by which an attacker should not be able to distinguish
between two networks in one of which identities have been switched. The diffi-
culty with such computational security notions lies in the problem of obtaining
detailed proofs: they are in general unmanageable, and cannot be verified by
automatic tools.

The second approach relies on a formal model: bit strings are abstracted
by formal expressions (terms), the attacker is any formal process, and security
properties, such as anonymity, can be expressed by the observational equivalence

? This work has been supporter by the ANR project ProSe.

of processes. This model is much simpler: there is no coin tossing, no complexity
bounds, and the attacker is given only a fixed set of primitive operations (the
function symbols in the term algebra). Therefore it is not surprising that security
proofs become much simpler and can sometimes be automatized. However, the
drawback is that we might miss some attacks because the model might be too
abstract.

Starting with work of Abadi and Rogaway [2] and Backes, Pfitzmann and
Waidner [3], there have been several results showing the computational sound-
ness of the formal models: we do not miss any attacks when considering the
abstract model, provided that the security primitives satisfy certain properties;
for instance IND-CPA or IND-CCA in the case of encryption. Such results avoid
the weaknesses of both approaches to security.

In their original work, Abadi and Rogaway only considered symmetric en-
cryption and a passive attacker with some other minor restrictions. This has been
extended in a number of directions. For instance, Backes et al. consider active at-
tackers and several cryptographic primitives and show simulatability theorems,
which imply the computational soundness of some formal model [3,5]. There are
also several other soundness results, typically for some trace properties [13,8]
and, more recently, for equivalence properties [7].

In the present work, we show a soundness result for active attackers and
public-key encryption and hash functions as cryptographic primitives. Our result
extends the previous work in the following respects:

1. In addition to security properties that can be checked on each trace, i.e., each
individual sequence of events, we consider equivalence properties. Therefore,
our work does not fit into the general framework of [6], which only considers
trace properties. Actually, we need rather different proof techniques, such as
tree oracles and tree transformations. The only previous results concerning
equivalence properties in the presence of active attackers are [7], in which
only symmetric encryption and a particular class of processes is considered,
and [12], in which only a fixed number of protocol instances is considered.
We do not assume here any bound on the number of protocol instances.

2. Our soundness proof does not use a computable parsing function from bit
strings to terms. This is a major difference with all existing studies on com-
putational soundness. It allows us to deal with a preimage-resistant and
collision-resistant hash function whose input may have different lengths, for
which the soundness of process calculi cannot be obtained by [7]’s proof
technique with the computable parsing function, as we detail later.

3. Unlike [7], we do not restrict ourselves to the so-called “simple processes”.
Simple process are parallel compositions of replicated basic processes and
basic processes are just finite sequences of inputs/outputs and tests, with-
out branching. We consider here a larger fragment of the applied π-calculus
of [1]: we allow negative tests and non-trivial processes in both branches of
conditional, as well as arbitrary replications. We keep however two important
restrictions. First we assume that the processes are determinate: every copy
of a process has first to generate communication channels and disclose them.

In this way, the attacker can schedule to which copy of a process a message is
sent. Furthermore, we do not allow private communication channels. Consid-
ering such private channels would require to consider timing attacks, or (for
instance) to assume that an attacker cannot distinguish between terminating
and non-terminating processes, as investigated in [16].

4. We included hash functions in our set of primitives in order to illustrate the
usefulness of dropping the parsing assumptions. Previous (positive) results
on the computational soundness of hash functions either assume stronger
properties of the hash functions than the standard preimage resistance and
collision resistance ([4,11,10,9]), or they assume that all plaintexts have the
same size ([4]). In any case, all these studies do not consider both an ac-
tive attacker and indistinguishability properties. On the other hand, we as-
sume that the hash function is only applied to nonces (possibly of different
lengths).

5. Finally, we observe that the ability of the computational attacker to observe
the length of bit strings cannot be soundly represented using a (reasonable)
symbolic length function. Up to our knowledge, this problem has never been
considered in the papers on computational soundness. We propose here a new
solution where each plaintext term is associated with a label representing its
expected length in the symbolic model, and protocols accept only input of
expected length in the computational model. This is a reasonable assumption
that can be easily implemented.

Our proof relies on ideas that are similar to [7]: each process is associated
with a computation tree, which records all possible executions of the process.
The observational equivalence of two processes implies some labeled bisimilarity
between the computation trees. Computation trees are used as tree oracles in the
computational model. The computational indistinguishability is then equivalent
to the indistinguishability between two tree oracles. The proof proceeds by suc-
cessive transformations of the computation trees, in such a way that the attacker
wins a game (may distinguish the tree oracles) iff he wins the game against the
transformed trees. Eventually, the computation trees are simple enough: it is
straightforward that the attacker cannot win.

There are however important differences between our work and [7], which we
summarize now. Without computable parsing, we cannot rely on the same notion
of computation trees as in [7]; in [7], when the attacker submits a bit string to the
tree oracle, the bit string is parsed into a term and the branch of the computation
tree labeled with this term is then taken. In this paper, we consider symbolic
computation trees, in which all term labels that satisfy the same conditions are
gathered together: now the computation trees are finitely branching and the
edges are labeled with formulas rather than terms. The formulas are evaluated
on the attacker’s input, whether in the computational or in the symbolic model.
In addition, since the formulas are arbitrary Boolean combinations of atomic
formulas, we may allow arbitrary conditional branching (which is not the case
in [7]).

Symbolic computation trees however introduce new difficulties, since the pre-
vious transformations are no longer valid. We need therefore additional trans-
formations, as well as a partial unraveling of the computation tree.

We also differ from [7] in three other respects:

1. We consider hash functions (in the standard model), whose inputs may have
different structures (we use two different constructors for nonces of different
lengths): this is an example where we cannot assume a computable parsing
function. On the other hand, the impossibility result of [4] shows that the
BRISM/UC results cannot be extended to hash functions in the standard
model, when the plaintexts may have different structures; the BRISM frame-
work relies on the existence of a computable parsing function, allowing to
translate bit strings into terms.

2. The soundness of indistinguishability requires a symbolic length function:
we need to provide the symbolic attacker with a capability to distinguish
terms, whose implementations are bit strings of different lengths. This is
difficult because, for instance, a pair 〈u, u〉 and a ciphertext {u}rek(k) may
or not have the same length, depending on the security parameter, while a
symbolic length function does not depend on a security parameter; should
〈u, u〉 and {u}rek(k) get the same symbolic length or not ? A symbolic length
function is hardly sound with respect to the computational length.

The solution adopted in [7] is to assume that the length of any cryptographic
primitive applied to some arguments is a homogeneous function of the lengths
of its arguments. Typically, in case of a linear function, the length |[[〈u, v〉]]η|
of the computational interpretation of a pair, with respect to the security
parameter η must be α× |[[u]]η|+ β × |[[v]]η|+ γ × η. Then, by induction, we
may factor out η from the length of the interpretation of any term and get
(in)equalities on lengths, independently of η.

This is a strong restriction on the implementation since, for instance, the
pairing operation cannot have a constant overhead; it depends linearly on
the security parameter.

We propose another solution here, relying on labels, that is more realistic:
messages received by honest agents do have expected lengths. Such an ex-
pected length is represented by a symbolic label such that two identical labels
yield the same computational length of messages in an honest execution. On
the computational side, we assume that the honest agents check the lengths
of messages that they receive or encrypt, which is easy to implement, so
that the actual length matches the expected one. It turns out that these as-
sumptions, together with some weak length-regularity of the cryptographic
primitives, are sufficient for the soundness result, as we show in this paper.

3. [7] uses a trace mapping property, whose use in the indistinguishability games
is unclear. We formalize a new transformation of computation trees, in which
computational traces that do not have a symbolic counterpart yield a failure
node.

We do not have the space to present here the result in detail. The appendix
contains much more details. (It will eventually appear as a research report, for
reference). We sketch our symbolic model in Section 2, emphasizing the unusual
components. Similarly, we sketch our computational interpretation in Section 3
and finally sketch the main steps of the proofs of our main result in Section 4.

2 The symbolic model

2.1 Terms

We rely on a variant of the applied π-calculus [1]. Terms are built from names
(out of a set N), variables (out of a set X), the constructor function symbols
FuncC = {n1(), n2(), 〈 , 〉 , h(), ek(), dk(), cert(), { } } and the destructor
function symbols FuncD = {π1(), π2(), dec(,)}. Let F = FuncC∪FuncD. n1()
and n2() are two constructor symbols for nonces. They can get only names as
arguments. They are intended to produce names of different lengths. cert() is
a constructor for public keys certificates, h() is a hash function symbol and
ek(), dk() are intended to represent encryption and decryption keys, respec-
tively. These two symbols can only take names as arguments.

All the function symbols are available to the attacker, except cert(). Term is
the set of ground terms built on these function symbols, the names and a set of
constants Const. Term(X) are the terms that may additionally contain variables
from X . Constructor terms are terms that do not contain symbols from FuncD.
For any expression or set of expressions S, Var(S) is the set of variables occurring
free in S.

The function symbols satisfy the equations of Figure 1. In these equations,

π1(〈x, y〉) = x
π2(〈x, y〉) = y

dec({x}rek(k), dk(k)) = x if k, r ∈ Name

Fig. 1. Equational specification of the algebra

the variables x, y range over any ground constructor term. This corresponds to
a “call-by-value” interpretation of the destructors. In other words, the imple-
mentation is strict: if an argument of a destructor is not a constructor term, we
cannot apply these equations to cancel the destructor. The set of equations is
infinite, as there are symbols k, r, r′ that range over all possible names. Then,
Term might be seen as a quotient algebra with respect to the congruence gen-
erated by the equations of Figure 1. We ambiguously keep the same notation
Term and Term(X) for the quotients. Term is then a F-algebra: morphisms and
first-order structures are defined as usual, referring to this quotient structure.

We orient all equations of Figure 1 from left to right. This yields an infinite
convergent term rewriting system on terms. The normal form of u is written as
u↓.

A labeled term is either a term or a symbolic expression obtained from a
term by labeling some of its subterms with labels. More formally, the set LTerm
of labeled terms is defined by:

LTerm ::= Term | F(LTerm, · · · , LTerm) | Term:Label | F(LTerm, · · · , LTerm):Label

For instance, {
〈
n1(r), n2(r′):ln2

〉
:l1}r

′′

ek(k) and {h(n1(r):ln1):l2}r
′

ek(k) are labeled
terms. Intuitively, u:l represents a message whose length is expected to be l in
an honest protocol execution.

The rewrite rules of Figure 1 can only be applied to unlabeled instances of
the variables; when we rewrite a labeled term, the labels of the rule instances are
implicitly removed. In this way, we keep the confluence and termination of the
rewrite system and rewriting a labeled term yields a labeled term (for instance,
we do not get u:l:l′).

2.2 Predicates, conditions, frames and static equivalence

Predicates are used either in honest processes, in order to check properties of the
input terms, or by the attacker, in order to distinguish sequences of terms. We
consider the following predicate symbols: M , EQ , EK , IsEK ,IsN 1, IsN 2, PL,
and HL, whose (informal) meaning is as follows. M (u) holds on ground terms u
such that u↓ is a constructor term. EQ is the strict equality predicate: E(u, v)
implies u ↓= v ↓ and M(u) and M(v). EK holds on a ciphertext {u}wv and a
public key ek(k) when v = ek(k). IsEK is true on pairs of an encryption key and
a certificate of that key. IsN 1 holds on terms n1(r) with r ∈ Name and IsN 2 holds
on terms n2(r) with r ∈ Name. PL holds on two ciphertexts whose plaintexts
have the same expected length, i.e. the same label. HL holds on two hash values
whose plaintexts have the same label. A condition is a Boolean combination of
atomic formulas. Examples of predicate interpretations are given in Example 1.

The frames usually record the messages that have been sent. Since we con-
sider symbolic executions, we need to extend the classical definition to message
templates that may contain variable. A frame is an an expression νy.νn.σ where
y is a finite set of variables, n is a finite set of names, σ is a substitution from
a finite set of variables dom(σ) into Term(X) such that y ∩ dom(σ) = ∅, and
Var(codom(σ)) ∩ dom(σ) = ∅.

Given a frame φ, we write σφ the associated substitution, bn(φ) is the associ-
ated sequence of bound names n and bv(φ) is the associated sequence of bound
variables y. A ground frame φ is a frame such that Var(codom(σφ)) = ∅. We
recall here the definition of symbolic indistinguishability of ground frames (for
general frames, this notion will be directly defined on computation trees).

Definition 1. Two ground frames φ1 and φ2 are statically equivalent, which is
written as φ1 ∼ φ2, if dom(σφ1

) = dom(σφ2
) and for any terms u and v such

that cert does not occur in u, v, Var(u)∪Var(v) ⊆ dom(σφ1
) and (fn(u)∪ fn(v))∩

(bn(φ1) ∪ bn(φ2)) = ∅, we have the following:

– For each PR ∈ {M , IsEK , IsN 1, IsN 2}, M |= PR(uσφ1 ↓) iff M |= PR(uσφ2 ↓
).

– For each PR ∈ {EQ ,EK ,PL,HL}, M |= PR(uσφ1
↓, vσφ1

↓) iff M |=
PR(uσφ2

↓, vσφ2
↓).

Example 1. In the examples, we omit the variables of the domains of σφ: they
are always x1, . . . , xn where n is the length of the frame.

1. νr. n1(r) ∼ νr′. n1(r′), while νr. n1(r) 6∼ νr′. n2(r′), sinceM |= IsN 1(n1(r))
and M 6|= IsN 1(n2(r))

2. νr. {b:l}rek(a) ∼ νr. {c:l′}rek(a) if and only if l = l′, since M |= PL({b:l}rek(a),
{a:l}r′ek(a)) and M |= PL({c:l′}rek(a), {a:l}r′ek(a)) iff l = l′. In this example, the

recipe u is reduced to the variable x1 and the recipe v is the ground (labeled)
term {a:l}r′ek(a).

3. νa, r. {b:l}rek(a), dk(a) 6∼ νa, r. {c:l}rek(a), dk(a) if b, c ∈ N and a, b, c, r are

pairwise distinct. It suffices to consider u = dec(x1, x2), v = b: M |=
EQ(uσφ1

↓, v) while M 6|= EQ(uσφ2
↓, v).

4. νa, a′, r, r′. {b:l}rek(a), {b:l}
r′

ek(a), ek(a) 6∼ νa, a′, r, r′. {b:l}rek(a), {b:l}
r′

ek(a′), ek(a)
using EK

2.3 Processes

Processes are built as in the applied π-calculus [1], using the predicates and
function symbols of the previous section. We do not recall here the syntax and
the basic definitions. Let us explain the communication rule.

c(x : l).P ‖ c(u : l).Q → P{x 7→ u} ‖ {x 7→ u} ‖ Q

If a process c(x : l).P is ready to receive a message on the channel c and another
process is ready to emit the message u on channel c and if the two messages have
the same label, then the network moves to a configuration in which x is replaced
with u in P . The active substitution {x 7→ u} is kept (as a local memory of P).

While the attacker’s processes are arbitrary processes (the attacker may re-
label the terms as he wishes), protocols are specified as combinations of basic
processes, using replication, name generation and parallel composition.

The basic processes are built using name generation, conditionals and se-
quences of input/output actions. We assume that all inputs are labeled variables.
This is not a restriction, since the attacker may re-label the terms. We assume
that all occurrences of plaintexts (of either ciphertexts or hashes) in the basic
processes are labeled, and that before sending a message s the process always
checks M (s). This forbids sending ill-formed messages (or forwarding ill-formed
message). Since, according to our semantics, ill-formed messages do not pass any
test, the effect of message forwarding (moving the control point of some process)

can be achieved with a well-formed message. We believe that this assumption is
not a restriction.

The main restriction, with respect to the full applied π-calculus is that, each
time a process is replicated, it must start with the generation of communication
channels that are disclosed and then used as input/output channels. This ensures
the determinacy of processes: when the attacker sends a message on a channel
c, there is at most one basic process that is able to receive a message on c.

Example 2. This is a simple process that first generates two channel names and
disclose them, hence can be later replicated.

B(a, b, c, d) = νx, y. νiin, iout, r. c(x : l).c(〈iin, iout〉).
iin(y : l). if EQ(π1(dec(y, dk(a)))), b) ∧M (π2(dec(y, dk(a)))) ∧ IsEK (ek(b))

then iout({π2(dec(y, dk(a))) : l′}rek(b))
else iout({d : l′}rek(b))

Example 3. The following is an example of a protocol.

(νa)(νb)(νd)
(

! (νx) (νc1, c2) c(x : l) c(〈c1, c2〉) (!B(a, b, c1, d))‖ !B(b, a, c2, d))
)

The attacker, using the public channel c, may send a signal, which will give
back fresh channel names c1, c2. This allows to get a copy of the (outermost)
replicated process. Each of these channel names may then be used to request a
copy of the corresponding instance of B.

Protocols may also include an initial setting, in which, for instance, some
private keys are disclosed (static corruption).

We assume a number of (reasonable) properties of the protocols:

– Two occurrences of the same variable have the same label.
– The random seed r used in honest encryption terms { }r only occur in that

terms and the random seed k used for honest (i.e., certified) keys ek(k) and
dk(k), are not used for any other purpose.

– Encryption keys with their certificates are sent to the attacker whenever they
are generated.

– Only correct encryption keys are used for encryption (for unknown keys,
IsEK is checked before encryption). This rules out the problem of keys that
are forged by the attacker.

– Only hash values of nonces are produced by the protocols: for unknown
plaintexts s, the protocol checks IsN 1(s) ∨ IsN 2(s) before hashing.

– There is no dynamic corruption: the protocols only disclose decryption key
at the beginning of the execution.

– There is no key cycle: a key hierarchy ensures that the attacker cannot force
the protocol to produce a cycle involving non-corrupted keys.

Finally, two processes P,Q are observationally equivalent, which we write
P ∼ Q if, as usual, there is no context C such that C[P] may emit on a channel
a while C[Q] cannot (or the converse).

3 Computational interpretation

3.1 Computational interpretation of terms and predicate symbols

Each function symbol f is associated with a function [[f]] from bit strings to bit
strings that can be computed in deterministic polynomial time. These interpre-
tations are assumed to satisfy the equations of Figure 1, hence the set of bit
strings has a structure of F-algebra. Let SS be a set of mappings from Name
to {0, 1}∗. Given τ ∈ SS, for any ground term t, [[t]]τ is the unique extension of
τ into a homomorphism of F-algebra. If t is a term with variables X and θ is
a mapping from X into {0, 1}∗, [[t]]θ,τ is defined in a similar way. The interpre-
tation of labeled terms is defined by ignoring the labels. Labels themselves are
interpreted as natural numbers. The security parameter is the minimal length
of τ(r) for r ∈ Name.

In addition, we assume the following properties of the computational inter-
pretation:

– The ranges of constructor function symbols are disjoint and disjoint from
the interpretation of names. This assumption is necessary for a soundness
result. However, we do not assume that the range of a function symbol is
computable.

– We assume the following properties on lengths of the computational inter-
pretation of names and nonces.
• For each b = 1, 2 and any r, r′ ∈ Name,

∣∣[[nb(r)]]τ ∣∣ =
∣∣[[nb(r′)]]τ ∣∣, and that∣∣[[n1(r)]]τ ∣∣ < ∣∣[[n2(r)]]τ ∣∣ < |[[r]]τ |.

• When τ is uniformly drawn (which we will assume in what follows), the
distribution of [[nb(r)]]τ is uniform and covers all bit strings of length
|[[nb(r)]]τ |.

•
∣∣[[n1(r)]]τ ∣∣ and

∣∣[[n2(r)]]τ ∣∣ are polynomial in the security parameter η,
Thanks to the assumptions, for instance, the lengths of keys are different
from those of nonces in the computational model.

– We assume a weak notion of length regularity: let u:l be any labeled term
occurring in a protocol such that y1:l1, y2:l2, . . . , yn:ln are all variables oc-
curring in u. For any computational interpretation τ of names as bit strings,
if terms v1, v2, . . . , vn satisfy |[[vi]]τ | = [[li]]

τ for i = 1, 2, . . . , n, then
∣∣[[u {y1 7→

v1, y2 7→ v2, · · · , yn 7→ vn}]]τ
∣∣ = [[l]]τ .

– For each PR ∈ {M , IsEK} and any term u,
• M |= PR(u) iff [[PR]]([[u]]τ) = 1 holds for any τ ∈ SS, and
• M |= ¬PR(u) iff [[PR]]([[u]]τ) = 0 holds for any τ ∈ SS.

Note that this does not imply anything on the interpretation of PR on a bit
string that is not the interpretation of any term.

– For each PR ∈ {IsN 1, IsN 2} and any bit string m, [[PR]](m) = 1 iff there
are u ∈ Term and τ ∈ SS such that m = [[u]]τ andM |= PR(u). For instance,
we can implement [[IsN b]](m) by checking whether the length of m is [[lbn]]τ

or not.
– For any bit string m and any name k,

• if [[M]]([[πi]](m)) = 1 for i = 1, 2, then [[M]]([[dec]](m, [[dk(k)]]τ)) = 0,
• if [[M]]([[dec]](m, [[dk(k)]]τ)) = 1, then[[M]]([[dec]](m, [[dk(k′)]]τ)) = 0 for

any name k′ such that [[dk(k)]]τ 6= [[dk(k′)]]τ .
• For anym ∈ {0, 1}∗,m′ ∈ {0, 1}∗\{[[dk(k)]]τ : τ ∈ SS}, [[M]]([[dec]](m,m′) =

0.

These assumptions cover the case where m is not the computational inter-
pretation of any term. They can be ensured, for instance, by assuming that
the decryption of a ciphertext with a wrong key returns an error. The pre-
vious work on computational soundness has implemented this by appending
each ciphertext with the encryption key used to produce the ciphertext.

– The implementation is strict: For any f ∈ F and any bit string m, [[M]](m) =
0 implies [[M]]([[f]](· · ·m · · ·)) = 0. For instance, [[M]]([[{u}rek(k)]]

τ) = 0 when

u = dec({s}r′ek(k), dk(k′)).

– For any two terms u, v, [[EQ]]([[u]]τ , [[v]]τ) = 1 iff [[M]]([[u]]τ) = [[M]]([[v]]τ) = 1
and [[u]]τ = [[v]]τ .

For a computational soundness result, we assume nothing on the computa-
tional interpretation of the predicates EK , PL, HL, which may (not) be available
to a computational attacker.

3.2 Interactive Turing machines

The processes are interpreted as interactive Turing machines, which we do not
recall here. Let us only highlight the specifics of our model.

The model of the network includes a store that records the ids (interpreta-
tion of channel names) associated with each process. This allows us to consider
nested replications: the attacker may refer to a given replicated process in a
deterministic way using such channel ids.

More importantly, each basic process, upon receiving a message on a channel
c, checks that the length of the input bit string matches the expected length. It
proceeds only there is a match: the machine in state c(x : l).B may move to the
state B only if the content of its input tape has length [[l]].

Definition 2. Two protocols P and Q are computationally indistinguishable,
which we write P ≈ Q, if, for any attacker’s machine A,

|Pr [τ : [[P]]τ‖A = 1]−Pr [τ : [[Q]]τ‖A = 1]|

is negligible in the security parameter.

3.3 Cryptographic assumptions

We assume the public-key encryption scheme to be IND-CCA2 and the hash
function to be preimage resistant and collision-resistant. For instance, preimage
resistance is stated as follows.

Given a security parameter η, a hash function [15] is a deterministic algorithm
H that, given a key k ∈ KH and a bit string m ∈MH, outputs a hash value of m
by k, whose length only depends on η (not on m), where KH is a key space and
MH is a message space such that m′ ∈ MH implies {0, 1}|m′| ⊆ MH, and that
each bit string in MH is so long that it cannot be guessed by the attacker (i.e.
there is a polynomial p such that η ≤ p(min{|m| |m ∈ MH})). H is preimage
resistant if and only if the following probability is negligible in η for any PPT
attacker A and any ` such that {0, 1}` ⊆MH:

Pr[k
$← KH ; s

$← {0, 1}` ; m :=H(k, s) ; s′ ← A(1η, k,m) : H(k, s′) = m].

We also assume the following (which are necessary for the soundness result):

– The key certificates cannot be forged with a non-negligible probability.
– The length of a pair is longer than (or equal to) the sum of the lengths of

its two components.
– The length of a ciphertext is strictly longer than the length of the corre-

sponding plaintext.
– The length of a hash value (of a nonce) is strictly smaller than the length of

the nonce. This rules out identities such as h(n) = n that could, otherwise,
occur with a non-negligible probability.

4 The main result

Our main result states that we captured all distinguishing capabilities of a com-
putational attacker in a symbolic model:

Theorem 1. Let P and Q be two protocols. If P ∼ Q, then P ≈ Q.

The rest of the paper is devoted to the sketch of the proof of this result. First
we express the problem as the equivalent problem “tP ∼ tQ implies tP ≈ tQ”
where tP is a computation tree that represents all possible execution sequences
(see Section 4.1). Unlike [7], these trees have a finite outdegree, that is indepen-
dent of the security parameter.

Next, we perform successive transformations T of the computation trees,
transforming the problem into “T (tp) ∼ T (tQ) implies T (tP) ≈ T (tQ)”. The
computation trees T (tP) are no longer the computation trees of processes and
that is why we use the detour through computation trees. Let us consider some
of these transformations in more details.

1. The first transformation aims at ensuring more properties of the computation
trees and therefore enable the next step: we partially unravel the computa-
tion trees, unfolding some conditions (see Section 4.2). This transformation
may yield computation trees whose branching degree depends on the secu-
rity parameter. The difficulty lies in proving that they are still polynomially
simulatable.

2. The second transformation is a classical one: thanks to the absence of key
cycles, following the ordering on keys, we may replace plain texts of en-
cryptions by uncorrupted keys with a constant of the same length as the
plaintext. This step requires the IND-CCA2 property of the public-key en-
cryption scheme. After this step, t ∼ t′ iff the total unravelings U(t) and
U(t′) of t and t′ respectively (which are infinitely branching trees) are iden-
tical, up to renaming, which we write U(t) ' U(t′).

3. The third transformation rules out coincidences (see Section 4.3): in the
resulting computation tree, the conditions explicitly state that two distinct
names are distinct and that two hash values of distinct terms are distinct.
Though this is trivial in the symbolic model, it may happen by chance in
the computational one. We also need here to rely on collision resistance of
the hash function.

4. The fourth transformation rules out guesses made in advance (see Sec-
tion 4.4): in the resulting computation tree, the conditions state explicitly
that a random term that has not been produced yet, cannot be computed.
This is more tricky than it looks, and relies in particular on the assump-
tion that the length of a pair is longer than the sum of the lengths of its
components. It also rules out the key that has been derived from it and the
computation of a nonce from its hash value, thanks to preimage resistance.

After these transformations, we can conclude that t ≈ t′, thanks to a trace
mapping property (see Section 4.5).

4.1 Computation trees

A computation tree is a finitely branching tree whose nodes are labeled with
pairs consisting a process (a state) and a frame and whose each edge is labeled
with a variable, a channel name and a condition. For any node of a computation
tree, given a variable x and a channel name c, the disjunction of all the conditions
Φ such that (x, c, Φ) labels some edge departing from the node is a tautology
and any two such conditions cannot be satisfied together.

We may associate a computation tree to any protocol: roughly, if a process
P0‖Q is structurally equivalent to (νn)(c(x : l).P1‖Q) and (νm)(P0‖Q,φ) is

labeling a node, we add an edge (νm) (P0‖Q,φ)
x,c,Φ−−−→ (νm, n)(P2‖Q,φ] φ′)

if there is a (sequence of) test Φ in P1, whose satisfaction yields the output of
φ′ (and the remaining process P2). 4 Any symbolic trace (i.e., any sequence of
triples (x, c, s) where x is a variable, c is a channel name and s is a ground term)
that can be produced by an attacker process corresponds to an instance θ of
a path in the process computation tree, such that, at any step as above, there
is a term u such that uσφθ ↓= xθ (in other words, xθ is deducible from the
corresponding instance of the frame).

4 The names that are bound in front of the state/frame cannot be renamed, unless
they are renamed in the whole subtree.

Given a sample τ , each computation tree t is also associated with a tree oracle
Ot,τ : when the oracle is queried with a bit string m, a variable x and a channel
id [[c]]τ , it evaluates (in the computational model) the conditions departing from
the root and associated with (x, c). Exactly one of them is satisfied: this corre-

sponds to an edge t
x,c,Φ−−−→ t′. Then the oracle replies sending the computational

interpretation of the frame labeling the root of t′ and then behaves as Ot′,τ . Two
tree oracles are indistinguishable if no polynomial time attacker can guess with
a significant advantage which of the two oracles he is interacting with.

Example 4. The computation tree of the protocol P = νiin, iout, r, k. cB(x). c̄B(〈iin,
iout〉). B is shown in Figure 2 where n̄ = iin, iout, r, k and B is the following basic
process:

iin(y).if EQ(π1(y), n1(r))
then if M(dec(π2(y), dk(k)))

then iout(dec(π2(y), dk(k))).0
else 0

else 0.

PPPPPPPPPPPPPPP

���������������

Z
Z
Z
Z
Z
ZZ

P, []

x, cB ,>

νr, k νiin, iout.B, [〈iin, iout〉]
y, iin, EQ(π1(y), n1(r))∧

M (dec(π2(y), dk(k)))

y, iin, EQ(π1(y), n1(r))∧
¬M (dec(π2(y), dk(k)))

y, iin, ¬EQ(π1(y), n1(r))

(νn̄)0, [〈iin, iout〉 , dec(π2(y), dk(k))] (νn̄)0, [〈iin, iout〉] (νn̄)0, [〈iin, iout〉]

Fig. 2. Example of a computation tree

4.2 Partial unraveling

The goal is to replace plaintexts with fixed bit strings, thanks to IND-CCA.
However, in some cases, it would not be correct, because the terms occurring
both in the frames and in the conditions may contain variables. For instance
in dec({u : l}rx, y), we may replace u with a fixed term of expected length l
only if the instance of the term does not contain a redex, in other words unless
x = ek(k) and y = dk(k) for some k. The basic idea is to narrow these terms,
which may require to split the conditions, depending on whether there is a key
generated so far such that x = ek(k) and y = dk(k).

We prove that we can unravel a computation tree, in such a way that the re-
sulting tree is both computationally and symbolically indistinguishable from the
original tree and such that any occurrence of an encryption is safe: either the key
is explicitly an encryption key that has been generated before, or the condition

implies that this is not the case. Similarly, decryptions are safe. Furthermore,
we prove that the tree oracle can still be simulated in polynomial time.

Next, to such safe computation trees, we may apply the pattern function Ω,
replacing all encryptions {u : l}rek(k) with {�l : l}rek(k). This yields again a com-
putation tree which is both symbolically and computationally indistinguishable
from the original one, unless we break IND-CCA.

After this step, t ∼ t′ iff the total unravelings of t and t′ respectively (which
are infinitely branching trees) are identical, up to renaming.

4.3 Ruling out coincidences

Roughly, we add to any condition Φ, labeling an edge of the computation tree,
the conditions ¬EQ(r, r′) for distinct names r, r′, as well as the conditions
¬EQ(h(u), h(v)) for distinct terms h(u), h(v) that appear either in the current
frame or condition. We also add similar constraints for keys. This relies, for
instance, on collision resistance.

4.4 Ruling out predictions

This is a bit more involved: we need to introduce new predicate symbols (for the
purpose of the proof only). For instance, we consider a predicate NP(K,u, v),
which holds, given a substitution σ, if there is a destructor context C, using
decryption keys in K such that C[u]σ↓= vσ↓. We may express for instance that,
when a name n is generated, if the currently available keys are in K, the last
attacker input x cannot contain anything that depends on n. This is expressed
by adding the constraint NP(K,x, n). We use here preimage resistance of the
hash function, expressing that the nonce cannot be guessed from its hash.

4.5 Trace mapping

We show that the conditions resulting from all previous transformations are
either unsatisfiable or else satisfiable both in the computational and in the sym-
bolic model. It follows that, for every computational trace, which corresponds to
a path in the computation tree and an assignment of variables that satisfies all
the conditions along this path, there is also a symbolic trace that corresponds
to the same path. This is what we call trace mapping. It is slightly different
from the usual trace mapping, which states that every computational trace is
an interpretation of a symbolic trace, with an overwhelming probability. First,
thanks to our previous transformation steps, we get a property with the prob-
ability 1 (not with an overwhelming probability only). Next, we do not state
that the computational trace is an interpretation of the symbolic one: we only
state that they satisfy the same conditions. This is sufficient to conclude: thanks
to trace mapping, for every sequence of attacker inputs si, if Ot,τ replies the
sequence [[ur]]

τ , then there is a sequence of symbolic attacker inputs ui yielding
the sequence ur of symbolic replies of U(t). Now, since U(t) ' U(t′), there is

also a sequence u′r of replies of U(t′) such that, for some τ ′, [[u′r]]
τ ′

= [[ur]]
τ is the

sequence of replies of the oracle Ot′,τ ′ on the input sequence si. Hence t ≈ t′.
(And we do not need [[ti]]

τ = si.)

5 Conclusion

We managed to get a computational soundness result for observational equiv-
alence, without any parsing assumption. This result holds for a large subset of
the applied π-calculus. We believe that the same method can be applied to other
primitives, though, as this proof shows, it might be long and tedious.

However, we learned several lessons from this work. For instance, we at-
tacked the problem of the symbolic length from another angle, using a trade-off
between computational assumptions and assumptions on the protocols. We also
showed how collision-resistance (resp. preimage resistance) of hash functions can
be used in soundness proofs. And maybe, more importantly, we identified several
assumptions that look necessary for soundness results, showing the limitations
of the method.

References

1. M. Abadi and Cédric Fournet. Mobile values, new names, and secure communica-
tion. In Proceedings of the 28th ACM Symposium on Principles of Programming
Languages (POPL’01), pages 104–115, 2001.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103 – 127,
2002.

3. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library
with nested operations. In Proc. of the 10th ACM Concerence on Computer and
Communications Security (CCS’03), 2003.

4. M. Backes, B. Pfitzmann, and M. Waidner. Limits of the BRSIM/UC soundness of
Dolev-Yao models with hashes. In Proc. of 11th European Symposium on Research
in Computer Security (ESORICS’06), pages 404–423, 2006.

5. M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (RSIM)
framework for asynchronous systems. Information and Computation, 205(12),
2007.

6. Michael Backes, Dennis Hofheinz, and Dominique Unruh. A general framework
for computational soundness proofs - or - the computational soundness of the
applied pi-calculus. Cryptology ePrint Archive, Report 2009/080, 2009. http:

//eprint.iacr.org/.

7. H. Comon-Lundh and V. Cortier. Computational soundness of observational equiv-
alence. In Proc. of the 15th ACM Conference on Computer and Communications
Security (CCS’08), 2008.

8. V. Cortier and B. Warinschi. Computationally sound, automated proofs for se-
curityprotocols. In Proc. 14th European Symposium on Programming (ESOP’05),
volume 3444 of Lecture Notes in Computer Science, pages 157–171, 2005.

http://eprint.iacr.org/
http://eprint.iacr.org/

9. Véronique Cortier, Steve Kremer, Ralf Küsters, and Bogdan Warinschi. Computa-
tionally sound symbolic secrecy in the presence of hash functions. In Proceedings of
the 26th Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS’06), volume 4337 of Lecture Notes in Computer Science,
pages 176–187. Springer, 2006.

10. Flavio D. Garcia and Peter van Rossum. Sound and complete computational
interpretation of symbolic hashes in the standard model. Theor. Comput. Sci.,
394(1-2):112–133, 2008.

11. Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. Computational sound-
ness of symbolic analysis for protocols using hash functions. Electr. Notes Theor.
Comput. Sci., 186:121–139, 2007.

12. Y. Kawamoto, H. Sakurada, and M. Hagiya. Computationally sound symbolic
anonymity of a ring signature. In FCS-ARSPA-WITS’08, pages 161–175, 2008.

13. D. Micciancio and B. Warinschi. Soundness of formal encryption in presence of an
active attacker. In Proc. Theory of Cryptography Conference (TCC’04), volume
2951 of LNCS, 2004.

14. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT,
pages 552–565, 2001.

15. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In FSE, pages 371–388, 2004.

16. D. Unruh. Termination-insensitive computational indistinguishability (and appli-
cations to computational soundness). In Proceedings of the 24th IEEE Computer
Security Foundations Symposium, CSF 2011. IEEE Computer Society, June 2011.

