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Abstract
Semi-linear sets, which are finitely generated subsets of the monoid (Zd,+), have numerous ap-
plications in theoretical computer science. Although semi-linear sets are usually given implicitly,
by formulas in Presburger arithmetic or by other means, the effect of Boolean operations on
semi-linear sets in terms of the size of generators has primarily been studied for explicit represen-
tations. In this paper, we develop a framework suitable for implicitly presented semi-linear sets,
in which the size of a semi-linear set is characterized by its norm—the maximal magnitude of a
generator.

We put together a “toolbox” of operations and decompositions for semi-linear sets which
give bounds in terms of the norm (as opposed to just the bit-size of the description), a unified
presentation, and simplified proofs. This toolbox, in particular, provides exponentially better
bounds for the complement and set-theoretic difference. We also obtain bounds on unambiguous
decompositions and, as an application of the toolbox, settle the complexity of the equivalence
problem for exponent-sensitive commutative grammars.
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1 Introduction

Semi-linear sets are a generalisation of ultimately periodic sets of natural numbers to any
dimension d. By a classic result due to Ginsburg and Spanier [5], they coincide with the
sets of integers1 definable in Presburger arithmetic (the first-order theory of the integers
with addition and order), and hence enjoy closure under all Boolean operations. Their nice
properties make them a versatile tool in many application domains such as formal language
theory, automata theory, and database theory.

More formally, semi-linear sets are finitely represented finite and infinite subsets of Zd.
For d ≥ 1, a semi-linear set M in dimension d is a finite union of linear sets. The latter are
presented as a base vector b ∈ Zd and a finite set of period vectors P = {p1, . . . ,pn} ⊆ Zd
and have the form

L(b, P ) := b+ {λ1 · p1 + · · ·+ λn · pn : λ1, . . . , λn ∈ N}. (1)

∗ Supported by Labex Digicosme, Univ. Paris-Saclay, project VERICONISS.
1 In the literature, semi-linear sets are often defined as subsets of Nd instead of Zd as in this paper. All of

our results do, however, carry over if one wishes to restrict semi-linear sets to Nd.
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Such representations are, in fact, only rarely encountered in applications, because in many
contexts semi-linear sets are defined implicitly. A semi-linear set can, for instance, be
succinctly encoded by a formula in Presburger arithmetic; or a set can be just proved to
be semi-linear with an estimation of its norm, ‖M‖. The norm is the absolute value of
the largest number occurring in the smallest description of M as a union of sets of the
form (1). Examples of implicitly presented semi-linear sets include languages of various
types of commutative grammars [9, 18] and reachability sets of reversal-bounded counter
automata [12, 8].

The effect of Boolean operations is, however, not easy to track in terms of the size of
vectors b and pi if semi-linear sets are only presented implicitly. As an example, consider the
set of non-negative integer solutions to a system of linear inequalities S : A · x ≤ c, which is
a semi-linear set S ⊆ Nd encoded by S with exponential succinctness. Huynh [11, 10] shows
that, in general, if the complement of a semi-linear set M is non-empty, then there is some
u ∈ Zd \M whose entries are bounded by an exponential in the explicit representation of
M—which amounts to doubly exponential in the size of description of S. This upper bound
is far from optimal: by Farkas’ lemma, M contains an element u whose magnitude ‖u‖ is at
most singly-exponential in the size of description of S.

Somewhat surprisingly, to the best of the authors’ knowledge, there has been no unified
framework for deriving bounds of this kind for implicitly presented semi-linear sets. Even if
we take an explicitly given linear set as in (1) and describe it by an existential formula Ψ(v)
in Presburger arithmetic, the representation of the complement with a universally quantified
formula ¬Ψ(v) provides poor estimates on the magnitude of small elements: although upper
bounds can be derived from an analysis of quantifier-elimination procedures, these bounds
are only doubly exponential (see, e.g., [24]) and hence far from being optimal.

Our contribution

In this paper, we develop a framework suitable for implicitly presented semi-linear sets
(explicitly presented sets are, of course, included as the simplest special case). In this
framework the size of a semi-linear set M ⊆ Zd is characterised by its norm, ‖M‖, rather
than the full bit-size of the description of M . We prove novel upper bounds in which, as
a rule of thumb, the norm of the result of an operation is upper-bounded by ‖M‖F where
the quantity F behaves in a “controlled” way (say, F = poly(d)), thus taming the effect of
Boolean operations and decompositions. In more detail, our contributions are as follows:

We put together a “toolbox” of operations and decompositions for semi-linear sets, with
tame bounds, unified presentation, and simplified proofs. This toolbox includes improved
bounds on the norm of the complement and, as a corollary, improved bounds on the norm
of the set-theoretic difference. These bounds can give an exponential advantage over
previously known techniques that upper-bound the bit-size of the result by nF where n
is the bit-size of the description of M—because n can be exponential in ‖M‖.
We derive from our toolbox an alternative proof of the ΠP

2 upper bound for non-emptiness
of semi-linear set inclusion, shown originally by Huynh [11, 10]. As an application, we
settle the complexity of the equivalence problem for exponent-sensitive commutative
grammars, which have recently been introduced by Mayr and Weihmann [18].
We give a new proof of and provide an explicit upper bound on the unambiguous
decomposition of semi-linear sets. It was first asked by Ginsburg [4] whether any semi-
linear set is equivalent to a semi-linear set in which every element is generated in a unique
way by exactly one linear set. This question was independently positively answered by
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Eilenberg and Schützenberger [3] and by Ito [13]. However, to the best of our knowledge,
no bounds on this decomposition have been established so far.

We now give a brief guide to the developed techniques and to the remainder of the paper.
Our starting point is the fact that the set of non-negative solutions of a system of inequalities
S can be obtained as L(B,P ) :=

⋃
b∈B L(b, P ) for some finite sets B,P ⊆ Nd. We call

semi-linear sets of the form L(B,P ) hybrid linear sets and use them, instead of linear sets,
as basic building blocks for general semi-linear sets. A hybrid linear set preserves more
structural information about the “infinite behaviour” of the linear sets it contains; it is, in
fact, a discrete analogue of the Minkowski-Weyl representation of a convex polyhedron as
the sum of a polytope and a convex cone.

Since the effect of operations on linear sets is primarily dominated by the magnitude and
number of period vectors, reasoning in terms of hybrid linear sets lets us treat a potentially
exponential number of linear sets in a uniform way. This, in turn, enables us, for instance,
to obtain bounds on the representation of the intersection of two hybrid linear sets of the
form L(B,P ) where, as one would indeed expect, the magnitude of the generators of the
result does not depend on the cardinality of B (Subsection 2.3).

Our path to the results on the complement and set-theoretic difference of semi-linear sets
(Section 4) goes through another development, a proper disjoint decomposition theorem. It
splits a hybrid linear set into a union

⋃
i∈I L(Bi, Pi) where each Pi is proper (i.e., consists of

linearly independent vectors) and the convex hulls of L(Bi, Pi) are disjoint (Section 3). For
this result, we use the concept of a generalised simplex in order to construct triangulations
of infinite polyhedra in Qd, and use the technique of half-open decompositions to ensure the
disjointness of the aforementioned convex hulls.

Decomposing Qd into convex polyhedra is by no means a new technique in the study of
semi-linear sets. In particular, such decompositions were used by Huynh [11, 10] and recently
by Kopczyński [14] in the context of semi-linear set inclusion. However, our decomposition
theorem is different from theirs and gives stronger corollaries, in that we obtain a full
semi-linear representation of the complement and, through intersection, of the set-theoretic
difference. While the window theorem of Kopczyński in [14] gives an upper on the magnitude
of the smallest vector in the set difference, our results upper-bound on the magnitude of the
largest generator.

2 Preliminaries

2.1 Basic definitions

Let Z, N, Q, and Q≥0 denote the set of integers, non-negative integers, rationals, and
non-negative rationals, respectively. For x ∈ Q, bxc is the largest integer that does not
exceed x. For subsets of numbers or vectors A and B, we use the Minkowski sum notation:
A+B := {a+ b : a ∈ A, b ∈ B}. In this and other contexts, we often omit the curly braces
when referring to singletons. For sets of vectors P = {p1, . . . ,pn}, Q ⊆ Zm, we may assume
some fixed ordering on their elements, e.g., a lexicographic ordering, and thus sometimes
treat P as a matrix whose column vectors are p1, . . . ,pn. This leads to the notation P · λ
and P ·Q, for products of P with a vector λ and a matrix Q, respectively.
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Linear, hybrid linear, and semi-linear sets

Suppose a natural d ≥ 1 is fixed; we will call this d the dimension. A set L ⊆ Zd is called
linear if it is of the form

L = L(b, P ) := {b+ λ1p1 + · · ·+ λkpk : λ1, . . . , λk ∈ N,p1, . . . ,pk ∈ P} (2)

where b ∈ Zd and P ⊆ Zd is a finite set. We call the vector b the base vector and vectors
p ∈ P the period vectors (or simply base and periods) of L. A set S ⊆ Zd is called semi-linear
if it is a finite union of linear sets. Semi-linear sets can be represented as

S =
⋃
i∈I

L(Bi, Pi) where (3)

L(Bi, Pi) :=
⋃
bi∈Bi

L(bi, Pi) (4)

and L(bi, Pi) is as in (2); we call sets L(Bi, Pi) in (4) hybrid linear sets. Every linear set is
also a hybrid linear set, and every hybrid linear set is semi-linear, but the converse statements
are not true in general.

A hybrid linear set L(Bi, Pi) is proper if the vectors Pi are linearly independent. Moreover,
a hybrid linear set L(B,P ), #P = r, is called unambiguous if for every x ∈ L(B,P ) there exist
a unique b ∈ B and a unique λ ∈ Nr such that x = b+P ·λ. A representation

⋃
i∈I L(Bi, Pi)

is an unambiguous decomposition if each hybrid linear set L(Bi, Pi) is unambiguous and the
union is disjoint.

From the computational perspective, it is standard to represent semi-linear sets of the
form (3) by listing all vectors in the sets Bi, Pi for all i ∈ I; components of the vectors are
written in binary. We use the following notation to refer to various size measures for this
representation. For any set A, the number of elements of A is #A. For any v = (v1, . . . , vd) ∈
Zd, ‖v‖ := max1≤i≤d |vi|; similarly, for any A ⊆ Zd we denote ‖A‖ := maxv∈A ‖v‖; observe
that #A ≤ (‖A‖+ 1)d. Finally, for the representation (3) of a semi-linear set S we write
‖S‖ := max(maxi∈I ‖Bi‖ ,maxi∈I ‖Pi‖), #b S := maxi∈I #Bi, #p S := maxi∈I #Pi, and
#b+p S := #b S + #p S.

Convex polyhedra

We now introduce some terminology and notation from convex geometry. For a system of
vectors v1, . . . ,vk ∈ Qd, a linear combination λ1v1 + . . .+λkvk with λ1, . . . , λk ∈ Q is called:
non-negative, or conical, if all λi ≥ 0; affine if

∑k
i=1 λi = 1; and convex if it is non-negative

and affine. For a possibly infinite set of vectors A ⊆ Qd, by coneA, aff A, and convA we
denote the (rational) cone generated by A, the affine hull of A, and the convex hull of A,
respectively: they are the sets of all non-negative, affine, and convex combinations of finite
subsets of A, respectively. We use the convention that 0 ∈ coneA for any A; in particular,
cone ∅ = {0}. However, conv ∅ = ∅. Sets of the form b+ coneA, for b ∈ Qd, are shifted cones;
we often refer to them simply as cones.

A set X ⊆ Qd is said to recede in direction y ∈ Qd \ {0} if X + λy ⊆ X for all λ ⊆ Q≥0;
the vector y is then a direction of recession for X. Note that shifted cones of the form
b+ coneA recede in all directions from coneA \ {0}.

For any non-empty set X ⊆ Qd its affine hull satisfies X = X0 +v for some vector v ∈ Qd
and a uniquely determined subspace of Qd denoted X0. The dimension of X, written as
dimX, is the dimension of the subspace X0.
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A (rational) convex polyhedron in Qd is a set of the form {x ∈ Qd : A · x ≤ b} where
A ∈ Zm×d and b ∈ Zm for some m. A face of a convex polyhedron W ⊆ Qd is a set of points
where some linear function η : Qd → Q achieves its maximum η∗ over W ; the hyperplane
h = {x ∈ Qd : η(x) = η∗} is a supporting hyperplane of W . A face of a convex polyhedron is
always a convex polyhedron itself. Faces of dimension 0, 1, and dimW − 1 are vertices, edges,
and facets respectively. All faces of W form a partial order with respect to set inclusion, the
largest element being the set W itself (it is always a face by convention).

For a hybrid linear set L(B,P ), we denote K(B,P ) := convL(B,P ) = convB + coneP .
Note that if B is a singleton, i.e., if L(B,P ) is a linear set, then K(B,P ) is a rational cone;
in general, though, K(B,P ) is a convex polyhedron.

Given a set S, we call its representation (3) a proper disjoint decomposition if each hybrid
linear set L(Bi, Pi) is proper and K(Bi, Pi) ∩K(Bj , Pj) = ∅ for i 6= j.

2.2 Auxiliary tools: Systems of linear inequalities
Let A ∈ Zm×n be an integer m × n-matrix and c ∈ Zm. We call S : A · x ≤ c a system
of linear inequalities and T : A · x = c a system of linear equations. By JSK, JTK ⊆ Zn we
denote the solution set of S and T, i.e, the set of all v ∈ Zn such that A · v ≤ b and
A · v = b, respectively, where ≤ is interpreted component-wise. We use JTK≥0 as a shorthand
for JTK ∩ Nn, and write LSM for the set of rational solutions from Qn of S. Moreover, we
define ‖S‖, ‖T‖ := max{‖A‖, ‖c‖}. We first recall a result of von zur Gathen and Sieveking
on the sets of solutions of systems of linear inequalities [23].

I Proposition 1. Let S : A · x ≤ c be a system of inequalities such that A ∈ Zm×n. Then
JSK =

⋃
i∈I L(Bi, Pi) such that

K(Bi, Pi) ∩K(Bj , Pj) = ∅ for all i 6= j,
maxi∈I‖Bi‖,max ‖Pi‖ ≤ 2n2+n · (‖A‖+ ‖c‖),
#I ≤ 2n.
Next, we additionally recall a result on the sets of solutions of linear equalities that

follows from results of Domenjoud [2] and Pottier [20].

I Proposition 2. Let S0 : A · x = 0 and S : A · x = c be systems of linear Diophantine
equations, where A ∈ Zd×n. Then JS0K≥0 = L(0, P ) and JSK≥0 = L(B,P ) such that
‖B‖ ≤ ((n+ 1) · ‖A‖+ ‖c‖+ 1)d, ‖P‖ ≤ (n · ‖A‖+ 1)d,
#B ≤ (n+ 1)d, and #P ≤ nd.
The following two propositions let us switch between representations of rational convex

polyhedra in Qd.

I Proposition 3 ([19]). Let S : A · x ≤ c be a convex polyhedron in Qn. Then there are
B ⊆ Qn and P ⊆ Zn such that LSM = convB + coneP , ‖P‖ ≤ 2O(n3) · ‖S‖n, and all
numerators and denominators in B are bounded by 2O(n2) · ‖S‖.

Proof. It is shown in [19, Prop. 5.12] that there are C,Q ⊆ Qn such that JSK = convC +
convQ and ‖C‖, ‖Q‖ ≤ 2O(n2) · ‖S‖. In order to obtain the desired set of integer vectors P ,
the numbers in each element v ∈ Q can be multiplied through by the least common multiple
of the denominators of its entries, yielding the set P with the desired properties. J

I Proposition 4 ([19]). Let M = L(b, P ) ⊆ Zd be a proper linear set. There exists a system
of linear inequalities S : A · x ≤ c such that

A is a 2d× d-matrix that does not depend on b,
‖A‖, ‖c‖ ≤ 2O(d3) · (max(‖b‖, ‖P‖))d, and
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convL(b, P ) = LSM.

Proof. Since M is proper, convL(b, P ) has at most d facets, resulting in at most 2 · d
inequalities in S. By [19, Prop. 5.12], A and c are rational matrices whose entries are
bounded by 2O(d2) · max(‖b‖, ‖P‖). Multiplying each row through by the least common
multiple of its denominators, we obtain the desired bounds on A and c. J

Finally, we will need a discrete version of Carathéodory’s theorem:

I Proposition 5. Let M =
⋃
j∈J L(C,Q) be a hybrid linear set. Then M =

⋃
i∈I L(Bi, Pi)

such that
maxi∈I‖Bi‖ ≤ ‖C‖+ (#Q · ‖Q‖)O(d),
maxi∈I #Pi ≤ d, Pi ⊆ P and each Pi is linearly independent, and
#I ≤ (#Q)d.
The proof can be found in the appendix and is essentially a combination of Lemmas 2.7

and 2.8 in [9], which do however not establish any concrete bounds. In our proof, we use the
result on the intersection of hybrid linear sets from the following subsection 2.3.

2.3 Intersection of semi-linear sets
I Theorem 6. Let M and N be semi-linear sets with representations M =

⋃
j∈J L(Cj , Qj),

N =
⋃
k∈K L(Dk, Rk). Then the set L := M ∩ N is a semi-linear set with representation

L =
⋃
i∈I L(Bi, Pi) such that I = J ×K,

maxi∈I ‖Bi‖ ,maxi∈I ‖Pi‖ ≤ ((#pM + #pN) ·max(‖M‖, ‖N‖))O(d),
maxi∈I #Bi ≤ (#bM + #bN) · (#pM + #pN)O(d),
maxi∈I #Pi ≤ (#pM + #pN)d, and
#I ≤ #J ·#K.

Moreover, if Qj ⊆ Rk and i = (j, k) then Pi = Qj.

Proof (sketch). We haveM∩N =
⋃
j∈J L(Cj , Qj)∩

⋃
k∈K L(Dk, Rk) =

⋃
j∈J,k∈K L(Cj , Qj)∩

L(Dk, Rk). Hence it suffices to show that every L(Cj , Qj) ∩ L(Dk, Rk) is some L(Bj,k, Pj,k)
with the desired properties. To this end, one can obtain the set of elements in the intersection
as the set of solutions to a suitable system of linear equations and then apply the bounds from
Proposition 2. Finally, the fact that if Qj ⊆ Rk then Pi = Qj follows from Theorem 5.6.1
in [4, p. 180]. J

3 Hybrid linear sets

In the sequel, we develop a close connection between hybrid linear sets and convex polyhedra
viewed as generalized convex hulls. Convex polyhedra in Qd are sets of the form convC +
coneQ for C,Q ⊆ Qd; they can be viewed as a convex hulls of a set of points C and directions
Q. Suppose C = {b1, . . . , br} and Q = {p1, . . . ,pm}. The connection builds upon on the
similarity of the following sets:

convC + coneQ =


r∑
i=1

λibi +
m∑
j=1

µjpj : λi ∈ Q≥0,

r∑
i=1

λi = 1, µj ∈ Q≥0

 and

L(C,Q) =


r∑
i=1

λibi +
m∑
j=1

µjpj : λi ∈ N,
i∑
i=1

λi = 1, µj ∈ N

 .

As mentioned above, convL(C,Q) = K(C,Q) = convC + coneQ.
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3.1 Proper disjoint decompositions (PDD)
Recall that S =

⋃
i∈I L(Bi, Pi) is a proper disjoint decomposition if vectors in each Pi are

linearly independent and the convex hulls K(Bi, Pi) = convL(Bi, Pi) are pairwise disjoint.

I Theorem 7 (PDD for hybrid linear sets). Every hybrid linear set M = L(C,Q) has a
proper disjoint decomposition

⋃
i∈I L(Bi, Pi) where each Pi is a subset of Q and the following

inequalities hold:
‖Bi‖ ≤ (#Q+ ‖C‖+ ‖Q‖+ d)O(d) ≤ ‖M‖O(d2),
#Bi ≤ ((‖C‖+ ‖Q‖+ d)O(d) + #C) · (d+ #Q)O(d) ≤ ‖M‖O(d2),
#I ≤ (#Q)d+1.

The idea of the proof of Theorem 7 is to rely on the connection between hybrid linear sets
and convex polyhedra. We will use the observation that each set of the form convC + coneQ
has a triangulation. While this term usually refers to the basic construction that splits
a convex polygon in a plane into a number of non-overlapping triangles, we will use a
construction that extends this concept in two ways: first, instead of Q2 the sets are in Qd, so
triangles become simplices; second, the sets can be infinite, i.e., with Q 6= ∅.

The strategy of the proof of Theorem 7 is depicted in the following diagram:

L(C,Q) 3−−−−→ Π, a proper disjoint decomposition of L(C,Q)y1
x3

K(C,Q) 2−−−−→ T , a triangulation of K(C,Q)

Step 1 is just taking the convex hull as above, step 2 is the triangulation in Qd, and step 3
constructs a proper disjoint decomposition given the original set L(C,Q) and the triangulation
of K(C,Q).

A generalized δ-dimensional simplex T is a set of the form T = convV + coneD ⊆ Qd
where #V + #D = δ + 1, V 6= ∅, and the dimension of the affine hull of T is exactly δ.
Elements of V are ordinary vertices of T , and elements of D are vertices at infinity and
can be understood as directions. (The set D is, in fact, the set of extreme directions of the
set T , see [21, p. 162].) Faces of generalized simplices conv V + coneD are also generalized
simplices and have the form conv V ′ + coneD′ where V ′ ⊆ V and D′ ⊆ D.

A triangulation of a set W ⊆ Zd is a collection T of generalized simplices that satisfies
the following properties:
1.
⋃
F∈T F = W ;

2. for every F ∈ T and every face F ′ of F , it holds that F ′ ∈ T ;
3. the intersection of any two F1, F2 ∈ T is either empty or is a face of both F1 and F2;
4. all (generalized) simplices in the set of maxima of T , denoted Max T := {F ′ ∈ T : @F ∈
T . F ′ is a face of F and F 6= F ′}, have the same dimension δ, denoted dim T .

In other words, a triangulation of W is a pure polyhedral complex that consists of generalized
simplices and covers exactly W .

To simplify notation, we write T = (T1, . . . , Tm) whenever Max T = {T1, . . . , Tm}; of
course, the set {T1, . . . , Tm} is a subset of the set T . It is straightforward that W =
T1 ∪ . . . ∪ Tm if T = (T1, . . . , Tm) is a triangulation of W . Conversely, if T1, . . . , Tm are
(generalized) simplices of equal dimension such that the collection T of all their faces satisfies
Condition 3 in the definition of triangulation, then this collection T is a triangulation of
T1 ∪ . . . ∪ Tm. Lemma 8 triangulates possibly unbounded convex polyhedra (for non-empty
Q, it treats its elements as vertices at infinity) without introducing new vertices or directions.
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I Lemma 8. Every polyhedron of the form W = convC + coneQ ⊆ Qd has a triangulation
T = (T1, . . . , Tm) where m ≤ (#C + #Q)d+1 and Ti = convCi + coneQi with Ci ⊆ C and
Qi ⊆ Q for all i.

Note that adjacent simplices Ti and Tj in a triangulation can share points in common
lower-dimensional faces and so, for our purposes, should be transformed into disjoint sets.
Suppose U is a polyhedron of the form X = {x ∈ Qd : ai · x ≤ bi, 1 ≤ i ≤ m} where ai ∈ Zd
and bi ∈ Z for all i. For any A ⊆ {1, . . . ,m}, we call the set

XA = {x ∈ Qd : ai · x < bi, i ∈ A, and ai · x ≤ bi, i ∈ {1, . . . ,m} \A}

a half-opening of U obtained by cutting off the hyperplanes ai · x = bi, i ∈ A.

I Lemma 9. Let W be a δ-dimensional polyhedron in Qd. For each triangulation T =
(T1, . . . , Tm) of W there exists a collection of sets T 0 = (T 0

1 , . . . , T
0
m) ⊆ Qd that satisfies the

following conditions:

1. T 0
1 ∪ . . . ∪ T 0

m = W ;
2. for every i, T 0

i is a half-opening of Ti;
3. Ti and Tj are disjoint for i 6= j.

Lemma 9 is the half-open decomposition, originally from [1] and [15]. Our formulation is
a direct corollary of Theorem 3 in the latter paper; see also [6, Section 3.2].

I Lemma 10. Suppose T = conv V + coneD is a generalized δ-dimensional simplex in Qd
where V,D ⊆ Zd and #V + #D = δ + 1. Then for any half-opening T 0 of T it holds that
T 0 ∩ Zd = L(E,D) where ‖E‖ ≤ ‖V ‖+ (d+ 1) · ‖D‖ and #E ≤ (‖V ‖+ (d+ 1) · ‖D‖+ 1)d.

Proof of Theorem 7 (sketch). Take a triangulation of W = K(C,Q) = convC + coneQ,
which exists by Lemma 8, and apply Lemma 9 to this triangulation. The result is a
collection T 0 = (T 0

1 , . . . , T
0
m) where each T 0

i is a half-opening of some generalized simplex
convCi + coneQi such that Ci ⊆ C and Qi ⊆ Q. By Lemma 10, T 0

i ∩ Zd = L(Di, Qi). We
now apply Theorem 6: since Qi ⊆ Q, we have L(Di, Qi)∩L(C,Q) = L(Bi, Pi) where Pi = Qi.
Vectors in each set Pi = Qi are, in fact, linearly independent, because convCi + coneQi is a
generalized simplex. Moreover, K(Bi, Pi) ⊆ convL(Di, Qi) ⊆ T 0

i for each i; since the sets
T 0

1 , . . . , T
0
m are pairwise disjoint, so are the sets K(Bi, Pi). Finally,

m⋃
i=1

L(Bi, Pi) =
m⋃
i=1

T 0
i ∩ Zd ∩ L(C,Q) = L(C,Q) ∩

m⋃
i=1

T 0
i

= L(C,Q) ∩W = L(C,Q) ∩ convL(C,Q) = L(C,Q). J

3.2 Unambiguous decompositions (UD)
The main results of this subsection are the following theorems:

I Theorem 11 (UD for proper hybrid linear sets). Every proper hybrid linear set M = L(C,Q)
has an unambiguous decomposition

⋃
i∈I L(Bi, Pi) where each Pi is a subset of Q and the

following conditions are satisfied:
‖Bi‖ ≤ ‖C‖, and
#I ≤ (2 ·#C)#Q.

I Theorem 12 (UD for hybrid linear sets). Every hybrid linear set M = L(C,Q) has an
unambiguous decomposition

⋃
i∈I L(Bi, Pi) where each Pi is a subset of Q and the following

inequalities hold:
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‖Bi‖ ≤ (#Q+ ‖C‖+ ‖Q‖+ d)O(d) ≤ ‖M‖O(d2), and
#I ≤ ((‖C‖+ ‖Q‖+ d)O(d) + #C)d · (d+ #Q)O(d2) ≤ ‖M‖O(d3).

We now show how to prove Theorem 11. The idea is to reduce the disambiguation of a
proper hybrid linear set to disambiguation of an ideal in a finitely generated commutative
monoid, captured by the following lemma. Here and below, by e1, . . . , er we denote coordinate
vectors in Nr.

I Lemma 13. Every set of the form U = F + Nr with a finite F ⊆ Nr has a representation
U =

⋃
k∈K L(Gk, Ek) such that the following conditions are satisfied:

each set L(Gk, Ek) is unambiguous,
the polyhedra convL(Gk, Ek) and convL(Gk′ , Ek′) are disjoint for k 6= k′,
‖Gk‖ ≤ ‖F‖,
Ek ⊆ {e1, . . . , er}, and
#K ≤ (#F + 1)r.

Proof (sketch). The condition that a vector x belongs to F + Nr can be specified by a
logical formula Φ over predicates of the form xj ≥ c. These predicates break up Nr into at
most (m+ 1)r disjoint regions, and each region is described by a unambiguous hybrid linear
set in a straightforward way. J

Proof of Theorem 11 (sketch). Take M = L(C,Q) ⊆ Zd where Q = {q1, . . . , qr} ⊆ Zd
and vectors in Q are linearly independent, r ≤ d. Consider the point lattice L = Q · Zr =
{Q ·λ : λ ∈ Zr}; see, e.g., [17, Chapter 2]. Vectors x,y ∈ Zr are congruent modulo L, x ≡ y
(mod L) if and only if x − y ∈ L. This congruence splits the set C into a disjoint union
C = C1 ∪ . . . ∪ Cs where x ∈ Ci and y ∈ Cj are congruent if and only if i = j. It is easy
to see that M =

⋃
1≤j≤s L(Cj , Q) is a disjoint union, and disambiguating each L(Cj , Q)

separately will disambiguate M .
Suppose C1 = {x1, . . . ,xm} ⊆ x1 + L. Since the vectors in Q = {q1, . . . , qr} are

linearly independent, each vector from the set x1 + L has a unique expansion of the form
x1 +

∑r
j=1 ajqj . Consider the mapping ψ : x1 + L → Zr taking each vector x1 +

∑r
j=1 ajqj

to the vector (a1, . . . , ar) ∈ Zr. For each j, let a0
j be the smallest of the numbers ψ(xt)[j]

over 1 ≤ t ≤ m; here [j] refers to the jth component of an r-dimensional vector. Denote
a0 = (a0

1, . . . , a
0
r) and let ψ′ : x1 +L → Zr be given by ψ′(x) = ψ(x)− a0. Observe that the

mapping ψ′ is injective and maps C1 to some finite set F ⊆ Nr; in fact, ψ′(L(C1, Q1)) = F+Nr.
After this, it remains to apply Lemma 13. J

4 Semi-linear sets

4.1 Geometric ingredients: Splitting into atomic polyhedra
Consider a semi-linear set given by M =

⋃
j∈J L(Cj , Qj). Take the proper disjoint decompo-

sition of each L(Cj , Qj) according to Theorem 7; this decomposes M as

M =
⋃
j∈J

⋃
t∈Tj

L(Cjt, Qjt), (5)

where hybrid linear sets L(Cjt, Qjt) are proper and, moreover, for any fixed j the polyhedra
K(Cjt, Qjt) are pairwise disjoint.

Denote by H the collection of principal supporting hyperplanes for shifted cones K(b, Qjt),
b ∈ Cjt, t ∈ Tj , and j ∈ J : for each cone, take its d principal supporting hyperplanes, i.e.,
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those hyperplanes obtained in Proposition 4, each of the form h : a ·x = c (with fixed a ∈ Zd
and c ∈ Z), and put them into H. Note that each hyperplane h′ is associated with half-spaces
h− : a ·x ≤ c and h+ : a ·x ≥ c+ 1; moreover, we can pick the signs so that K(b, Qjt) ⊆ h−.
An atomic polyhedron with respect to H is a non-empty set of the form

A(H) =
⋂
h∈H

h− ∩
⋂

h∈H\H

h+,

where H ⊆ H. Clearly, Zd ⊆
⋃
H⊆HA(H).

I Lemma 14. For every L(b, Qjt) with b ∈ Cjt and every A = A(H), either A ⊆
convL(b, Qjt) or A ∩ convL(b, Qjt) = ∅.

Take a hybrid linear set L(Cjt, Qjt) and let b ∈ Cjt. We say that the linear set L(b, Qjt)
shares an atomic polyhedron A iff A ⊆ convL(b, Qjt); otherwise we say that it avoids A.

I Lemma 15. Every atomic polyhedron A(H) is the set of rational solutions to a system
of at most O(d ·

∑
j∈J(#Qj)d+1) linear inequalities with entries bounded by 2O(d3) · (#Q+

‖C‖+ ‖Q‖+ d)O(d2).

I Lemma 16. The number of atomic polyhedra is at most
(
d ·
∑
j∈J #Cj · (#Qj)d+1

)d+1
.

Consider an atomic polyhedron A; in everything that follows, we assume that A is shared
by at least one linear set. Even though the total number of sets of the form L(b, Qjt) that
share A can be large, the following property holds.

I Lemma 17. If linear sets L(b, Qjt) and L(b′, Qjt′) share A, then t = t′. In particular, the
number of pairs (j, t) such that some linear set L(b, Qjt) shares A does not exceed #J .

I Lemma 18. For every A there exist finite sets E ⊆ Qd and G ⊆ Zd that satisfy the
following conditions:

1. A = convE + coneG,
2. for every linear set L(b, Qjt) that shares A, the set G is a subset of L(0, Qjt),
3. numerators and denominators of all entries in all e ∈ E are bounded by ‖M‖O(d4),
4. ‖G‖ ≤ ‖M‖#J·O(d4).

It is worth mentioning that the upper bound on ‖G‖ in Lemma 18 relies on the fact that,
for every j ∈ J , our decomposition (5) ensures disjointness of K(Cjt, Qjt) among t ∈ Tj ; the
proof of Lemma 18 uses this property via Lemma 17.

4.2 Decompositions, complement, and difference
We first state the results on decompositions of semi-linear sets and on the semi-linear
representation of the complement.

I Theorem 19 (PDD for semi-linear sets). Every semi-linear set M =
⋃
j∈J L(Cj , Qj) has a

proper disjoint decomposition
⋃
i∈I L(Bi, Pi) where

‖Bi‖ ≤ ‖M‖#J·O(d7·log d),
‖Pi‖ ≤ ‖M‖#J·O(d7), and
#I ≤ ‖M‖#J·O(d7).

I Corollary 20 (UD for semi-linear sets). Every semi-linear set M =
⋃
j∈J L(Cj , Qj) has an

unambiguous decomposition
⋃
i∈I L(Bi, Pi) where
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‖Bi‖ ≤ ‖M‖#J·O(d7 log d), and
‖Pi‖ ≤ ‖M‖#J·O(d7).

I Theorem 21 (complement of semi-linear sets). The complement of every semi-linear set
M =

⋃
j∈J L(Cj , Qj) has a representation of the form

⋃
i∈I L(Bi, Pi), where

‖Bi‖ ≤ ‖M‖#J·O(d7·log d), and
‖Pi‖ ≤ ‖M‖#J·O(d7).

We state the results on set difference at the end of this subsection. Most of the material
below is devoted to the proofs of Theorems 19 and 21; Corollary 20 follows from Theorem 19
and Theorem 11.

Recall that in Subsection 4.1 we decomposed the space into disjoint atomic polyhedra
A. Each A = convE + coneG by Lemma 18, with E ⊆ Qd and G ⊆ Zd. By Carathéodory’s
theorem, every vector x ∈ A has an expansion of the form

x =
∑
e∈E

νe · e+
∑
g∈G′

µg · g = τ(x) + π(x), (6)

where τ(x) =
∑
e∈E νe · e +

∑
g∈G′(µg − bµgc) · g denotes the truncation of x, π(x) =∑

g∈G′bµgc · g denotes the periodic part of x, and G′ ⊆ G is some subset of linearly
independent vectors in G. We will consider sets X = A∩Zd\M and Y = A∩Zd∩M = A∩M .

It is not difficult to show that ‖τ(X)‖ and ‖τ(Y )‖ are bounded from above by ‖M‖#J·poly(d);
these estimations are relevant as we prove that the equalities X = L(τ(X), G) and Y =
L(τ(Y ), G) hold. While the latter equality requires no sophisticated arguments, a proof of
the former turns out to be somewhat delicate. As an auxiliary statement, we show that
τ(X) ⊆ X; with this fact at hand, the proof of the inclusion L(τ(X), G) ⊆ X goes via
the following checkpoints. Suppose there exists a vector z ∈ L(τ(X), G) ∩M , say with
z ∈ L(b, Qjt) such that L(b, Qjt) shares A. This implies the existence of another vector
x ∈ X with τ(x) ∈ b + Qjt · Zδ where δ is the cardinality of Qjt. At the same time, this
τ(x) also belongs to X and thus to A and to the cone K(b, Qjt). Since the vectors in Qjt
are linearly independent (recall that sets Qjt come from a proper disjoint decomposition
of L(Cj , Qj)), it follows that τ(x) ∈ L(b, Qjt), which contradicts the fact that τ(X) ⊆ X,
because X excludes all linear sets from M .

As seen from this sketch, our ability to construct the hybrid linear representation of X
(which corresponds to the complement of M) relies on the fact that our decomposition of M
in (5) only uses linear sets with linearly independent periods.

Proofs of Theorems 19 and 21 (sketch). Use equalities

M =
⋃
H⊆H

A(H) ∩M and Zd \M =
⋃
H⊆H

A(H) ∩ Zd \M

where it suffices to consider only (non-empty) atomic polyhedra A = A(H). Whenever all
linear sets L(b, Qjt), b ∈ Cjt (see (5)) avoid a polyhedron A, we have Y = A ∩M = ∅ and
X = A∩Zd \M = A∩Zd. The first case is trivial, and the second sends us to Proposition 1.
Otherwise, if at least one linear set shares A, we use the representations X = L(τ(X), G)
and Y = L(τ(Y ), G) as discussed above. For the purposes of proper disjoint decomposition
(Theorem 19), we need to invoke Theorem 7 on L(τ(Y ), G). Upper bounds on ‖Bi‖, ‖Pi‖,
and #I follow from Lemmas 18 and 16 and from Theorem 7. J
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I Corollary 22 (difference of semi-linear sets). The set-theoretic difference M \N of semi-
linear sets M =

⋃
j∈J L(Cj , Qj) and N =

⋃
k∈K L(Dk, Rk) has a representation of the form

L =
⋃
i∈I L(Bi, Pi), where

maxi∈I‖Bi‖,maxi∈I‖Pi‖ ≤ #pM · ‖M‖ · ‖N‖#K·O(d8).

I Corollary 23 (small vector in set difference). Let M,N be semi-linear sets such that
‖M‖, ‖N‖ ≤ n and M \N 6= ∅. Then there is v ∈M \N such that ‖v‖ ≤ 2nO(d2) .

5 An application: Exponent-sensitive commutative grammars

In this section, we show that our bounds on the difference of semi-linear sets yield a novel
tight upper bound for the equivalence problem for a certain class of commutative grammars.

Let Σ = {a1, . . . , am} be a finite alphabet. The free commutative monoid generated
by Σ is denoted by Σ�, and we treat elements of Σ� as vectors in Nd where d = |Σ|. By
Σ⊕ := Σ� \ 0 we denote the free commutative semi-group generated by Σ. An exponent-
sensitive commutative grammar (ESCG) is a tuple G = (N,Σ, S,Π), where

N is a finite set of non-terminal symbols;
Σ is a finite alphabet, the set of terminal symbols, such that N ∩ Σ = ∅;
S ∈ N is the axiom; and
Π ⊆ (

⋃
U∈N {U}

⊕)× (N ∪ Σ)� is a finite set of productions.
The size |G| of G is the number of symbols required write it down; in particular we assume
that commutative words from Σ� are encoded in binary. Subsequently, we write V → W

whenever (V,W ) ∈ Π. Let D,E ∈ (N ∪ Σ)�, we say D directly generates E, written
D ⇒G E, iff there are F ∈ (N ∪ Σ)� and π ∈ Π such that π = V → W , D = V + F and
E = F + W . We write U ⇒∗G W for the reflexive transitive closure of ⇒G and say that
U generates W in this case. If G is clear from the context, we omit the subscript G. For
U ∈ N⊕, the reachability set R(G,U) and the language L(G,U) generated by G starting at
U are defined as

R(G,U) := {W ∈ (N ∪ Σ)� : U ⇒∗ W}, and L(G,U) := R(G,U) ∩ Σ�.

The reachability set R(G) and the language L(G) of G are then defined as R(G) := R(G,S)
and L(G) := L(G,S). Given ESCG G,H and w ∈ Σ�, the word problem is to decide
whether w ∈ L(G), and equivalence is to decide whether L(G) = L(H). The word problem
is PSPACE-complete; the equivalence problem was shown PSPACE-hard and decidable in
2-EXPSPACE by Mayr and Weihmann [18]. The latter result has recently been improved
to coNEXP-hardness and membership in co-2NEXP in [7]. An application of Corollary 23
enables us to settle the complexity of the equivalence problem for ESCG.

I Theorem 24. Equivalence for ESCG is coNEXP-complete.

Proof (sketch). Let G,H be ESCG such that L(G) 6= L(H), and with no loss of generality
assume that there is some w ∈ L(G)\L(H). It is shown in [18] thatM = L(G) and N = L(H)
are semi-linear with ‖M‖, ‖N‖ ≤ 2p(|G|+|H|) for some fixed polynomial p. Consequently, by
Corollary 23 we may assume that ‖w‖ ≤ 22q(|G|+|H|) for some fixed polynomial q, and hence
the representation size n of w is bounded by 2q(|G|+|H|). Thus, for the coNEXP-upper bound
it only remains to show that w ∈ L(G) and w 6∈ L(H) can be checked in time polynomial in
the n. This is not completely obvious since the word problem for ESCG is PSPACE-complete.
In the appendix, we show how this obstacle can be avoided, bringing in a strategy that was
used by Huynh [9] in order to show a coNEXP-upper bound for the equivalence problem for
context-free commutative grammars. J
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A Proofs for Section 2

I Proposition 1. Let S : A · x ≤ c be a system of inequalities such that A ∈ Zm×n. Then
JSK =

⋃
i∈I L(Bi, Pi) such that

K(Bi, Pi) ∩K(Bj , Pj) = ∅ for all i 6= j,
maxi∈I‖Bi‖,max ‖Pi‖ ≤ 2n2+n · (‖A‖+ ‖c‖),
#I ≤ 2n.

Proof. An orthant matrix is a diagonal matrix whose elements are all either −1 or +1. Let
On denote the set of all n× n orthant matrices. For O ∈ O, let

SO :
(
A

O

)
· x ≤

(
c

dO

)
,

where for 1 ≤ i ≤ n, (dO)i := −1 if the i-th diagonal element of O is positive, and (dO)i := 0
otherwise.

Clearly, JSK =
⋃
O∈OJSOK, and the constraint matrix of each SO has full column rank.

It then follows from [23, Thm.] that SO = L(B,P ) such that

‖B‖, ‖P‖ ≤ (n+ 1) · 2n
2
· (‖A‖+ ‖c‖) ≤ 2n

2+n · (‖A‖+ ‖c‖).

Moreover, the choice of the dO ensures that the K(Bi, Pi) are pairwise disjoint. J

I Proposition 2. Let S0 : A · x = 0 and S : A · x = c be systems of linear Diophantine
equations, where A ∈ Zd×n. Then JS0K≥0 = L(0, P ) and JSK≥0 = L(B,P ) such that
‖B‖ ≤ ((n+ 1) · ‖A‖+ ‖c‖+ 1)d, ‖P‖ ≤ (n · ‖A‖+ 1)d,
#B ≤ (n+ 1)d, and #P ≤ nd.

Proof. It is shown in [20, Thm. 1] that JS0K≥0 = L(0, P ) such that ‖P‖ ≤ (n · ‖A‖+ 1)d.
Moreover, it follows from [2, Thm. 5] that #P ≤

(
n
d

)
≤ nd. Let S′ :

(
A −c

)
· x′ = 0,

observe that B is the set of minimal solutions of S′ whose last component is equal to one;
thus the estimations for S reduce to the homogenous case. J

I Theorem 6. Let M and N be semi-linear sets with representations M =
⋃
j∈J L(Cj , Qj),

N =
⋃
k∈K L(Dk, Rk). Then the set L := M ∩ N is a semi-linear set with representation

L =
⋃
i∈I L(Bi, Pi) such that I = J ×K,

maxi∈I ‖Bi‖ ,maxi∈I ‖Pi‖ ≤ ((#pM + #pN) ·max(‖M‖, ‖N‖))O(d),
maxi∈I #Bi ≤ (#bM + #bN) · (#pM + #pN)O(d),
maxi∈I #Pi ≤ (#pM + #pN)d, and
#I ≤ #J ·#K.

Moreover, if Qj ⊆ Rk and i = (j, k) then Pi = Qj.

Proof. We have M ∩ N =
⋃
j∈J L(Cj , Qj) ∩

⋃
k∈K L(Dk, Rk) =

⋃
j∈J,k∈K L(Cj , Qj) ∩

L(Dk, Rk). Hence it suffices to show that every L(Cj , Qj) ∩ L(Dk, Rk) is some L(Bj,k, Pj,k)
with the desired properties. For the sake of readability, we drop indices and let L(C,Q) and
L(D,R) be hybrid linear sets of M and N , respectively. Let c ∈ C, d ∈ D and consider the
following system of linear Diophantine inequalities:

S : c+Q · γ = d+R · θ.
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By Lemma 2 we have JSK≥0|γ = L(E,S) ⊆ Nq; in particular S is independent of c and d.
Now

L(c, Q) ∩ L(d, R) = c+ {Q · γ : γ ∈ L(E,S)}
= c+Q · L(E,S)
= c+Q · {E + S · λ : λ ≥ 0}
= L(c+Q · E,Q · S).

Denote by E(c,d) the set E as above for a particular choice of c ∈ C and d ∈ D, we then
have

L(C,D) ∩ L(D,R) =
⋃

c∈C,d∈D

L(c, Q) ∩ L(d, R) =
⋃

c∈C,d∈D

L(c+Q · E(c,d), Q · S).

Set B := {c+Q · E(c,d) : c ∈ C,d ∈ D} and P := Q · S. The descriptive complexity of B
and P can now be estimated as follows using the bounds provided in Lemma 2:

‖E(c,d)‖, ‖S‖ ≤ ((#Q+ #R) ·max(‖Q‖, ‖R‖) + ‖C‖+ ‖D‖+ 1)d

≤ ((#pM + #pN) ·max(‖M‖, ‖N‖))O(d).

Set E =
⋃
c∈C,d∈D E(c,d), we have

‖P‖ ≤ ‖B‖ = ‖C +Q · E‖ ≤ ((#pM + #pN) ·max(‖M‖, ‖N‖))O(d).

The cardinality of each E(c,d) and S can also be estimated using Lemma 2:

#E(c,d), ≤ (#Q+ #R+ 1)d #S ≤ (#Q+ #R)d.

Hence, the cardinalities of B and P are obtained as follows:

#B ≤ #C ·#D · (#Q+ #R)O(d), #P ≤ (#Q+ #R)d.

Note that whenever Q ⊆ R, then by Theorem 5.6.1 in [4, p. 180], we actually have L(C,Q)∩
L(D,R) = L(B,Q). J

I Proposition 5. Let M =
⋃
j∈J L(C,Q) be a hybrid linear set. Then M =

⋃
i∈I L(Bi, Pi)

such that
maxi∈I‖Bi‖ ≤ ‖C‖+ (#Q · ‖Q‖)O(d),
maxi∈I #Pi ≤ d, Pi ⊆ P and each Pi is linearly independent, and
#I ≤ (#Q)d.

Proof. Let I(Q) be the set of all linearly independent subsets of Q of maximal cardinality.
We clearly have #I(Q) ≤

(#Q
d

)
≤ (#Q)d. Carathéodory’s theorem, see e.g. [22, p. 94], states

that

cone(Q) =
⋃

Q′∈I(Q)

cone(Q′). (7)

Moreover, for any Q′ = {q1, . . . , qj} ∈ I(Q) and u ∈ Nm, we have

u = λ1 · q1 + · · ·+ λj · qj , λi ∈ Q≥0

⇐⇒ u = (λ1 − bλ1c) · q1 + · · ·+ (λj − bλjc) · qj + bλ1c · q1 + · · ·+ bλjc · qj , λi ∈ Q≥0

⇐⇒ u ∈ L(EQ′ , Q′), (8)
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where EQ′ := {λ1 · q1 + · · · + λj · qj ∈ Nm : qi ∈ Q′, λi ∈ Q, 0 ≤ λi < 1}. Hence
cone(Q′) ∩ Nm = L(EQ′ , Q′), and since #Q′ ≤ d, it is easily checked that ‖EQ′‖ ≤ d · ‖Q‖.

Now L(C,Q) can be decomposed as:

C + L(0, Q)

= C + (L(0, Q) ∩
⋃

Q′∈I(Q)

cone(Q′) ∩ Zd) (by (7))

= C +
⋃

Q′∈I(Q)

L(EQ′ , Q′) ∩ L(0, Q) (by distributivity and (8))

= C +
⋃

Q′∈I(Q)

L(BQ′ , Q′) (by Theorem 6)

=
⋃

Q′∈I(Q)

L(C +BQ′ , Q′)

Here, BQ′ is such that L(BQ′ , Q′) = L(EQ′ , Q′) ∩ L(0, Q), and by our estimation on ‖EQ′‖
and Theorem 6 we have

‖BQ′‖ ≤ (d+ #Q) · ‖Q‖O(d) ≤ (#Q · ‖M‖)O(d). J

B Proofs for Section 3

B.1 Triangulations and Proof of Lemma 8
We first introduce several auxiliary definitions. For s = 0, 1, define injective mappings
ϕs : Qd → Qd+1 by the rule ϕs(x) = (s,x). The mapping ϕ0 treats x as a direction in Qd
and maps this direction to its representation in Qd+1; we will never apply it to 0 ∈ Qd. The
mapping ϕ1 treats x simply as a point in Qd and maps this point to its representation in
Qd+1.

For any V ⊆ Qd and D ⊆ Qd \ {0} denote ϕ(V,D) = cone(ϕ1(V ) ∪ ϕ0(D)).
I Claim 25. ϕ−1

1 (ϕ(V,D)) = convV + coneD.
I Claim 26. The set conv V + coneD with #V + #D = δ + 1 and V 6= ∅ is a generalized
δ-dimensional simplex iff δ + 1 points in ϕ1(V ) ∪ ϕ0(D) are linearly independent in Qd+1.

The condition of Claim 26 implies, for example, that 0 6∈ D.
Claims 25 and 26 follow the presentation of directions and generalized simplices in [21,

pp. 153–155 and 60–61].

Proof of Claim 25. Note that (1,w) ∈ ϕ(V,D) iff there exist vectors v1, . . . ,vk ∈ V ,
u1, . . . ,ur ∈ D, and rational numbers λ1, . . . , λk ∈ Q≥0 and µ1, . . . , µk ∈ Q≥0 such that

(1,w) =
k∑
i=1

λi(1,vi) +
r∑
j=1

µj(0,uj). (9)

This is, of course, only possible with
∑k
i=1 λi = 1. As a result, vectors vi ∈ V , uj ∈ D, and

numbers λi, µj ∈ Q≥0 satisfying (9) exist if and only if there exist two vectors v ∈ conv V
and u ∈ coneD such that w = v + u. That is, each (1,w) ∈ ϕ(V,D) has a corresponding
pair v,u with w = v + u, v ∈ convV , and u ∈ coneD; vice versa, each pair of v ∈ conv V
and u ∈ coneD gives rise to (1,w) ∈ ϕ(V,D). By the definition of ϕ1, this concludes the
proof. J
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While we expect the result of Lemma 8 to be known, we are aware of no reference.

Proof of Lemma 8. It is known that the desired triangulation exists when W is a finitely
generated convex cone (see, e.g., [16, Section 2.5]); we show how to use this fact to obtain
triangulations of polyhedra.

Denote F = ϕ1(C)∪ϕ0(Q) = {f1, . . . , fl} ⊆ Qd+1 and consider the cone ϕ(C,Q) = coneF .
As a convex cone in Qd+1, it has a triangulation T (F ) = (G1, . . . , Gm) with Gi = coneFi
for Fi ⊆ F and #Fi = δ + 1 where δ + 1 is the dimension of each cone Gi. We claim that
T = (T1, . . . , Tm) with Ti = ϕ−1

1 (Gi) is a triangulation of W that satisfies the conditions of
the lemma.

Indeed,assume without loss of generality that Fi = {ϕ1(v1), . . . , ϕ1(vt), ϕ0(u1), . . . , ϕ0(us)}
where v1, . . . ,vt ∈ C, u1, . . . ,us ∈ Q, and t+ s = δ + 1. By Claim 25, Ti = ϕ−1

1 (coneFi) =
convCi + coneQi where Ci = {v1, . . . ,vt} ⊆ C and Qi = {u1, . . . ,us} ⊆ Q, so it remains
to show that T is a triangulation of W . (Notice that m ≤

(#C+#Q
d+1

)
≤ (#C + #Q)d+1.)

First of all, note that each Ti is a generalized δ-dimensional simplex in Qd by Claim 26,
since Fi consists of δ + 1 linearly independent vectors of Qd+1. Now recall that for any
function f and any sets X and Y the equalities f−1(X ∪ Y ) = f−1(X) ∪ f−1(Y ) and
f−1(X ∩ Y ) = f−1(X) ∩ f−1(Y ) hold; we will need these equalities in what follows. So,
observe that

T1 ∪ . . . ∪ Tm = ϕ−1
1 (G1) ∪ . . . ∪ ϕ−1

1 (Gm)
= ϕ−1

1 (G1 ∪ . . . ∪Gm) = ϕ−1
1 (ϕ(C,Q)) = convC + coneD,

where the last two equalities are by definition of a triangulation and by Claim 25. Similarly,
suppose T ′i and T ′j are faces of Ti and Tj with 1 ≤ i, j ≤ m; then

T ′i = convC ′i + coneQ′i = ϕ−1
1 (G′i)

where C ′i ⊆ Ci, Q′i ⊆ Qi, and G′i := coneF ′i with F ′i := ϕ1(C ′i) ∪ ϕ0(Q′i) ⊆ Fi. Hence,
G′i = coneF ′i is a face of Gi = coneFi; similarly, G′j = coneF ′j is a face of Gj = coneFj . As
T (F ) is a triangulation of coneF , it follows that G′i ∩G′j is either empty or a face of both
G′i and G′j . Now note that

T ′i ∩ T ′j = ϕ−1
1 (G′i) ∩ ϕ−1

1 (G′j) = ϕ−1
1 (G′i ∩G′j).

By definition, the function ϕ1 is injective, maps polyhedra into polyhedra, and preserves
dimensions and the face-of relation, so ϕ−1

1 (G′i∩G′j) is either empty or a face of both ϕ−1
1 (G′i)

and ϕ−1
1 (G′j). This concludes the proof. J

B.2 Proof of Lemma 10

Suppose V = {v1, . . . ,vk} and D = {u1, . . . ,ur} with k+ r = δ+ 1. First note that a vector
x ∈ Zd belongs to T iff there exist numbers λ1, . . . , λk ∈ Q≥0 and µ1, . . . , µr ∈ Q≥0 with∑k
i=1 λi = 1 such that

x =
k∑
i=1

λivi +
r∑
j=1

µjuj =

 k∑
i=1

λivi +
r∑
j=1

(µj − bµjc)uj

+
r∑
j=1
bµjcuj .
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Define

A = Zd ∩


k∑
i=1

λivi +
r∑
j=1

(ρj + µj − bµjc)uj :

λ1, . . . , λk ∈ Q≥0,

k∑
i=1

λi = 1, ρ1, . . . , ρr ∈ {0, 1}, µ1, . . . , µr ∈ Q≥0

}

and observe that T ∩ Zd = L(A,D). Now let T 0 be the half-opening of T obtained by
cutting off some ` supporting hyperplanes, i.e., hyperplanes that contain faces of T : every
such hyperplane contains at least one point of T , and the rest of T lies to one side of the
hyperplane. Suppose these ` hyperplanes are of the form as · x = bs, 1 ≤ s ≤ `.

We now claim that T 0 ∩ Zd = L(E,D) where E = A ∩ {x ∈ Qd : as · x < bs, 1 ≤ s ≤ `}.
Indeed, first note that L(E,D) ⊆ T 0 ∩ Zd. This inclusion holds because all directions
u1, . . . ,ur ∈ D satisfy as ·uj ≤ 0, 1 ≤ s ≤ `, and all vectors v ∈ E satisfy as · v < bs. Next,
observe that, conversely, T 0 ∩ Zd ⊆ L(E,D). Indeed, take any vector x ∈ T 0 ∩ Zd; since
T 0 ⊆ T , it can be written as x = y + z where y, z ∈ Zd,

y =
k∑
i=1

λivi +
r∑
j=1

(µj − bµjc)uj and z =
r∑
j=1
bµjcuj

for some λ1, . . . , λk ∈ Q≥0,
∑k
i=1 λi = 1, and µ1, . . . , µr ∈ Q≥0. If y ∈ E, then x ∈ L(E,D),

so assume otherwise. Note that y ∈ A with ρ1 = . . . = ρr = 0 and A ⊆ T . Assume that
as ·y = bs, 1 ≤ s ≤ t, and as ·y < bs, t < s ≤ t. Then for each s = 1, . . . , s, since y+z ∈ T 0

and so as · y < bs, there exists a uj ∈ D such that as · uj < 0 and bµjc ≥ 1. Therefore,
decreasing µj by 1 and setting ρj = 1 instead, we make sure that the newly obtained vector
y′ satisfies as · y′ < bs. Repeating this procedure at most once for each direction uj , we
obtain a new representation x = y′ + z′ where y′ ∈ A and z′ ∈ L(0, D). Therefore, we
conclude that T 0 ∩ Zd = L(E,D), and the upper bound on the magnitude of elements holds
by our choice of C.

B.3 Proof of Theorem 7
Take a triangulation of W = K(C,Q) = convC + coneQ, which exists by Lemma 8, and
apply Lemma 9 to this triangulation. The result is a collection T 0 = (T 0

1 , . . . , T
0
m) where

each T 0
i is a half-opening of some generalized simplex convCi + coneQi such that Ci ⊆ C

and Qi ⊆ Q. By Lemma 10, T 0
i ∩ Zd = L(Di, Qi) with ‖Di‖ ≤ ‖C‖+ (d+ 1) ‖Q‖.

We now apply Theorem 6: since Qi ⊆ Q, we have L(Di, Qi)∩L(C,Q) = L(Bi, Pi) where
Pi = Qi and

‖Bi‖ ≤ ((#Qi + #Q) · ‖Di‖)O(d)

≤ ((#Q+ d) · (‖C‖+ (d+ 1) ‖Q‖))O(d)

= (#Q+ ‖C‖+ ‖Q‖+ d)O(d),

#Bi ≤ (#Di + #C) · (#Pi + #Q)O(d)

≤ ((‖Ci‖+ (d+ 1) · ‖Qi‖+ 1)d + #C) · (d+ #Q)O(d)

= ((‖C‖+ ‖Q‖+ d)O(d) + #C) · (d+ #Q)O(d).

Note that we can now, by merging hybrid linear sets with identical Pis, make sure that
subsets Pi ⊆ Q are all different, so #I ≤ min(m,

(#Q
d+1
)
) ≤ (#Q)d+1.
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Notice that vectors in each set Pi = Qi are linearly independent, because convCi+coneQi
is a generalized simplex. Moreover, K(Bi, Pi) ⊆ convL(Di, Qi) ⊆ T 0

i for each i; since the
sets T 0

1 , . . . , T
0
m are pairwise disjoint, so are the sets K(Bi, Pi). Finally,

m⋃
i=1

L(Bi, Pi) =
m⋃
i=1

T 0
i ∩ Zd ∩ L(C,Q) = L(C,Q) ∩

m⋃
i=1

T 0
i

= L(C,Q) ∩W = L(C,Q) ∩ convL(C,Q) = L(C,Q).

B.4 Unambiguous decompositions: Proofs for Subsection 3.2
Proof of Lemma 13. Consider any x ∈ Nr. This vector x belongs to F + Nr if and only if
x ≥ f for some f ∈ F ; this condition can be specified by a logical formula Φ over predicates
of the form xj ≥ c where c ∈ Z and xj is the jth component of x, 1 ≤ j ≤ r. Note that
whenever, for some j, the numbers c1, . . . , cm are the jth components of F = {f1, . . . ,fm},
these predicates break a copy of N associated with xj into at most m+ 1 nonempty intervals:
[0, c(1) − 1], [c(1), c(2) − 1], . . . , [c(m−1) − 1, c(m)], and [c(m),+∞) where {c(1), . . . , c(m)} =
{c1, . . . , cm} and c(l) ≤ c(l+1) for all l.

Bring the formula Φ into a sum-of-products form where any two products disagree on the
interval of at least one variable xj ; this is an analogue of the canonical disjunctive normal
form (CDNF), although, in fact, we do not need to require that each product contain a
predicate for each variable. Each product is of the form

∧
(xj ∈ Ij), for j ranging over some

subset of {1, . . . , r}, and there are at most (m + 1)r products. (Note that we can assume
without loss of generality that vectors in the set F are pairwise incomparable with respect to
the product order, otherwise F can be shrunk without any effect on the set F + Nr.) This
product defines a hybrid linear set L(G,E) that has period ej if and only if Ij is an infinite
interval, and the base vectors are determined as follows. We pick G = G1 × . . .×Gr where
Gj is:
{c} if Ij = [c,+∞),
[a, b] if Ij = [a, b], and
{0} if the product does not contain a predicate referring to xj .

Now L(G,E) =
⋃
g∈G L(g, E), where sets on the right-hand side are pairwise disjoint. This

completes the proof. J

Proof of Theorem 11. Take M = L(C,Q) ⊆ Zd where Q = {q1, . . . , qr} ⊆ Zd and vectors
in Q are linearly independent, r ≤ d. Consider the point lattice L = Q ·Zr = {Q ·λ : λ ∈ Zr};
see, e.g., [17, Chapter 2]. Vectors x,y ∈ Zr are congruent modulo L, x ≡ y (mod L) if and
only if x− y ∈ L. This congruence splits the set C into a disjoint union C = C1 ∪ . . . ∪ Cs
where x ∈ Ci and y ∈ Cj are congruent if and only if i = j. It is easy to see that
M =

⋃
1≤j≤s L(Cj , Q) is a disjoint union, and disambiguating each L(Cj , Q) separately will

disambiguate M .
Suppose C1 = {x1, . . . ,xm} ⊆ x1 + L. Since the vectors in Q = {q1, . . . , qr} are

linearly independent, each vector from the set x1 + L has a unique expansion of the form
x1 +

∑r
j=1 ajqj . Consider the mapping ψ : x1 + L → Zr taking each vector x1 +

∑r
j=1 ajqj

to the vector (a1, . . . , ar) ∈ Zr. For each j, let a0
j be the smallest of the numbers ψ(xt)[j]

over 1 ≤ t ≤ m; here [j] refers to the jth component of an r-dimensional vector. Denote
a0 = (a0

1, . . . , a
0
r) and let ψ′ : x1 +L → Zr be given by ψ′(x) = ψ(x)− a0. Observe that the

mapping ψ′ is injective and maps C1 to some finite set F ⊆ Nr; in fact, ψ′(L(C1, Q1)) = F+Nr.
Lemma 13 decomposes this ideal F + Nr ⊆ Nr into a disjoint union of at most (#F + 1)r
hybrid linear sets, all unambiguous. Taking the inverse image under ψ′ then produces a
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disjoint union of at most
∑s
j=1(#Cj+1)r ≤ (2#C)r unambiguous sets L(Bi, Pi) with Pi ⊆ Q

and ‖Bi‖ ≤ ‖B‖. J

Proof of Theorem 12. The statement follows from Theorems 7 and 11. J

C Proofs for Section 4

C.1 Geometric ingredients: Subsection 4.1
Proof of Lemma 14. Consider each principal supporting hyperplane h of the cone K :=
convL(b, Qjt) = K(b, Qjt); this cone K lies either completely inside the half-space h−. If
at least one of the supporting hyperplanes h does not belong to H, then A ⊆ h+ and so
A ∩K ⊆ h+ ∩K = ∅. Now assume that all these hyperplanes h are in H; then A is a subset
of the intersection of the corresponding half-spaces h−, and thus into A. J

Proof of Lemma 15. By definition, the polyhedron A(H) is defined by a system of inequali-
ties, one per each h ∈ H. The cardinality of H can be comparatively big; we note, however,
that principal supporting hyperplanes of any two rational cones of the form K(b, Qjt) and
K(b′, Qjt) are parallel to each other; in other words, they are of the form a · x = c and
a ·x = c′ for some fixed a ∈ Zd and potentially different numbers c, c′ ∈ Z (cf. Proposition 4).
Hence, each hybrid linear set L(Cjt, Qjt) defines d families of hyperplanes in Qd: each family
contains at most #Cjt hyperplanes, and all hyperplanes in each family are parallel to each
other. Any intersection of half-spaces associated to hyperplanes of a single family is, unless
empty, defined by one or two inequalities: a ·x ≤ c1, or a ·x ≥ c2, or c3 ≤ a ·x ≥ c4. Hence,
each the number of inequalities defining A(H) is at most 2d·

∑
j∈J #Tj . But #Tj ≤ (#Qj)d+1

by Theorem 7. It remains to note that the bound on the magnitude of the entries follows
from combining Theorem 7 and Proposition 4. This completes the proof. J

Proof of Lemma 16. Apply the basic fact that n hyperplanes inQd define at most
∑d
i=0
(
n
d

)
=

O(nd+1) regions (see, e.g., [17, Proposition 6.1.1]). The number of hyperplanes n for our
case was essentially already estimated in the proof of the previous Lemma 15: as L(Cjt, Qjt)
defines at most d ·#Cj hyperplanes, it follows that n ≤ d ·

∑
j∈J #Cj(#Qj)d+1. J

Proof of Lemma 17. Note that K(b, Qjt) ⊆ K(Cjt, Qjt) and K(b′, Qjt′) ⊆ K(Cjt′ , Qjt′).
The sets on the right-hand sides of these inclusions are disjoint, by the definition of a proper
disjoint decomposition for L(Cj , Qj). Therefore, the sets on the left-hand sides are also
disjoint, and so L(b, Qjt) and L(b′, Qjt′) cannot share an atomic polyhedron—recall that A
is non-empty by our definition. This proves the first statement of the lemma; the second
statement follows from the first. J

Proof of Lemma 18. By Lemma 15, every A is defined by a system of O(d ·
∑
i∈I(#Pi)d+1)

inequalities with entries bounded by 2O(d3) · (#Q+ ‖C‖+ ‖Q‖+ d)O(d2). By Proposition 3,
A = convE + coneG′ for finite sets E ⊆ Qd, G′ ⊆ Zd where absolute values of numerators
and denominators of all entries in E, as well as ‖G‖, are bounded by

2O(d3) ·
(

2O(d3) · (#Q+ ‖C‖+ ‖Q‖+ d)O(d2)
)d

= 2O(d4) · (#Q+ ‖C‖+ ‖Q‖+ d)O(d3)

≤ ‖M‖O(d4).

Let us now show how to satisfy condition 2 of the lemma.
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First, recall that by Lemma 17 the polyhedron A can only be shared by linear sets of the
form L(b, Qjt) where the number of different sets Qjt is at most #J . Denote these sets by
R1, . . . , Rs, s ≤ #J ; each Ri consists of (at most d) linearly independent vectors from Qd.

Second, note that G′ ⊆ coneRi for all i. Indeed, the polyhedron A recedes in all directions
in G′, and A ⊆ convL(b, Ri) for some linear set L(b, Ri) = L(b, Qjt sharing A, which means
that, whenever A recedes in a direction u ∈ Qd ⊆ {0}, the shifted cone K(b, Qjt) also recedes
in the direction u, i.e., u ∈ coneQjt = coneRi.

We now claim that we can rescale each vector u ∈ G′ ⊆ Qd, finding an appropriate
µu ∈ N, so that the set G = {µuu : u ∈ G′} satisfies condition 2 of the lemma.

We consider each vector u ∈ G′ separately. Fix u ∈ G′ and observe that elements of Ri
are linearly independent, so there exists a unique rational solution λ ∈ Q`i

≥0, `i = #Ri, to the
equation Ri · λ = u. By Cramer’s rule, numerators and denominators of λ are bounded by

2O(d2) · ‖Ri‖ · ‖u‖ ≤ 2O(d2) · ‖Q‖ · 2O(d4) · (#Q+ ‖C‖+ ‖Q‖+ d)O(d3)

≤ 2O(d4) · (#Q+ ‖C‖+ ‖Q‖+ d)O(d3).

Let µi ∈ N be the least common multiple of the (at most d) denominators; then

µi ≤ 2O(d5) · (#Q+ ‖C‖+ ‖Q‖+ d)O(d4).

This number µi is such that µi ·u ∈ L(0, Ri). Therefore, we pick µu = lcm(µ1, . . . , µs); then
the vector µu · u indeed belongs to all linear sets L(0, Ri), 1 ≤ i ≤ s. This completes the
description of our choice of G; we now have A = convE + coneG, as well as

‖µu · u‖ ≤ (max µi)s ‖G′‖

≤
(

2O(d5) · (#Q+ ‖C‖+ ‖Q‖+ d)O(d4)
)#J

· 2O(d4) · (#Q+ ‖C‖+ ‖Q‖+ d)O(d3)

≤
(

2O(d5) · (#Q+ ‖C‖+ ‖Q‖+ d)O(d4)
)#J

.

and

‖G‖ = max
u∈G′

‖µu · u‖ ≤
(

2O(d5) · (#Q+ ‖C‖+ ‖Q‖+ d)O(d4)
)#J

≤ ‖M‖#J·O(d5)
.

J

C.2 Decompositions, complement, and difference: Subsection 4.2
I Lemma 27. ‖τ(X)‖ , ‖τ(Y )‖ ≤ ‖M‖#J·O(d5 log d).

Proof of Lemma 27. Since

‖τ(X)‖ ≤ ‖E‖+ d · ‖G‖ ≤ ‖M‖#J·O(d5 log d). J

I Lemma 28. Y = L(τ(Y ), G).

Proof of Lemma 28. The inclusion Y ⊆ L(τ(Y ), G) is by the expansion (6), so we focus on
the backwards direction. Take some y ∈ L(τ(Y ), G): y = u+ z, where u ∈ τ(Y ) and z ∈ G.
This y is integral, because all vectors in τ(Y ) ⊆ τ(A) are integral by our choice of τ and π;
it is also in A because τ(Y ) ⊆ A and the polyhedron A recedes in all directions in G. It now
remains to prove that y ∈M . Since u ∈M , we have u ∈ L(b, Qjt), b ∈ Cjt, where the linear
set L(b, Qjt) shares the atomic polyhedron A—otherwise the set L(b, Qjt)∩A would be empty
and so could not contain u (recall that u ∈ τ(Y ) ⊆ A by our choice of y, τ , and π). From
u ∈ L(b, Qjt), z ∈ G, and from Lemma 18 we conclude that y = u + z ∈ L(b, Qjt) ⊆ M .
This completes the proof. J
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I Lemma 29. τ(X) ⊆ X.

Proof of Lemma 29. For any x ∈ X, τ(x) ∈ A and τ(x) ∈ Zd by our choice of τ ; recall
that G ⊆ Zd. If τ(x) ∈M for some x, then τ(x) +G ⊆M by Lemma 18 (condition 2). But
x ∈ τ(x) +G by the expansion (5), so x ∈M , which contradicts the definition of X. This
concludes the proof. J

I Lemma 30. X = L(τ(X), G).

Proof of Lemma 30. If x ∈ X, then x ∈ L(τ(X), G) by the expansion (6).
Conversely, take some z ∈ L(τ(X), G). This z is integral, because all vectors in τ(X) ⊆ A

are integral by our choice of τ and π; it is also in A because τ(X) ⊆ A and the polyhedron
A recedes in all directions in G. It now remains to prove that z 6∈ M . Suppose z ∈ M ;
then z ∈ L(b, Qjt) for some b ∈ Cjt, so z = b+Qjt · λ with λ ∈ Nδ where δ = #Qjt. Note
that this linear set L(b, Qjt) shares the atomic polyhedron A, because the set L(b, Qjt) ∩A
contains z and so cannot be empty.

Let us show that our assumption leads to a contradiction. Since we originally picked z
from L(τ(X), G), we have z = τ(x) + y for some x ∈ X and y ∈ L(0, G) ⊆ L(0, Qjt); the
last inclusion holds by Lemma 18. Rewrite this y as y = Qjt · µ with µ ∈ Nδ. We now have
two representations of the same vector: z = b+Qjt · λ = τ(x) +Qjt · µ, so

τ(x) = b+Qjt · (λ− µ), where λ,µ ∈ Zδ. (10)

Also observe that τ(x) ∈ τ(X) ⊆ X ⊆ A ⊆ K(b, Qjt), where the second inclusion is
Lemma 29, the third holds by the definition of A, and the last one is the fact that the linear
set L(b, Qjt) shares the atomic polyhedron A. From this chain of inclusions we conclude
that

τ(x) = b+Qjt · ρ, where ρ ∈ Qδ≥0. (11)

Since the vectors in Qjt are linearly independent (by definition of the proper disjoint
decomposition), from equations (10) and (11) it follows that

λ− µ = ρ ∈ Zδ ∩Qδ≥0 = Nδ,

which means that τ(x) ∈ L(b, Qjt) ⊆M . This, however, is a contradiction with Lemma 29,
as it implies τ(x) ∈ τ(X) ⊆ X = A ∩ Zd \M . This completes the proof. J

Proof of Theorem 19. Note that M = M ∩
⋃
H⊆HA(H) =

⋃
H⊆HM ∩A(H) and, in fact,

it suffices to consider only (non-empty) atomic polyhedra A = A(H). Whenever in (5) all
linear sets L(b, Qjt) avoid a polyhedron A, we have M ∩ A = ∅, so this case is trivial. In
the opposite case we denoted M ∩A = Y , and this set is equal to L(τ(Y ), G) by Lemma 28.
Therefore, M is the union of all sets of the form L(τ(Y ), G) over all atomic polyhedra
A = A(H), where, in fact, G = G(A) and Y = Y (A). After that we subject each L(τ(Y ), G)
to the proper disjoint decomposition (Theorem 7); all resulting hybrid linear sets are proper,
and it is straightforward that their convex hulls are disjoint (inside each A, this follows from
Theorem 7, and sets corresponding to different A cannot intersect because atomic polyhedra
are pairwise disjoint). This completes the proof; upper bounds on ‖Bi‖, ‖Pi‖ and #I follow
from Lemmas 27, 18 and 16, and from Theorem 7. J

Proof of Theorem 21. In a similar way to the proof of Theorem 19, note that Zd \M =⋃
H⊆HA(H)∩Zd \M and, in fact, it suffices to consider only (non-empty) atomic polyhedra
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A = A(H). Whenever in (5) all linear sets L(b, Qjt) avoid a polyhedron A, we have
A ∩ Zd \M = A ∩ Zd. By Proposition 1, this is a disjoint union of at most 2d hybrid linear
set of the form L(Bi, Pi) with

‖B‖i, ‖P‖i ≤ 2O(d3) ·
(

2O(d3) · (#Q+ ‖C‖+ ‖Q‖+ d)O(d2)
)d

= ‖M‖O(d4).

In the opposite case we denoted M ∩ A = Y , and this set is equal to L(τ(Y ), G) by
Lemma 28. Therefore, M is the union of all sets of the form L(τ(Y ), G) over all atomic
polyhedra A = A(H), where, in fact, G = G(A) and Y = Y (A). After that we subject each
L(τ(Y ), G) to the proper disjoint decomposition (Theorem 7); all resulting hybrid linear
sets are proper, and it is straightforward that their convex hulls are disjoint (inside each A,
this follows from Theorem 7, and sets corresponding to different A cannot intersect because
atomic polyhedra are pairwise disjoint). This completes the proof; upper bounds on ‖Bi‖,
‖Pi‖ follow from Lemmas 27 and 18. J

Proof of Corollary 20. The statement follows from Theorems 19 and 11. J

I Corollary 22 (difference of semi-linear sets). The set-theoretic difference M \N of semi-
linear sets M =

⋃
j∈J L(Cj , Qj) and N =

⋃
k∈K L(Dk, Rk) has a representation of the form

L =
⋃
i∈I L(Bi, Pi), where

maxi∈I‖Bi‖,maxi∈I‖Pi‖ ≤ #pM · ‖M‖ · ‖N‖#K·O(d8).

Proof. By Theorem 21, N := Zd \ N has a semi-linear representation N =
⋃
`inL(E`, S`)

such that
max`∈L‖E`‖ ≤ ‖N‖#K·O(d7·log d) and
max`∈L‖S`‖ ≤ ‖N‖#K·O(d7).

The trivial bound on #pN gives #pN ≤ ‖N‖d ≤ ‖N‖#K·O(d8). Consequently, by Theorem 6
we get M ∩N =

⋃
i∈I L(Bi, Pi)) such that

max
i∈I
‖Bi‖,max

i∈I
‖Pi‖ ≤ (#pM + ‖N‖#K·O(d8)) ·max(‖M‖, ‖N‖#K·O(d7·log d))

≤ (#pM · ‖M‖ · ‖N‖#K·O(d8)). J

I Corollary 23 (small vector in set difference). Let M,N be semi-linear sets such that
‖M‖, ‖N‖ ≤ n and M \N 6= ∅. Then there is v ∈M \N such that ‖v‖ ≤ 2nO(d2) .

Proof. Let M =
⋃
j∈J L(Cj , Qj) and N =

⋃
k∈K L(Dk, Rk). The trivial bound on #pM

and #pN induced by n is #pM,#pN ≤ nd. By the discrete version of Carathéodory’s
theorem, Proposition 5, there are M ′ =

⋃
j∈J′ L(C ′j , Q′j) and N ′ =

⋃
k∈K′ L(D′k, R′k) such

that
maxj∈J′‖C ′j‖ ≤ ‖M‖+ (#pM · ‖M‖)O(d) ≤ nO(d2),
maxj∈J′‖D′j‖ ≤ ‖N‖+ (#pN · ‖N‖)O(d) ≤ nO(d2),
#pM

′,#pN
′ ≤ d, and

each Q′j ⊆ Qj and each R′k ⊆ Rk.
Consequently, #J ′,#K ′ ≤

(
nd

d

)
≤ nd

2 . But then by Corollary 22, M ′ \ N ′ contains an
element v whose norm is bounded by

‖v‖ ≤ #pM
′ · ‖M ′‖ · ‖N ′‖#K

′·O(d8) ≤ nd · nO(d2) · nO(d2)(nd2
·O(d8))

≤ 2n
O(d2)

. J
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D Proof of Theorem 24

Here, we give a proof of Theorem 24.

I Theorem 24. Equivalence for ESCG is coNEXP-complete.

First, we introduce some additional notation. We write D π=⇒G E whenever D ⇒G E by
an application of the production π, and for a sequence of productions ξ = π1 · · ·πn ∈ Π∗,
we write U ξ=⇒G V whenever there are D0, . . . , Dn such that Di

πi=⇒G Di+1 for all 0 ≤ i < n,
U = D0 and V = Dn. The effect of a production π = V → W is ∆(p) := W − V , and the
effect of a sequence of productions ξ = π1 · · ·πn ∈ Π∗ is ∆(ξ) :=

∑
1≤i≤n ∆(πi).

Call a linear set L(b, P ) ⊆ N(N∪Σ) with P = {p1, . . . ,pk} a linear path scheme whenever
there are α1, . . . , αk+1 ∈ Π∗ and τ1, . . . , τk ∈ Π∗ such that
bi =

∑
1≤j≤k+1 ∆(αi);

pj = ∆(τj) for every 1 ≤ j ≤ k; and

there are W1,W
′
1, . . . ,Wk,W

′
k,Wk+1 such that S

πj=⇒ Wj and S
π′

j=⇒ W ′j , where πj =
α1 · · ·αj and π′j = α1 · · ·αjτj .

Observe that since the word problem for ESCG is in PSPACE, deciding whether a given
linear set is a linear path scheme is also in PSPACE. We call a semi-linear set representation⋃
i∈I L(bi, Pi) a semi-linear path scheme if every linear set it contains is a linear path scheme.

In [18, Lem. 7], it is shown that reachability sets of ESCG can be obtained from semi-linear
path schemes and bounds on the norm of their representation are provided as well.

I Proposition 31 ([18]). There exists a fixed polynomial p such that for every ESCG G,
R(G) =

⋃
i∈I L(bi, Pi), R(G) is a semi-linear path scheme, and ‖R(G)‖ ≤ 2p(|G|).

As an immediate consequence, we obtain the following corollary.

I Corollary 32. There exists a fixed polynomial p such that for every ESCG G, R(G) =⋃
j∈J L(ci, Qi) is a proper semi-linear set and a semi-linear path scheme with ‖R(G)‖ ≤

2p(|G|). In particular, the semi-linear representation of R(G) is computable in DTIME(2poly(|G|)).

Proof. By Theorem 5, every L(bi, Pi) from Proposition 31 can be decomposed into a proper
semi-linear set M =

⋃
k∈K L(ck, Qk) such that ‖M‖ ≤ 2p(|G|) for some polynomial p. Since

M is proper, #Qk is bounded by #(N ∪ Σ) and we can enumerate all proper linear sets
N = L(c, Q) such that ‖N‖ ≤ 2p(|G|) in DTIME(2poly(|G|)). Moreover, for every such N

we can check in PSPACE ⊆ DTIME(2poly(|G|)) whether it is a linear path scheme. Hence
the semi-linear representation of R(G) with the required properties can be constructed in
DTIME(2poly(|G|)). J

We can now show the coNEXP-upper bound for Theorem 24. Let G,H be ESCG such that
L(G) 6= L(H), and with no loss of generality assume that there is some w ∈ L(G)\L(H). By
Corollary 23, we have ‖w‖ ≤ 22q(|G|+|H|) for some fixed polynomial q, hence the representation
size n of w is bounded by 2q(|G|+|H|). Thus, for the coNEXP-upper bound it only remains to
be shown that w ∈ L(G) and w 6∈ L(H) can be checked in time polynomial in n. Thanks
to Corollary 32, we can compute in DTIME(2poly(|G|)) = DTIME(poly(n)) the proper semi-
linear representations of R(G) and R(H). In particular, checking w ∈ L(cj , Qj) for proper
linear sets L(cj , Qj) from R(G) or R(H) can be decided in polynomial time since Qj is
linearly independent, and hence deciding w ∈ L(G) and w /∈ L(H) can be decided in
DTIME(2poly(|G|+|H|)). This in turn yields the coNEXP-upper bound for the equivalence
problem for ESCG.


	Introduction
	Preliminaries
	Basic definitions
	Auxiliary tools: Systems of linear inequalities
	Intersection of semi-linear sets

	Hybrid linear sets
	Proper disjoint decompositions (PDD)
	Unambiguous decompositions (UD)

	Semi-linear sets
	Geometric ingredients: Splitting into atomic polyhedra
	Decompositions, complement, and difference

	An application: Exponent-sensitive commutative grammars
	Proofs for Section 2
	Proofs for Section 3
	Triangulations and Proof of Lemma 8
	Proof of Lemma 10
	Proof of Theorem 7
	Unambiguous decompositions: Proofs for Subsection 3.2

	Proofs for Section 4
	Geometric ingredients: Subsection 4.1
	Decompositions, complement, and difference: Subsection 4.2

	Proof of Theorem 24

