
Counter Machines and Distributed Automata

A Story about Exchanging Space and Time

Olivier Carton1, Bruno Guillon2, and Fabian Reiter3

1 IRIF, Université Paris Diderot, France
olivier.carton@irif.fr,

2 Department of Computer Science, University of Milan, Italy
guillon.bruno+cs@gmail.com,

3 LSV, Université Paris-Saclay, France
fabian.reiter@gmail.com

Abstract. We prove the equivalence of two classes of counter machines
and one class of distributed automata. Our counter machines operate
on finite words, which they read from left to right while incrementing
or decrementing a fixed number of counters. The two classes differ in
the extra features they offer: one allows to copy counter values, whereas
the other allows to compute copyless sums of counters. Our distributed
automata, on the other hand, operate on directed path graphs that
represent words. All nodes of a path synchronously execute the same
finite-state machine, whose state diagram must be acyclic except for self-
loops, and each node receives as input the state of its direct predecessor.
These devices form a subclass of linear-time one-way cellular automata.

1 Introduction

Space and time are the two standard resources for solving computational problems.
Typically, the more of these resources a computing device has at its disposal, the
harder the problems it can solve. In this paper, we consider two types of devices
whose usages of space and time turn out to be dual to each other.

On the one hand, we look at counter machines, which can use a lot of space.
In the way we define them here, these devices act as language recognizers. Just
like classical finite automata, they take a finite word as input, read it once from
left to right, and then decide whether or not to accept that word. However, in
addition to having a finite-state memory, such a machine also has a fixed number
of counters, which can store arbitrarily large integer values (and are initially set
to zero). The machine has read access to those values up to some fixed threshold.
Whenever it processes a symbol of the input word, it can deterministically change
its internal state and simultaneously update each counter x to a new value that
is expressed as the sum of values of several counters y1, . . . , yn and a constant c.
(Every update consumes an input symbol, i.e., there are no epsilon transitions.)
Our main concern are two special cases of this model: sumless counter machines,
which can increment, decrement and copy counter values but not sum them up,
and copyless counter machines, which can compute arbitrary sums but not use

2

the same counter more than once per update step. Both of these conditions entail
that counter values can grow only linearly with the input length, and, as we will
see, they yield in fact the same expressive power.

On the other hand, we look at distributed automata, which are devices that
can use a lot of time. For our purposes, they also act as language recognizers, but
their input word is given in form of a directed path graph whose nodes are labeled
with the symbols of the word (such that the first symbol is on the source node).
To run a distributed automaton on such a path, we first place a copy of the
automaton on each node and initialize it to a state that may depend on the
node’s label. Then, the execution proceeds in an infinite sequence of synchronous
rounds, where each node determines its next state as a function of its own current
state and the current state of its incoming neighbor (i.e., the node to its left).
Altogether, there are only a finite number of states, some of which are considered
to be accepting. The automaton acts as a semi-decider and accepts the input
word precisely if the last node of the path visits an accepting state at some point
in time. Here, we are particularly interested in those distributed automata whose
state diagram does not contain any directed cycles except for self-loops; we call
them quasi-acyclic. They have the property that all nodes stop changing their
state after a number of rounds that is linear in the length of the input word.
Therefore, if a quasi-acyclic automaton accepts a given word, then it does so in
linear time.

To sum up, we have a sequential model and a distributed model that consume
space and time in opposite ways: given an input word of length n, a sumless or
copyless counter machine uses time n and space linear in n, whereas a quasi-
acyclic distributed automaton uses space n and linear time.4 The purpose of this
paper is to show that there really is a duality between the space of one model and
the time of the other. In fact, we will prove that the two models are expressively
equivalent. Besides being of independent interest, this result also relates to three
separate branches of research.

Cellular automata. In theoretical computer science, cellular automata are one of
the oldest and most well-known models of parallel computation (see, e.g., [Kar05]).
They consist of an infinite array whose cells are each in one of a finite number of
states and evolve synchronously according to a deterministic local rule. In this
regard, a distributed automaton over a labeled directed path can be viewed as a
(one-dimensional) one-way cellular automaton with some permanent boundary
symbol delimiting the input word [Dye80]. This model has been studied as
language recognizer, and differences between real time (i.e., time n for an input of
length n) and linear time (i.e., time in O(n)) have been highlighted – see [Ter12]
for a survey on language recognition by cellular automata. As explained below,
our work initially takes its motivation from distributed computing, hence the
choice of “distributed automata” rather than “cellular automata”. Nevertheless,
the results presented here may be viewed in terms of languages recognized by

4 We assume that counter machines store the values of their counters in unary encoding,
and we measure the space usage of a distributed automaton by the number of nodes.

3

one-way cellular automata, with the technical difference that the input words
are reversed with respect to the usual definition of one-way cellular automata.5

A long-standing open problem in this area is the question whether or not
one-way cellular automata working in unrestricted time can recognize every
language in DSpace(n), i.e., the class of languages accepted by deterministic
Turing Machines working in linear space. The latter actually coincides with the
class of languages accepted by (two-way) cellular automata (see, e.g., [Kut08]). By
relating a subclass of one-way cellular automata with counter machines working in
linear space, our results might be considered as a new approach towards describing
the expressiveness of one-way cellular automata. Our contribution concerns a
class of (reversed) languages included in the class of languages recognized by
linear-time one-way cellular automata. Indeed, the quasi-acyclic restriction on
distributed automata corresponds to a special case of one-way cellular automata
in which each cell may change its state only a bounded number of times during an
execution [Vol81]. This is a strict subcase of one-way cellular automata working in
linear time, as can be deduced, for instance, from [Vol82, Prop 3]. More precisely,
quasi-acyclic distributed automata correspond to freezing cellular automata,
which are cellular automata in which each state change of a cell is increasing
according to some fixed order on the states [GOT15]. In particular, freezing
cellular automata have bounded communication [KM10]. Conversely, as observed
in [GOT15], each one-way cellular automaton with bounded communication can
be easily transformed into an equivalent freezing one.

Counter machines. A classical result due to Minsky states that Turing machines
have the same computational power as finite-state machines equipped with two
integer counters that can be arbitrarily often incremented, decremented, and
tested for zero [Min61]. Such devices are often referred to as Minsky machines.
Their Turing completeness led Fischer, Meyer, and Rosenberg to investigate the
space and time complexities of machines with an arbitrary number of counters,
viewed as language recognizers. In [FMR68], they paid particular attention to
real-time machines , where the number of increments and decrements per counter
is limited by the length of the input word. Among many other things, they
showed that increasing the number of counters strictly increases the expressive
power of real-time machines, and that those devices become even more powerful
if we equip them with the additional ability to reset counters to zero (in a single
operation). Over four decades later, Petersen proved in [Pet11] that for machines
with a single counter, real time with reset is equivalent to linear time without
reset, and that for machines with at least two counters, linear time is strictly
more expressive. A further natural extension of real-time machines is to allow
values to be copied from one counter to another (again, in a single operation).
In [Dym79], Dymond showed that real-time machines with copy can be simulated
by linear-time machines without copy.

5 Contrary to distributed automata, one-way cellular automata are usually represented
with information transiting from right to left, that is, a cell receives the state from its
right neighbor and the leftmost cell decides acceptance of the input, see, e.g., [Kut08].

4

The general version of the counter machines defined in this paper can also be
seen as an extension of the real-time machines of Fischer, Meyer, and Rosenberg.
In addition to the reset and copy operations, we allow counter values to be
summed up. Our formal notation takes inspiration from cost register automata,
which were introduced by Alur et al. in [ADD+13]. Moreover, the concept of
copylessness is borrowed from there. The authors are not aware of any previous
work dealing with the specific counter machines defined in this paper. However,
it follows from [Dym79, Thm 2.1] and our main result that sumless and copyless
counter machines form a subclass of the linear-time counter machines defined
in [FMR68].

Distributed computing and logic. The original motivation for this paper comes
from a relatively recent project that aims to develop a form of descriptive
complexity [Imm99] for distributed computing [Lyn96, Pel00]. In that context,
distributed automata are regarded as a class of weak distributed algorithms, for
which it is comparatively easy to obtain characterizations by logical formulas.
Basically, these automata are the same as those described above, except that
they can run on arbitrary directed graphs instead of being confined to directed
paths. In order to make this possible, each node is allowed to see the set of states
of its incoming neighbors (without multiplicity) instead of just the state of its
left neighbor. On graphs with multiple edge relations (E1, . . . , Er), the nodes see
a separate set for each relation. The first result in this direction was obtained
by Hella et al. in [HJK+15], where they showed that distributed automata with
constant running time are equivalent to a variant of basic modal logic on graphs.
The link with logic was further strengthened by Kuusisto in [Kuu13], where a
logical characterization of unrestricted distributed automata was given in terms
of a modal-logic-based variant of Datalog. Then, Reiter showed in [Rei17] that
the least fixpoint fragment of the modal µ-calculus captures an asynchronous
variant of quasi-acyclic distributed automata. Motivated by these connections
to modal logic, a field at the frontier between decidability and undecidability,
the emptiness problem for distributed automata was investigated in [KR17]. The
authors observed that the problem is undecidable for arbitrary automata on
directed paths (which implies undecidability on arbitrary graphs), as well as for
quasi-acyclic automata on arbitrary graphs. But now, the main result of the
present paper supersedes both of these findings: since, by a simple reduction from
the halting problem for Minsky machines, the emptiness problem for sumless and
copyless counter machines is undecidable, we immediately obtain that the problem
is also undecidable for quasi-acyclic distributed automata on directed paths. It
must, however, be stressed that such undecidability results have been known for a
long time within the community of cellular automata. For instance, it was shown
by Seidel in [Sei79] that the emptiness problem for real-time one-way cellular
automata is undecidable (see also [Mal02]). This was later strengthened by Kutrib
and Malcher, who proved in [KM10] that the problem remains undecidable even
if we restrict ourselves to automata with bounded communication. Thereby they
provided an undecidability result that is stronger than our corollary, given that
quasi-acyclic distributed automata do not necessarily work in real time.

5

Outline. The remainder of the paper is devoted to proving our main result:

Theorem 1. The following three classes of devices are effectively equivalent.

1. Copyless counter machines on nonempty finite words.
2. Sumless counter machines on nonempty finite words.
3. Quasi-acyclic distributed automata on pointed directed paths.

All the necessary definitions are introduced in Section 2. The statement then
follows from several translations provided in the subsequent sections: we have
“1 → 2” by Proposition 7 in Section 3, then “2 → 3” by Propositions 9 and 10 in
Sections 3 and 4, and finally “3→ 1” by Proposition 11 in Section 5. We conclude
with a detailed summary of these translations in Section 6 (see Figure 4) and
some perspectives for future work.

2 Preliminaries

We denote the set of nonnegative integers by N = {0, 1, 2, . . . }, the set of positive
integers by N+ = N \ {0}, and the set of integers by Z = {. . . ,−1, 0, 1, . . . }. The
power set of any set S is written as 2S . Furthermore, for values m,n ∈ Z such
that m ≤ n, we define the interval notation [m :n] := {i ∈ Z | m ≤ i ≤ n} and
the cutoff function cutnm, which truncates its input to yield a number between m
and n. The latter is formally defined as cutnm : Z→ [m :n] such that cutnm(i) is
equal to m if i < m, to i if m ≤ i ≤ n, and to n if i > n.

Let Σ be a finite set of symbols. A word over Σ is a finite sequence w =
a1 . . . an of symbols in Σ. We write |w| for the length of w and Σ+ for the set of
all nonempty words over Σ. A language over Σ is a subset of Σ+.

Example 2 (running). As a running example, we consider the language L of
nonempty words in {a, b, c}+ whose prefixes all have at least as many a’s as b’s and
at least as many b’s as c’s: L = {w | for every prefix u of w, |u|a ≥ |u|b ≥ |u|c},
where |w|σ denotes the number of σ’s in w, for σ ∈ Σ. For instance, the
words aaabbc and aabbac belong to L, whereas the word abacac does not.

2.1 Counter machines

Let X be a finite set of counter variables and h be a positive integer. We denote by
Ξ(X,h) the set of counter expressions over X and h generated by the grammar
e ::= x+ e | c , where x ∈ X and c ∈ [−h :h]. An update function for X given h
is a map ξ ∈ Ξ(X,h)X that assigns a counter expression to each counter variable.

Definition 3 (Counter Machine). A k-counter machine with h-access over
the alphabet Σ is a tuple M = (P,X, p0, τ,H), where P is a finite set of states,
X is a set containing precisely k distinct counter variables, p0 ∈ P is an initial
state, τ : P × [−h :h]X ×Σ → P ×Ξ(X,h)X is a transition function, and H ⊆ P
is a set of accepting states.

6

Such a counter machine “knows” the exact value of each counter that lies
between the thresholds −h and h; values smaller than −h are “seen” as −h, and
similarly, values larger than h are “seen” as h. Furthermore, it has the ability
to add (in a single operation) constants between −h and h to its counters. The
technical details are explained in the following.

Let M = (P,X, p0, τ,H) be a counter machine with h-access over the al-
phabet Σ, and let w = a1 . . . an be a word in Σ+. A valuation of X is a map
ν ∈ ZX that assigns an integer value to each counter variable x ∈ X. The
initial valuation is ν0 = {x 7→ 0 | x ∈ X}. Any valuation ν ∈ ZX gives rise to
an extended valuation ν̂ ∈ ZΞ(X,h), which assigns values to counter expressions
in the natural way, i.e., ν̂(c) = c and ν̂(x + e) = ν(x) + ν̂(e), for c ∈ [−h :h]
and x ∈ X. A memory configuration of M is a tuple C = (p, ν) ∈ P × ZX . The
run of M on w is the sequence of memory configurations R = (C0, . . . , Cn) such
that C0 = (p0, ν0), and if Cl = (p, ν) and τ(p, cut+h−h ◦ ν, al+1) = (p′, ξ), then
Cl+1 = (p′, ν̂ ◦ ξ). The machine M accepts the word w if it terminates in an
accepting state, i.e., if Cn ∈ H ×ZX . The language of M (or language recognized
by M) is the set of all words accepted by M .

We call an update function ξ ∈ Ξ(X,h)X sumless if it does not allow sums of
multiple counter variables, i.e., if for all x ∈ X, the expression ξ(x) is either c or
y + c, for some c ∈ [−h :h] and y ∈ X. Note that such an update function allows
us to copy the value of one counter to several others, since the same counter
variable y may be used in more than one expression ξ(x). On the other hand, ξ
is copyless if every counter variable y ∈ X occurs in at most one expression ξ(x),
and at most once in that expression. (However, sums of distinct variables are
allowed.) By allowing each counter to be used only once per step, this restriction
ensures that the sum of all counter values can grow at most linearly with the
length of the input word. A counter machine M is called sumless or copyless if
its transition function τ makes use only of sumless or copyless update functions,
respectively. As shown in this paper, the two notions are expressively equivalent.

Example 4 (running). The language L from Example 2 is accepted by the sumless
and copyless 2-counter machine M = ({p, r}, {x, y}, p, τ, {p}), with τ defined by:

τ
(
s, (cx, cy), σ

)
=

(
p, {x := x+ 1, y := y }

)
if s = p and σ = a,(

p, {x := x− 1, y := y + 1}
)

if s = p, cx > 0 and σ = b,(
p, {x := x, y := y − 1}

)
if s = p, cy > 0 and σ = c,(

r, {x := x, y := y }
)

otherwise,

where cx and cy denote the values cut+1
−1 ◦ ν(x) and cut+1

−1 ◦ ν(y) respectively.
Intuitively, M uses the counter x to compare the number of a’s with those of b’s,
and the counter y to compare the number of b’s with those of c’s. The counter x
(respectively y) is incremented each time the letter a (respectively b) is read and
it is decremented each time the letter b (respectively c) is read. When a counter
with value 0 has to be decremented, the machine enters the rejecting sink state r.

7

2.2 Distributed automata

Let Σ be a finite set of symbols. A Σ-labeled directed graph, abbreviated digraph,
is a structure G = (V,E, λ), where V is a finite nonempty set of nodes, E ⊆ V ×V
is a set of directed edges, and λ : V → Σ is a labeling function that assigns a
symbol of Σ to each node. Isomorphic digraphs are considered to be equal. If v is
a node in V , we call the pair (G, v) a pointed digraph with distinguished node v.
Moreover, if uv is an edge in E, then u is called an incoming neighbor of v.

A directed path, or dipath, is a digraph G = (V,E, λ) that has a distinct last
node vlast such that each node v in V has at most one incoming neighbor and
exactly one way to reach vlast by following the directed edges in E. A pointed
dipath is a pointed digraph (G, vlast) that is composed of a dipath and its last
node. We shall identify each word w ∈ Σ+ with the pointed Σ-labeled dipath
of length |w| whose nodes are labeled with the symbols of w, i.e., the word
a1a2 . . . an will be identified with the pointed dipath a1 a2 . . . an .

We first give a rather general definition of distributed automata on arbitrary
digraphs, and then slightly modify our notation for the special case of dipaths.

Definition 5 (Distributed Automaton). A (finite) distributed automaton
over Σ-labeled digraphs is a tuple A = (Q, δ0, δ, F), where Q is a finite set of
states, δ0 : Σ → Q is an initialization function, δ : Q× 2Q → Q is a transition
function, and F ⊆ Q is a set of accepting states.

Let A = (Q, δ0, δ, F) be a distributed automaton over Σ-labeled digraphs,
and let G = (V,E, λ) be a corresponding digraph. The (synchronous) run of
A on G is an infinite sequence ρ = (ρ0, ρ1, ρ2, . . .) of maps ρt : V → Q, called
configurations, which are defined inductively as follows, for t ∈ N and v ∈ V :

ρ0(v) = δ0(λ(v)) and ρt+1(v) = δ
(
ρt(v), {ρt(u) | uv ∈ E}

)
.

For v ∈ V , the automaton A accepts the pointed digraph (G, v) if v visits an
accepting state at some point in the run ρ of A on G, i.e., if there exists t ∈ N
such that ρt(v) ∈ F .

The above definition could be easily extended to cover r-relational digraphs,
i.e., digraphs with r edge relations E1, . . . , Er, for some r ∈ N+. It suffices to
choose a transition function of the form δ : Q × (2Q)r → Q, thereby allowing
the nodes to see a separate set of states for each of the r relations. With this,
one could easily simulate two-way (one-dimensional) or even higher-dimensional
cellular automata. However, for our purposes, a single edge relation is enough.

A trace of a distributed automaton A = (Q, δ0, δ, F) is a finite nonempty
sequence q1, . . . , qn of states in Q such that for 1 ≤ i < n, we have qi 6= qi+1

and δ(qi, Si) = qi+1 for some Si ⊆ Q. We say that A is quasi-acyclic if its set
of traces is finite. In other words, A is quasi-acyclic if its state diagram does
not contain any directed cycles, except for self-loops. In this case, we will refer
to ` = max {n | A has a trace of length n} as the maximum trace length of A.
Furthermore, a quasi-acyclic automaton A is said to have at most (k + 1) loops
per trace if (k + 1) = max {n | A has a trace containing n looping states}. Here,

8

a looping state is a state q ∈ Q such that δ(q, S) = q for some S ⊆ Q. Notice
that every trace of a quasi-acyclic automaton must end in a looping state, since
transition functions are defined to be total. (This is why we write “k + 1”.)

In this paper, we regard distributed automata as word acceptors, and thus we
restrict their input to dipaths. Therefore, in our particular context, a distributed
automaton is the same thing as a (one-dimensional, reversed) one-way cellular
automaton (see, e.g., [Ter12]). This allows us to simplify our notation: transition
functions will be written as δ : Q∅×Q→ Q, where Q∅ is a shorthand for Q∪{∅}.
A node whose left neighbor’s current state is p and whose own current state is q
will transition to the new state δ(p, q); if there is no left neighbor, p has to be
replaced by ∅. Note that we have reversed the order of p and q with respect to
their counterparts in Definition 5, as this seems more natural when restricted to
dipaths. We say that the language of A (or language recognized by A) is the set
of words, seen as pointed dipaths, accepted by A.

As usual, we say that two devices (i.e., counter machines or distributed
automata) are equivalent if they recognize the same language.

Example 6 (running). We describe here a distributed automaton A that accepts
the language L from Example 2, regarded as a set of dipaths. To this end, we
first reformulate the property that every prefix contains at least as many a’s as
b’s and at least as many b’s as c’s: it is equivalent to the existence of an injective
mapping from nodes labeled by b to nodes labeled by a and from nodes labeled
by c to nodes labeled by b such that each node can only be mapped to some
(possibly indirect) predecessor to its left. Our automaton A implicitly creates
such an injective mapping by forwarding all a’s and b’s to the right until they
are “consumed” by matching b’s and c’s.

The device uses two tracks that may contain the symbols a, b, or “−”,
i.e., its states are pairs in {a, b,−} × {a, b,−}. Initially, a node labeled by the
letter σ ∈ Σ = {a, b, c} is in the state (x, y), where x is equal to “−” if σ = a,
to a if σ = b, and to b if σ = c, and y is equal to “−” if σ = c, and to σ
otherwise. The first track is the expectation track ; its content indicates which
letter the node should receive from its left neighbor in order to eventually accept
(the special symbol “−” means “nothing is expected”). The second track is the
communication track ; its content is sent to the node’s right neighbor (the special
symbol “−” means “nothing is sent”). If a node is expecting a letter σ and
receives σ from its left neighbor, then that node switches to the state (−,−).
This means that the node is no longer expecting any letter and does not transmit
anything to its right neighbor (since the letter σ has already been “consumed”).
Additionally, A uses two special states ⊥ and >, which propagate errors and
acceptance, respectively. When a node enters one of these two states, it stays in
that state forever. An error always propagates to the right neighbor. In contrast,
a node enters state > if it receives an acceptance message from the left (i.e., it
receives > or ∅) and its expectation has been fulfilled.

Figure 1 shows the runs of A on the dipaths aabbac (accepted) and abacac
(rejected). Observe that A is not quasi-acyclic, since, for instance, the last node of
the dipath aabbac switches from state (−,−) to (−, b) and then again to (−,−).

9

a a b b a c

−a −a ab ab −a b−

> −a −− ab −b ba

> > −a a− −b −−

> > > −− −− −b

> > > > −− −−

> > > > > −−

> > > > > >
...

...
...

...
...

...

space

tim
e

a b a c a c

−a ab −a b− −a b−

> −− −b ba −− ba

> > −− −− −a b−

> > > −− −− ba

> > > > −− b−

> > > > > b−

> > > > > ⊥
...

...
...

...
...

...

space

tim
e

Fig. 1. The runs of the distributed automaton from Example 6 on aabbac and abacac.

3 Translating between counter machines

We start with the translation from copyless to sumless counter machines, followed
by two constructions that allow us, in some cases, to focus on counters with
non-negative values and 1-access.

Proposition 7. For every copyless k-counter machine with h-access, we can
effectively construct an equivalent sumless (2k)-counter machine with (k ·h)-access.

Proof (sketch). The idea is simply to introduce a dedicated counter for each
subset of counters Y of the original machine M , and use this dedicated counter
to store the sum of values of the counters in Y . Call this sum the value of Y .
Since M is copyless, it uses each of its counters at most once in any update
function ξ. Therefore, the next value of Y with respect to ξ can be expressed
in terms of the current value of some other subset Y ′ and a constant between
−|Y | · h and |Y | · h. This allows us to derive from ξ a sumless update function ξ′

that operates on subsets of counters and uses constants in [−kh : kh]. ut

Sometimes it is helpful to assume that a counter machine never stores any
negative values in its counters. For copyless and sumless machines, this does not
lead to a loss of generality. We only need the statement for sumless machines,
but in fact Proposition 7 implies that it also holds for copyless machines (at the
cost of increasing the number of counters).

Proposition 8. For every sumless k-counter machine with h-access, we can
effectively construct an equivalent machine that is also sumless with k counters
and h-access, but whose counters never store any negative values.

Proof (sketch). It suffices to represent each counter x of the original machine
in such a way that the absolute value of x is stored in a counter and its sign is

10

retained in finite-state memory. As the machine is sumless, we do not have to deal
with the issue of computing the sum of a positive and a negative counter value. ut

In Definition 3, we have introduced counter machines with h-access, for some
arbitrary h ∈ N+. This simplifies some of our proofs, but we could have imposed
h = 1 without losing any expressive power. The following proposition states this
in full generality, although the (easier to prove) restriction to sumless machines
would be sufficient to establish our main result.

Proposition 9. For every k-counter machine M with h-access, we can effectively
construct an equivalent (h ·k)-counter machine M ′ with 1-access. If M is copyless
or sumless, then so is M ′. Moreover, if M is sumless, M ′ requires only k counters.

Proof (sketch). The key idea is that M ′ represents each counter x of M by h
counters x0, . . . , xh−1 over which the value of x is distributed as uniformly as
possible. That is, the value of x is equal to the sum of the values of x0, . . . , xh−1,
and any two of the latter values differ by at most 1. If M is sumless, there is a
simpler way: it suffices to represent x by a single counter storing the value of x
divided by h, and to keep track of the remainder in the finite-state memory. ut

4 From counter machines to distributed automata

Next, we present the translation from sumless counter machines to quasi-acyclic
distributed automata.

Proposition 10. For every sumless k-counter machine with 1-access, we can
effectively construct an equivalent quasi-acyclic distributed automaton with at
most (k + 2) loops per trace.

Proof (sketch). Our construction uses classical techniques from cellular automata
theory, similar to simulations of finite automata (see, e.g., [Kut08, Lem 11]) and
counter machines (see, e.g., [GOT15, Thm 1]) by one-way cellular automata. Let
us point out that, contrary to the construction in [GOT15], we allow the copy
operation on counters here. An example of the simulation is shown in Figure 2.

We now explain the main idea. On an input dipath corresponding to some
word w, the sequence of states traversed by our distributed automaton at the
i-th node is an encoding of the memory configuration (p, ν) that is reached by
the simulated counter machine after reading the i-th symbol of w. (The initial
configuration is not encoded.) This sequence of states is of the following form:

>

··
·

>
σ

. . .

>

··
·

>
σ

>

··
·

>
p, ξ

1

··
·

0

p, ξ

1

··
·

⊥
p, ξ

1

··
·

]

p, ξ

. . .

1

··
·

]

p, ξ

0

··
·

]

p, ξ

⊥

··
·

]

p, ξ

]

··
·

]

p, ξ

]

··
·

]

p, ξ

. . .
k counter

tracks

transition
track

delay phase counter valuation phase final phase

time

11

a a a b b c

p p p p p p p

0 0 1 0 2 0 3 0 2 1 1 2 1 1

x y

time

sp
a
ce

The left-hand side illustrates the run of the
2-counter machine from Example 4 on the
word aaabbc. On the right-hand side, this
machine is simulated by a quasi-acyclic dis-
tributed automaton running on the corre-
sponding {a, b, c}-labeled dipath. Each node of
the dipath traverses a sequence of states that
encodes the memory configuration reached by
the counter machine after reading the node’s
label. (The initial configuration is left implicit.)
Note that only the two counter tracks of the
automaton are shown, i.e., the transition track
is not depicted. States represented in gray con-
tain the respective node’s label σ ∈ {a, b, c} in
their transition track, whereas black or white
states contain the machine’s state p and some
counter update function ξ, both determined
using the machine’s transition function τ .

a a a b b c

> > > > > > > > > > > >

> > > > > > > > > > > >

1 0 > > > > > > > > > >

0 ⊥ > > > > > > > > > >

⊥] 1 0 > > > > > > > >
]] 1 ⊥ > > > > > > > >
]] 0] 1 0 > > > > > >
]] ⊥] 1 ⊥ > > > > > >
]]]] 1] 1 1 > > > >
]]]] 0] 1 0 > > > >
]]]] ⊥] 0 ⊥ 1 1 > >
]]]]]] ⊥] 0 1 > >
]]]]]]]] ⊥ 0 1 1

]]]]]]]]] ⊥ 0 0

]]]]]]]]]] ⊥ ⊥
]]]]]]]]]]]]

...
...

...
...

...
...

space

tim
e

Distributed automatonCounter machine

Fig. 2. Simulating a counter machine with a distributed automaton to prove Proposi-
tion 10. The depicted counter machine is the same as in Example 4. But the resulting
automaton differs from the one given in Example 6. In particular, it is quasi-acyclic.

Here, each rectangular block represents a state of the distributed automaton. The
symbol σ corresponds to the node’s label and ξ is the update function that has
been used to enter the memory configuration (p, ν). Counter values are encoded
in unary, i.e., the value ν(x) of a counter x is the number of 1’s on the associated
counter track. (By Proposition 8, we assume the values are never negative.)

The delay phase is used to leave enough time for information to transit. We
increase it by 2 at each position, in order to be able to compute decrementation.
Hence, at the i-th node, the delay phase lasts for (2i−1) rounds. (This corresponds
to the gray states in Figure 2.)

Since each counter track associated with a counter x contains a sequence
of the form >2i1ν(x)0⊥]ω, we are guaranteed that the simulating distributed
automaton has at most (k + 2) loops per trace. ut

12

5 From distributed automata to counter machines

As the last piece of the puzzle, we now show how to convert a quasi-acyclic
distributed automaton into an equivalent copyless counter machine.

Proposition 11. For every quasi-acyclic distributed automaton with at most
(k + 1) loops per trace and maximum trace length `, we can effectively construct
an equivalent copyless k-counter machine with `-access.

Proof (sketch). Basically, after our counter machine M has read the i-th symbol
of the input word w, its memory configuration will represent the sequence of
states traversed by the simulated distributed automaton A at the i-th node of the
dipath corresponding to w. This exploits the quasi-acyclicity of A to represent
the infinite sequence of states traversed by a node as a finite sequence of pairs in
Q× (N+ ∪ {∞}), where values other than 1 and ∞ are stored in the counters.
An example illustrating the construction is provided in Figure 3.

b a b b a a a

l v l l v v v

N v l N v v v

N D l N D v v

N H N N H v v

N n N N n N v

N n n N n n D

N n n n n n n

...
...

...
...

...
...

...

b a b b a a a

0 1 2 3 1 2 4 5

0 0 0 2 5 0 1 0

∅
∞

l

x
v
x

l

x
l

x
v
x

v
x

v
x

N
∞

D
1

N
y

N
y

D
1

N
y

D
1

H
1

n
∞

n
∞

H
1

n
∞

n
∞

n
∞

n
∞

x

y

fi
n
ite

sta
te

space

tim
e

time

sp
a
ce

Distributed automaton Counter machine

Fig. 3. Simulating a distributed automaton with a counter machine to prove Proposi-
tion 11. The left-hand side depicts the run of a quasi-acyclic distributed automaton
on the {a, b}-labeled dipath that corresponds to the word babbaaa. This automaton
has at most three loops per trace; its set of states Q consists of the states v,l,N,n,
which have self-loops, and the states D,H, which do not. On the right-hand side, the
automaton is simulated by a copyless 2-counter machine whose memory configurations
encode infinite sequences of states of the automaton as finite sequences of pairs in
Q× (N+ ∪ {∞}). Values different from 1 and ∞ are stored in the two counters x and y.

The crux of the proof is the following: if the i-th node remains in the same
state for more than ` rounds, then (by quasi-acyclicity) the sequence of states
traversed during that time by the (i + 1)-th node must become constant (i.e.,
repeating always the same state) no later than the `-th round. Thus, to compute

13

the entire state sequence of the (i+ 1)-th node, M does not need to know the
exact numbers of state repetitions in the i-th node’s sequence. It only needs to
know these numbers up to threshold ` and be able to sum them up. ut

6 Conclusion

We have now completed the proof of Theorem 1, which states the equivalence of
(1) copyless and (2) sumless counter machines on finite words and (3) quasi-acyclic
distributed automata on pointed dipaths. More precisely, we have established
the following translatability results, which are visualized in Figure 4:

1. A copyless k-counter machine with h-access can be translated into an equiva-
lent sumless (2k)-counter machine with (k · h)-access (by Proposition 7).

2. A sumless k-counter machine with h-access, can be transformed into an equiv-
alent (sumless k-counter) machine that has merely 1-access (by Proposition 9),
which in turn can be translated into an equivalent quasi-acyclic distributed
automaton with at most (k + 2) loops per trace (by Proposition 10).

3. A quasi-acyclic distributed automaton with at most (k + 1) loops per trace
and maximum trace length ` can be translated into an equivalent copyless
k-counter machine with `-access (by Proposition 11).

Copyless
counter machines

k counters
h-access

k counters
`-access

(1)

Sumless
counter machines

k counters
1-access

k counters
h-access

2k counters
(k · h)-access

(2)

Quasi-acyclic
distributed automata

≤ (k + 1) loops/trace
max. trace length `

≤ (k + 2) loops/trace

(3)
Prop. 7

Prop. 9

Prop. 10

Prop. 11

Fig. 4. The translations involved in the proof of Theorem 1.

This cycle of translations suggests that the number of counters of copyless
and sumless counter machines is closely related to the maximum number of loops
per trace of quasi-acyclic distributed automata. However, the precise relationship
is left open. In particular, as of the time of writing, the authors do not know
whether the exponential blow-up of the number of counters in Proposition 7
could be avoided.

14

In addition, there are several natural directions in which the present work
might be extended. First of all, the models of computation concerned by Theorem 1
are special cases of two more general classes of word acceptors, namely the
unrestricted counter machines of Definition 3 and the unrestricted distributed
automata of Definition 5 on pointed dipaths (or equivalently, reversed one-way
cellular automata). It is thus natural to ask whether our result carries over to
stronger (sub)classes of counter machines and distributed automata. Instead
of counter machines, one might also consider sequential machines with more
freely accessible memory, such as restricted read-write tapes. Second, one could
conversely try to establish similar connections for weaker classes of devices. In
particular, it would be interesting to find a distributed characterization of the
real-time counter machines of Fischer, Meyer, and Rosenberg [FMR68], which
are both copyless and sumless. Third, all of the models considered in this paper
are one-way, in the sense that counter machines scan their input from left to
right and distributed automata on dipaths send information from left to right.
Hence, another obvious research direction would be to investigate the connections
between (suitably defined) two-way versions. Finally, for the sake of presentational
simplicity, we have only looked at deterministic models. It seems, however, that
our proofs could be easily extended to cover nondeterministic or even alternating
devices. We leave this open for future work.

Acknowledgments

We are grateful to the anonymous reviewers for their constructive comments. We
also thank Martin Kutrib and Pierre Guillon for interesting discussions, especially
concerning the connection of our results with the field of cellular automata. This
work was partially supported by the ERC project EQualIS (FP7-308087) and
the DeLTA project (ANR-16-CE40-0007).

References

[ADD+13] R. Alur, L. D’Antoni, J.V. Deshmukh, M Raghothaman & Y. Yuan (2013):
Regular Functions and Cost Register Automata. In: LICS’13, IEEE Com-
puter Society, pp. 13–22, doi:10.1109/LICS.2013.65.

[Dye80] C.R. Dyer (1980): One-Way Bounded Cellular Automata. Information and
Control 44(3), pp. 261–281, doi:10.1016/S0019-9958(80)90164-3.

[Dym79] P.W. Dymond (1979): Indirect addressing and the time relationships of
some models of sequential computation. Computers & Mathematics with
Applications 5(3), pp. 193–209, doi:10.1016/0898-1221(79)90042-7.

[FMR68] P.C. Fischer, A.R. Meyer & A.L. Rosenberg (1968): Counter Machines
and Counter Languages. Mathematical Systems Theory 2(3), pp. 265–283,
doi:10.1007/BF01694011.

[GOT15] É. Goles, N. Ollinger & G. Theyssier (2015): Introducing Freezing Cellular
Automata. In: Cellular Automata and Discrete Complex Systems, TUCS
Lecture Notes 24, Turku, Finland, pp. 65–73. Hal-id: hal-01294144.

http://www.lsv.fr/~bouyer/equalis/index.php
http://delta.labri.fr
http://dx.doi.org/10.1109/LICS.2013.65
http://dx.doi.org/10.1016/S0019-9958(80)90164-3
http://dx.doi.org/10.1016/0898-1221(79)90042-7
http://dx.doi.org/10.1007/BF01694011

15

[HJK+15] L. Hella, M. Järvisalo, A. Kuusisto, J. Laurinharju, T. Lempiäinen, K. Lu-
osto, J. Suomela & J. Virtema (2015): Weak models of distributed computing,
with connections to modal logic. Distributed Computing 28(1), pp. 31–53,
doi:10.1007/s00446-013-0202-3.

[Imm99] N. Immerman (1999): Descriptive complexity. Graduate texts in computer
science, Springer, doi:10.1007/978-1-4612-0539-5.

[Kar05] J. Kari (2005): Theory of cellular automata: A survey. Theor. Comput. Sci.
334(1-3), pp. 3–33, doi:10.1016/j.tcs.2004.11.021.

[KM10] M. Kutrib & A. Malcher (2010): Cellular automata with sparse
communication. Theor. Comp. Sci. 411(38-39), pp. 3516–3526,
doi:10.1016/j.tcs.2010.05.024.

[KR17] A. Kuusisto & F. Reiter (2017): Emptiness Problems for Dis-
tributed Automata. In: GandALF’17, EPTCS 256, pp. 210–222,
doi:10.4204/EPTCS.256.15.

[Kut08] M. Kutrib (2008): Cellular Automata - A Computational Point of View. In:
New Developments in Formal Languages and Applications, 113, Springer,
pp. 183–227, doi:10.1007/978-3-540-78291-9 6.

[Kuu13] A. Kuusisto (2013): Modal Logic and Distributed Message Passing Automata.
In: CSL’13, LIPIcs 23, pp. 452–468, doi:10.4230/LIPIcs.CSL.2013.452.

[Lyn96] N.A. Lynch (1996): Distributed Algorithms. Morgan Kaufmann.
[Mal02] A. Malcher (2002): Descriptional Complexity of Cellular Automata and

Decidability Questions. Journal of Automata, Languages and Combinatorics
7(4), pp. 549–560.

[Min61] M.L. Minsky (1961): Recursive Unsolvability of Post’s Problem of ”Tag”
and other Topics in Theory of Turing Machines. Annals of Mathematics
74(3), pp. 437–455, doi:10.2307/1970290.

[Pel00] D. Peleg (2000): Distributed Computing: A Locality-Sensitive Approach.
SIAM Monographs on Discrete Mathematics and Applications 5, Society for
Industrial and Applied Mathematics (SIAM), doi:10.1137/1.9780898719772.

[Pet11] H. Petersen (2011): Simulations by Time-Bounded Counter Machines. Int. J.
Found. Comput. Sci. 22(2), pp. 395–409, doi:10.1142/S0129054111008106.

[Rei17] F. Reiter (2017): Asynchronous Distributed Automata: A Characterization
of the Modal Mu-Fragment. In: ICALP’17, LIPIcs 80, pp. 100:1–100:14,
doi:10.4230/LIPIcs.ICALP.2017.100.

[Sei79] S.R. Seidel (1979): Language recognition and the synchronization of cellular
automata. Technical Report 79-02, Department of Computer Science,
University of Iowa.

[Ter12] V. Terrier (2012): Language Recognition by Cellular Automata. In: Handbk.
of Nat. Comp., Springer, pp. 123–158, doi:10.1007/978-3-540-92910-9 4.

[Vol81] R. Vollmar (1981): On Cellular Automata with a Finite Number of State
Changes. In Walter Knödel & Hans Jürgen Schneider, editors: Paral-
lel Processes and Related Automata, 3, Springer, Vienna, pp. 181–191,
doi:10.1007/978-3-7091-8596-4 13.

[Vol82] R. Vollmar (1982): Some remarks about the “efficiency” of polyau-
tomata. International Journal of Theoretical Physics 21(12), pp. 1007–1015,
doi:10.1007/BF02084165.

http://dx.doi.org/10.1007/s00446-013-0202-3
http://dx.doi.org/10.1007/978-1-4612-0539-5
http://dx.doi.org/10.1016/j.tcs.2004.11.021
http://dx.doi.org/10.1016/j.tcs.2010.05.024
http://dx.doi.org/10.4204/EPTCS.256.15
http://dx.doi.org/10.1007/978-3-540-78291-9_6
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.452
http://dx.doi.org/10.2307/1970290
http://dx.doi.org/10.1137/1.9780898719772
http://dx.doi.org/10.1142/S0129054111008106
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.100
http://dx.doi.org/10.1007/978-3-540-92910-9_4
http://dx.doi.org/10.1007/978-3-7091-8596-4_13
http://dx.doi.org/10.1007/BF02084165

	Counter Machines and Distributed Automata
	Introduction
	Preliminaries
	Counter machines
	Distributed automata

	Translating between counter machines
	From counter machines to distributed automata
	From distributed automata to counter machines
	Conclusion

