
MSO decidability of Multi-Pushdown Systems
via Split-Width?

Aiswarya Cyriac1, Paul Gastin1, and K. Narayan Kumar2

1 LSV, ENS Cachan, CNRS & INRIA, France
{cyriac,gastin}@lsv.ens-cachan.fr

2 Chennai Mathematical Institute, India
kumar@cmi.ac.in

Abstract. Multi-threaded programs with recursion are naturally mod-
eled as multi-pushdown systems. The behaviors are represented as mul-
tiply nested words (MNWs), which are words enriched with additional
binary relations for each stack matching a push operation with the cor-
responding pop operation. Any MNW can be decomposed by two basic
and natural operations: shuffle of two sequences of factors and merge of
consecutive factors of a sequence. We say that the split-width of a MNW
is k if it admits a decomposition where the number of factors in each
sequence is at most k. The MSO theory of MNWs with split-width k is
decidable. We introduce two very general classes of MNWs that strictly
generalize known decidable classes and prove their MSO decidability via
their split-width and obtain comparable or better bounds of tree-width
of known classes.

1 Introduction

Multi-pushdown systems (MPDS) — finite state systems with several stacks —
are natural abstractions of concurrent programs. Verification of multi-pushdown
systems is undecidable in general. However concurrency is indispensable for many
critical systems. Hence, several behavioral restrictions have been proposed and
employed for their under-approximate verification [10,13,16,17,19].

The first behavioral restriction shown to have a decidable reachability prob-
lem was bounded context switching [19] in which the control can switch from
one stack to another only a fixed number of times [13,16,17]. This was followed
by ordered MPDS where the stacks have a priority ordering between them [2,3],
and a stack could pop only when all higher priority stacks are empty. Another
restriction is allowing only a fixed number of phases [12], where in one phase only
one stack was allowed to return. Later bounded scope MPDS [14], where there
are at most k context switches between any push and the corresponding pop,
were also shown to have a decidable emptiness. In [18], Madhusudan and Parlato
give a unified proof of decidability of emptiness of all but the last, by showing
that these restrictions impose bounds on the tree-width of the underlying runs.

? Supported by LIA InForMel, and DIGITEO LoCoReP.

As more general classes are desirable in the under-approximate verification,
we propose a bigger and natural class of MPDS which is a generalization of
ordered and scope bounded MPDS. We freely allow pops of both kinds in this
restriction. This can be thought of as the fair runs which comply to the following
scheduling policy. There is no restriction on pushes. But the corresponding pop
a) has to be within fixed number of context switches from then (analogous to
time-out) or b) if a) fails, then all such events will be ordered on a priority
basis (assuming a total order on the priorities of different stacks). This class
is called scope bounded or ordered return (SBO) in the paper. Thus under-
approximate verification wrt. SBO is a kind of fair model checking, in which
at least those runs which comply to the fair scheduling policy can be verified
against some specification. A similar generalization can be thought of when the
ordering policy is replaced by a bounded phase restriction. These two general
classes are shown to be decidable. Note that, however, a joint generalization of
ordered and phase bounded yields undecidablity.

The decidability proofs for the above classes are done by showing that these
classes have bounded split-width. The behaviors of a multi-pushdown system as a
graph are called multiply-nested words (MNWs). These are words enriched with
additional binary relations matching a push on a stack with the corresponding
pop. Split-width is a measure on MNWs which is comparable to tree-width (or
clique-width) [7,11]. This, particularly since the latter was used in [18], calls for
a comparison of split-width to tree-width.

Split-width has a simpler definition. It is defined in terms of two basic and
natural operations — shuffle of two sequences of factors and merge of consecutive
factors in a sequence. Thus split-width is easier to handle as these are well-tuned
for MNWs, where as tree-width is defined for general graphs. This gives easier
and simpler proofs.

Bound on split-width can be translated (up to a constant factor) to bound on
tree-width (or clique-width). MNWs with split-width at most k have tree-width
at most 2k− 1 and clique-width at most 2k+ 1. For the other direction, MNWs
with clique-width at most k have split-width at most 2k. Thus we do not yet
know whether we have an “equivalence” between split-width and tree-width (or
clique-width).

Even though the class of bounded split-width MNWs is not known to be
MSO definable, they enjoy a decidable MSO theory. Furthermore, split-width is
general enough to capture all classes of MNWs with a decidable MSO theory,
thanks to the translation from clique-width to split-width.

Thus split-width should be seen as a complementary approach which gives
more insight into the structure of the MNWs which have bounded tree-width
(or clique-width). The advantages of split-width are reflected in the fact that
it helped in improving bounds for tree-width of known classes, and lifting up
proofs from different classes to get proofs for joint generalizations.

To summarize, the contributions of this paper are manyfold. On one hand it
introduces more general classes of MNWs for more accurate under-approximate
verification of MPDS. It introduces the notion of split-width, a measure of com-

plexity of MNWs, which is easier than, yet as general as tree-width or clique-
width. It significantly improves the known bounds on tree-width for ordered
MPDS and scope bounded MPDS.

The paper is organized as follows. Section 2 recalls some preliminary notions.
Section 3 gives the definition of split-width and compares it to tree-width and
clique-width. It also shows the MSO decidability of bounded split-width. In
Section 4 various decidable classes of MNWs are formally defined, and proof of
their decidability is given by showing a bound on split-width of these classes.
Some proofs are omitted due to lack of space. These can be found in [9].

2 Preliminaries

N denotes the set of natural numbers. For n ∈ N, by [n] we denote the set
{1, . . . , n}. Let S be a set. For a binary relation R ⊆ S × S, we define support
of R, denoted supp(R), to be {x ∈ S | there is some y ∈ S such that (x, y) ∈
R or (y, x) ∈ R}.

Multi-pushdown systems (MPDS) are finite state systems with a finite
number of stacks. A transition may push onto a stack (push transitions), pop
from a stack (pop transitions) or leave the stacks untouched. However, in one
transition a MPDS can touch at most one stack. Moreover the push transitions
and pop transitions are disjoint. Let Σ be the finite alphabet and s ∈ N be the
number of stacks. We fix the finite alphabet Σ and the set of stacks [s] for the
rest of this paper. The behaviors of a multi-pushdown system are represented as
multiply-nested words (MNWs).

Multiply-Nested Words (MNWs) A multiply-nested word (MNW) w over
Σ is a structure w = (dom(w), λ,l,y1, . . . ,ys) where

– dom(w) is the set of positions

– λ : dom(w) 7→ Σ is the node labeling function

– l is the successor relation of a total order on dom(w). We denote this total
order by <. That is, <= l+.

– For each i ∈ [s], yi ⊆< is a binary relation such that

1. For i 6= j, supp(yi) ∩ supp(yj) = ∅
2. For all i ∈ [s], xyi y =⇒ (∀z (xyi z =⇒ z = y) ∧ (z yi y → z = x))

3. For all i ∈ [s], there do not exist x < x′ < y < y′ such that x yi y and
x′ yi y′

We may think of this structure as a graph whose vertices are labelled by the
function λ and edges are labelled using the symbols Γ = {l,y1,y2, . . . ,ys)}.
We refer to the edges labelled by l as linear edges and those labelled by yi as
nesting edges. If s = 1, a MNW is simply called a nested word in the literature [1].

MSO over MNWs We assume that we have an infinite supply of first-order
variables x, y, . . . and second-order variables X,Y, First order variables vary
over positions of an MNW while second order variables vary over subsets of
positions. The syntax of the monadic second order logic over MNWs is as follows:

ϕ ::= a(x) | x ∈ X | xyi y | x < y | x = y | ϕ1∨ϕ2 | ¬ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ and i ∈ [s]. We assume familiarity with logic and hence omit the
obvious semantics associated with this logic.

Remark 1. The language of a Multi-pushdown system as a set of MNWs can be
described in MSO.

3 Split-width of MNWs

Given a MNW w = (dom(w), λ,l,y1, . . . ,ys), an m-split of w is a structure
w = (dom(w), λ,→, 99K,y1, . . . ,ys) where → ∩ 99K = ∅, → ∪ 99K = l and
|99K| = m− 1. The intuition is that the 99K-edges are missing and these missing
edges divide the linear order into m linear components (though there may be
nesting edges connecting these different components).

A split multiply nested word (SMNW) is an m-split w of some MNW w
for some m. We say that w is an m-SMNW. The entire multiply nested word
is always a 1-SMNW. Notice that SMNWs continue to have the well nesting
property for each yi w.r.t. the linear order generated by → ∪ 99K.

Let u = (dom(u), λu,→u, 99Ku,y1
u, . . . ,ys

u) be an m-SMNW and let v =
(dom(v), λv,→v, 99Kv,y1

v, . . . ,ys
v) be an n-SMNW. The shuffle of u and v, de-

noted u� v is a set of (m+n)-SMNWs. A (m+n)-SMNW w = (dom(w), λw,→w

, 99Kw,y1
w, . . . ,ys

w) ∈ u� v if and only if:

– dom(w) = dom(u)] dom(v)
– λw = λu] λv
– →w = (→u ∪ →v)
– yi

w = yi
u ∪yi

v

Note that, by explicitly stating that w is an (m + n)-SMNW, we have ensured
that the nesting edges in w are well nested w.r.t. the linear order generated by
99Kw ∪ →w. Note also that, 99Kw 6⊇ 99Ku ∪ 99Kv. In fact, by alternately choosing
components from u and v, we can have 99Kw ∩ (99Ku ∪ 99Kv) = ∅.

Let u = (dom(u), λu,→u, 99Ku,y1
u, . . . ,ys

u) be an m-SMNW. The merge of
u, denoted merge(u), is a set of n-SMNWs for 1 ≤ n < m, obtained by replacing
some 99K by → in u.

Let k ≥ 2. We define the class k-BS (for k-bounded splits) to be the smallest
set of SMNWs closed under the following operations

– a ∈ k-BS. That is, a single node labelled a is in k-BS.

– a b
i ∈ k-BS. That is, two nodes labelled a and b, connected by a yi-edge

is in k-BS.

– if u is an m-SMNW in k-BS, v is an n-SMNW in k-BS and if m + n ≤ k,
then u� v ⊆ k-BS.

– if u is in k-BS, then merge(u) ⊆ k-BS

For any SMNW w, if w ∈ k-BS we say that the split-width of w is at most k.

3.1 Split-width, Tree-width and Clique-width of MNWs

Split-width compares well to the usual measures of graph complexity: tree-width
and clique-width [5, 11,20]. This relation is stated in the following theorem:

Theorem 2. 1. The tree-width of a MNW of split-width k is at most 2k − 1.
2. The clique-width of a MNW with split-width k is at most 2k + 1.
3. The split-width of a MNW with clique-width k is at most 2k.

It is known that any class of graphs with tree-width bounded by k has clique-
width bounded by 2k−1− 1 [8]. However, Item 2 gives a better bound on clique-
width. We give only the proof of Item 1 in this paper. The proof of the other
two items can be found in [9].

We use the algebraic characterization of tree-width as in [4]. For this we
define a syntax for generating graphs.1 Let C be a finite set of colors. Then
C-expressions are given by:

e ::= x | x E y | e1 ‖ e2 | rnmx↔y(e) | fgx(e)

where x, y ∈ C and E is an edge relation. In particular for nested words x→ y,
xyi y are C-expressions. Each expression defines an edge labelled graph (up to
isomorphism) as described below:

– The expression x denotes the graph with a single vertex colored x.
– The expression x E y denotes the graph with two vertices colored x and y

and these vertices are connected by an edge E.
– The expression e1 ‖ e2 (parallel composition) denotes the disjoint union of

the graphs defined by the expressions e1 and e2, where the nodes with the
same labels are fused.

– The expression rnmx↔y(e) (renaming) denotes the graph obtained by recol-
oring the vertices colored x and y in the graph denoted by e with y and x.

– The expression fgx(e) (forget color) denotes the graph obtained by removing
the color of the vertices colored x in the graph denoted by e.

Notice that there can be at most one vertex colored x for each color x, since
the parallel composition fuses nodes with the same color. Also once the color of
a vertex is forgotten, that vertex cannot be colored later. Notice that we have
ignored the node labels in this definition, as these are not the most interesting.
However, one could easily include them.

The tree-width of a graph is at most |C|−1 if there is a C-expression denoting
it [4]. Using this we will now prove Item 1 of Theorem 2

1 This is FHR
C in [4]

Proof (of Item 1 of Theorem 2). There are at most k components in any SMNW
of split-width at most k. We use 2k colors of the form bi, ei for 1 ≤ i ≤ k. That
is we fix C = {b1, e1, . . . , bk, ek}. We maintain the invariant INV1:Color the first
node and the last node of factor i by bi and ei respectively. If a factor has only
one node, its color is bi. We show how to obtain a SMNW of split-width at
most k using C-expressions inductively. The base cases are the basic splits: The
expression for an internal node is b1, and that for a nesting edge on stack i is
b1 yi b2.

For w ∈ u� v: We identify the index in w of each factor in u and v. Then
we do a sequence of renamings in u and v such that each node gets its intended
label in w. This is followed by a simple parallel composition. Note that this
parallel composition does not result in the fusion of any nodes, as the colors
are disjoint. For example, consider w = (n1, n2n3, n4, n5) and u = (n1, n5)
and v = (n2n3, n4). Since u and v satisfies the invariant INV1, n1 and n2
are colored b1; n5 and n4 are colored b2; and n3 is colored e1. Let eu, ev de-
note the expressions for u and v respectively. Then ew = (rnmb2↔b4(eu)) ‖
(rnmb1↔b2(rnme1↔e2(rnmb2↔b3(ev)))).

For w ∈ merge(u): If w contains a linear edge from factor i in u to factor i+1
in u, we do a parallel composition with (ei → bi+1) (If the factor i is singleton, we
do a parallel composition with (bi → bi+1)). The graph (ei → bi+1) is represented
by rnmb1↔ei(rnmb2↔bi+1

(b1 → b2)). We do this for each linear edge added in w.
Finally, in order to maintain the invariant INV1, we do a sequence of forgets and
renamings. ut

A theorem by Courcelle [6] says that if MSO is decidable for a class C of
graphs with bounded degree, then C has bounded clique-width. This theorem,
along with Item 3, says that any class of MNWs with decidable MSO theory
indeed has bounded split-width.

Corollary 3. Let C be a class of MNWs. If C has a decidable MSO theory, then
C has bounded split-width.

3.2 MSO is decidable over bounded split-width MNWs

An MSO definable class with bounded tree-width (or clique-width) has a decid-
able MSO theory. However, we do not know whether the class of k-BS MNWs
is MSO-definable. Thus Theorem 2 does not imply MSO decidability for k-BS
MNWs. Nevertheless, we have the following theorem:

Theorem 4. Let k ∈ N. The class of MNWs with split-width at most k has a
decidable MSO theory.

The proof is via a tree interpretation along the lines of the proof of MSO
decidability over bounded clique-width graphs [7,11]. Let w be a SMNW in k-BS.
By definition, the proof of the membership of w in k-BS is a tree whose nodes
are labelled by elements of k-BS and whose degree is bounded by 2 such that

1. the root is labelled by w.

2. leaves are labelled by atomic SMNWs.
3. if an internal node labelled u has only one child labelled v then u ∈ merge(v).
4. if an internal node labelled u has two children labelled x and y then u ∈
x� y.

We abstract such a proof as a finitely labelled tree, called a proof tree. We can
show that the set of valid proof-trees (of membership of SMNWs in k-BS) is
accepted by a tree automaton of size exponential in k and s. Then we give a
translation from any MSO formula Φ over MNWs to an “equivalent” formula
Φ′ over proof-trees. The detailed proof is given in [9] where this technique is
extended to also show

Theorem 5. Given a MPDS M and an integer k, we can construct a tree
automaton A over the proof trees for k-BS, such that A accepts all the valid
proof trees of MNWs in k-BS which have an accepting run in M. The size of A
is exponential in k and the number of stacks s, but is polynomial (with exponent
O(k)) in the number of states of M.

The above theorem allows us to derive several corollaries. Emptiness checking of a
multi-pushdown system restricted to bounded split-width behaviors is ExpTime.
In fact, this allows MSO-model checking of a MPDS restricted to k-BS. Given a
multi-pushdown system M, an integer k and an MSO formula ϕ over MNWs,
it decidable to check whether all MNWs of split-width at most k generated by
M satisfy ϕ in time non-elementary in |ϕ|, exponential in k and the number of
stack s, and polynomial in the number of states ofM. Inclusion checking of two
MPDS wrt. k-BS is 2ExpTime. As the set of all valid proof trees is recognizable,
universality checking of a MPDS wrt. k-BS is also 2ExpTime.

4 Classes of MNWs

Let w be a MNW. A factor u of w is defined to be a sequence of consecutive
positions of w. We say that a position x ∈ dom(u) is an i-pending call in u if
there exists y ∈ dom(w) \ dom(u) such that x yi y. Similarly, x is an i-pending
return in u if there exists y ∈ dom(w) \ dom(u) such that y yi x. We say that u
is complete for i if there are no i-pending calls or i-pending returns in u. This
notion is lifted naturally to sequences of factors as well. A context is a set of
consecutive positions which involves at most one stack.

We recall the definitions of three classes of MNWs for which MSO theory
is known to be decidable and follow it with definitions of two new classes we
propose.

Bounded Scope MNWs [14] We fix a parameter m ∈ N. We say that a
MNW is m-scope bounded if for all nesting edges, there are no more than m
different contexts between its source and target.

Bounded Phase MNWs [12] A phase is a factor of a MNW in which at most
one stack is allowed to return. We fix a parameter p ∈ N. We say that a MNW
is p-phase bounded if it can be partitioned into p phases.

Ordered MNWs [2, 3] Let [s] be the set of stacks with the natural ordering
on them. We say that a MNW is ordered if for all stacks i ∈ [s], there are no
pending calls of any stack j > i at the target of a yi edge. In other words, if
there are many pending calls at any instant, the pending calls of the highest
stack will return first, then the second highest and so on. This means that, when
stack i is returning, all stacks higher than i are empty.

Scope Bounded or Ordered Returns MNWs (SBO) Let [s] be the set of
stacks with the natural ordering on them. We fix a parameter m ∈ N. Given a
MNW and the parameter m, we classify the nesting edges into long and short.
A nesting edge is long if there are more than m different contexts between its
source and target. It is short otherwise. We say that a MNW is SBO MNW if for
all stacks i ∈ [s], there are no pending long nesting edges of any stack j > i at
the target of a long nesting edge of i. In other words, if there are many pending
long nesting edges at any instant, the pending long nesting edges of the highest
stack will return first, then the second highest and so on. That is to say that,
with respect to the long nesting edges, a SBO MNW behaves exactly like an
ordered MNW.

Scope or Phase Bounded Returns MNWs (SPB) Given a MNW and the
parameters m and p, as in the case of SBO we classify the nesting edges into
long and short (wrt. the parameter m). We say that a MNW is (m, p)-SPB if it
can be partitioned into p phases wrt. the long returns.

Proposition 6. The classes Bounded Scope, Bounded Phase, Ordered, SBO,
SPB are MSO definable.

Proof. All the returns of a MNW have to satisfy certain conditions to belong to
a class. These conditions are easily MSO-definable. ut

All the above classes have bounded split-width.

Theorem 7. 1. m-Bounded scope MNWs have split-width at most m+ 2.
2. p-Bounded phase MNWs have split-width at most 2p.
3. Ordered MNWs have split-width at most 2s.
4. m-SBO have split-width at most 2s(2m+ 1).
5. (m, p)-SPB have split-width at most 2p(2m+ 1)).

The proof is given in Section 4.1 below.
Theorem 4 along with Proposition 6 and Theorem 7 gives us the MSO de-

cidability of the classes defined in Section 4:

Corollary 8. The classes Bounded Scope, Bounded Phase, Ordered, SBO, SPB
have a decidable MSO theory.

Theorem 2 along with Theorem 7 gives us new bounds of tree-width of the
different classes of MNWs. We improve the s2s−1 bound on tree-width of ordered
MNWs obtained in [18] to 2s+1. We also improve the 2ms bound on tree-width
for bounded scope MNWs obtained in [15] to 2(m+ 2).

Corollary 9. 1. m-Bounded scope MNWs have tree-width at most 2(m+ 2).
2. p-Bounded phase MNWs have tree-width at most 2p+1.
3. Ordered MNWs have tree-width at most 2s+1.
4. m-SBO have tree-width at most 2s+1(2m+ 1).
5. (m, p)-SPB have tree-width at most 2p+1(2m+ 1).

4.1 Bounded split-width

Proof of Bounded Split-Width of Bounded Scope MNWs Our idea is to
split the first m−1 contexts of a bounded scope MNW into different components.

We write wi to denote the ith component of a SMNW w. Given an m-
scope bounded MNW w, we repeatedly decompose it using the shuffle and merge
operations till we are left with atomic SMNWs, ensuring that we stay within
(m + 2)-BS in this process. We maintain the invariant INV2: All but the last
component of the SMNWs are single contexts. To begin, observe that any m-
scope bounded MNW w is the merge of a SMNW w with at most m components,
where the first m− 1 components are the first m− 1 contexts of w. We continue
by applying the following rules:

1. If some component wi is a complete MNW, let v = wi and u be w without
wi. Clearly w ∈ u� v.

2. If some component wi has a non trivial prefix or suffix which is a complete
MNW, we split wi into uivi (both nonempty) such that one of them, say
vi is a complete MNW. Let v be vi and u be w without vi. Clearly w ∈
merge(u� v).

3. If there is a yi-edge e whose source, labelled a, is the first node or last node
of wk and whose target, labelled b, is the first node or last node of w`, then

w ∈ merge(u� a b
i

) where u is w without the edge e and its source and
target nodes.

4. If the last component is wj with j < m and has more than one context, then
we split the first context of the last component into a separate component.
Repeated application of this rule yields as many components (but at most
m) as possible.

Observe that if the invariant holds for w then the same holds for the two
SMNWs obtained by the application of any of these four rules, thus the invariant
INV2 is maintained. Observe that the rules preserve another invariant INV3: If
there is a position x in ith component and a position y in jth component, then
there are at least |i − j| + 1 different contexts between x and y in the original
MNW we started with.

We will now argue that the above operations decompose the SMNW to base
cases. Suppose, for the sake of contradiction, that a non-atomic SMNW u is
obtained by the above operations from w and none of the above operations are
applicable.

If for any stack there is a pending return in the first m − 1 components,
consider the first pending return which is in wj . Let the corresponding call be in

w2

w3 w7 w15

w6 w14 w10

w11

3
2

1

2
1

1

1

w1

w4 w8 w16

w5 w13 w9

w12

3
2

1

2
1

1

1

4

Fig. 1. A binomial tree of rank 5

wi (i < j). Since we are not in case 2, the component wi, which is single context,
ends with this pending call and similarly wj begins with this pending return,
making case 3 applicable. Thus we may assume that in w there are no pending
returns in any of the first m − 1 components, and there are m components if
the last component has at least two contexts. Since the first m− 1 components
cannot be complete MNWs (case 1 is not applicable) they must involve pending
calls. Since they do not have complete MNWs as prefixes or suffices and are
single context, each of them must begin and end with pending calls with the
corresponding returns in wm.

Claim: The first node of wm necessarily has to be a pending return of the
stack of w1. The claim holds since a) the first context of wm belong to the same
stack as that of w1 and also contains the pending returns called in w1 (Otherwise
there are more than m contexts switches between the first pending call and its
corresponding return, thanks to invariant INV3). b) wm cannot have a complete
MNW as a prefix, as case 4 was not applicable. This makes case 3 applicable,
contradicting the assumption that none of the above cases are applicable.

Notice that, just before any merge, the SMNW contains at most m + 2
components. ut

Proof of Bounded Split-Width of Ordered MNWs We show that any
ordered MNW admits a decomposition in which the SMNWs have at most 2s

components. For that, we restrict the number of components of each SMNW to
2s−1 before any shuffle operation. A shuffle is followed by a few merge operations
so that the bound of 2s−1 is maintained before the next shuffle.

The (2s−1)-SMNWs we obtain in the decomposition have some nice proper-
ties which let us embed them in a binomial tree of size 2s−1. Each node in the
binomial tree is a single component of the SMNW. The structure of the binomial
tree is given in Figure 1 and is defined below.

A binomial tree is an edge labelled tree where each node has a rank. A node
of rank i will have i− 1 outgoing edges labelled with i− 1, . . . , 1, and the j-child
(child along the edge labeled j) will be a node of rank j. The rank of a binomial
tree is the rank of its root. A binomial tree with rank k has height k−1 and has
2k−1 nodes. We identify a node by the path to that node from the root. In the

figure, root is identified by ε, the leftmost node by 4321 and the rightmost node
by 1. The i-child of node x is xi. Note that the rank as well as the labels along
any path from the root to a leaf are decreasing.

We say that a SMNW w has a k-binomial embedding if every component
wi of the SMNW can be assigned a node node(i) of a binomial tree of rank k
such that no two components are assigned to the same node. We will shortly
show that a SMNW w obtained from the decomposition of an ordered MNW
has an s-binomial embedding, satisfying the following properties. We denote the
s-binomial embedding of w by W . If node(i) = x under W , then we denote wi

by Wx in the following.

P1 There is a yi edge from a component wk to another component wl only if
node(l) is the i-child of node(k).

P2 Let x be a node of rank i. All the returns in Wx are on a stack which is at
least i.

If s = 4, and w has 16 nonempty components, a binomial embedding satisfying
the above properties may assign nodes of the binomial tree to components as
shown in Figure 1. One can verify that it is in fact the only possible binomial
embedding satisfying the stack policy and the ordering policy.

Any ordered MNW w is a 1-SMNW. The binomial tree embedding embeds
this only component at its leftmost child (node with id (s−1)(s−2) · · · 1). That
is, w = w = W(s−1)(s−2)···1. Clearly it satisfies the properties P1 and P2.

We show the decomposition by induction. Let w be a SMNW with a s-
binomial embedding satisfying the properties P1 and P2. We do the following
case splittings in a greedy manner (we will go to a case only if it is not possible
to match any of the previous cases).
1. If there is a nesting edge yi whose source, labeled a, is the first or the last
position of wk and whose target, labeled b, is the first or the last position of

wl, then w ∈ merge(u� a b
i

) where u is w without the nesting edge and its
source and target nodes. Clearly u has a s-binomial embedding inherited from
that of w, satisfying properties P1 and P2.
2. If some wi is of the form uivi where vi is complete (there are no pending
calls or returns in vi) and ui and vi are nonempty, then w ∈ merge(u� v) where
u is w minus vi and v is vi. Also, u has a binomial embedding U inherited from
w and v has a binomial embedding V which embeds its only component at its
leftmost child. We have a symmetric dual case when ui is complete. Note that
u and U as well as v and V satisfies the properties P1 and P2.
3. If W has two nonempty nodes x and y both containing no pending returns:
Wlog. let y be of smaller rank if the ranks are different. Due to property P1,
we can conclude that the subtree rooted at y is disconnected from the rest. v is
obtained by projecting w to those components whose embedding is in the subtree
rooted at y and u is w without v. Let U be a binomial embedding identical
to W on the subtree rooted at y and empty elsewhere, and V be identical to
W everywhere, except on the subtree rooted at y where it is empty. Clearly
w ∈ u� v. Moreover, u and U as well as v and V satisfies the properties P1 and
P2.

4. This splitting in this case is depicted in Figure 2. Let x be a non-empty node
such that Wx is of the form UxVx where Ux and Vx are non-empty, and Vx does
not have any pending return. We will split its children Wxi as Wxi = VxiUxi

such that all pending returns of Uxi are called in Ux and those of Vxi are called
in Vx and there are no nesting edges between Uxi and Vxi. For this we can take
Uxi to be the shortest suffix containing all the pending returns from Ux. Note
that Ux is a prefix and Uxi is a suffix. This is because among all the nesting
edges between Wx and Wxi (all of them belong to stack i, thanks to property
P1), the first pending call will be returned last and the last pending call will be
returned first. All the pending returns of Uxi should be called in Ux or Vxi. Since
Uxi starts with a pending return of stack i whose call is in Ux , there are no
pending returns of stack i in Uxi which is called in Vxi. Since the ordering policy
on stacks is followed, there cannot be any pending returns of stack j > i in Uxi

which is called in Vxi. Due to property P2, there cannot be any returns of stacks
j < i in Uxi. Thus we can split its children Wxi as Wxi = VxiUxi. SImilarly, we
split recursively all nodes in the subtree of x. For all y, Wxy ∈ merge(Uxy�Vxy)
(In fact Wxy = UxyVxy if |y| is even, Wxy = VxyUxy otherwise. For the nodes y
which are not split by the above procedure, let Uy = Wy and Vy = ε. Clearly
w ∈ merge(u� v) where u, v are such that U and V are the binomial embeddings
of u and v. Once again, u and U as well as v and V satisfies the properties P1
and P2.

In fact if root of W (node ε) is non empty, then one of the above cases apply.
We argue why. Let w1 = Wε 6= ε. If w1 starts with an internal action, then it is
a base case or case 2 or case 3 applies. If w1 starts with a call to stack j < s,
thanks to property P2, it is either a base case or case 1 or case 2 or case 3 is
applicable. If it is a call to stack s, either case 1 or case 2 or case 4 is applicable.

5. From the above remark, the only remaining case is when root is empty. Let
xi be the nonempty node of W with the highest rank (which is i). If Wxi does
not contain any returns of stack i then we shift node xi to x followed by a shift
of nodes xiy to xy. It can be verified that shifting of the nodes gives a binomial
embedding satisfying the properties P1 and P2 . Hence we can safely assume
that W is a binomial embedding and xi is the nonempty node of W with highest
rank and that it contains a return of stack i. Consider the first return of stack
i. We split Wxi into W ′xW

′
xi such that W ′xi is the shortest suffix containing all

the returns of stack i. This will result in the splitting of the children of Wxi

which are attached to W ′x or W ′xi similar to that in case 4. One can verify that
w′ ∈ merge(w′). Once again w and its binomial embedding W ′ satisfies the
properties P1 and P2. The splitting in this case is illustrated in Figure 3.

Notice that in each of the above cases, the length of the SMNW decreases, or
the number of components increases (it is bounded by 2s−1). Thus by induction,
the proof follows. ut

Proof of Bounded Split-Width of Bounded Phase The proof for this
case is very similar to that of Ordered MNWs. We will only mention the main
differences from that of ordered. For the sake of easiness, we will identify the

3
2

1

2
1

1

1

3

2

1

2
1 1

1

×

3
2

1

2
1

1

1

3
2

1

2
1

1

1

Fig. 2. Splitting of a binomial tree in case 4. Note the left/right alternation of gray
(denotes U) and white (denotes V) parts along levels. This is needed since the stacks
impose LIFO policy.

phases in the decreasing order. That is, the first phase is called phasep, second
phase is called phasep−1 and so on and the last phase is called phase1.

As in the case of ordered MNWs, our SMNWs w will have a p-binomial
embedding W satisfying the properties P1’ and P2’:

P1’ There is a yedge from a component wk to a component wl only if node(l)
is the i-child of node(k) and the return is in phasei.

P2’ If rank of x is i, then all the returns in Wx are in phasej where j ≥ i.

For the inductive decomposition, all the cases remain the same except for
case 5. Let Wxi be the nonempty node of W with highest rank and assume that
it contains at least one return from phasei. We split Wxi into W ′xW

′
xi such that

W ′xi is the shortest suffix containing all the returns of phasei. The figures for
ordered MNWs explains the splits for bounded phase as well, except that the
edge labels of the binomial tree indicates the phase number of its children rather
than the stack to which it belong. The bound follows. ut

Proof of Bounded Split-Width of SBO and SPB The proof for this case is
a joint generalization of the proof of bounded scope MNWs and that of ordered
(resp. bounded phase) MNWs. We first split according to the long nesting edges
and obtain a binomial embedding. In order to handle the short edges, we separate
the outermost m contexts of this component so that a decomposition similar to
that for bounded scope goes through. Thus we have a binomial tree embedding
where instead of having a single component in a node of the binomial tree, we
have 2m+ 1 components. The details can be found in [9].

5 Discussion and Perspectives

We have introduced and studied a new metric on MNWs called split-width and
its relationship with clique-width and tree-width. Using split-width as a tool,

4

3

2

1

2
1 1

1

3
2

1

2
1

1

1

3
2

1

2
1

1

1

4

Fig. 3. Splitting of a binomial tree in case 5.

decidability of MSO for several existing as well as new classes of MPDS have
been shown. We can even extend the decidable classes further.

An i-pending-call-context of a MNW w is a factor u of w in which there are
no j-pending calls for j 6= i. A pending-call-context is an i-pending-call-context
for some i.

The proof of bounded scope goes through to show that the same split-width
bound of m+ 2 holds for a generalization of bounded scope. The generalization
allows at most m pending-call-contexts at every return. The classes SBO and
SPB could be generalized further to replace bounded scope constraint on short
returns by the generalization. These generalizations are MSO definable and the
split-width remains unchanged.

A next step is to bridge the gap in the translations between split-width
and tree-width (or clique-width). Is it possible to obtain a linear translation
from tree-width to split-width? Is it possible to close the gap in the back and
forth translations between split-width and tree-width (or clique-width)? In other
words, is split-width another characterization of tree-width (or clique-width) of
MNWs?

Another interesting question is whether MPDS with k bounded split-width
restriction are closed under complementation. That is, given a MPDSM and k,
is there another MPDS M′ such that for all k-bounded split-width MNWS w,
w is accepted by M if and only if w is not accepted by M′?

It is interesting to know whether one could employ temporal logics instead
of MSO for model checking MPDS wrt. k-split-width-bounded runs, and get a
reasonable complexity.

Another important direction is to find notions similar to split-width for other
domains like message sequence charts, data words etc.

References

1. R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3),
2009.

2. M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is
2ETIME-Complete. In Developments in Language Theory, volume 5257 of LNCS,
pages 121–133. Springer, 2008.

3. L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-pushdown
languages and grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996.

4. B. Courcelle. Graph grammars, monadic second-order logic and the theory of graph
minors. In Graph Structure Theory, volume 147 of Contemporary Mathematics,
pages 565–590. American Mathematical Society, 1993.

5. B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of Graph Gram-
mars, pages 313–400. World Scientific, 1997.

6. B. Courcelle. The monadic second-order logic of graphs xv: On a conjecture by D.
Seese. Journal of Applied Logic, 8:1–40, 2006.

7. B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci., 46(2):218–270, 1993.

8. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000.

9. A. Cyriac, P. Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown
systems via split-width. Research Report LSV-12-11, Laboratoire Spécification et
Vérification, ENS Cachan, France, June 2012.

10. A. Heußner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of com-
municating pushdown systems. In C.-H. L. Ong, editor, FOSSACS’10, volume
6014 of LNCS, pages 267–281. Springer, 2010.

11. S. Kreutzer. Algorithmic meta-theorems. CoRR, abs/0902.3616, 2009.
12. S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive

languages. In LICS’07, pages 161–170. IEEE Computer Society, 2007.
13. S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of con-

current queue systems. In C. R. Ramakrishnan and J. Rehof, editors, TACAS’08,
volume 4963 of LNCS, pages 299–314. Springer, 2008.

14. S. La Torre and M. Napoli. Reachability of multistack pushdown systems with
scope-bounded matching relations. In J.-P. Katoen and B. König, editors, CON-
CUR’11, volume 6901 of LNCS, pages 203–218. Springer, 2011.

15. S. La Torre and G. Parlato. Scope-bounded multistack pushdown systems: fixed-
point, sequentialization, and tree-width. Technical report, University of Southamp-
ton, February 2012.

16. A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods in System Design, 35(1):73–97, 2009.

17. A. Lal, T. Touili, N. Kidd, and T. W. Reps. Interprocedural analysis of concurrent
programs under a context bound. In C. R. Ramakrishnan and J. Rehof, editors,
TACAS’08, volume 4963 of LNCS, pages 282–298. Springer, 2008.

18. P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In T. Ball
and M. Sagiv, editors, POPL’11, pages 283–294. ACM, 2011.

19. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In N. Halbwachs and L. D. Zuck, editors, TACAS’05, volume 3440 of LNCS, pages
93–107. Springer, 2005.

20. D. Seese. The structure of models of decidable monadic theories of graphs. Ann.
Pure Appl. Logic, 53(2):169–195, 1991.

	 MSO decidability of Multi-Pushdown Systems via Split-Width

