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AFFINE PARIKH AUTOMATA ∗

Michaël Cadilhac1, Alain Finkel2 and Pierre McKenzie1

Abstract. The Parikh finite word automaton (PA) was introduced
and studied in 2003 by Klaedtke and Rueß. Natural variants of the
PA arise from viewing a PA equivalently as an automaton that keeps
a count of its transitions and semilinearly constrains their numbers.
Here we adopt this view and define the affine PA, that extends the PA
by having each transition induce an affine transformation on the PA
registers, and the PA on letters, that restricts the PA by forcing any
two transitions on the same letter to affect the registers equally. Then
we report on the expressiveness, closure, and decidability properties of
such PA variants. We note that deterministic PA are strictly weaker
than deterministic reversal-bounded counter machines.
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1. Introduction

Klaedtke and Rueß [17] introduced the Parikh automaton as a pair (A, C) where
C is a semilinear subset of Nd and A is a finite automaton over (Σ ×D) for Σ a
finite alphabet and D a finite subset of Nd. The word w1 . . . wn ∈ Σ∗ is accepted by
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(A, C) if A accepts some word (w1, v1) . . . (wn, vn) such that
∑

vi ∈ C. Motivated
by verification issues, Klaedtke and Rueß developed the PA as a tool to probe
(weak) monadic second-order logic with successor in which the cardinality |X |
of each second-order variable X is available. They proved their logic undecidable
but showed decidability of an existential fragment that was successfully applied to
verify the specification of actual hardware circuits.

Klaedtke and Rueß also studied decidability properties of the PA and properties
of the language classes defined by the PA [16,17]. Karianto [15] took up this study
further, elaborating on Klaedtke and Rueß’s proofs and considering pushdown au-
tomata and constraint sets beyond semilinear. As for tree languages, Klaedtke
and Rueß [16] introduced Parikh Tree Automata as top-down tree automata with
one global semilinear constraint; at the same time, the related notion of Pres-
burger Tree Automata, which combines bottom-up tree automata and semilinear
preconditions about the number of children in a given state, was independently
introduced by Zilio and Lugiez [27] and Seidl et al. [22].

Our interest in the PA comes both from its role in the area of verification
and from the intricate three-way connection known to exist between automata,
descriptive complexity and Boolean circuit complexity (see [23,24]). Indeed several
circuit-based complexity classes within the class LOGCFL (of languages reducible
to a context-free language) can be described in a natural way using first-order logic.
In such a logic description, the (generalized) quantifiers reflect the properties of
the automaton-based model defining the language while the (numerical) predicates
reflect the level of uniformity allowed to the circuit families accepting the language.
Since semilinearity arises in the study of LOGCFL (see [21]) and since the circuit
depth complexity of regular languages is a major open question in complexity
theory, the PA is a very appealing computation model with which to experiment
in view of possible future applications to complexity theory.

In this paper we introduce three models closely related to the PA and we carry
the study of PA themselves somewhat further. This is our first contribution. In-
formally, each model involves a finite automaton A and a constraint set C ⊆ Kd

where K is either N or Q:

• Constrained automata (CA) with d transitions are defined to accept a word
w ∈ Σ∗ iff C contains the d-tuple that records, for some accepting run of A on
w and for each transition t, the number of occurrences of t along that accepting
run; we will see that the CA merely provides an alternate view of the PA in
that the two models define the same language classes.
• Affine Parikh automata (APA) generalize PA by allowing each transition to

perform an affine transformation on the d-tuple of PA registers; an APA accepts
a word w iff some accepting run of A on w maps the all-zero d-tuple to a d-tuple
in C.
• Parikh automata on letters (LPA) restrict PA by imposing the condition that

any transition on (a, u) ∈ (Σ×D) and any transition on (b, v) ∈ (Σ×D) must
satisfy u = v when a = b.
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∪ ∩ · h hε h−1 c ∗ ∅ Σ∗ fin. ⊆ reg.

LPA N Y N N N N Y Y N D D D D ?

DetPA Y Y Y N N N Y Y N D D D D ?

PA Y Y N Y Y Y Y Y N D U D U U

DetAPA Y Y Y ? N ? Y ? ? U U U U U

APA Y Y ? Y N Y Y ? ? U U U U U

Prop. 26 Cor. 33

Prop. 40 Prop. 17

Cor. 34

Prop. 16

/

Figure 1. Closure in the effective sense (Y) or nonclosure (N)
of language classes defined by PA variants, under set operations,
concatenation, morphisms, nonerasing morphisms, inverse mor-
phisms, commutation, and iteration; decidability (D) or undecid-
ability (U) of emptiness, universality, finiteness, inclusion, and
regularity; boldface denotes results known prior to this paper.

Our second contribution is the analysis of the closure and decidability properties
of these models and their deterministic variants DetPA and DetAPA. We depict
the known properties of PA [15–17] together with our new results in Figure 1, where
DetLPA is not mentioned because DetLPA and LPA define the same languages.

Our third contribution is the comparison of the language classes that arise.
We show that the language {a, b}∗ · {an#an | n ∈ N} belongs to LPA \ LDetPA

where these two classes were only proved different in [17]. We show that APA and
DetAPA over Q can be simulated by APA and DetAPA over N and vice versa.
Refining [17] slightly, we compare our models with the reversal-bounded counter
machines (RBCM) defined by Ibarra [12]. Figure 2 summarizes these and further
results.

This paper is organized as follows. Section 2 contains preliminaries and settles
notation. Section 3 defines the PA, introduces the equivalent CA, justifies the
PA line and DetPA line entries from Figure 1 and compares the PA with Ibarra’s
RBCM. Sections 4 and 5 investigate the APA and the LPA respectively, completing
the proofs of all remaining entries in Figures 1 and 2. Section 6 concludes with a
short discussion.

2. Preliminaries

Let Z, N, and Q denote the integers, the nonnegative integers, and the rational
numbers respectively. We write N+ for N \ {0} and Q+ for the strictly positive
rational numbers. We use K to denote either N or Q. Let d, d′ ∈ N+. Vectors
in Kd are noted with a bar on top, e.g., v whose elements are v1, . . . , vd. For
C ⊆ Kd and D ⊆ Kd′

, we write C ×D for the set of vectors in Kd+d′
which are
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Context-Sensitive Languages

CFL
APA

PA = RBCM
DetRBCM

DetPA
LPA
REG

PAL

×
COPY

× ΣANBN

× NSUM

×
(anbn)2

×
(anbncn)2

× anbn

× anbncn

×

Figure 2. Relationships between language classes, sorted
vertically by inclusion except for the class CFL of context-free
languages delimited by the bell curve; RBCM stands for reversal-
bounded counter machine; PAL is the language of pointed palin-
dromes, COPY that of words w#w, ΣANBN that of words wanbn,
and NSUM is discussed in Proposition 3.14.

(seen as) the concatenation of a vector of C and a vector of D; we will often use
the isomorphism between Kd+d′

and Kd × Kd′
. We write 0d, or 0 when there is

no ambiguity, for the vector with d 0-components, equal to (0, . . . , 0) ∈ Kd, and
ei ∈ {0, 1}d for the vector having a 1 only in position i and 0 elsewhere. We view Kd

as the additive monoid (Kd, +). For a monoid (M, ·) and S ⊆M , we write S∗ for
the monoid generated by S, i.e., the smallest submonoid of (M, ·) containing S.
A monoid morphism from (M, ·) to (N, ◦) is a function h : M → N such that
h(m1 ·m2) = h(m1) ◦ h(m2), and, with eM (resp. eN ) the identity element of M
(resp. N), h(eM ) = eN . Moreover, if M = S∗ for some finite set S (and this will
always be the case), then h need only be defined on the elements of S.

A subset E ⊆ Kd is K-definable if it is expressible as a first-order formula
which uses the function symbols +, λc with c ∈ K corresponding to the scalar
multiplication, the order < and constants. More precisely, a subset E of Kd is
K-definable iff there is such a formula φ with d free variables, with (x1, . . . , xd) ∈
E ⇔ K |= φ(x1, . . . , xd). Let us remark that N-definable sets are the Presburger-
definable sets and they coincide with the semilinear sets [9], i.e., finite unions of
linear sets of the form {a0 + k1a1 + . . . + knan | ki ∈ N}. Moreover, Q-definable
sets are the semialgebraic sets3 defined using affine functions, i.e., a set C ⊆ Qd

is Q-definable iff it is a finite union of sets of the form:

{x | f1(x) = . . . = fp(x) = 0 ∧ g1(x) > 0 ∧ . . . ∧ gq(x) > 0},
where f1, . . . , fp, g1, . . . , gq : Qd → Q are affine functions (see, e.g., [25], Cor. I.7.8);
this shows in particular that over Q the formulas previously described admit
quantifier elimination (see also [7]).

3Semialgrebraic sets defined using affine functions are sometimes also called semilinear
(e.g., [25]). In this paper, we use “semilinear” only for N-definable sets.
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Let Σ = {a1, . . . , an} be an (ordered) alphabet, and write ε for the empty
word. The Parikh image is the morphism Φ : Σ∗ → Nn defined by Φ(ai) = ei, for
1 ≤ i ≤ n. A language L ⊆ Σ∗ is said to be semilinear if Φ(L) = {Φ(w) | w ∈ L}
is semilinear. The commutative closure of a language L is defined as the language
c(L) = {w | Φ(w) ∈ Φ(L)}. Two words u, v ∈ Σ∗ are equivalent under the Nerode
relation (of L), if for all w ∈ Σ∗, uw ∈ L ⇔ vw ∈ L. We then write u ≡L v (or
u ≡ v when L is understood), and write [u]L for the equivalence class of u w.r.t.
the Nerode relation.

We then fix our notation about automata. An automaton is a quintuple A =
(Q, Σ, δ, q0, F ) where Q is the finite set of states, Σ is an alphabet, δ ⊆ Q×Σ×Q
is the set of transitions, q0 ∈ Q is the initial state, and F ⊆ Q are the final states.
Note that no transition is labeled by the empty word. For a transition t ∈ δ,
where t = (q, a, q′), we define From(t) = q and To(t) = q′. Moreover, we define
μA : δ∗ → Σ∗ to be the morphism defined by μA(t) = a (where in particular
μA(ε) = ε), and we write μ when A is clear from the context. A path on A is a
word π = t1 . . . tn ∈ δ∗ such that To(ti) = From(ti+1) for 1 ≤ i < n; we extend
From and To to paths, letting From(π) = From(t1) and To(π) = To(tn). We say
that μ(π) is the label of π. A path π is said to be accepting if From(π) = q0 and
To(π) ∈ F ; we let Run(A) be the language over δ of accepting paths on A. We
then define L(A), the language of A, as the labels of the accepting paths, i.e.,
μA(Run(A)).

3. Parikh automata

Let Σ be an alphabet, d ∈ N+, and D a finite subset of Nd. Following [17], the
monoid morphism from (Σ×D)∗ to Σ∗ defined by (a, v) → a is called the projection
on Σ and the monoid morphism from (Σ × D)∗ to Nd defined by (a, v) → v is
called the extended Parikh image.

Remark 3.1. Let Σ = {a1, . . . , an} and D ⊆ Nn. If a word ω ∈ (Σ × D)∗ is in
{(ai, ei) | 1 ≤ i ≤ n}∗, then the extended Parikh image of ω is the Parikh image
of its projection on Σ.

Definition 3.2 (Parikh automaton [17]). Let Σ be an alphabet, d ∈ N+, and
D a finite subset of Nd. A Parikh automaton (PA) of dimension d over Σ is a
pair (A, C) where A = (Q, Σ ×D, δ, q0, F ) is a finite automaton over Σ ×D, and
C ⊆ Nd is a semilinear set. The PA language, written L(A, C), is the projection
on Σ of the words of L(A) whose extended Parikh image is in C. The PA is said
to be deterministic (DetPA) if for every state q ∈ Q and every a ∈ Σ, there exists
at most one pair (q′, v) ∈ Q×D such that (q, (a, v), q′) ∈ δ. We write LPA (resp.
LDetPA) for the class of languages recognized by PA (resp. DetPA).

We propose an alternative view of the PA which will prove very useful. We note
that a PA can be viewed equivalently as an automaton that applies a semilinear
constraint on the counts of the individual transitions occurring along its accepting
runs.
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Definition 3.3 (constrained automaton). A constrained automaton (CA) over an
alphabet Σ is a pair (A, C) where A is a finite automaton over Σ with d transitions,
and C ⊆ Nd is a semilinear set. Its language is L(A, C) = μA(Run(A)�C), where
L�C= {w ∈ L | Φ(w) ∈ C}. The CA is said to be deterministic (DetCA) if A is
deterministic.

Theorem 3.4. CA and PA define the same classes of languages. The same holds
in the deterministic case.

Proof. Let (A, C) be a PA (resp. DetPA) of dimension d, and let δ = {t1, . . . , tn}
be the transitions of A. We suppose moreover that A is deterministic – this does
not imply the determinism of the PA. Consider the automaton A′ which is a copy
of A except that the vector part of the transitions is dropped, and note that if
(A, C) is a DetPA then A′ is deterministic. Suppose that the mapping induced
between the transitions of A and A′, i.e., (p, (a, v), q) → (p, a, q), is a bijection.
The contribution of a transition ti = (p, (a, vi), q) to the extended Parikh image
of the label of a run in which it appears is vi; thus, knowing how many times ti is
taken in a path is enough to retrieve the value of the extended Parikh image of the
label of a path. More precisely, for a path π in A and the equivalent path π′ in A′,
if we let Φ(π′) = (x1, . . . , xn) then the extended Parikh image of μ(π), Φ̃(μ(π)), is∑n

i=1 xi × Φ̃(μ(ti)). Thus, we define C′ ⊆ Nn by C′ = {(x1, . . . , xn) | ∑n
i=1 xi ×

Φ̃(μ(ti)) ∈ C}, and the PA (A, C) has the same language as the CA (A′, C′), and
determinism is preserved.

Now note that the aforementioned bijection exists if no two distinct transitions
ti, tj are such that ti = (p, (a, vi), q) and tj = (p, (a, vj), q). So suppose that such
ti and tj exist, we show how to remove them; iterating this process will lead to a
PA with no such pair of transitions. First, we increment the dimension of the PA
by adding a 0 component to all the vectors appearing as labels, i.e., each label
(
, v) is replaced by (
, (v, 0)). Next, we remove ti and tj and add the transition
t = (p, (a, ed+1), q) where ed+1 ∈ {0, 1}d+1 has a one only in position d + 1. Now
note that when t is taken in the new automaton, either ti or tj could have been
taken in the old one. Thus define the semilinear set D to split the number of times
t is taken – which is stored in the d + 1-th component – between ti and tj ; for
x ∈ Nd, c ∈ N:

(x, c) ∈ D ⇔ (∃ci, cj ∈ N) [c = ci + cj ∧ (x + ci.vi + cj .vj) ∈ C] .

This preserves the language of the PA and does not affect determinism.
For the reverse direction, let (A, C) be a CA (resp. DetCA). Define A′ as the

automaton A in which each transition t = (p, a, q) is replaced by a transition
(p, (a, Φ(t)), q). Now let π be a path in A and π′ be the corresponding path in A′,
the construction is such that Φ̃(μ(π′)) = Φ(π), thus (A′, C) is a PA with the same
language as (A, C), and the determinism of A is preserved. �
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3.1. On the expressiveness of Parikh automata

The constrained automaton characterization of PA helps deriving pumping-style
necessary conditions for membership in LPA and in LDetPA:

Lemma 3.5. Let L ∈ LPA. There exist p, 
 ∈ N+ such that any w ∈ L with
|w| ≥ 
 can be written as w = uvxvz where:

(1) 0 < |v| ≤ p, |x| > p, and |uvxv| ≤ 
;
(2) uv2xz ∈ L and uxv2z ∈ L.

Proof. Let (A, C) be a CA of language L. Let p be the number of states in A and m
be the number of elementary cycles (i.e., cycles in which no state except the start
state occurs twice) in the underlying multigraph of A. Finally, let 
 = p×(2m+1).
Now, let w ∈ L such that |w| ≥ 
 and π ∈ Run(A)�C such that μ(π) = w. Write π
as π1 . . . π2m+1π

′ where |πi| = p. By the pigeonhole principle, each πi contains an
elementary cycle, and thus, there exist 1 ≤ i, j ≤ 2m + 1 with i + 1 < j such that
πi and πj share the same elementary cycle η labeled with a word v. Thus π can
be written as ρ1ηρ2ηρ3, such that, with u = μ(ρ1), x = μ(ρ2), and z = μ(ρ3), we
have condition (1). Moreover, ρ1η

2ρ2ρ3 and ρ1ρ2η
2ρ3 are two accepting paths the

Parikh images of which are in C, thus their labels, uv2xz and uxv2z respectively,
are in L, showing condition (2). �

A similar argument leads to a stronger property for the languages of LDetPA:

Lemma 3.6. Let L ∈ LDetPA. There exist p, 
 ∈ N+ such that any w over the
alphabet of L with |w| ≥ 
 can be written as w = uvxvz where:

(1) 0 < |v| ≤ p, |x| > p, and |uvxv| ≤ 
;
(2) uv2x, uvxv, and uxv2 are equivalent under the Nerode relation of L.

Proof. Let (A, C) be a DetCA of language L ⊆ Σ∗. We may suppose that A is
complete, as Run(A) is essentially unchanged when adding a sink state to A. Let p
be the number of states in A and m be the number of elementary cycles (i.e., cycles
in which no state except the start state occurs twice) in the underlying multigraph
of A. Finally, let 
 = p×(2m+1). Now, let w ∈ Σ≥� and let π be the path traced by
w in A, which exists as A is complete. Write π as π1 . . . π2m+1π

′ where |πi| = p. By
the pigeonhole principle, each πi contains an elementary cycle, and thus, there exist
1 ≤ i, j ≤ 2m + 1 with i + 1 < j such that πi and πj share the same elementary
cycle η labeled with a word v. Thus π can be written as ρ1ηρ2ηρ3, such that,
with u = μ(ρ1), x = μ(ρ2), and z = μ(ρ3), we have condition (1). Moreover,
uv2x, uvxv, and uxv2 trace the paths ρ1η

2ρ2, ρ1ηρ2η, and ρ1ρ2η
2, respectively,

in A. Those paths all go from the initial state to the same state q and have the
same Parikh image. Thus let π′′ be a path in A from q with some label y, then
uv2xy ∈ L(A, C) iff π′′ ends in a final state and Φ(ρ1η

2ρ2π
′′) ∈ C. But since

Φ(ρ1η
2ρ2π

′′) = Φ(ρ1ηρ2ηπ′′) = Φ(ρ1ρ2η
2π′′), this is the case iff uvxvy ∈ L and iff

uxv2y ∈ L, showing condition (2). �
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We apply Lemma 3.5 to the language COPY, defined as {w#w | w ∈ {a, b}∗},
as follows:

Proposition 3.7. COPY �∈ LPA.

Proof. Suppose COPY ∈ LPA. Let 
, p be given by Lemma 3.5, and consider
w = (apb)�#(apb)� ∈ COPY. Lemma 3.5 states that w = uvxvz where uvxv lays
in the first half of w, and s = uv2xz ∈ COPY. Note that x contains at least
one b. Suppose v = ai for 1 ≤ i ≤ p, then there is a sequence of a’s in the first
half of s unmatched in the second half. Likewise, if v contains a b, then s has a
sequence of a’s between two b’s unmatched in the second half. Thus s �∈ COPY, a
contradiction. Hence COPY �∈ LPA. �

As Klaedtke and Rueß show using closure properties, DetPA are strictly weaker
than PA. The thinner grain of Lemma 3.6 suggests explicit languages that wit-
ness the separation of LDetPA from LPA. Indeed, let EQUAL ⊆ {a, b, #}∗ be the
language {a, b}∗ · {an#an | n ∈ N}, we have:

Proposition 3.8. EQUAL ∈ LPA \ LDetPA.

Proof. We omit the proof that EQUAL ∈ LPA. Now, suppose EQUAL ∈ LDetPA,
and let 
, p be given by Lemma 3.6. Consider w = (apb)�. Lemma 3.6 then asserts
that a prefix of w can be written as w1 = uvxv, and that w2 = uv2x verifies
w1 ≡ w2. As |x| > p, x contains a b. Let k be the number of a’s at the end of
w1. Suppose v = ai for 1 ≤ i ≤ p, then w2 ends with k − i < k letters a. Thus
w1#ak ∈ EQUAL and w2#ak �∈ EQUAL, a contradiction. Suppose then that
v = aibak, with 0 ≤ i+k < p. Then w2 ends with p− i > k letters a, and similarly,
w1 �≡ w2, a contradiction. Thus EQUAL �∈ LDetPA. �

For comparison, we mention another line of attack for the study of LDetPA,
derived from an argument used by Klaedtke and Rueß to show that PAL =
{w#wR | w ∈ {a, b}+}, where wR is the reversal of w, is not in LPA.

Lemma 3.9. Let L ∈ LDetPA. There exists c > 0 such that |{[w]L | w ∈ Σn}| ∈
O(nc).

Proof. Let (A, C) be a DetCA of language L ⊆ Σ∗ where we suppose A complete,
as this leaves Run(A) essentially unchanged. For w ∈ Σ∗, write π(w) for the unique
path in A labeled w and starting with the initial state. Let ∼ be the equivalence
relation on Σ∗ defined by u ∼ v iff Φ(π(u)) = Φ(π(v)) ∧ To(π(u)) = To(π(v)).
Then this relation refines ≡L: let u, v ∈ Σ∗ such that u ∼ v, and let w ∈ Σ∗ such
that uw ∈ L, then π(uw) ∈ Run(A)�C , thus the same holds for π(vw), implying
that vw ∈ L. Moreover, the number of equivalence classes of ∼ for a given word
length is polynomial in the word length (e.g., [20], p. 41). �

Proposition 3.10. Let L = {w ∈ {a, b}∗ | w|w|a = b}, where wi is the i-th letter
of w. Then L ∈ LPA \ LDetPA.
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Proof. We omit the proof that L ∈ LPA; the main point is simply to guess the
position of the b referenced by |w|a. On the other hand, let n > 0 and u, v ∈
{a, b}n such that |u|a = |v|a = n

2 and there exists p ∈ {n
2 , . . . , n} with up �= vp.

Let w = ap−n
2 , then (uw)|uw|a = (uw)|u|a+|w|a = (uw)p = up, and similarly,

(vw)|vw|a = vp. This implies uw �∈ L ↔ vw ∈ L, thus u �≡ v. Then for 0 ≤ i ≤
n
2 , define Ei = {an

2 −ibiz | z ∈ {a, b}n
2 ∧ |z|a = i}. For any u, v ∈ ⋃Ei with

u �= v, the previous discussion shows that u �≡ v. Thus |{[w]L | w ∈ {a, b}n}| ≥
|⋃n

2
i=0 Ei| =

∑n
2
i=0 |Ei| =

∑n
2
i=0

(n
2
i

)
= 2

n
2 �∈ O(nO(1)). Lemma 3.9 then implies

that L �∈ LDetPA. �

Finally, let us recall that a language L ⊆ Σ∗ is said to be bounded if there
exist n > 0 and w1, . . . , wn ∈ Σ+ such that L ⊆ w∗

1 . . . w∗
n. For a given class of

languages, we say that it is Parikh-bounded if for any L in the class there exists a
bounded language L′ in the class with L′ ⊆ L and Φ(L) = Φ(L′). This property is
known to hold for regular [19] and context-free languages [2] (the latter recently
reworked in [8]).

Proposition 3.11. LPA is Parikh-bounded.

Proof. Let (A, C) be a constrained automaton, where δ is the transition set of A.
Note that Run(A) is regular, thus, as mentioned, we can find a bounded regular
language R ⊆ Run(A) such that Φ(R) = Φ(Run(A)). In particular, Φ(R �C) =
Φ(Run(A)�C). Closure under morphism of LPA and of bounded languages implies
that L′ = μ(R�C) is a bounded language of LPA included in L(A, C). Moreover,
Φ(L(A, C)) = Φ(μ(R�C)), and thus, equals Φ(L′). �

3.2. Parikh automata and reversal-bounded counter machines

Klaedtke and Rueß noticed in [16] that Parikh automata recognize the same lan-
guages as reversal-bounded counter machines, a model introduced by Ibarra [12]:

Definition 3.12 (reversal-bounded counter machine [12]). A one-way, k-counter
machine M is a 5-uple (Q, Σ, δ, q0, F ) where Q is a finite set of states, Σ is an
alphabet, δ ⊆ Q× (Σ∪{})×{0, 1}k×Q×{S, R}×{−1, 0, +1}k is the transition
function, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states. Moreover,
we suppose  �∈ Σ. The machine is deterministic if for any (p, 
, x), there exists
at most one (q, h, v) such that (p, 
, x, q, h, v) ∈ δ. On input w, the machine starts
with a read-only tape containing w, and its head on the first character of w. Let
ci be the value of the i-th counter, then a transition (p, 
, x, q, h, v) ∈ δ is taken if
the machine is in state p, reading character 
, and ci = 0 if xi = 0 and ci > 0 if
xi = 1, for all i. The machine then enters state q, its head is moved to the right
iff h = R, and v is added to the counters. If the head falls off the tape, or if a
counter turns negative, the machine rejects. A word is accepted if an execution
leads to a final state. The machine is reversal-bounded (RBCM) if there exists an
integer r such that any accepting run changes between increments and decrements
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of the counters a (bounded) number of times less than r. We write DetRBCM for
deterministic RBCM. We write LRBCM (resp. LDetRBCM) for the class of languages
recognized by RBCM (resp. DetRBCM).

In [16], Section A.3, it is shown that PA have the same expressive power as
(nondeterministic) RBCM. Although Fact 30 of [16], on which the authors rely to
prove that LRBCM ⊆ LPA, is technically false as stated,4 the small gap there can
be fixed so that:

Proposition 3.13 ([16]). LPA = LRBCM.

Proof. We sketch LRBCM ⊆ LPA for completeness and reprove LPA ⊆ LRBCM to
extract a more precise structure on the constructed RBCM – this will prove useful
when comparing the notion of determinism in both models.

(LRBCM ⊆ LPA). First, it is known [12] that any RBCM language can be ex-
pressed as an RBCM which makes at most one change between increment and
decrement on each of its counters. Then a counter can be seen as being in one
of three different states: (1) never incremented, (2) incremented but never decre-
mented, (3) decremented. When a counter is in state (1), we may simulate the
behavior of the RBCM with the counter set to zero. Similarly, when a counter is
in state (2), we may simulate the behavior of the RBCM with this counter set to
a nonzero value. Lastly, when in state (3), we may guess at some point that the
counter reached zero, and act for the rest of the execution as if the counter is actu-
ally zero (thus not making any modification to this counter). Now, when in states
(1) and (2), the behavior of the RBCM w.r.t. the counter can be simulated using
a finite automaton; in state (3), the guess can be taken with a finite automaton,
but we must check that the guess was taken at the right moment. Thus we use a
PA to count the number of increments and decrements, and we check at the end
of the computation that the latter is no greater than the former, and that these
are equal iff the counter has been guessed to be zero at some point. Finally, the
transitions between the different states can be made knowing only the transitions
of the RBCM. This gives the required PA for the RBCM.

(LPA ⊆ LRBCM). Let (A, C) be a CA, where A = (Q, Σ, δ, q0, F ) and let
δ = {t1, . . . , tk}. We define a RBCM of the same language in two steps. (1). First,
let M be the k-counter machine (Q ∪ {qf}, Σ, ζ, q0, qf ), where qf �∈ Q and ζ is
defined by:

ζ =
⋃

x ∈ {0, 1}k

1 ≤ i ≤ k

{(From(ti), μ(ti), x, To(ti), R, ei)} ∪
⋃

x ∈ {0, 1}k

q ∈ F

{(q, , x, qf , S, 0)
}
.

4Fact 30 of [16] states the following. Consider a RBCM M which, for any counter, changes
between increment and decrement only once. Let M ′ be M in which negative counter values are
allowed and the zero-tests are ignored. Then a word is claimed to be accepted by M iff the run of
M ′ on the same word reaches a final state with all its counters nonnegative. A counter-example
is the following. Take A to be the minimal automaton for a∗b, and add a counter for the number
of a’s that blocks the transition labeled b unless the counter is nonzero. This machine recognizes
a+b. Then by removing this test, the machine now accepts b.
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This machine does not make any test, and accepts (in qf ) precisely the words
accepted by A. Moreover, the state of the counters in qf is the Parikh image of
the path taken (in A) to recognize the input word. (2) We then refine M to check
that the counter values belong to C. We note that we can do that as a direct
consequence of the proof of [13], Theorem 3.5, but this proof relied on nontrivial
algebraic properties of systems My = b, where M is a matrix, y are unknowns,
and b is a vector; we present here a proof based on a logical characterization
of semilinear sets. Recall that C can be expressed as a quantifier-free first-order
formula which uses the function symbol +, the congruence relations ≡i, for i ≥ 2,
and the order relation < (see, e.g., [6]). So let C be given as such formula φC with
k free variables. Let φC be put in disjunctive normal form. The machine M then
tries each and every clause of φC for acceptance. First, note that a term can be
computed deterministically with a number of counters and reversals which depends
only on its size. For instance, computing ci+cj requires two new counters x, y: ci is
decremented until it reaches 0, while x and y are incremented, so that their value
is ci, now y is decremented until it reaches 0 while ci is incremented back to its
original value, finally the same process is applied with cj, and as a result x is now
ci + cj . Second, note that any atomic formula (t1 < t2 or t1 ≡i t2) can be checked
by a DetRBCM: for t1 < t2, compute x1 = t1 and x2 = t2, then decrement x1

and x2 until one of them reaches 0, if the first one is x1, then the atomic formula
is true, and false otherwise; for t1 ≡i t2, a simple automaton-based construction
depending on i can decide if the atomic formula is true. Thus, a DetRBCM can
decide, for each clause, if all of its atomic formulas (or negation) are true, and in
this case, accept the word. This process does not use the read-only head, and uses
a number of counters and a number of reversals that depend only on the length
of φC . �

Further, we study how the notion of determinism compares in the two models.
Let NSUM = {an♠bm1#bm2# . . . #bmk♣cm1+...+mn | k ≥ n ≥ 0 ∧mi ∈ N}: the
number of a’s is the number of mi’s to sum to get the number of c’s. Note that
NSUM is not context-free. Then:

Proposition 3.14. LDetPA � LDetRBCM and NSUM ∈ LDetRBCM \ LDetPA.

Proof. The inclusion LDetPA ⊆ LDetRBCM follows from the Proof of Proposi-
tion 3.13, as the resulting RBCM is deterministic if the given CA is.

We now show that NSUM ∈ LDetRBCM\LDetPA. We omit the fact that NSUM ∈
LDetRBCM. Now suppose (A, C) is a DetPA such that L(A, C) = NSUM, with
A = (Q, Σ ×D, δ, q0, F ). As (A, C) is a DetPA, A is deterministic – it is indeed
already deterministic with respect to the first component of the labels. We may
suppose that the projection on Σ of L(A) is a subset of a∗♠(b∗#)∗b∗♣c∗, so that
there exist k ≥ 0, q1, . . . , qk ∈ Q, and j ∈ {0, . . . , k} such that (qi, (a, vi), qi+1) ∈ δ,
for 0 ≤ i < k and some vi’s, and (qk, (a, vk), qj) ∈ δ. Moreover, we may suppose
that no other transition points to one of the qi’s, and that all transitions t =
(qi, (
, v), q) ∈ δ such that q �∈ {q0, . . . , qk} are with 
 = ♠; let T be the set of all
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such transitions t. Graphically, A looks like:

q0

a∗ (b∗#)∗b∗♣c∗

t

(♠, v)

(♠, ·)

We define |T | DetPA such that the union of their languages is SUMN =
{♠w♥an | an♠w ∈ NSUM}, that is, the strings of NSUM with an pushed at
the end. For t ∈ T , define At as the automaton similar to A but which starts with
the transition t and delay the first part of the computation until the very end;
graphically, At is:

q0

a∗ (b∗#)∗b∗♣c∗
q′0

t

(♠, v)

(♥, 0)

Formally, At = (Q∪{q′0}, Σ×D, δt, q
′
0, {From(t)}) where q′0 is a fresh (i.e., new)

state and:

δt = (δ \ T ) ∪ {(q′0, μ(t), To(t))} ∪ {(qf , (♥, 0), q0) | qf ∈ F}.
Now for ω ∈ L(A), let t be the transition labeled ♠ taken when A reads ω,

and let ω = ω1μ(t)ω2. Then μ(t)ω2(♥, 0)ω1 ∈ L(At), and this word has the same
extended Parikh image as ω. Thus we have that

⋃
t∈T L(At, C) = SUMN, and if

NSUM ∈ LDetPA, then SUMN ∈ LDetPA, as LDetPA is closed under union (see
Fig. 1). We now show that SUMN /∈ LDetPA, thus leading to a contradiction
showing the result. Suppose SUMN ∈ LDetPA and let 
, p be given by Lemma 3.6
for SUMN. Consider w = ♠(bp#)�. Lemma 3.6 then asserts that a prefix of w
can be written as w1 = uvxv, and that w2 = uv2x verifies w1 ≡ w2. As |x| > p
and v is nonempty, x contains a #; moreover, v does not contain ♠. Let s =
|w1|# = |w2|# and let ni be the number of b’s before the position of the s-th
# in wi, i = 1, 2. Suppose v ∈ b+, then n1 < n2, thus w1♣cn1♥as ∈ SUMN



AFFINE PARIKH AUTOMATA 523

and w2♣cn1♥as �∈ SUMN, a contradiction. Suppose then that v = bi#bj , with 0 ≤
i+j < p. Similarly, as i+j < p, n2 < n1, and again, w1 �≡ w2, a contradiction. Thus
SUMN �∈ LDetPA. �

The parallel drawn between (Det)PA and (Det)RBCM allows transferring some
RBCM and DetRBCM results to PA and DetPA. An example is a consequence of
the following lemma proved in 2011 by Chiniforooshan et al. [5] for the purpose
of showing incomparability results between different models of reversal-bounded
counter machines:

Lemma 3.15 ([5]). Let a DetRBCM express L ⊆ Σ∗. Then there exists w ∈ Σ∗

such that L ∩ wΣ∗ is a nontrivial regular language.

Using this lemma, variants of the language EQUAL from Proposition 3.8 can
be shown outside LDetPA. For instance, for Σ = {a, b}, ΣANBN = Σ∗ ·{anbn | n ∈
N+} is such that any w ∈ Σ∗ makes ΣANBN ∩ wΣ∗ nonregular. Although
Lemma 3.15 thus gives languages in LPA \ LDetPA, Lemma 3.15 seemingly does
not apply to EQUAL itself since EQUAL ∩#{a, b, #}∗ = {#} is regular.

3.3. On decidability and closure properties of Parikh automata

In this section we justify the PA and DetPA line entries in Figure 1. The known
decidability results depicted there (in boldface) are from [12,17], and Karianto [15]
provided detailed proofs.

Proposition 3.16. (1) Finiteness is decidable for PA; (2) inclusion is decidable
for DetPA and undecidable for PA; (3) regularity is undecidable for PA.

Proof.
(1), (2) These decidability properties follow directly from the same properties

for RBCM and DetRBCM [14], the effective equivalence between PA and RBCM
(Prop. 3.13), and the effective inclusion of LDetPA in LDetRBCM (Prop. 3.14).

(3) This follows from a theorem of [11], which states the following. Let C be
a class of languages closed under union and under concatenation with regular
languages. Let P be a predicate on languages true of every regular language, false
of some languages, preserved by inverse rational transduction, union with {ε} and
intersection with regular languages. Then P is undecidable in C. Obviously, LPA

satisfies the hypothesis for C. Moreover, “being regular in LPA” is a predicate
satisfying the hypothesis for P . Thus, regularity is undecidable for PA. �

We now turn to closure properties:

Proposition 3.17. (1) LDetPA is not closed under concatenation; (2) LDetPA is
not closed under nonerasing morphisms; (3) both LPA and LDetPA are closed under
commutative closure; (4) neither LPA nor LDetPA is closed under starring.
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Proof.
(1) The language EQUAL separating LDetPA from LPA is the concatenation

of a regular language and a language of LDetPA, implying the nonclosure under
concatenation.

(2) We note that any language of LPA is the image by a nonerasing morphism
of a language in LDetPA. Indeed, say (A, C) is a CA and let B be the deterministic
automaton of language Run(A) defined as a copy of A in which the transition t
is relabeled t (i.e., (p, a, q) � (p, (p, a, q), q)). Then (B, C) is a DetCA such that
L(A, C) = μA(L(B, C)). This implies the nonclosure of LDetPA under nonerasing
morphisms.

(3) Let Σ = {a1, . . . , an}, L ⊆ Σ∗ a semilinear language, and C = Φ(L). Define
A to be an automaton with one state, initial and final, with n loops, the i-th labeled
(ai, ei) ∈ Σ × {ei}1≤i≤n. Then c(L) = L(A, C). This implies that both LPA and
LDetPA are closed under commutative closure, as both are classes of semilinear
languages [17].

(4) We show that the starring of L = {anbn | n ∈ N} is not in LPA. Suppose
L∗ ∈ LPA, and let w = (apbp)�, where 
, p are given by Lemma 3.5. The same
lemma asserts that w = uvxvz, such that, in particular, uv2xz and uxv2z are
in L∗. Now suppose v = ai for some i ≤ p. Then uv2x contains ap+ibp with no
more b’s on the right. Thus uv2xz �∈ L∗. The case for v = bi is similar. Now
suppose v = aibj with i, j > 0. Then uv2x contains . . . apbjaibp . . ., but i < p, thus
uv2xz �∈ L∗. The case v = biaj is similar. Thus L∗ �∈ LPA. �

Remark 3.18. Baker and Book [1] already note, in different terms, that if LPA

were closed under starring, it would be an intersection closed full AFL contain-
ing {anbn | n ≥ 0}, and so would be equal to the class of Turing-recognizable
languages. Thus LPA is not closed under starring.

4. Affine Parikh automata

A PA of dimension d can be viewed as an automaton in which each transition
updates a vector x of Nd using a function x ← x + v where v depends only on
the transition. At the end of an accepting computation, the word is accepted if x
belongs to some semilinear set. We propose to generalize the updating function to
an affine function. We start by defining the model, and show that defining it over
N is as general as defining it over Q. We study the expressiveness of this model
and show it is strictly more powerful than PA. We then study its (non)closure
properties and related decidability problems, leading to the observation that the
model lacks some desirable properties – e.g., properties usually needed for any
real-world application.

Let d, d′ > 0. In the following, we consider the vectors in Kd to be column
vectors. A function f : Kd → Kd′

is a (total) affine function if there exist a matrix
M ∈ Kd′×d and v ∈ Kd′

such that for any x ∈ Kd, f(x) = M.x + v; it is linear
if v = 0. We note such a function (M, v) and abusively write f = (M, v). We
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write FK
d for the set of affine functions from Kd to Kd and view FK

d as the monoid
(FK

d , �) with (f � g)(x) = g(f(x)).

Definition 4.1 (affine Parikh automaton). A K-affine Parikh automaton
(K-APA) of dimension d is a triple (A, U, C) where A = (Q, Σ, δ, q0, F ), U is
a morphism from δ∗ to FK

d and C ⊆ Kd is a K-definable set; recall that U
need only be defined on δ, and that, in particular, U(ε) is the identity function.
To simplify the notations, we write Uπ for U(π). The language of the APA is
L(A, U, C) = {μ(π) | π ∈ Run(A) ∧ Uπ(0) ∈ C}. The K-APA is said to be deter-
ministic (K-DetAPA) if A is. We write LK-APA (resp. LK-DetAPA) for the class of
languages recognized by K-APA (resp. K-DetAPA).

Remark 4.2. It is easily seen that N-APA (resp. N-DetAPA) are a generalization
of CA (resp. DetCA). Indeed, let (A, C) be a CA and define, for t ∈ δ, Ut =
(Id , Φ(t)) where Id is the identity matrix of dimension |δ| × |δ|. Then L(A, C) =
L(A, U, C). We will later see that this containment is strict.

We present a normal form for APA that is similar to a normal form given for
PA by Karianto [15]:

Lemma 4.3. Every K-APA (A, U, C) of dimension d has the same language as
another K-APA (A′, U ′, C′) of dimension d+1 with the three following properties:

(i) the initial state of A′ has no incoming transition;
(ii) the automaton A′ is complete;
(iii) every state of A′ is final.

The same holds for K-DetAPA.

Proof. Let (A, U, C) be a K-APA of dimension d where A = (Q, Σ, δ, q0, F ),
U : δ∗ → FK

d , and C ⊆ Kd. We ensure incrementally the three properties; that
is, we assume for each property that the previous ones hold.

Ensuring (i). We define (A′, U ′, C′) as follows: A′ = (Q′, Σ′, δ′, q′0, F
′), where

Q′ = Q ∪ {qfresh}, with qfresh a fresh state; Σ′ = Σ; δ′ = δ ∪ δfresh with δfresh =
{(qfresh, a, q) | (q0, a, q) ∈ δ}; q′0 = qfresh; if q0 ∈ F , then F ′ = F ∪ {qfresh} and
otherwise F ′ = F . Note that A′ is deterministic if A is, and that L(A) = L(A′). We
define U ′ : δ′ → FK

d as follows. For (qfresh, a, q) ∈ δfresh, U ′
(qfresh,a,q) = U(q0,a,q) and

for t ∈ δ, we have U ′
t = Ut. Finally, we let C′ = C. Then L(A, U, C) = L(A′, U ′, C′)

and (A′, U ′, C′) verifies (i).
Ensuring (ii). Now suppose (A, U, C) verifies (i). Let A′ be the automaton A

in which an additional nonfinal sink state qsink is added – that is, if a state q ∈ Q
has no outgoing transition labeled a ∈ Σ, the transition (q, a, qsink) is added to
A′, and qsink has |Σ| self-loops, labeled by each letter of Σ. The new transitions
of A′ are associated with some function (for instance, the identity or the zero
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function); the constraint set C is left unchanged. This leaves both the language
and the determinism the APA unchanged, and A′ now verifies (i) and (ii).

Ensuring (iii). Now suppose (A, U, C) verifies (i) and (ii). We define A′ as
(Q, Σ, δ, q0, Q), i.e., the automaton A with all states final. Let us define the K-APA
(A′, U ′, C′) of dimension d + 1 where we fix U ′ : δ → FK

d+1 such that the last com-
ponent of the affine functions serves as a flag: it is set to 1 if the last state reached
is in F , and 2 otherwise – this component takes the value 0 only for the empty
path. Formally, for t ∈ δ, x ∈ Kd, and f ∈ K:

U ′
t(x, f) =

(
Ut(x),

{
1 if To(t) ∈ F,

2 otherwise

)
.

Let us remark that the ability of APA to use constant functions (and not only
translations, as in PA) allows to simplify the construction given by Karianto [15].
Finally, if ε ∈ L(A, U, C), we let C′ = C × {1} ∪ {0d+1}, and otherwise, we let
C′ = C ×{1}. We argue that L(A, U, C) = L(A′, U ′, C′). For the empty word, the
construction is such that ε ∈ L(A, U, C)→ ε ∈ L(A′, U ′, C′). Now if ε /∈ L(A, U, C)
then U ′

ε(0) = 0 /∈ C′, thus ε /∈ L(A′, U ′, C′). Now let w be a nonempty word in
L(A, U, C) and let π be an accepting path in A such that μ(π) = w and Uπ(0) ∈ C.
Then π is also an accepting path in A′, and as To(π) ∈ F , we have that U ′

π(0) =
(Uπ(0d), 1), and as Uπ(0) ∈ C, we have that U ′

π(0) ∈ C × {1}. Hence μ(π) = w is
in L(A′, U ′, C′). Conversely, suppose w is a nonempty word in L(A′, U ′, C′) and
let π be an accepting path in A′ such that μ(π) = w and U ′

π(0) ∈ C′. Then π is
a path in A, and as U ′

π(0) = (Uπ(0d), 1), we have that To(π) ∈ F and Uπ(0) ∈ C,
thus μ(π) = w is in L(A, U, C).

We may verify that (A′, U ′, C′) satisfies the three properties and that the
language L(A′, U ′, C′) is equal to the language L(A, U, C). Moreover, A′ is de-
terministic if A is. �

4.1. Affine Parikh automata on Q and N

In this section, we show that the expressive power of affine Parikh automata is
independent from the choice of K. We first show that the constraint set can have
a similar form in the two cases. We call basic formula a quantifier-free formula
which uses the function symbols + for addition and λn, n ∈ N, for scalar multi-
plication, together with the relation symbol < and constants from N – equality
is expressible, as t1 = t2 is equivalent to ¬(t1 < t2) ∧ ¬(t2 < t1). Of course, the
scalar multiplication λn(t) can be replaced by t + . . . + t where t appears n times,
but its inclusion simplifies the proofs slightly. We remark, for future reference, the
following property of basic formulas. For v a vector of natural numbers and φ a
basic formula, the fact that φ is true of v is independent of the underlying model,
whether it is Q or N. In symbols, Q |= φ(v) iff N |= φ(v).
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The following lemma shows in particular that the constraint set of Q-APA can
be expressed as a basic formula:

Lemma 4.4. Every Q-definable set can be expressed as a basic formula.

Proof. Recall that a Q-definable set can be expressed with a quantifier-free
formula φ. Thus, we need only get rid of the c’s not in N appearing either as
λc or as a constant in φ. First, note that we can suppose that if λc(t) appears
in φ, with t a term, then t is some variable: we simply apply the distributivity
of λc (i.e., replace λc(t1 + t2) by λc(t1) + λc(t2) and λc(λc′(t)) by λc×c′(t)), then
replace λc(c′) with c′ a constant by the constant c× c′, neither of those operations
changing the set defined. Second, we take care of the negative c’s. For any atomic
formula t1 < t2 appearing in φ, if the constant c < 0 appears in t1, we remove it
from t1 and add −c to t2; if c < 0 appears as λc(x) in t1, with x a variable, we
remove it from t1 and add λ−c(x) to t2 (the same goes with t1 and t2 switched).
Third and last, we take care of the denominators: let N be the product of all the
denominators appearing in the reduced fractions of the c’s appearing in φ. Then
any atomic formula t1 > t2 is replaced with the atomic formula t′1 > t′2 where any
c (appearing either as a constant or as λc) is replaced by N×c: the fact that c ≥ 0
implies that (N × c) ∈ N. Moreover, for any assignment, the value of t′1 (resp. t′2)
is N times the value of t1 (resp. t2), hence, the value of t1 is greater than the value
of t2 iff the same holds for t′1 and t′2. �

Over N, the automaton is needed to incorporate some of the constraint set:

Lemma 4.5. Every N-APA (A, U, C) has the same language as another N-APA
(A, U ′, C′) where C′ can be expressed as a basic formula. The same holds for
N-DetAPA.

Proof. Recall that a semilinear set can be expressed as a basic formula with the
additional relations ≡p, expressing congruence (e.g., [6]). Thus we need only get
rid of these relations. To do so, we equip the affine functions to compute their own
value modulo p.

Let (A, U, C) be an N-APA (resp. N-DetAPA) of dimension d for which we
suppose the initial state of A has no incoming transition (Lem. 4.3), and let
φ(x1, . . . , xd) be the formula for C of the form previously mentioned (i.e., a basic
formula with the additional relations ≡p). Suppose φ is not a basic formula, then
there is a p such that ≡p appears in φ. We define (A, U ′, C′) of the same language
as (A, U, C) with C′ expressed by φ in which the ≡p relation, for this specific
p, is replaced by some basic formulas. Applying this process repeatedly gives an
N-APA (resp. N-DetAPA) of the same language with its constraint set expressible
as a basic formula.

Our goal is to modify U so that for each v ∈ {0, . . . , p−1}d, there is an additional
variable mv available to φ which is set to 1 iff the value of xi modulo p is vi, for
all 1 ≤ i ≤ d (thus only one of the mv’s can be set to 1). With this information
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available, all the atomic formulas of the form t1 ≡p t2, for this specific p, can be
rewritten without ≡p using a basic formula:

t1 ≡p t2 �
∨

v ∈ {0, . . . , p− 1}d
t1(v) ≡p t2(v)

(mv = 1).

Let t be a transition of A; we give U ′
t ∈ FN

d+pd . In order to do this, we define
an additional 0-1-matrix Mt of dimension pd × pd, which we index by vectors
in {0, . . . , p − 1}d in some natural way (in particular, 0d is the index of the
first row). We let Mt[u, v] = 1 iff u = Ut(v) mod p, where the modulo is taken
component-wise.

We are now ready to define U ′
t(x, m), for x ∈ Nd and m ∈ Npd

. If t is an outgoing
transition of the initial state of A, then U ′

t(x, m) = (Ut(x), Mt.(1, 0)), where (1, 0) is
the column vector (1, 0, . . . , 0) ∈ Npd

. Otherwise, we let U ′
t(x, m) = (Ut(x), Mt.m).

Note that in both definitions, U ′
t is indeed an affine function. Now with m1 (resp.

m2) the vector in {0, 1}pd

having a 1 only in position x mod p (resp. Ut(x) mod p),
we have U ′

t(x, m1) = (Ut(x), m2). Moreover, the initial value of x being 0d, those
hypotheses are established at the first transition taken. Thus for a nonempty path
π, and with m the vector in {0, 1}pd

having a 1 only in position Uπ(0d) mod p, we
have: U ′

π(0) = (Uπ(0d), m).
As previously discussed, φ can now be rewritten as φ′ without the use of ≡p:

φ′ has access to the usual variables x1, . . . , xd and to variables mv for v ∈
{0, . . . , p − 1}d. We take care of the empty word by letting φ′ consider m0 to
be 1 if no other mv variable is set. Thus, with C′ the set defined by φ′, we have
that L(A, U, C) = L(A, U ′, C′) and φ′ has one less p appearing as ≡p than φ. �

Before proving the main result of this section, we show that affine functions, in
their full generality, are not needed within K-APA or K-DetAPA:

Lemma 4.6. The language of any K-APA is also the language of a K-APA in
which every affine function is either constant or linear – for both K = Q and
K = N. Moreover, the first transition of a run is always associated with a constant
function. The same holds for K-DetAPA.

Proof. Let (A, U, C) be a K-APA (resp. K-DetAPA) of dimension d and suppose,
thanks to Lemma 4.3, that the initial state of A has no incoming transition. We
define a K-APA (resp. K-DetAPA) (A′, U ′, C′) where the outgoing transitions of
the initial state of A initialize the registers with the values of all the constant
parts given by U . Specifically, we define the morphism U ′ : δ′ → FK

d+dn as follows.
Identify the transition set of A with {t1, . . . , tn}, write Uti = (Mi, vi), for i ∈
{1, . . . , n}, and define v̂ = (v1, . . . , vn) ∈ Kdn. Then for t an outgoing transition of
the initial state, U ′

t is the constant function with value (Ut(0d), v̂); for the other
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ti’s, we set U ′
ti

(x, y1, . . . , yn) = (Mi.x + yi, y1, . . . , yn), and in this case, U ′
ti

is the
linear function (M ′

i , 0) where here and in the following 0 is of dimension d + dn
and:

M ′
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mi d · · · d Idd d · · · d

d

...

...

...

...

...

d

Iddn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(i + 1)-th block of width d

with �k (resp. Idk) the zero (resp. identity) matrix of dimension k× k. Finally, we
let C′ = C ×Kdn.

We now show that L(A, U, C) = L(A, U ′, C′). First, ε ∈ L(A, U, C) iff ε ∈ L(A)
and Uε(0) = 0 ∈ C, the latter being equivalent to U ′

ε(0) = 0 ∈ C′, thus ε ∈
L(A, U, C) iff ε ∈ L(A, U ′, C′). Now let π be a path in A starting from the initial
state. Suppose |π| = 1 then U ′

π(0) = (Uπ(0d), v̂). For |π| > 1, let π = ρt, then:

U ′
π(0) = U ′

t(U
′
ρ(0)) =

by induction

U ′
t(Uρ(0d), v̂) = (Uπ(0d), v̂).

Thus let w be a nonempty word in L(A, U, C) and let π be an accepting path
in A labeled w and such that Uπ(0) ∈ C. Then U ′

π(0) = (Uπ(0d), . . .) which is in
C × Kdn = C′, thus w ∈ L(A, U ′, C′). Conversely, let w be a nonempty word in
L(A, U ′, C′) and let π be an accepting path in A labeled w such that U ′

π(0) ∈ C′.
We have that U ′

π(0) = (Uπ(0d), . . .) is in C′ = C × Kdn, thus Uπ(0d) ∈ C and
w ∈ L(A, U, C). �

We are now ready to show that the choice of K in APA does not influence the
class of languages defined:

Theorem 4.7. LQ-DetAPA = LN-DetAPA and LQ-APA = LN-APA. Moreover, these
correspondences are effective and do not change the underlying automaton.

Proof. (LQ-APA ⊆ LN-APA and LQ-DetAPA ⊆ LN-DetAPA). Let (A, U, C) be a
Q-APA (resp. Q-DetAPA) of dimension d, with δ the set of transitions of A.
The underlying automaton A will remain the same throughout the proof.



530 M. CADILHAC ET AL.

We suppose that the empty word is not in L(A) it is a simple task to add it
back at the very end of this construction if needed. Thanks to Lemma 4.6, we
assume that all the functions given by U are either linear or constant. Lemma 4.4
then asserts that C is expressible as a basic formula φ. We first ensure that no
constant appears in φ by replacing each of them by a variable (e.g., if λ3(x) + 8
is a term in φ, we replace it by λ3(x) + y where y is a new variable). Let φ′ be
this modified formula and, for c1 < c2 < . . . < cp ∈ K he increasing sequence of
the p constants that appear in φ, let y1, y2, . . . , yp be the associated sequence of
new variables. We now update U so that it gives the value ci to yi, for all i. Let
c = (c1, c2, . . . , cp) and define U ′ from U as follows. For t such that Ut is constant,
set U ′

t(x1, x2) = (Ut(0d), c), which is still a constant function; and for t such that
Ut is linear, set U ′

t(x1, x2) = (Ut(x1), x2), which is also still linear. We let C′ be
the set described by φ′; it verifies {x | (x, c) ∈ C′} = C. As the first transition of
any run in A is associated, by U , with a constant function, any nonempty run π in
A verifies U ′

π(0) = (Uπ(0d), c). Thus the variables y1, . . . , yp of φ′ are indeed set to
c1, . . . , cp, implying that L(A, U, C) = L(A, U ′, C′). From now on we denote d + p
by n.

We now change U ′ so that the constants and matrices appearing in the U ′
t’s

are all integer-valued. Let N be the product of all the denominators appearing
in the reduced fractions of the entries of the matrices and vectors given by U ′.
By defining U ′′

t = N × U ′
t, we thus ensure that all the values appearing in the

definition of U ′′
t are integers, hence U ′′ is a function from δ∗ to FZ

n . Moreover, as
all the functions are either linear or constant, this implies that for any path π,
there is a k ≤ |π| such that U ′′

π = Nk × U ′
π. But as all the atomic formulas of φ′

are of the form t1 < t2 where no constant appears and all the λc have c > 0, we
have that φ′(v) is true iff φ′(K × v) is true. Thus L(A, U, C) = L(A, U ′′, C′).

Finally, we change U ′′ and C′ so that they are N-valued. We define U ′′′ as U ′′

where the positive and negative computations are made in different components.
Consider U ′′

t as n affine functions from Qn to Q: U ′′
t (x) = (f1(x), . . . , fn(x)). Then

let 1 ≤ i ≤ n, and write fi(x) = c +
∑n

j=1 vj × xj .
Let us write J+ = {1 ≤ j ≤ n | vj ≥ 0} and J− = {1 ≤ j ≤ n | vj < 0}. Now,

we define f+
i and f−

i by:

f+
i (x+, x−) = max(c, 0) +

∑
j∈J+

|vj | × x+
j , and,

f−
i (x+, x−) = |min(c, 0)|+

∑
j∈J−

|vj | × x−
j .

Now define U ′′′
t : N2n → N2n as U ′′′

t (x+, x−) = (f+
1 , f−

1 , . . . , f+
n , f−

n )(x+, x−),
where x+, x− ∈ Nn. The main property of this construction is that for a path π,
we have:

U ′′′
π (0) = (a+

1 , a−
1 , . . . , a+

n , a−
n ) ⇒ U ′′

π (0) = (a+
1 − a−

1 , . . . , a+
n − a−

n ).
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Thus define C′′ as:

C′′ = {(a+
1 , a−

1 , . . . , a+
n , a−

n ) | (a+
1 − a−

1 , . . . , a+
n − a−

n ) ∈ C′}.
Now C′′ is a Q-definable set because C′ is Q-definable, thus C′′ is expressible
as a basic formula. But basic formulas on natural numbers take their truth val-
ues regardless of whether K = N or K = Q, thus C′′ ∩ N2n is N-definable.
Finally, (A, U ′′′, C′′ ∩ N2n) is an N-APA (resp. N-DetAPA) of the same language
as (A, U, C).

(LN-APA ⊆ LQ-APA and LN-DetAPA ⊆ LQ-DetAPA). This is a consequence of
Lemma 4.5. Let (A, U, C) be an N-APA (resp. N-DetAPA). Now, by Lemma 4.5,
let (A, U ′, C′) be an N-APA (resp. N-DetAPA) with the same language and with
C′ expressible as a basic formula. The fact that basic formulas take their truth
value on natural numbers regardless of the underlying model implies that there
exists a Q-definable set C′′ such that C′′ ∩ Nd = C′ – this is the set described by
the basic formula for C′ interpreted in Q – and thus (A, U ′, C′′) is a Q-APA (resp.
Q-DetAPA) of the same language as (A, U, C). �

The previous result allows us to write LDetAPA for LQ-DetAPA = LN-DetAPA and
LAPA for LQ-APA = LN-APA.

4.2. Closure properties of LAPA and LDetAPA

The pointed concatenation of L and L′ is any language of the form L · {#} ·L′

where # does not appear in a word of L. The arguments used by Klaedtke and
Rueß [16] apply equally well to K-APA and K-DetAPA, showing:

Proposition 4.8. (1) LAPA is closed under union, intersection, concatenation,
nonerasing morphisms, and inverse morphisms; (2) LDetAPA is closed under union,
intersection, inverse morphisms, complement, and pointed concatenation.

Proof. (Union and intersection). Let (A′, U ′, C′) and (A′′, U ′′, C′′) be two K-APA
(resp. K-DetAPA) of dimension d′ and d′′, respectively, and suppose that A′ and A′′

are complete and with every state final (Lem. 4.3). We suppose moreover, w.l.o.g.,
that the alphabets of the automata are the same. Let L′ = L(A′, U ′, C′) and
L′′ = L(A′′, U ′′, C′′). We construct two K-APA (resp. K-DetAPA) (A, U, C∪) and
(A, U, C∩) such that their languages are the union and intersection, respectively,
of L′ and L′′. Let A′ = (Q′, Σ′, δ′, q′0, Q′) and A′′ = (Q′′, Σ′, δ′′, q′′0 , Q′′), and define
the Cartesian product of A′ and A′′ by A = (Q′×Q′′, Σ′, δ, (q′0, q

′′
0 ), Q′×Q′′) with:

δ = {((p′, p′′), a, (q′, q′′)) | (p′, a, q′) ∈ δ′ ∧ (p′′, a, q′′) ∈ δ′′}.
This automaton is deterministic if both A′ and A′′ are. Define h′ (resp. h′′), to be
the morphism from δ∗ to (δ′)∗ (resp. to (δ′′)∗) such that h′((p′, p′′), a, (q′, q′′)) =
(p′, a, q′) (resp. h′′((p′, p′′), a, (q′, q′′)) = (p′′, a, q′′)); the fact that A′ and A′′ are
complete implies that for any run π′ in A′ and π′′ in A′′ with the same label, there
is a run π in A such that h′(π) = π′ and h′′(π) = π′′. Then we let U : δ∗ → FK

d′+d′′



532 M. CADILHAC ET AL.

compute the values of U ′ in the first d′ components and the values of U ′′ in the
last d′′ components, that is, for x′ ∈ Kd′

, x′′ ∈ Kd′′
, and t ∈ δ:

Ut(x′, x′′) = (U ′
h′(t)(x′), U ′′

h′′(t)(x′′)).

Finally, we let C∪ = C′ × Kd′′ ∪ Kd′ × C′′ and C∩ = C′ × C′′. We argue that
L(A, U, C∪) = L′ ∪ L′′ and L(A, U, C∩) = L′ ∩ L′′.

Let π be a run in A. Then h′(π) is a run in A′, h′′(π) is a run in A′′, and both
have the same label as π. Moreover, Uπ(0) = (U ′

h′(π)(0
d′

), U ′′
h′′(π)(0

d′′
)). Thus if

Uπ(0) ∈ C∪ then μA(π) ∈ L(A, U, C∪), and U ′
h′(π)(0

d′
) ∈ C′ or U ′′

h′′(π)(0
d′′

) ∈ C′′,
thus μA(π) ∈ L′ ∪ L′′. Likewise, if Uπ(0) ∈ C∩ then μA(π) ∈ L(A, U, C∩), and
both U ′

h′(π)(0
d′

) ∈ C′ and U ′′
h′′(π)(0

d′′
) ∈ C′ thus μA(π) ∈ L′ ∩ L′′.

For the converse, let w ∈ L′ and let π′ be a run in A′ such that μA′(π′) = w
and (U ′(π′))(0) ∈ C′. Then there is a run π in A such that h′(π) = π′. Moreover,
Uπ(0) = ((U ′(h′(π)))(0), (U ′′(h′′(π)))(0)) which is in C′×Kd′′

, thus in C∪, and thus
w ∈ L(A, U, C∪). Likewise, if w ∈ L′′, then w ∈ L(A, U, C∪). Now let w ∈ L′ ∩L′′,
and let π′ (resp. π′′) be a run in A′ (resp. A′′) such that μA′(π′) = w and U ′

π′(0d′
) ∈

C′ (resp. μA′′(π′′) = w and U ′′
π′′(0d′′

) ∈ C′′). There exists a path π in A such that
h′(π) = π′ and h′′(π) = π′′, and it is such that Uπ(0) = (U ′

h′(π′)(0), U ′′
h′′(π′)(0))

which is in C′ × C′′, that is, C∩, thus w ∈ L(A, U, C∩).

(Inverse morphisms). We first tackle the K-DetAPA case, which is based on
the classical construction on finite automata and followed by the addition of
the affine functions. Let (A, U, C) be a K-DetAPA over the alphabet Σ, and let
h : Σ′∗ → Σ∗ be a morphism; we will give a K-DetAPA (A′, U ′, C) for the lan-
guage h−1(L(A, U, C)). We first construct A′ such that its language is h−1(L(A)).
Let A = (Q, Σ, δ, q0, F ), and write Path(q, u, q′) for the only path in A from q
to q′ labeled u if it exists, ⊥ otherwise. Further, we let Path(q, ε, q) = ε, i.e.,
we consider that the empty path is going and ending in any given state. Then
A′ = (Q, Σ′, δ′, q0, F ) where:

δ′ = {(q, a, q′) ∈ Q×Σ′ ×Q | Path(q, h(a), q′) �= ⊥}.
The automaton A′ is such that L(A′) = h−1(L(A)) and is deterministic.
In particular, if h(a) = ε, then a loop labeled a appears on each state.

When a word w is read in A′ from some state q to a state q′, the equivalent action
in A is to take the path Path(q, h(w), q′); thus we let U ′

(q,a,q′) = UPath(q,h(a),q′), and
in particular, if a transition is labeled with a letter a such that h(a) = ε, then the
associated function is the identity. Then for π′ a path in A′ and π its counterpart in
A (that is, π = Path(From(π′), h(μ(π′)), To(π′))), we have that U ′

π′ = Uπ. Now let
w ∈ L(A′), π′ be the accepting path with label w in A′, and π be the accepting path
with label h(w) in A. Then U ′

π′(0) = Uπ(0). Thus we have that h(w) ∈ L(A, U, C)
iff h(w) ∈ L(A) and the path π for h(w) in A is such that Uπ(0) ∈ C, which is the
case iff w ∈ L(A′) and the path π′ for w in A′ is such that U ′

π′(0) ∈ C, that is iff
w ∈ L(A′, U ′, C), concluding this case.
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We now focus on the nondeterministic case. Let (A, U, C) be a K-APA over the
alphabet Σ and let h : Σ′∗ → Σ∗ be a morphism. Here, for some states q, q′ of A,
we may have several paths from q to q′ with the same label – say we have k paths.
To circumvent this problem, we use at least k copies of the A′ of the deterministic
case: we go from the i-th copy of q to the j-th of q′ applying the affine functions
corresponding to the j-th of the k paths.

Formally, let A = (Q, Σ, δ, q0, F ). Define Paths(q, u, q′) as the set of paths in
A from q to q′ labeled u, and impose an order on this set (say, lexicographical
order). Again, we consider the empty path as going and ending in any given state,
thus we let Paths(q, ε, q) = {ε}. Let M be the maximum number of elements
in Paths(q, h(a), q′) for q, q′ ∈ Q, and a ∈ Σ′. We define an A′ similar to the
deterministic case, but duplicated M times to obtain the K-APA (A′, U ′, C) for
h−1(L(A, U, C)). For 1 ≤ i ≤ M and for a state q in A′, we write qi for a fresh
copy of q indexed by i (when q = q0 we write (q0)i as q0,i); we use this notation
to define an automaton A′ that includes M copies of the deterministic case one.
Let A′ = (Q′, Σ′, δ′, q0,1, F

′) where:

• Q′ = {qi | q ∈ Q ∧ 1 ≤ i ≤M};
• δ′ = {(qi, a, q′j) ∈ Q′ ×Σ′ ×Q′ | 1 ≤ i, j ≤ |Paths(q, h(a), q′)|};
• F ′ = {qi | q ∈ F ∧ 1 ≤ i ≤M}.

Again we have that L(A′) = h−1(L(A)). Finally, define U ′ by:

U ′
(qi,a,q′

j)
= Uπ where π is the j-th path in Paths(q, h(a), q′).

The deterministic case corresponds to M = 1, and in this case, the constructed
K-APA is the same as in the previous construction. Now suppose Paths(q, h(a), q′)
has more than two elements for some q, q′ ∈ Q and a ∈ Σ′. In particular, the two
transitions (q1, a, q′1) and (q1, a, q′2) are in A′; the affine functions associated are
such that taking the first (resp. second) transition applies the same function as
going through the first (resp. second) path of Paths(q, h(a), q′) in A′. Thus, once
again, the possible values computed by the affine functions while reading some
h(w) in A are the same as those computed while reading w in A′. By the same
token as in the deterministic case, L(A′, U ′, C) = h−1(L(A, U, C)).

(Concatenation). Let (A′, U ′, C′) and (A′′, U ′′, C′′) be two K-APA of dimen-
sion d′ and d′′, respectively, and write L′ = L(A′, U ′, C′) and L′′ = L(A′′, U ′′, C′′).
We construct a K-DetAPA (A, U, C) of dimension d′ + d′′ for L = L′ ·L′′. Here, A
is the merging of A′ and A′′, where for all transitions in A′′ from the initial state
to some state q, a transition from each final state of A′ to q with the same label
is added. We then compute U ′ and U ′′ in parallel.

Formally, let A′ = (Q′, Σ′, δ′, q′0, F
′) and A′′ = (Q′′, Σ′′, δ′′, q′′0 , F ′′), and suppose

Q′ ∩Q′′ = ∅. We assume that ε /∈ L(A′′); otherwise, if ε ∈ L′′, then L = L′ · (L′′ \
{ε}) ∪ L′, and the closure under union allows us to conclude. Define A as the
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deterministic automaton (Q, Σ, δ, q0, F ) where:

• Q = Q′ ∪Q′′, Σ = Σ′ ∪Σ′′;
• δ = δ′ ∪ δ′′ ∪ {(p, a, q) | p ∈ F ′ ∧ (q′′0 , a, q) ∈ δ′′};
• q0 = q′0 and F = F ′′.

The language of A is thus L(A′) · L(A′′). We define U : δ∗ → Kd′+d′′
so that the

d′ first components are used for the computations of A′, and the d′′ last for the
computations of A′′, i.e., for x ∈ Kd′

and y ∈ Kd′′
, we let Ut(x, y) be (U ′

t(x), y) if
t ∈ δ′, (x, U ′′

t (y)) if t ∈ δ′′, and (U(q′′
0 ,a,q)(x), y) if t = (p, a, q) /∈ δ′ ∪ δ′′. Finally, we

let C to be the K-definable set C′ × C′′.
Let π ∈ Run(A), then π can be written as π′(p, a, q)π′′ where π′ ∈ Run(A′)

and (q′′0 , a, q)π′′ ∈ Run(A′′). Conversely, for two paths π′ ∈ Run(A′), (q′′0 , a, q)π′′ ∈
Run(A′′), the path π′(To(π′), a, q)π′′ is a run in A. Moreover, in both cases, it holds
that:

Uπ(0) = (U ′
π′(0d′

), U ′′
π′′(0d′′

)).

Thus L = L(A, U, C).

(Nonerasing morphisms). Let (A, U, C) be a K-APA over the alphabet Σ and
h : Σ∗ → Σ′∗ be a nonerasing morphism, that is, for all a ∈ Σ, h(a) �= ε. We
construct a K-APA for h(L(A, U, C)) where the main task is the following. For a
letter a ∈ Σ and w = w1 . . . wn = h(a), a transition t = (q, a, q′) of A is replaced
by n transitions (q, w1, qt,1), . . . , (qt,n−1, wn, q′) where the qt,i’s are fresh states
named after the transition t. To make the proof concise, we rely on the closure
under inverse morphism of K-APA, previously shown. We give a K-APA (A′, U ′, C)
for the image of h(L(A, U, C)) under the morphism g which maps a ∈ Σ′ to a#,
for # /∈ Σ′; we then have that h(L(A, U, C)) = g−1(L(A′, U ′, C′)), concluding the
proof.

Formally, let A = (Q, Σ, δ, q0, F ) and for t ∈ δ, write q⊥t,i and q
t,i to denote
some fresh states. Let # be a symbol not in Σ′. Then A′ = (Q′, Σ′∪{#}, δ′, q0, F )
where:

• Q′ = Q ∪ {q⊥t,i, q
t,i | t ∈ δ ∧ 1 ≤ i ≤ |h(μ(t))|};
• δ′ = {(q, w1, q

⊥
t,1), (q⊥t,i, #, q
t,i), (q



t,i, wi+1, q

⊥
t,i+1), (q

⊥
t,n, #, q′) | (q, a, q′) ∈ δ ∧

w1 . . . wn = h(a) ∧ 1 ≤ i < n}.
We now adjust U ′ so that the computations of the two K-APA are the same. We
let U ′

t be the identity function for any t with From(t) /∈ Q, and for t′ = (q, a, q⊥t,1),
we let U ′

t′ = Ut. We argue that this K-APA recognizes h(L(A, U, C)) with a #
in every even position. First, L(A′) is h(L(A)) in which a # is inserted in every
even position. Next, let w1# . . . #wn# ∈ L(A′) with wi ∈ Σ′, and let π′ be a run
with this label in A′ such that U ′

π′(0) ∈ C. Let π be the corresponding path in A
defined by replacing each transition of the form (q, a, q⊥t,1) by t and removing the
other transitions. Then π is an accepting path, its label is in h−1(w1 . . . wn), and
Uπ(0) = U ′

π′(0), thus w1 . . . wn ∈ h(L(A, U, C)). Conversely, if w ∈ L(A, U, C),
then let π be a run with label w in A such that Uπ(0) ∈ C. Then the path π′ in
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A′ whose only states of the form q
t,1 are q
π1,1, . . . , q


π|π|,1 in that order is accepting

and such that U ′
π′(0) = Uπ(0) which is in C. Thus its label, which is h(w) with #

inserted in every even position, is in L(A′, U ′, C).

(Complement). Let (A, U, C) be a K-DetAPA. A word is not in L(A, U, C) iff
it is not in L(A) or, while being in L(A), the path π corresponding to the word
is such that Uπ(0) /∈ C. Thus the complement of L(A, U, C) is L(A) ∪ L(A, U, C),
which is in LK-DetAPA, semilinear sets being closed under complement.

(Pointed concatenation). This is similar to the closure under concatenation
for the nondeterministic case. Let (A′, U ′, C′) and (A′′, U ′′, C′′) be two K-DetAPA
and # a symbol not in the alphabet of A′. The main difference with the closure
under concatenation of K-APA is that the automaton A is constructed by adding
#-labeled transitions from the final states of A′ to the initial state of A′′. As # is
a symbol which is not in the alphabet of A′, this preserves the determinism. �

Remark 4.9. These closures are effective in the sense that for every operation
(e.g., intersection of K-APA), there is an algorithm which computes it (e.g., given
two K-APA computes a K-APA whose language is the intersection of the languages
of the two). Also, we give the closure of LDetAPA under pointed concatenation
because we were not able to give a construction for the usual concatenation – we
even conjecture that LDetAPA is not closed under the usual concatenation.

We now give a large class of languages belonging to LAPA in two steps. First, we
show that the language PAL of pointed palindromes, i.e., PAL = {w#wR | w ∈
{a, b}∗}, is recognized by a deterministic APA:

Proposition 4.10. PAL ∈ LDetAPA.

Proof. We sketch an N-DetAPA (A, U, C) for PAL over {0, 1}∗ rather than {a, b}.
The automaton A accepts words of the form u#v, with u, v ∈ {0, 1}∗. The
affine functions compute the value of u (resp. v) seen as a binary number
with the most (resp. least) significant bit first. Checking that those values are
equal and that |u| = |v| is then the same as checking that u = vR. Formally,
A = ({q0, q1}, {0, 1, #}, δ, q0, {q1}) where δ is defined, together with the affine
functions of U , by:

t1 = (q0, 0, q0) performs (x, p, y, 
) → (2x, 0, 0, 
 + 1),
t2 = (q0, 1, q0) performs (x, p, y, 
) → (2x + 1, 0, 0, 
 + 1),
t3 = (q0, #, q1) performs (x, p, y, 
) → (x, 1, 0, 
),
t4 = (q1, 0, q1) performs (x, p, y, 
) → (x, 2p, y, 
− 1),
t5 = (q1, 1, q1) performs (x, p, y, 
) → (x, 2p, y + p, 
− 1).

Now when reading a word u ∈ {0, 1}∗ from q0, with x, p, y, and 
 starting at 0,
the final value is (x, 0, 0, |u|) where x is the value of u seen as a binary number
with the most significant bit first. Reading u from q1 with starting value (x, 1, 0, 
)
leads to the value (x, 2|u|, y, 
− |u|) with y the value of u seen as a binary num-
ber with the least significant bit first. Thus, letting C to be the semilinear set
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{(n, n′, n, 0) | n, n′ ∈ N} means that we check, on reading u#v, that |u| = |v| and,
in this case, that u = vR, hence L(A, U, C) = PAL. �

Now recall that a semi-AFL is a family of languages closed under nonerasing
morphisms, inverse morphisms, intersection with a regular language, and union.
Define M∩(L) as the smallest semi-AFL containing L and closed under intersec-
tion. The closure properties ofM∩(PAL) are implied by those of LAPA (Prop. 4.8),
hence:

Proposition 4.11. M∩(PAL) ⊆ LAPA.

We do not know whetherM∩(PAL) ⊆ LDetAPA essentially since we do not know
whether LDetAPA is closed under nonerasing morphisms, though we conjecture it
is not.

The class M∩(PAL) contains a wide range of languages. First, the closure of
PAL under nonerasing morphisms, inverse morphisms, and intersection with reg-
ular sets is the class of linear languages (e.g., [4]5). In turn, adding closure under
intersection permits to express the languages of nondeterministic multipushdown
automata where in every computation, each pushdown store makes a bounded
number of reversals (that is, going from pushing to popping) [3]; in particular,
if there is only one such pushdown store, this corresponds to the ultralinear lan-
guages [10]. Further, as M∩(COPY) ⊆ M∩(PAL) (e.g., [4]) this implies that
COPY ∈ LAPA.

Next, we note that APA express only context-sensitive languages (CSL):

Proposition 4.12. LAPA ⊆ CSL.

Proof. Let (A, U, C) be an N-APA of dimension d, we show that L(A, U, C) ∈
NSPACE[n] (which is equal to CSL [18]). Let A = (Q, Σ, δ, q0, F ), and w =
w1 . . . wn ∈ Σ∗. First, initialize v ← 0 and q ← q0. Iterate through the letters wi

of w: on the i-th letter, choose nondeterministically a transition t = (q, wi, q
′) ∈ δ.

Update v by setting v ← Ut(v) and q with q ← q′. Upon reaching the last letter
of w, accept w iff q ∈ F and v ∈ C.

We now bound the value of v. Let c be the greatest value appearing in any of the
matrices or vectors in Ut, for any t. For a given v, let max v be max{v1, . . . , vd}.
Then for any t, (Ut(v))i ≤ d × (c × max v) + c. Let π be a path, we then have
that (Uπ(0))i ≤ (c(d + 1))n−1c, thus the size of v at the end of the algorithm is in
O(n). Now note that, as C is semilinear, the language of the binary encoding of its
elements is regular [26], and thus, checking v ∈ C can be done in, say, logarithmic
space. Hence the given algorithm is indeed in NSPACE[n]. �

We now show that LDetAPA is not closed under morphisms and we deduce
new undecidability results. We rely on the following technical lemma that illus-
trates the subtle way in which a DetAPA can “perform the conjunction of an

5Brandenburg [4] defines PAL as {wwR | w ∈ {a, b}∗}, where w is the image of w by the
morphism a �→ a and b �→ b, for a, b two fresh symbols. We note that the results of [4] carry over
with our definition of PAL.
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unbounded number of conditions by maintaining a nonzero flag”. Let SPACING
be the language {(am#am#)n | m, n ≥ 0}; note, for instance, that a#a#a#a# is
in SPACING while a#a#aa#aa# is not.

Lemma 4.13. SPACING ∈ LDetAPA.

Proof. Let Σ = {a, #}, L0 = {am#am# | m ≥ 0}∗ and L1 = L0 · a∗#a∗. Then:

SPACING = {ε} ∪ [L0 ∩ a∗# · L0 · a∗#]
= {ε} ∪ [L0 ∩ a∗# · (L1 ∩ Σ∗#)].

We will show that L0, L1 ∈ LDetAPA. This implies the result as follows. Since
LDetAPA is closed under intersection (Fig. 1), L1 ∩ Σ∗# ∈ LDetAPA. By closure of
LDetAPA under pointed concatenation (Prop. 4.8), a∗# · (L1 ∩ Σ∗#) ∈ LDetAPA.
Applying closure properties again yields SPACING ∈ LDetAPA. (Note that L1

is needed to express SPACING because L0 ∈ LDetAPA is not known to imply
L0 · a∗# ∈ LDetAPA).

We first construct a Q-DetAPA D0 on two registers x and y for L0. As its
underlying automaton, D0 will have a two-state automaton A with initial and
final state q0. The 4 transitions of A, and 4 affine functions Q2 → Q2 assigned to
these transitions, are:

t1 = (q0, a, q0) performs
(
x
y

) → (
x+1
2y

)
,

t2 = (q0, #, q1) performs
(
x
y

) → (
x
y

)
,

t3 = (q1, a, q1) performs
(
x
y

) → (
x−1
2y

)
,

t4 = (q1, #, q0) performs
(
x
y

) → (
0

x+y

)
.

As usual,
(
x
y

)
is
(
0
0

)
initially. The constraint set C0 for D0 will be {(00)} which is

Q-definable. (Only integers will ever appear in the counters; we use Q rather than
N only to have access to negative integers). Surprisingly, this works.

We must argue that L(D0) = L0. We will write (q,
(

i
j

)
) for the configuration of

D0 in which the state of A is q ∈ {q0, q1} and i and j are the contents of registers
x and y. For w ∈ Σ∗, we will write (q,

(
i
j

)
)w for the configuration reached when A

starts in configuration (q,
(

i
j

)
) and reads w. We need to prove two facts:

(i) ∀w ∈ L0, (q0,
(
0
0

)
)w = (q0,

(
0
0

)
);

(ii) ∀w ∈ (a∗#a∗#)∗a∗, if (q0,
(
0
0

)
)w = (q0,

(
0
0

)
) then w ∈ L0.

Fact (i) proves L0 ⊆ L(D0) because q0 is final in A and
(
0
0

) ∈ C0. Fact (ii) proves
L(D0) ⊆ L0 because L(A) is seen to be (a∗#a∗#)∗a∗; hence fact (ii) states that
any word that is in L(A) and that further sets

(
x
y

)
to
(
0
0

)
belongs to L0.

To prove fact (i), let w = am1#am1#am2#am2# . . . amk#amk# for k ≥ 0. Any
w ∈ L0 has this form, and an induction on k shows that (q0,

(
0
0

)
)w = (q0,

(
0
0

)
).

To prove fact (ii), we make the following claim, crucial to the operation of D0:
Claim: for any u, v ∈ Σ∗, if (q0,

(
0
0

)
)u sets y �= 0 then (q0,

(
0
0

)
)uv also sets y �= 0.



538 M. CADILHAC ET AL.

The claim implies fact (ii) as follows. Let w ∈ (a∗#a∗#)∗ai satisfy (q0,
(
0
0

)
)w =

(q0,
(
0
0

)
). We must conclude w ∈ L0. Let w = am1#am2# . . . am2k−1#am2k#ai for

some k ≥ 0. By the Claim, every prefix of w sets y = 0. Because reading every
second # returns A to q0 and resets x to 0, we necessarily have

(q0,
(
0
0

)
) = (q0,

(
0
0

)
)am1#am2#

= (q0,
(
0
0

)
)am1#am2#am3#am4#

= (q0,
(
0
0

)
)am3#am4#

...

= (q0,
(
0
0

)
)am2k−1#am2k#,

and

(q0,
(
0
0

)
)w = (q0,

(
0
0

)
)ai = (q0,

(
i
0

)
).

By inspection of A, (q0,
(
0
0

)
) = (q0,

(
0
0

)
)am#am′# implies m = m′. Hence m1 =

m2, m3 = m4, . . . , m2k−1 = m2k. Moreover, (q0,
(
0
0

)
)w = (q0,

(
0
0

)
) by assumption.

Hence i = 0 and w = am1#am1# . . . am2k−1#am2k−1# ∈ L0, concluding fact (ii).
We now prove the Claim. Let u ∈ Σ∗ be such that (q0,

(
0
0

)
)u sets y �= 0. We

need to show that for all v ∈ Σ∗, (q0,
(
0
0

)
)uv also sets y �= 0. Let u = u1u2 where

u1 is the shortest prefix of u that sets y �= 0. By inspection of A, u1 = u′ai#aj#
for some u′ ∈ (a∗#a∗#)∗ such that (q0,

(
0
0

)
)u1 = (q0,

(
0
0

)
)ai#aj# = (q0,

(
0

i−j

)
)

and i �= j. We will prove by induction on the length of w that for any w ∈ Σ∗,
(q0,

(
0

i−j

)
)w = (q,

(
xw

yw

)
) for some q ∈ {q0, q1} and some xw , yw ∈ Q such that

|yw| ≥ max{1, 2|xw|}. This will complete the proof of the Claim since we can
pick w = u2v, and conclude that (q0,

(
0
0

)
)uv = (q0,

(
0

i−j

)
)u2w = (q,

(
xu2v

yu2v

)
) with

|yu2v| ≥ max{1, 2|xu2v|} > 0.
For the basis of the induction, let w = ε. Then (q0,

(
0

i−j

)
)w = (q0,

(
0

i−j

)
). Now

|i − j| ≥ 1 = max{1, 2× |0|}. For the inductive step, let w ∈ Σn for some n > 0.
Then w = va or w = v# and by induction, (q0,

(
0

i−j

)
)v = (q,

(
xv

yv

)
) with |yv| ≥

max{1, 2|xv|}.

Case 1: w = va. Then (q,
(

0
i−j

)
)va = (q,

(
xv±1
2yv

)
). If xv = 0, then |yva| = |2yv| ≥

2 max{1, 2|xv|} = 2 = max{1, 2× | ± 1|} = max{1, 2|xva|}. If xv �= 0, then |yva| =
|2yv| ≥ 2 max{1, 2|xv|} = 2(|xv| + |xv|) ≥ 2(|xv| + 1) ≥ max{1, 2|xv ± 1|} =
max{1, 2|xva|}.

Case 2: w = v#. If t2 is the transition that consumed the last #, then
xv = xv# and yv = yv# so the induction hypothesis immediately yields
|yw| ≥ max{1, 2|xw|}. So let t4 be the transition that consumed the last #.
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Then (q,
(

0
i−j

)
)v# = (q,

(
0

xv+yv

)
). Now |yva| = |xv + yv| ≥ |yv| − |xv| ≥

max{1, 2|xv|} − |xv| ≥ max{1, |xv|} ≥ 1 = max{1, 2 × |0|} = max{1, 2 × |xv#|}.
This concludes the proof of the Claim and the proof that L(D0) = L0.

We have yet to construct a Q-DetAPA D1 for L1. The automaton underlying
D1 will be A, as above, except that the final state will be q1 rather than q0. The
affine functions associated with the transitions remain the same. The constraint
set C1 will be {(r0) : r ∈ Q} and it is Q-definable. We need to prove the following
facts:

(iii) ∀w ∈ L1, (q0,
(
0
0

)
)w = (q1,

(
i
0

)
) for some i ∈ Q;

(iv) ∀w ∈ (a∗#a∗#)∗a∗#a∗, if (q0,
(
0
0

)
)w = (q1,

(
i
0

)
) then w ∈ L1.

Fact (iii) follows from fact (i) since any w ∈ L1 is of the form w = uai#aj with
u ∈ L0, so that (q0,

(
0
0

)
)w = (q0,

(
0
0

)
)ai#aj = (q1,

(
i−j
0

)
). To prove fact (iv), let

w ∈ (a∗#a∗#)∗a∗#a∗ satisfy (q0,
(
0
0

)
)w = (q1,

(
xw

0

)
). By the Claim above, every

prefix of w sets y = 0. By inspection of A, some suffix ai#aj of w must have sent
A to state q1, that is, w = uai#aj with (q0,

(
0
0

)
)u = (q0,

(
0
0

)
) and xw = i − j.

But then, u ∈ L0 by fact (ii) and thus w ∈ L1. This concludes the proof that
L(D1) = L1 and proves the lemma. �

Lemma 4.14. Given a Turing machine M , we can construct a morphism h and
a DetAPA D such that L(M) = h(L(D)).

Proof. We adapt [1], Theorem 1. With no loss of generality, we assume that M is
a one-tape Turing machine that accepts by halting and makes an odd number of
moves on any accepting computation. Let L1 (resp. L2) be the set of strings

ID0#ID2# . . .#ID2k$(ID2k+1)R# . . . #(ID3)R#(ID1)R# (4.1)

such that IDi, 0 ≤ i ≤ 2k + 1, are instantaneous descriptions of M padded with
the blank symbol b to a common length 
, ID0 =

[
w1
q0

]
w2 . . . wnb�−n codes the

initial configuration of M (
[
w1
q0

]
is considered as a single letter, and, w1 = b when

the word w = w1w2 . . . wn ∈ Σ∗ input to M is ε), ID2k+1 codes an accepting
configuration and for 0 ≤ i ≤ k, ID2i+1 (resp. for 0 < i ≤ k, ID2i) codes the
configuration which would be reached in one step from configuration ID2i (resp.
ID2i−1). Each IDi other than ID0 is coded using an alphabet Γ disjoint from
Σ ∪ {[σ

q0

] | σ ∈ Σ} ∪ {[ b
q0

]}. It should be clear that w ∈ L(M) iff w ∈ h(L1 ∩ L2)
where for every σ ∈ Σ and every γ ∈ Γ ,

h(
[

σ
q0

]
) = h(σ) = σ and h(

[
b
q0

]
) = h(b) = h(#) = h($) = h(γ) = ε.

To complete the proof, we claim that L1 ∩ L2 ∈ LDetAPA in the effective sense.
Since LDetAPA is closed under intersection in that sense (Fig. 1), it suffices to
show that L1 ∈ LDetAPA and L2 ∈ LDetAPA. We first show how to construct a
DetAPA recognizing L1. We will construct an N-DetAPA D1 able to handle only
the words of the form (4.1) in which the distance between any two consecutive
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symbols # or $ is |ID0|. Handling only those words will be sufficient because the
language L1 can then be expressed as L1 = g−1(SPACING) ∩ L(D1) where g is
the morphism mapping both # and $ to # and mapping every other symbol to
the letter a. Since Lemma 4.13 shows SPACING ∈ LDetAPA and since LDetAPA is
closed under intersection and inverse morphisms in the effective sense (Fig. 1), a
DetAPA for L1 can be constructed from D1.

So we now describe D1. Let m be the size of the alphabet Γ . We argue as if ID0

in (4.1) were coded over the same alphabet Γ used to code IDi for 0 < i ≤ 2k + 1,
since a finite automaton can easily adjust for this. Our strategy will extend the
strategy used to construct an N-DetAPA for pointed palindromes (Prop. 4.10) as
follows. As D1 reads the prefix ID0#ID2# . . . #ID2k of (4.1), D1 will internally
translate that prefix into ID1ID3 . . . ID2k+1 and will treat the latter as the prefix
u of a pointed palindrome u$uR. As D1 processes u, D1 builds in a register the
natural number having u as its m-ary representation with the most significant bit
first (as in Prop. 4.10, where m was 2). Then D1 encounters $ and begins to do the
matchup with the suffix (ID2k+1)R# . . .#(ID3)R#(ID1)R# of (4.1). D1 does this
matchup by internally translating this suffix into (ID2k+1)R . . . (ID3)R(ID1)R =
(ID1ID3 . . . ID2k+1)R = uR. As D1 processes this suffix, D1 computes in a register
the natural number having the suffix as its m-ary representation, with the least
significant bit first this time (again as in Prop. 4.10, now with m rather than 2).
We set D1 to accept iff reading (4.1) indeed leads to u$uR with ID2k+1 final. Two
subtleties are worth mentioning concerning processing the prefix. First, when pro-
cessing ID2i, D1 always reads one symbol ahead of position p to determine the
proper symbol at position p in ID2i+1, to account for the input head of M possi-
bly moving left from position p + 1 to position p. Second, D1 rejects immediately
if ID0 is not a legal coding of an initial configuration of M or if another IDi in
the prefix contains two input head symbols. This completes the operational de-
scription of D1. The formal definition (A1, U1, C1) of D1 thus needs to implement
these operations. The N-definable set C1 is the set C ⊆ N4 given in the Proof of
Proposition 4.10 but adapted to handle m-ary representation rather than binary.
The affine functions assigned to the transitions of A1 are the identity function to-
gether with the five (adapted) functions assigned to the transitions t1, t2, t3, t4, t5
from the Proof of Proposition 4.10: transitions performing the bookkeeping op-
erations of A1 (such as when A1 processes the symbol #) will be assigned the
identity function, and transitions that discover the next PAL symbol are assigned
the affine transformation prescribed by Proposition 4.10 on reading that symbol
(with the understanding that reading $ here corresponds to reading # there).

The strategy to construct an N-DetAPA D2 recognizing L2 is of course sim-
ilar. But now, since ID2 (for example) does not uniquely determine ID1, the
prefix of (4.1) is handled by D2 as the suffix of (4.1) was handled by D1.
Specifically, D2 internally translates the prefix ID0#ID2# . . .#ID2k into u =
ID2ID4 . . . ID2k and stores the m-ary number u in a register, with the most
significant bit first. Then D2 encounters $, discards (ID2k+1)R and internally
translates the remainder (ID2k−1)R# . . . #(ID3)R#(ID1)R# of the suffix into
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(ID2k)R . . . (ID4)R(ID2)R = (ID2ID4 . . . ID2k)R = uR. As did D1 when reading
the prefix, D2 needs to look ahead by one symbol while processing the suffix. The
matchup with uR is otherwise done by D2 just as the matchup was done by D1.
This completes the description of D2 and proves the lemma. �

Corollary 4.15. Neither LAPA nor LDetAPA is closed under morphisms.

Proof. Given a Turing machine M , we can construct a morphism h and a DetAPA
(and a fortiori an APA) D such that L(M) = h(L(D)). If either LAPA or LDetAPA

were closed under morphisms, then the language h(L(D)) would be the language
of an APA. But the language of any APA is context-sensitive (Lem. 4.12), thus
decidable, so we could decide L(M). �

Corollary 4.16. The emptiness, universality, inclusion, finiteness, and regularity
problems are undecidable for DetAPA.

Proof. (Emptiness, universality, and inclusion). Given a Turing machine M with
L(M) ⊆ Σ∗, let h be the morphism and D the DetAPA provided by Lemma 4.14.
For any x ∈ Σ∗, x ∈ L(M) iff x = h(y) for some y ∈ L(D) iff L(D) ∩ h−1(x) is
nonempty. Now {x} ∈ LDetAPA and LDetAPA is closed (in the effective sense) under
inverse morphisms and intersection (Fig. 1). Hence we can construct a DetAPA
for L(D) ∩ h−1(x) and deciding its emptiness would decide x ∈ L(M). Moreover,
K-DetAPA being closed under complement (in the effective sense), the emptiness
problem reduces to the universality problem. Finally, the undecidability of empti-
ness implies that we cannot decide if the language of a K-DetAPA is included in
the empty set.

(Finiteness and regularity [pointed out by Andreas Krebs]). Let L ⊆ Σ∗ be
a language of LDetAPA, and let # �∈ Σ. Then L · {#anbn | n ∈ N} is in LDetAPA

and effectively constructible from the given DetAPA, as a pointed concatenation
(Prop. 4.8). Its language is finite iff it is regular iff L is empty. �

Remark 4.17. None of these results allow us to conclude that LDetAPA and LAPA

are different, though we conjecture they are. One argument supporting this con-
jecture is the fact that DetAPA do not need their automaton: we can encode the
transition function of an automaton within the affine functions, showing that any
language of LDetAPA can be expressed using a two-state DetAPA.

5. Parikh automata on letters

The PA on letters requires that the “weight” of a transition depends only on
the input letter from Σ triggering the transition. In a way similar to the CA
characterization of PA, we characterize PA on letters solely in terms of automata
over Σ and semilinear sets. We further give expressiveness and closure properties
of the classes of languages that arise.
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Definition 5.1 (Parikh automaton on letters). A Parikh automaton on letters
(LPA) is a PA (A, C) where whenever (a, v1) and (a, v2) are labels of some transi-
tions in A, then v1 = v2. We write LLPA (resp. LDetLPA) for the class of languages
recognized by LPA (resp. LPA which are DetPA).

First, we prove that LLPA and LDetLPA coincide:

Theorem 5.2. LLPA = LDetLPA.

Proof. Let (A, C) be a LPA. Without loss of generality, we can consider A =
(Q, Σ ×D, δ, q0, F ) to be deterministic (this does not imply that the PA is deter-
ministic). Now let t, t′ ∈ δ with t = (p, (a, v1), q) and t′ = (p, (a, v2), q′). The fact
that (A, C) is a LPA implies that v1 = v2, and A being deterministic, this implies
that q = q′, and in turn that t = t′. Thus (A, C) is a DetPA. �

For L ⊆ Σ∗ and C ⊆ N|Σ|, recall that L�C= {w ∈ L | Φ(w) ∈ C}. Then:

Proposition 5.3. Let L ⊆ Σ∗ be a language. The following are equivalent:

(i) L ∈ LLPA;
(ii) there exist a regular language R ⊆ Σ∗ and a semilinear set C ⊆ N|Σ| such

that R�C= L.

Proof.
(i) → (ii) Let (A, C) be a LPA which is a DetPA over the alphabet

{a1, . . . , an}. For 1 ≤ i ≤ n, let vi be the only vector appearing as the label (ai, vi)
of a transition in A. Define C′ ⊆ Nn by (x1, . . . , xn) ∈ C′ ⇔ ∑

i xi × vi ∈ C.
Then let w ∈ Σ∗ and ω be the word which can be read from the initial state of
A with Ψ(ω) = w. We have that

∑
i Φ(w)i × vi = Φ̃(ω), and thus w ∈ L(A, C) iff

w ∈ Ψ(L(A))�C′ .
(ii) → (i) Let R ⊆ {a1, . . . , an}∗ be a regular language and C ⊆ Nn be a

semilinear set. Let A be an automaton for R, and change each transition label ai

in A by (ai, ei). Now for ω ∈ L(A), Φ̃(ω) = Φ(Ψ(ω)) and thus (A, C) is a LPA
with language R�C . �

The following property will be our central tool for showing nonclosure results:

Lemma 5.4. Let L ∈ LLPA. For any regular language E:

L ∩ E is not regular ⇒ (∃w ∈ E)[c(w) ∩ L = ∅].

Proof. Let R ⊆ Σ∗ be a regular language and C ⊆ N|Σ| be a semilinear set. Define
L = R�C . Let E be a regular language such that L∩E is not regular. As L ⊆ R, we
have (L∩E) ⊆ (R∩E). The left hand side being non regular, those two sets differ.
Thus, let w ∈ (R ∩ E) such that w �∈ L ∩ E, we have w �∈ L. Hence, w ∈ (R \ L),
which implies that Φ(w) �∈ C, and in turn, c(w) ∩ L = ∅. �
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Proposition 5.5. (1) LLPA is not closed under union, complement, concatena-
tion, nonerasing morphisms, and starring; (2) LLPA is closed under intersection,
commutative closure, and inverse morphisms.

Proof.
(1) Let L = {ambn | m, n ∈ N ∧ m �= n} be a language of LPA. (Union).

Suppose L′ = L ∪ a∗b∗ ∈ LLPA. Let E be the regular language (a+b+). By the
pumping lemma, L′ ∩E is not regular, thus Lemma 5.4 states there exists w ∈ E
such that c(w) ∩ L′ = ∅. But u = b|w|ba|w|a ∈ c(w) and u ∈ L′, a contradiction,
thus L′ /∈ LLPA. (Complement). We note that L′ is the complement in {a, b}∗ of
{anbn | n ∈ N}, which is the language of an LPA. (Concatenation). Suppose L2 ∈
LLPA. Again, as L2∩E2 is not regular, Lemma 5.4 asserts that there exists w ∈ E2

such that c(w)∩L2 = ∅. But a|w|ab0a0b|w|b ∈ c(w)∩L2, a contradiction, thus L2 /∈
LLPA. (Nonerasing morphism). We note that L2 is the image of the LPA language
{am

1 bn
1ar

2b
s
2 | m �= n ∧ r �= s} by the nonerasing morphism h(ai) = a, h(bi) = b,

i ∈ {1, 2}. Also, by the very definition of constrained automata (Def. 3.3), each
language of LPA is the image by a nonerasing morphism of a language of LLPA,
but the two classes are different. (Starring). The proof of the nonclosure under
starring of LPA (Prop. 3.17) shows that the starring of {anbn | n ∈ N} is not in
LPA, thus not in LLPA.

(2) Let R, R′ ⊆ Σ∗ be two regular languages and let C, C′ ⊆ N|Σ| be two
semilinear sets. (Intersection). Note that (R �C) ∩ (R′ �C′) = (R ∩ R′) �C∩C′,
the latter being a language of LLPA. (Commutative closure). Likewise, note that
c(R �C) = Σ∗ �C∩Φ(R), which is in LLPA since Φ(R) is effectively semilinear by
Parikh’s theorem. (Inverse morphism). Let h : {a1, . . . , an}∗ → Σ∗ be a mor-
phism, and let Ch = {x ∈ Nn | ∑i xi × Φ(h(ai)) ∈ C}. Then we claim that
h−1(R�C) = (h−1(R))�Ch , which concludes the proof as h−1(R) is regular and Ch

is semilinear. Indeed, let w ∈ h−1(R �C), then w ∈ h−1(R) and Φ(h(w)) ∈ C,
the latter implying that

∑
i |w|ai × Φ(h(ai)) ∈ C, and thus, Φ(w) ∈ Ch; in

particular, if a letter a is such that h(a) = ε, it is discarded when looking
at the Parikh image of h(w). Conversely, if w ∈ h−1(R) �Ch then h(w) ∈ R
and Φ(h(w)) =

∑
i |w|ai × Φ(h(ai)) ∈ C, thus h(w) ∈ R �C , implying that

w ∈ h−1(R�C). �

6. Conclusion

Figures 1 and 2 in our introductory section summarize the current state of
knowledge concerning the PA and its variants studied here.

An intriguing question is whether there are context-free or context-sensitive
languages outside LAPA. How difficult is that question? How about LDetAPA? We
have been unable to locate the latter class meaningfully. In particular, can LDetAPA

be separated from LAPA?
Several questions thus remain open concerning the poorly understood (and pos-

sibly overly powerful) APA model. But surely we expect testing a LPA or a DetPA
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for regularity to be decidable. How can regularity be tested for these models? One
avenue for future research towards this goal might be characterizing LDetPA along
the lines of algebraic automata theory.

Acknowledgements. The first author thanks L. Beaudou, M. Kaplan, and A. Lemâıtre
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