
ar
X

iv
:1

10
1.

15
47

v4
 [

cs
.F

L
]

 2
 J

ul
 2

01
1

ON THE EXPRESSIVENESS OF PARIKH

AUTOMATA AND RELATED MODELS

Michaël Cadilhac1, Alain Finkel2, and Pierre McKenzie1
1 DIRO, Université de Montréal

{cadilhac, mckenzie}@iro.umontreal.ca
2 LSV, CNRS & École Normale Supérieure de Cachan

finkel@lsv.ens-cachan.fr

Abstract

The Parikh finite word automaton (PA) was introduced and studied by Klaedtke and Rueß [16].
Natural variants of the PA arise from viewing a PA equivalently as an automaton that keeps
a count of its transitions and semilinearly constrains their numbers. Here we adopt this view
and define the affine PA (APA), that extends the PA by having each transition induce an affine
transformation on the PA registers, and the PA on letters (LPA), that restricts the PA by forc-
ing any two transitions on same letter to affect the registers equally. Then we report on the
expressiveness, closure, and decidability properties of such PA variants. We note that determin-
istic PA are strictly weaker than deterministic reversal-bounded counter machines. We develop
pumping-style lemmas and identify an explicit PA language recognized by no deterministic PA.
Our findings and the resulting overall picture are tabulated in our concluding section.

1. Introduction

Adding features to finite automata in order to capture situations beyond regularity has been
fruitful to many areas of research, in particular model checking and complexity theory below
NC2 (e.g., [17, 21]). One such finite automaton extension is the Parikh automaton (PA): A
PA [16] is a pair (A,C) where C is a semilinear subset of Nd and A is a finite automaton
over (Σ × D) for Σ a finite alphabet and D a finite subset of Nd. The PA accepts the word
w1 · · ·wn ∈ Σ∗ if A accepts a word (w1, v1) · · · (wn, vn) such that

∑
vi ∈ C. Klaedtke and Rueß

used PA to characterize an extension of (existential) monadic second-order logic in which the
cardinality of sets expressed by second-order variables is available.

Here we carry the study of Parikh automata a little further. First we introduce related models
of independent interest, each involving a finite automaton A and a constraint set C of vectors.
(The main text has formal definitions.) (1) Constrained automata (CA) are defined to accept
a word w ∈ Σ∗ iff the Parikh image of some accepting run of A on w (i.e., the vector recording
the number of occurrences of each transition along the run) belongs to C. (2) Affine Parikh
automata (APA) generalize PA by allowing each transition to perform a linear transformation
on the d-tuple of PA registers prior to adding a new vector; an APA accepts a word w iff some
accepting run of A on w maps the all-zero vector to a vector in C. (3) Parikh automata on

http://arxiv.org/abs/1101.1547v4

2 M. Cadilhac, A. Finkel, and P. McKenzie

letters (LPA) restrict PA by imposing the condition that any transition on (a, u) ∈ (Σ × D)
and any transition on (b, v) ∈ (Σ×D) must satisfy u = v when a = b.

Then our main observations are the following:
• CA and deterministic CA respectively capture the class LPA of PA languages and the

class LDetPA of deterministic PA languages.
• The language {a, b}∗ · {an#an | n ∈ N} belongs to LPA \ LDetPA; these two classes were

only proved different in [16].
• APA and deterministic APA over Q are no more powerful than the same models over N.
• APA express more languages than PA, and only context-sensitive languages; moreover

the emptiness problem for deterministic APA is already undecidable.
• Languages of LPA are equivalent to regular languages with a constraint on the Parikh

image of their words.
• Refining [16] slightly, we compare our models with the reversal-bounded counter machines

(RBCM) defined by Ibarra [12], and show that LDetPA is a strict subset of the languages
expressed by deterministic RBCM.
• Further expressiveness properties, closure properties, decidability properties and compar-

isons between the above models are derived. The overall resulting picture is summarized
in tabular form in Section 6.

2. Preliminaries

We write Z for the integers, N for the nonnegative integers, N+ for N \ {0}, Q for the rational
numbers, and Q+ for the strictly positive rational numbers. We use K to denote either N or
Q. Let d, d′ ∈ N+. Vectors in Kd are noted with a bar on top, e.g., v whose elements are
v1, . . . , vd. For C ⊆ Kd and D ⊆ Kd′ , we write C.D for the set of vectors in Kd+d′ which are the
concatenation of a vector of C and a vector of D. We write 0 ∈ {0}d for the all-zero vector, and
ei ∈ {0, 1}

d for the vector having a 1 only in position i. We view Kd as the additive monoid
(Kd,+). For a monoid (M, ·) and S ⊆M , we write S∗ for the monoid generated by S, i.e., the
smallest submonoid of (M, ·) containing S. A subset E of Kd is K-definable if it is expressible
as a first order formula which uses the function symbols +, λe with e ∈ K corresponding to
the scalar multiplication, and the order <. More precisely, a subset E of Kd is K-definable iff
there is such a formula with d free variables, with (x1, . . . , xd) ∈ E ⇔ K |= φ(x1, . . . , xd). Let
us remark that N-definable sets are the Presburger-definable sets and they coincide with the
semilinear sets [9], i.e., finite unions of sets of the form {a0 + k1a1 + · · ·+ knan | (∀i)[ki ∈ N]}
for some ai’s in Nd. Moreover, Q-definable sets are the semialgebraic sets defined using affine
functions1 [6, Corollary I.7.8].

Let Σ = {a1, . . . , an} be an (ordered) alphabet, and write ε for the empty word. The Parikh
image is the morphism Φ: Σ∗ → Nn defined by Φ(ai) = ei, for 1 ≤ i ≤ n. A language L ⊆ Σ∗

is said to be semilinear if Φ(L) = {Φ(w) | w ∈ L} is semilinear. The commutative closure of a
language L is defined as the language c(L) = {w | Φ(w) ∈ Φ(L)}. A language L ⊆ Σ∗ is said

1Semialgrebraic sets defined using affine functions are sometimes also called semilinear (e.g., [6]). In this
paper, we use “semilinear” only for N-definable sets.

On the expressiveness of Parikh automata and related models 3

to be bounded if there exist n > 0 and w1, . . . , wn ∈ Σ+ such that L ⊆ w∗
1 · · ·w

∗
n. Two words

u, v ∈ Σ∗ are equivalent by the Nerode relation (w.r.t. L), if for all w ∈ Σ∗, uw ∈ L⇔ vw ∈ L.
We then write u ≡L v (or u ≡ v when L is understood), and write [u]L for the equivalence class
of u w.r.t. the Nerode relation.

We then fix our notation about automata. An automaton is a quintuple A = (Q,Σ, δ, q0, F)
where Q is the finite set of states, Σ is an alphabet, δ ⊆ Q × Σ × Q is the set of transitions,
q0 ∈ Q is the initial state and F ⊆ Q are the final states. For a transition t ∈ δ, where
t = (q, a, q′), we define From(t) = q and To(t) = q′. Moreover, we define µA : δ

∗ → Σ∗ to be the
morphism defined by µA(t) = a, and we write µ when A is clear from the context. A path on A
is a word π = t1 · · · tn ∈ δ∗ such that To(ti) = From(ti+1) for 1 ≤ i < n; we extend From and To

to paths, letting From(π) = From(t1) and To(π) = To(tn). We say that µ(π) is the label of π.
A path π is said to be accepting if From(π) = q0 and To(π) ∈ F ; we let Run(A) be the language
over δ of accepting paths on A. We then define L(A), the language of A, as the labels of the
accepting paths.

3. Parikh automata

The following notations will be used in defining Parikh finite word automata (PA) formally. Let
Σ be an alphabet, d ∈ N+, and D a finite subset of Nd. Following [16], the monoid morphism
from (Σ × D)∗ to Σ∗ defined by (a, v) 7→ a is called the projection on Σ and the monoid
morphism from (Σ×D)∗ to Nd defined by (a, v) 7→ v is called the extended Parikh image.

Remark. Let Σ = {a1, . . . , an} and D ⊆ Nn. If a word ω ∈ (Σ×D)∗ is in {(ai, ei) | 1 ≤ i ≤ n}∗,
then the extended Parikh image of ω is the Parikh image its projection on Σ.

Definition 1 (Parikh automaton [16]). Let Σ be an alphabet, d ∈ N+, and D a finite subset
of Nd. A Parikh automaton (PA) of dimension d over Σ×D is a pair (A,C) where A is a finite
automaton over Σ×D, and C ⊆ Nd is a semilinear set. The PA language, written L(A,C), is
the projection on Σ of the words of L(A) whose extended Parikh image is in C. The PA is said
to be deterministic (DetPA) if for every state q of A and every a ∈ Σ, there exists at most one
pair (q′, v) with q′ a state and v ∈ D such that (q, (a, v), q′) is a transition of A. We write LPA

(resp. LDetPA) for the class of languages recognized by PA (resp. DetPA).

An alternative view of the PA will prove very useful. Indeed we note that a PA can be viewed
equivalently as an automaton that applies a semilinear constraint on the counts of the individual
transitions occurring along its accepting runs. To explain this, let (A,C) be a PA of dimension
d, and let δ = {t1, . . . , tn} be the transitions of A. Consider the automaton B which is a copy
of A except that the vector part of the transitions is dropped, and suppose there is a natural
bijection between the transitions of the two automata. Let π be a path in A; the contribution
to the extended Parikh image of µ(π) of the transition ti = (p, (a, vi), q) is vi; thus, knowing
how many times ti appears in the path traced by π in B is enough to retrieve the value of the
extended Parikh image of µ(π). Now note that the bijection exists if no two distinct transitions
ti, tj are such that ti = (p, (a, vi), q) and tj = (p, (a, vj), q). However, if such ti and tj exist,

4 M. Cadilhac, A. Finkel, and P. McKenzie

we can replace them by t = (p, (a, ed+1), q), incrementing in the process the dimension of PA,
and change C to C ′ defined by (v, c) ∈ C ′ ⇔ (∃ci)(∃cj)[c = ci + cj ∧ v + ci.vi + cj .vj ∈ C]
without changing the language of the PA. It is thus readily seen that the following defines
models equivalent to the PA2 and the DetPA:

Definition 2 (Constrained automaton). A constrained automaton (CA) over an alphabet Σ
is a pair (A,C) where A is a finite automaton over Σ with d transitions, and C ⊆ Nd is a
semilinear set. Its language is L(A,C) = {µ(π) | π ∈ Run(A) ∧ Φ(π) ∈ C}. The CA is said to
be deterministic (DetCA) if A is deterministic.

3.1. On the expressiveness of Parikh automata

The constrained automaton characterization of PA helps deriving pumping-style necessary con-
ditions for membership in LPA and in LDetPA:

Lemma 1. Let L ∈ LPA. There exist p, ℓ ∈ N+ such that any w ∈ L with |w| > ℓ can be
written as w = uvxvz where:

1. 0 < |v| ≤ p, |x| > p, and |uvxv| ≤ ℓ,
2. uv2xz ∈ L and uxv2z ∈ L.

Proof. Let (A,C) be a CA of language L. Let p be the number of states in A and m be the
number of elementary cycles (i.e., cycles in which no state except the start state occurs twice)
in the underlying multigraph of A. Finally, let ℓ = p × (2m + 1). Now, let w ∈ L such that
|w| ≥ ℓ and π ∈ Run(A) such that µ(π) = w and Φ(π) ∈ C. Write π as π1 · · ·π2m+1ρ where
|πi| = p. By the pigeonhole principle, each πi contains an elementary cycle, and thus, there
exist 1 ≤ i, j ≤ m+ 1 with i+ 1 < j such that πi and πj share the same cycle ηv labeled with
a word v. Write:
• πi as πi,1ηvπi,2, and πj as πj,1ηvπj,2,
• ηu for π1 · · ·πi−1πi,1 and u for µ(ηu),
• ηx for πi,2πi+1 · · ·πj−1πj,1 and x for µ(ηx),
• ηz for πj,2πj+1 · · ·πℓ+1ρ and z for µ(ηz).

Then π = ηuηvηxηvηz and w = uvxvz. Moreover, both π′ = ηuη
2
vηxηz and π′′ = ηuηxη

2
vηz are

accepting paths with the same Parikh image as π. Thus, µ(π′) = uv2xz ∈ L and µ(π′′) =
uxv2z ∈ L. Moreover, 0 < |v| ≤ p, |x| > p and |uvxv| ≤ ℓ.

A similar argument leads to a stronger property for the languages belonging to LDetPA:

Lemma 2. Let L ∈ LDetPA. There exist p, ℓ ∈ N+ such that any w over the alphabet of L with
|w| > ℓ can be written as w = uvxvz where:

1. 0 < |v| ≤ p, |x| > p and |uvxv| ≤ ℓ,
2. uv2x, uvxv and uxv2 are equivalent w.r.t. the Nerode relation of L.

2Another equivalent view of PA languages suggested by one referee is as sets R−1(X) where R is a rational
relation over Σ∗ ×Nd and X is a rational subset of Nd. An artificial further restriction to this viewpoint would
serve to capture DetPA languages.

On the expressiveness of Parikh automata and related models 5

We apply Lemma 1 to the language COPY, defined as {w#w | w ∈ {a, b}∗}, as follows:

Proposition 3. COPY 6∈ LPA.

Proof. Suppose COPY ∈ LPA. Let ℓ, p be given by Lemma 1, and consider w = (apb)ℓ#(apb)ℓ ∈
COPY. Lemma 1 states that w = uvxvz where uvxv lays in the first half of w, and s = uv2xz ∈
COPY. Note that x contains at least one b. Suppose v = ai for 1 ≤ i ≤ p, then there is a
sequence of a’s in the first half of s unmatched in the second half. Likewise, if v contains a b,
then s has a sequence of a’s between two b’s unmatched in the second half. Thus s 6∈ COPY,
a contradiction. Hence COPY 6∈ LPA.

As Klaedtke and Rueß show using closure properties, DetPA are strictly weaker than PA. The
thinner grain of Lemma 2 suggests explicit languages that witness the separation of LDetPA

from LPA. Indeed, let EQUAL ⊆ {a, b,#}∗ be the language {a, b}∗ · {an#an | n ∈ N}, we have:

Proposition 4. EQUAL ∈ LPA \ LDetPA.

Proof. We omit the proof that EQUAL ∈ LPA. Now, suppose EQUAL ∈ LDetPA, and let ℓ, p
be given by Lemma 2. Consider w = (apb)ℓ. Lemma 2 then asserts that a prefix of w can be
written as w1 = uvxv, and that w2 = uv2x verifies w1 ≡ w2. As |x| > p, x contains a b. Let
k be the number of a’s at the end of w1. Suppose v = ai for 1 ≤ i ≤ p, then w2 ends with
k − i < k letters a. Thus w1#ak ∈ EQUAL and w2#ak 6∈ EQUAL, a contradiction. Suppose
then that v = aibak, with 0 ≤ i+ k < p. Then w2 ends with p− i > k letters a, and similarly,
w1 6≡ w2, a contradiction. Thus EQUAL 6∈ LDetPA.

For comparison, we mention another line of attack for the study of LDetPA. The proof is
omitted, but is based on the number of possible configurations of a PA, which is polynomial
in the length of the input word. Klaedtke and Rueß used a similar argument to show that
PAL = {w#wR | w ∈ {a, b}+}, where wR is the reversal of w, is not in LPA.

Lemma 5. Let L ∈ LDetPA. Then there exists c > 0 such that |{[w]L | w ∈ Σn}| ∈ O(nc).

Proposition 6. Let L = {w ∈ {a, b}∗ | w|w|a = b}, where wi is the i-th letter of w. Then
L ∈ LPA \ LDetPA.

Proof. We omit the proof that L ∈ LPA; the main point is simply to guess the position of the
b referenced by |w|a. On the other hand, let n > 0 and u, v ∈ {a, b}n such that |u|a = |v|a = n

2

and there exists p ∈ {n
2
, . . . , n} with up 6= vp. Let w = ap−

n

2 , then (uw)|uw|a = (uw)|u|a+|w|a =
(uw)p = up, and similarly, (vw)|vw|a = vp. This implies uw 6∈ L ↔ vw ∈ L, thus u 6≡ v. Then
for 0 ≤ i ≤ n

2
, define Ei = {a

n

2
−ibiz | z ∈ {a, b}

n

2 ∧ |z|a = i}. For any u, v ∈
⋃

Ei with

u 6= v, the previous discussion shows that u 6≡ v. Thus |{[w]L | w ∈ {a, b}n}| ≥ |
⋃n

2

i=0Ei| =
∑n

2

i=0 |Ei| =
∑n

2

i=0

(n

2

i

)
= 2

n

2 6∈ O(nO(1)). Lemma 5 then implies that L 6∈ LDetPA.

3.2. On decidability and closure properties of Parikh automata

The following table summarizes decidability results for PA and DetPA. The results in bold are
new, while the others are from [16] and [12]:

6 M. Cadilhac, A. Finkel, and P. McKenzie

= ∅ = Σ∗ is finite ⊆ is regular

DetPA D D D D ?

PA D U D U U

Proposition 7. (1) Finiteness is decidable for PA. (2) Inclusion is decidable for DetPA and
undecidable for PA. (3) Regularity is undecidable for PA.

Proof. (1). Let (A,C) be a CA. Then Run(A) is a regular language, and thus, its Parikh
image is effectively semilinear (this is a special case of Parikh’s theorem [20]). It follows that
the language described by A and C is finite if and only if Φ(Run(A)) ∩ C is finite, which is
decidable. (2). Decidability of inclusion for DetPA follows from the fact that LDetPA is closed
under complement and intersection, and that the emptiness problem is decidable for DetPA.
(In fact, it is decidable whether the language of a PA is included in the language of a DetPA.)
Undecidability of inclusion for PA follows immediately from the undecidability of the universe
problem for PA. (3). This follows from a theorem of [11], which states the following: Let C be
a class of languages closed under union and under concatenation with regular languages. Let P
be a predicate on languages true of every regular language, false of some languages, preserved
by inverse rational transduction, union with {ε} and intersection with regular languages. Then
P is undecidable in C. Obviously, LPA satisfies the hypothesis for C. Moreover, “being regular in
LPA” is a predicate satisfying the hypothesis for P . Thus, regularity is undecidable for PA.

We now further the study of closure properties of PA and DetPA started in [16]. The following
table collects the closure properties of PA and DetPA, where h is a morphism, c is the com-
mutative closure. In bold are the results of the present paper, while the other results can be
found in [16] (detailed proofs by Karianto can be found in [14]):

∪ ∩ · h h−1 c ∗

DetPA Y Y N Y N Y Y N

PA Y Y Y N Y Y Y N

As the language EQUAL separating LDetPA from LPA is the concatenation of a regular language
and a language of LDetPA, we have:

Proposition 8. LDetPA is not closed under concatenation.

Proposition 9. (1) The commutative closure of any semilinear language is in LDetPA. (2)
LDetPA is not closed under morphisms.

Proof. (1). Let Σ = {a1, . . . , an}, L ⊆ Σ∗ a semilinear language, and C = Φ(L). Define A
to be an automaton with one state, initial and final, with n loops, the i-th labeled (ai, ei) ∈
Σ×{ei}1≤i≤n. Then c(L) = L(A,C). (2) is straightforward as any language of LPA is the image
by a morphism of a language in LDetPA. Indeed, say (A,C) is a CA and let B be the copy of
A in which the transition t is relabeled t; then B is deterministic and L(A,C) = µA(L(B,C)).
This implies the nonclosure of LDetPA under morphisms.

On the expressiveness of Parikh automata and related models 7

Note that (1) from Proposition 9 implies that both LPA and LDetPA are closed under commu-
tative closure, as both are classes of semilinear languages [16].

Proposition 10. Neither LPA nor LDetPA is closed under starring.

Proof. We show that the starring of L = {anbn | n ∈ N} is not in LPA. Suppose L∗ ∈ LPA, and
let w = (apbp)ℓ, where ℓ, p are given by Lemma 1. The same lemma asserts that w = uvxvz,
such that, in particular, uv2xz and uxv2z are in L∗. Now suppose v = ai for some i ≤ p. Then
uv2x contains ap+ibp with no more b’s on the right. Thus uv2xz 6∈ L∗. The case for v = bi is
similar. Now suppose v = aibj with i, j > 0. Then uv2x contains · · · apbjaibp · · · , but i < p,
thus uv2xz 6∈ L∗. The case v = biaj is similar. Thus L∗ 6∈ LPA.

Remark. Baker and Book [1] already note, in different terms, that if LPA were closed under
starring, it would be an intersection closed full AFL containing {anbn | n ≥ 0}, and so would
be equal to the class of Turing-recognizable languages. Thus LPA is not closed under starring.

3.3. Parikh automata and reversal-bounded counter machines

Klaedtke and Rueß noticed in [15] that Parikh automata recognize the same languages as
reversal-bounded counter machines, a model introduced by Ibarra [12]:

Definition 3 (Reversal-bounded counter machine [12]). A one-way, k-counter machine M is
a 5-uple (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is an alphabet, δ ⊆ Q× (Σ ∪ {♯})×
{0, 1}k × Q × {S,R} × {−1, 0,+1}k is the transition function, q0 ∈ Q is the initial state and
F ⊆ Q is the set of final states. Moreover, we suppose ♯ 6∈ Σ. The machine is deterministic if
for any (p, ℓ, x), there exists at most one (q, h, v) such that (p, ℓ, x, q, h, v) ∈ δ. On input w, the
machine starts with a read-only tape containing w♯, and its head on the first character of w.
Write ci for the i-th counter, then a transition (p, ℓ, x, q, h, v) ∈ δ is taken if the machine is in
state p, reading character ℓ and ci = 0 if xi = 0 and ci > 0 if xi = 1, for all i. The machine
then enters state q, its head is moved to the right iff h = R, and v is added to the counters.
If the head falls off the tape, or if a counter turns negative, the machine rejects. A word is
accepted if an execution leads to a final state. The machine is reversal-bounded (RBCM) if there
exists an integer r such that any accepting run changes between increments and decrements of
the counters a (bounded) number of times less than r. We write DetRBCM for deterministic
RBCM. We write LRBCM (resp. LDetRBCM) for the class of languages recognized by RBCM
(resp. DetRBCM).

In [15, Section A.3], it is shown that PA have the same expressive power as (nondeterministic)
RBCM. Although Fact 30 of [15], on which the authors rely to prove this result, is technically
false as stated,3 the small gap there can be fixed so that:

Proposition 11 ([15]). LPA = LRBCM.

3Fact 30 of [15] states the following. Consider a RBCM M which, for any counter, changes between increment
and decrement only once. Let M ′ be M in which negative counter values are allowed and the zero-tests are
ignored. Then a word is claimed to be accepted by M iff the run of M ′ on the same word reaches a final state
with all its counters nonnegative. A counter-example is the following. Take A to be the minimal automaton for
a∗b, and add a counter for the number of a’s that blocks the transition labeled b unless the counter is nonzero.
This machine recognizes a

+
b. Then by removing this test, the machine now accepts b.

8 M. Cadilhac, A. Finkel, and P. McKenzie

Further, we study how the notion of determinism compares in the two models. Let NSUM =
{an♠bm1#bm2# · · ·#bmk♣cm1+···+mn | k ≥ n ≥ 0 ∧ (∀i)[mi ∈ N]}: the number of a’s is the
number of mi’s to add to get the number of c’s. Note that NSUM is not context-free. Then:

Proposition 12. LDetPA (LDetRBCM and NSUM ∈ LDetRBCM \ LDetPA.

Proof. We first show that LDetPA ⊆ LDetRBCM. Let (A,C) be a CA, where A = (Q,Σ, δ, q0, F)
is deterministic and let δ = {t1, . . . , tk}. We define a DetRBCM of the same language in two
steps. (1) First, let M be the k-counter machine (Q ∪ {qf},Σ, ζ, q0, qf), where qf 6∈ Q and ζ is
defined by:

ζ =
⋃

x∈{0,1}k

(
{
(q, a, x, q′, R, ei) | ti = (q, a, q′)

}
∪
{
(q, ♯, x, qf , S, 0) | q ∈ F

}
)

.

This machine (trivially a DetRBCM) does not make any test, and accepts (in qf) precisely the
words accepted by A. Moreover, the state of the counters in qf is the Parikh image of the path
taken (in A) to recognize the input word. (2) We then refine M to check that the counter
values belong to C. We note that we can do that as a direct consequence of the proof of [13,
Theorem 3.5], but this proof relied on nontrivial algebraic properties of systems Ay = b, where
A is a matrix, y are unknowns and b is a vector; we present here an elementary proof. Recall
that C can be expressed as a quantifier-free first-order formula which uses the function symbol
+, the congruence relations ≡i, for i ≥ 2, and the order relation < (see, e.g., [7]). So let C
be given as such formula φC with k free variables. Let φC be put in disjunctive normal form.
The machine M then tries each and every clause of φC for acceptance. First, note that a term
can be computed with a number of counters and reversals which depends only on its size: for
instance, computing ci + cj requires two new counters x, y; ci is decremented until it reaches
0, while x and y are incremented, so that their value is ci; now decrement y until it reaches 0
while incrementing ci back to its original value; then do the same process with cj : as a result,
x is now ci + cj. Second, note that any atomic formula (t1 < t2 or t1 ≡i t2) can be checked by
a DetRBCM: for t1 < t2, compute x1 = t1 and x2 = t2, then decrement x1 and x2 until one
of them reaches 0, if the first one is x1, then the atomic formula is true, and false otherwise;
for t1 ≡i t2, a simple automaton-based construction depending on i can decide if the atomic
formula is true. Thus, a DetRBCM can decide, for each clause, if all of its atomic formulas (or
negation) are true, and in this case, accept the word. This process does not use the read-only
head, and uses a number of counters and a number of reversals bounded by the length of φC.

We now show that NSUM ∈ LDetRBCM \ LDetPA. We omit the fact that NSUM ∈ LDetRBCM.
Now suppose (A,C) is a DetPA such that L(A,C) = NSUM, with A = (Q,Σ×D, δ, q0, F) also
deterministic. We may suppose that the projection on Σ of L(A) is a subset of a∗♠(b∗#)∗b∗♣c∗,
so that there exist k ≥ 0, q1, . . . , qk ∈ Q, and j ∈ {0, . . . , k} such that (qi, (a, vi), qi+1) ∈ δ, for
0 ≤ i < k and some vi’s, and (qk, (a, vk), qj) ∈ δ. Moreover, we may suppose that no other
transition points to one of the qi’s, and that all transitions t = (qi, (ℓ, v), q) ∈ δ such that
q 6∈ {q0, . . . , qk} are with ℓ = ♠; let T be the set of all such transitions t. We define |T | DetPA
such that the union of their languages is SUMN = {♠w♥an | an♠w ∈ NSUM}, that is, the
strings of NSUM with an pushed at the end. For t ∈ T , define At as the automaton similar to A
but which starts with the transition t and delay the first part of the computation until the very

On the expressiveness of Parikh automata and related models 9

end. Formally, At = (Q∪ {q′0},Σ×D, δt, q
′
0, {From(t)}) where δt = (δ \ T)∪ {(q′0, µ(t),To(t)} ∪

{(qf , (♥, 0), q0) | qf ∈ F} with q′0 a fresh state. Now for ω ∈ L(A), let t be the transition labeled
♠ taken when A reads ω, and let ω = ω1µ(t)ω2. Then µ(t)ω2(♥, 0)ω1 ∈ L(At), and this word
has the same extended Parikh image as ω. Thus we have that

⋃

t∈T L(At, C) = SUMN, and
if NSUM ∈ LDetPA, then SUMN ∈ LDetPA. A proof similar to Proposition 4 then shows that
SUMN 6∈ LDetPA, a contradiction; thus NSUM 6∈ LDetPA.

The parallel drawn between (Det)PA and (Det)RBCM allows transferring some RBCM and
DetRBCM results to PA and DetPA. An example is a consequence of the following lemma
proved in 2011 by Chiniforooshan et al. [5] for the purpose of showing incomparability results
between different models of reversal-bounded counter machines:

Lemma 13 ([5]). Let a DetRBCM express L ⊆ Σ∗. Then there exists w ∈ Σ∗ such that L∩wΣ∗

is a nontrivial regular language.

Variants of the language EQUAL from Proposition 4 can be shown outside LDetPA in this way.
For instance, for Σ = {a, b}, ΣANBN = Σ∗ · {anbn | n ∈ N} is such that any w ∈ Σ∗ makes
ΣANBN∩wΣ∗ nonregular. Although Lemma 13 thus gives languages in LPA\LDetPA, Lemma 13
seemingly does not apply to EQUAL itself since EQUAL ∩#{a, b,#}∗ = {#} is regular.

4. Affine Parikh automata

A PA of dimension d can be viewed as an automaton in which each transition updates a vector
x of Nd using a function x ← x + v where v depends only on the transition. At the end of an
accepting computation, the word is accepted if x belongs to some semilinear set. We propose to
generalize the updating function to an affine function. We start by defining the model, and show
that defining it over N is at least as general as defining it on Q. We study the expressiveness
of this model, and show it is strictly more powerful than PA. We then note that deterministic
such automata can be normalized so as to essentially trivialize their automaton component.
We then study nonclosure properties and decidability problems associated with APA, leading
to the observation that APA lack some desirable properties — e.g., properties usually needed
for any real-world application.

In the following, we consider the vectors in Kd to be column vectors. Let d, d′ > 0. A function
f : Kd → Kd′ is a (total) affine function if there exist a matrix M ∈ Kd′×d and v ∈ Kd′ such
that for any x ∈ Kd, f(x) = M.x+ v; it is linear if v = 0. We note such a function f = (M, v).
We write FK

d for the set of affine functions from Kd to Kd and view FK
d as the monoid (FK

d , ⋄)
with (f ⋄ g)(x) = g(f(x)).

Definition 4 (Affine Parikh automaton). A K-affine Parikh automaton (K-APA) of dimension
d is a triple (A,U, C) where A is an automaton with transition set δ, U is a morphism from δ∗

to FK
d and C ⊆ Kd is a K-definable set; recall that U need only be defined on δ. The language

of the APA is L(A,U, C) = {µ(π) | π ∈ Run(A) ∧ (U(π))(0) ∈ C}. The K-APA is said to be
deterministic (K-DetAPA) if A is. We write LK-APA (resp. LK-DetAPA) for the class of languages
recognized by K-APA (resp. K-DetAPA).

10 M. Cadilhac, A. Finkel, and P. McKenzie

Remark. It is easily seen that N-APA (resp. N-DetAPA) are a generalization of CA (resp.
DetCA). Indeed, let (A,C) be a CA, and let Φ be the Parikh image over the set δ of transitions
of A. Define, for t ∈ δ, U(t) = (Id ,Φ(t)) where Id is the identity matrix of dimension |δ| × |δ|.
Then L(A,C) = L(A,U, C); we will later see that this containment is strict.

The arguments used by Klaedtke and Rueß [15] apply equally well to K-APA and K-DetAPA,
showing:

Proposition 14. LK-APA and LK-DetAPA are effectively closed under union, intersection and in-
verse morphisms. Moreover, LK-APA is closed under concatenation and nonerasing morphisms,
and LK-DetAPA is closed under complement.

We now show these models over N are at least as powerful as over Q. First, we need the
following technical lemma:

Lemma 15. For any K-APA (resp. K-DetAPA) there exists a K-APA (resp. K-DetAPA)
where the functions associated with the transitions are linear, except for some transitions which
can be taken only as the first transition of a nonempty run.

Proof (sketch). Let (A,U, C) be a K-APA of dimension d, where the transition set of A is
δ = {t1, . . . , t|δ|}, and write U(ti) = (Mi, vi). Let A′ be a copy of A in which a fresh state q is
added, set to be the initial state, with the same outgoing transitions as the initial state of A
and no incoming transition. Let t′1, . . . , t

′
k be the new transitions in A′, and order δ such that

t1, . . . , tk are the corresponding transitions leaving the initial state of A. Now define U ′, for
x, y1, . . . , y|δ| ∈ Kd, by U ′(t′i) : (x, y1, . . . , y|δ|) 7→ (vi, v1, . . . , v|δ|), and (U ′(ti) : (x, y1, . . . , y|δ|) 7→
(Mi.x + yi, y1, . . . , y|δ|). Finally define C ′ = C.Kd×|δ|. Then L(A′, U ′, C ′) = L(A,U, C), and A′

is deterministic if A is. Moreover, the only nonlinear functions given by U ′ are for the outgoing
transitions of the initial state of A′, a state no run can return to.

Proposition 16. LQ-DetAPA ⊆ LN-DetAPA and LQ-APA ⊆ LN-APA.

Proof. We first recall that a set C ⊆ Qd is Q-definable iff it is a finite union of sets of the form:

{x | f1(x) = · · · = fp(x) = 0 ∧ g1(x) > 0 ∧ · · · ∧ gq(x) > 0},

where f1, . . . , fp, g1, . . . , gq : Q
d → Q are affine functions (see, e.g., [6]). Let (A,U, C) be a

Q-APA of dimension d; by Lemma 15, we may suppose that the functions associated with the
transitions are linear, except for the transitions that may begin a run. We suppose C is a
single set of the kind previously described; this is no loss of generality as LK-APA and LK-DetAPA

are closed under union. So let C be described by functions fi and gi as above, and suppose
d = p + q (we add constant 0 functions to the fi’s or 0’s to the vectors of C in order to do
that). Define f : Qd → Qd by f(x) = (f1(x), . . . , g1(x), . . .); clearly, f ∈ Fd(Q). Now let
(A,U ′, C ′) be the Q-APA of dimension 2d, defined by (U ′(t))(x, y) = ((U(t))(x), f(x)), with t
a transition of A and x, y ∈ Qd; and C ′ = Qd.{0}p.(Q+)q. Clearly, L(A,U ′, C ′) = L(A,U, C).
We then define U ′′ by U ′′(t) = c× U ′(t) where c is the maximum denominator in the reduced
fractions appearing in the matrix and vector of U ′(t). Thus, the functions given by U ′′ are
from Z2d to Z2d. Moreover, for any π ∈ Run(A), (U ′′(π))(0) = k × (U ′(π))(0), for some k ∈ N+

On the expressiveness of Parikh automata and related models 11

depending only on π. Thus, defining C ′′ = Zd.{0}p.(Z+)q, we have L(A,U ′′, C ′′) = L(A,U ′, C ′).
Finally, the negative numbers can be circumvented by doubling the dimension of the matrices
and keeping track of the negative and the positive contributions separately until the final tests
for zero, which become tests that negative contribution equals (or is strictly lesser than) the
positive contribution of a number (a similar technique is used by Klaedtke and Rueß [15]).

Remark. The previous proof shows that the constraint set of Q-APA can be simulated within
the automaton, and is thus of a lesser use.

We now give a large class of languages belonging to LQ-APA. Define M∩(L) as the smallest
semiAFL containing L and closed under intersection; that is, M∩(L) is the smallest class of
languages containing L and closed under nonerasing and inverse morphism, intersection with a
regular set, union, intersection, and concatenation. With PAL = {w#wR | w ∈ {a, b}+}:

Proposition 17. M∩(PAL) ⊆ LQ-APA.

Proof. We sketch a Q-DetAPA for PAL. The automaton starts by reading a single letter, if it
is an a it initializes its counters to (2, 1), otherwise, it initializes them to (2, 0). Now for each
letter read, if it is an a, it applies the function (p, v) 7→ (2p, v + p), and (p, v) 7→ (2p, v) if it
is a b. Upon reaching the # sign, functions associated to a and b change: when reading an a,
the automaton applies (p, v) 7→ (p/2, v− p/2), otherwise it applies (p, v) 7→ (p/2, v). Clearly, a
word is in PAL iff it is of the form {a, b}+#{a, b}+ and the final state of the counters is (1, 0).
The closure properties are implied by those of LQ-APA (Proposition 14).

The class M∩(PAL) contains a wide range of languages. First, the closure of PAL under non-
erasing and inverse morphism and intersection with regular sets is the class of linear languages
(e.g., [4]). In turn, adding closure under intersection permits to express the languages of nonde-
terministic multipushdown automata where in every computation, each pushdown store makes
a bounded number of reversals (that is, going from pushing to popping) [3]; in particular,
if there is only one such pushdown store, this corresponds to the ultralinear languages [10].
Further, asM∩(COPY) (M∩(PAL) (e.g., [4]) this implies that COPY ∈ LQ-APA.

Next, we note that K-APA express only context-sensitive languages (CSL):

Proposition 18. LN-APA ⊆ CSL.

Proof. Let (A,U, C) be an N-APA of dimension d, we show that L(A,U, C) ∈ NSPACE[n]
(which is equal to CSL [18]). Let A = (Q,Σ, δ, q0, F), and w = w1 · · ·wn ∈ Σ∗. First, initialize
v ← 0 and q ← q0. Iterate through the letters of w: on the i-th letter, choose nondetermin-
istically a transition t from q labeled with wi. Update v by setting v ← (U(t))(v) and q with
q ← To(t). Upon reaching the last letter of w, accept w iff q ∈ F and v ∈ C.

We now bound the value of v. Let c be the greatest value appearing in any of the matrices
or vectors in U(t), for any t. For a given v, let max v be max{v1, . . . , vd}. Then for any t,
((U(t))(v))i ≤ d × (c × max v) + c. Let π be a path, we then have that ((U(π))(0))i ≤
(c(d + 1))n−1c, thus the size of v at the end of the algorithm is in O(n). Now note that, as
C is semilinear, the language of the binary encoding of its elements is regular [22], and thus,
checking v ∈ C can be done efficiently. Hence the given algorithm is indeed in NSPACE[n].

12 M. Cadilhac, A. Finkel, and P. McKenzie

We now note that the power of K-DetAPA does not owe to their capabilities as automata:

Proposition 19. Let Σ be an alphabet. There exists a two-state automaton AΣ such that for
any K-DetAPA over Σ, there exists a K-DetAPA accepting the same language whose underlying
automaton is AΣ.

Proof. Let (A,U, C) be a K-DetAPA of dimension d where A = (Q,Σ, δ, q0, F), with Q =
{1, . . . , k} and Σ = {a1, . . . , am}. Let N = k(d+1), we show that there exist fa1 , . . . , fam ∈ F

K
N ,

a K-definable set G ⊆ KN and o ∈ KN such that:

w = ℓ1 · · · ℓ|w| ∈ L(A,U, C) ⇔ fℓ|w|
◦ · · · ◦ fℓ1(o) ∈ G. (1)

Our goal is to represent the state in which the K-DetAPA is with a vector of size N . This
vector is composed of k smaller vectors of size (d+ 1). On taking a path π in A, let q = To(π)
and v = (U(π))(0d); then q and v describe the current configuration of the K-DetAPA. Thus
we define, for any q ∈ Q and v ∈ Kd: Vec(q, v) = (0d+1 · · · 0d+1 1 v

︸︷︷︸

q-th subvector

0d+1 · · · 0d+1).

Now, for t ∈ δ, let Mt and bt be such that U(t) = (Mt, bt). For the purpose of describing the
matrix Ua below, when t 6∈ δ we let Mt stand for the all-zero matrix of dimension d × d and
bt be the all-zero vector of dimension d. Let χ be the characteristic function of δ. For a ∈ Σ,
define:

Ua =

χ((1, a, 1)) 0 · · · 0 · · · χ((k, a, 1)) 0 · · ·0

b(1,a,1) M(1,a,1) · · · b(k,a,1) M(k,a,1)

...
...

. . .
...

...

χ((1, a, k)) 0 · · · 0 · · · χ((k, a, k)) 0 · · ·0

b(1,a,k) M(1,a,k) · · · b(k,a,k) M(k,a,k)

The matrix Ua is such that for (p, a, q) ∈ δ and v ∈ Kd, Ua.Vec(p, v) = Vec(q,M(p,a,q).v+b(p,a,q)).
In other words, Ua computes the transition function and, according to the current state, applies
the right affine function. More generally, for a path π in A starting at q0 and labeled by
w = ℓ1 · · · ℓ|w|, we have Uℓ|w|

· · ·Uℓ1 .Vec(q0, 0
d) = Vec(To(π), (U(π))(0d)), where 0d is the all-

zero vector of dimension d. We then let G be the K-definable set which contains Vec(q, v) iff q
is final and v ∈ C: G =

⋃

i∈F

⋃

v∈C Vec(i, v).

Now let fai ∈ F
K
N be defined as (Uai , 0

N) and let o = Vec(q0, 0
d). Then we have precisely

Equation (1). Now let A′ be the automaton ({r, s},Σ, δ′, r, {r, s}) defined by δ′ = {r, s} × Σ×
{s}. Define U ′ : δ′∗ → FK

N by:

On the expressiveness of Parikh automata and related models 13

U ′((q, ai, q
′))(x) =

Uai(Vec(q0, 0
d)) if q = r ∧ q′ = s,

Uai .x otherwise, i.e., if q = q′ = s.

Finally, a special case should be added for the empty word: We let C ′ = G if ε 6∈ L(A,U, C)
and C ′ = G∪ {0N} otherwise. We have that (A′, U ′, C ′) is a K-DetAPA where A′ has only two
states, and it is of the same language as (A,U, C). Finally, note that we need two states, and
not one, because K-APA use 0 as the starting value for their registers but o is needed here.

We now give some negative properties of APA; our main tool is the following lemma:

Lemma 20. Let L be a Turing-recognizable language. Then there exist effectively L1, L2 ∈
LQ-DetAPA, and a morphism h such that L = h(L1 ∩ L2).

Proof. This follows closely [1, Theorem 1], thus we only sketch the proof. Let M be a one-tape
Turing machine, and suppose w.l.o.g. that M makes an odd number of steps on any accepting
computation and that M only halts on accepting computation. Let L1 be the set of strings

ID0#ID2# · · ·#ID2k$(ID2k+1)
R# · · ·#(ID3)

R#(ID1)
R (2)

such that the IDi’s are instantaneous descriptions of configurations of M , ID0 is an initial
configuration, ID2k+1 is an accepting configuration, and for all i, ID2i+1 is the configuration
which would be reached in one step from configuration ID2i. Similarly, L2 is the same as L1 but
checks that ID2i is the successor of ID2i−1. These languages are in LQ-DetAPA, using a technique
similar to Proposition 17. Thus L1 ∩ L2 is a language of LQ-DetAPA which encodes the strings
of the type of 2 such that the IDi’s encode an accepting computation of M . Now if each string
IDi, i > 0, is over an alphabet which is disjoint from the alphabet which encodes the initial
instantaneous description, then the morphism h which erases all of the symbols in a string of
L1 ∩ L2 except those representing the input is such that L(M) = h(L1 ∩ L2).

Corollary 21. Neither LK-APA nor LK-DetAPA is closed under morphisms.

Corollary 22. The emptiness problem is undecidable for DetAPA.

Proof. Let L ⊆ Σ∗ be a Turing-recognizable language, and x ∈ Σ∗. Let L1, L2, h be given by
Lemma 20 for L. Then x ∈ L iff L1∩L2∩h

−1(x) is nonempty, the latter being in LQ-DetAPA.

Recall that LK-APA is closed under concatenation. The previous property and the fact that a
language L is empty iff L · Σ∗ is finite implies:

Corollary 23. Finiteness is undecidable for K-APA.

5. Parikh automata on letters

The PA on letters requires that the “weight” of a transition only depend on the input letter from
Σ triggering the transition. In a way similar to the CA characterization of PA, we characterize
PA on letters solely in terms of automata on Σ and semilinear sets. This model helps us in
proving a standard lemma in language theory, in the context of PA.

14 M. Cadilhac, A. Finkel, and P. McKenzie

Definition 5 (Parikh automaton on letters). A Parikh automaton on letters (LPA) is a PA
(A,C) where whenever (a, v1) and (a, v2) are labels of some transitions in A, then v1 = v2. We
write LLPA (resp. LDetLPA) for the class of languages recognized by LPA (resp. LPA which are
DetPA).

Now let (A,C) be a LPA. We may determinize A in the standard way and, although this is not
the case with a PA, the resulting LPA is deterministic, thus:

Proposition 24. LLPA = LDetLPA.

For R ⊆ Σ∗ and C ⊆ N|Σ|, define R↾C = {w ∈ R | Φ(w) ∈ C}. Then:

Proposition 25. Let L ⊆ Σ∗ be a language. The following are equivalent:
(i) L ∈ LLPA;
(ii) There exist a regular language R ⊆ Σ∗ and a semilinear set C ⊆ N|Σ| such that R↾C = L.

The following property will be our central tool for showing nonclosure results:

Lemma 26. Let L ∈ LLPA. For any regular language E:

L ∩ E is not regular ⇒ (∃w ∈ E)[c(w) ∩ L = ∅].

Proof. Let R ⊆ Σ∗ be a regular language and C ⊆ N|Σ| be a semilinear set. Define L = R↾C .
Let E be a regular language such that L∩E is not regular. As L ⊆ R, we have (L∩E) ⊆ (R∩E).
The left hand side being non regular, those two sets differ. Thus, let w ∈ (R ∩ E) such that
w 6∈ L ∩ E, we have w 6∈ L. Hence, w ∈ (R \ L), which implies that Φ(w) 6∈ C, and in turn,
c(w) ∩ L = ∅.

Remark. Lemma 26 holds with, e.g., “context-free” in lieu of “regular”, but the version given
will suffice for our purposes.

Proposition 27. (1) LLPA is not closed under union, complement, squaring, nonerasing mor-
phisms;

(2) LLPA is closed under intersection, inverse morphisms, commutative closure.

Proof. (1). (Union.) Let L1 = {w ∈ {a, b}
∗ | |w|a = |w|b} and L2 = b(a∪b)∗ be two languages

of LPA. Suppose L = L1 ∪L2 ∈ LLPA. Let E be the regular language (a+b+). By the pumping
lemma, L∩E is not regular, thus Lemma 26 states there exists w ∈ E such that c(w)∩L = ∅.
But u = b|w|ba|w|a ∈ c(w) and u ∈ L, a contradiction.
(Complement.) Note that L is the complement in {a, b}∗ of {ambn | m > 0 ∧m 6= n}, which is
the language of a LPA.
(Squaring.) Let L = {ambn | m 6= n} ∈ LLPA. Suppose L2 ∈ LLPA, and let E = (a+b+)2.
Again, L∩E is not regular, Lemma 26 implies there exists w ∈ E such that c(w)∩E = ∅. But
a|w|ab0a0b|w|b ∈ c(w) ∩ L, a contradiction.
(Nonerasing morphisms.) We simply note that L is the image of the language {am1 b

n
1a

r
2b

s
2 | m 6=

n ∧ r 6= s} by the morphism h(ai) = a, h(bi) = b.

On the expressiveness of Parikh automata and related models 15

(2). The proofs for the first two properties follow the usual proofs for finite automata. Closure
under the commutative closure operator follows from the proof of Proposition 9.

Finally, we use LPA to show the following property, which has a standard form known to be
true for regular [19] and context-free languages [2] (the latter recently reworked in [8]). This
property is sometimes called Parikh-boundedness:

Proposition 28. For any L ∈ LPA, there exists a bounded language L′ ∈ LPA such that L′ ⊆ L
and Φ(L) = Φ(L′).
Proof. Let (A,C) be a constrained automaton, where δ is the transition set of A. Let R ⊆ δ∗

and D ⊆ N|δ| be such that µ(R↾D) = L(A,C). As mentioned, we can find a bounded regular
language R′ ⊆ R such that Φ(R′) = Φ(R). In particular, Φ(R′↾D) = Φ(R↾D). Closure under
morphism of LPA implies that L = µ(R′↾D) is a bounded language of LPA included in L(A,C).
Moreover, Φ(L(A,C)) = Φ(µ(R↾D)), and thus, equals Φ(L).

6. Conclusion

The following table summarizes the current state of knowledge concerning the PA and its vari-
ants studied here; a class contains the class below it, and a language witnessing the separation
is attached to the top class when we know this containment to be strict.

Context-Sensitive Languages

CFL
N-APA

PA = RBCM
DetRBCM

DetPA
LPA
REG

PAL

×

COPY

×
ΣANBN

×
NSUM

×

(anbn)2

×

(anbncn)2

×
anbn

×
anbncn

×

An intriguing question is whether there are context-free or context-sensitive languages outside
LN-APA. How difficult is that question? How about LN-DetAPA? We have been unable to locate
the latter class meaningfully. In particular, can LN-DetAPA be separated from LN-APA?

The following summarizes the known closure and decidability properties for PA variants, and
proposes open questions:

∪ ∩ · h h−1 c ∗ ∅ Σ∗ fin. ⊆ reg.

LPA N Y N N N Y Y N D D D D ?

DetPA Y Y N Y N Y Y N D D D D ?

PA Y Y Y N Y Y Y N D U U U U

DetAPA Y Y ? Y N Y ? ? U U ? U ?

APA Y Y Y ? N Y ? ? U U U U U

16 M. Cadilhac, A. Finkel, and P. McKenzie

Several questions thus remain open concerning the poorly understood (and possibly overly
powerful) affine PA model. But surely we expect testing a LPA or a DetPA for regularity to
be decidable. How can regularity be tested for these models? One avenue for future research
towards this goal might be characterizing LDetPA along the lines of algebraic automata theory.

Acknowledgments. The first author thanks L. Beaudou, M. Kaplan, and A. Lemaître.

References

[1] Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. Journal of Computer and
System Sciences 8(3), 315–332 (1974)

[2] Blattner, M., Latteux, M.: Parikh-bounded languages. In: ICALP. LNCS, vol. 115, pp. 316–323.
Springer Berlin / Heidelberg (1981), 10.1007/3-540-10843-2_26

[3] Book, R., Nivat, M., Paterson, M.: Reversal-bounded acceptors and intersections of linear lan-
guages. SIAM Journal on Computing 3(4), 283 (1974)

[4] Brandenburg, F.: Analogies of PAL and COPY. In: Fundamentals of Computation Theory. Lec-
ture Notes in Computer Science, vol. 117, pp. 61–70. Springer Berlin / Heidelberg (1981)

[5] Chiniforooshan, E., Daley, M., Ibarra, O.H., Kari, L., Seki, S.: One-reversal counter machines
and multihead automata: revisited. In: SOFSEM. pp. 166–177 (2011), ACM ID: 1946384

[6] van den Dries, L.P.D.: Tame Topology and O-minimal Structures. Cambridge Univ. Press (1998)
[7] Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press (1972)
[8] Ganty, P., Majumdar, R., Monmege, B.: Bounded underapproximations. In: Computer Aided

Verification. p. 600–614 (2010)
[9] Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages. Pacific Journal of

Mathematics 16(2), 285–296 (1966)
[10] Ginsburg, S., Spanier, E.: Finite-turn pushdown automata. SIAM Journal on Control and Opti-

mization 4(3), 429 (1966)
[11] Greibach, S.A.: A note on undecidable properties of formal languages. Math Systems Theory 2(1),

1–6 (1968)
[12] Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM

25(1), 116–133 (1978)
[13] Ibarra, O.H., Su, J.: A technique for proving decidability of containment and equivalence of linear

constraint queries. J. Comput. Syst. Sci. 59(1), 1–28 (1999)
[14] Karianto, W.: Parikh automata with pushdown stack. Diploma thesis, RWTH Aachen (2004)
[15] Klaedtke, F., Rueß, H.: Parikh automata and monadic second-order logics with linear cardinality

constraints. Tech. rep. 177, Universität Freiburg (2002)
[16] Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: ICALP. LNCS, vol.

2719, pp. 681–696. Springer-Verlag (2003)
[17] Klarlund, N., Schneider, F.B.: Verifying safety properties using non-deterministic infinite-state

automata. Tech. rep., Ithaca, NY, USA (1989)
[18] Kuroda, S.Y.: Classes of languages and linear bounded automata. Information and Control 7(2),

207–223 (1964)
[19] Latteux, M.: Mots infinis et langages commutatifs. RAIRO Info. Théo. 12(3), 185–192 (1978)
[20] Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)
[21] Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)
[22] Wolper, P., Boigelot, B.: An automata-theoretic approach to Presburger arithmetic constraints.

In: Static Analysis (SAS’95). LNCS, vol. 983, pp. 21–32. Springer Berlin / Heidelberg (1995)

	1 Introduction
	2 Preliminaries
	3 Parikh automata
	3.1 On the expressiveness of Parikh automata
	3.2 On decidability and closure properties of Parikh automata
	3.3 Parikh automata and reversal-bounded counter machines

	4 Affine Parikh automata
	5 Parikh automata on letters
	6 Conclusion

