
September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

UNAMBIGUOUS CONSTRAINED AUTOMATA

MICHAËL CADILHAC

Laboratoire d’informatique théorique et quantique
Département d’informatique et de recherche opérationnelle

Université de Montréal
C.P. 6128 succursale Centre-ville, Montréal (Québec) H3C 3J7 Canada

cadilhac@iro.umontreal.ca

ALAIN FINKEL

LSV, ENS Cachan, CNRS
61 av. du Président Wilson, F-94230 Cachan, France

finkel@lsv.ens-cachan.fr

Ce travail a bénéficié d’une aide de l’Agence Nationale de la Recherche
portant la référence “REACHARD-ANR-11-BS02-001”

PIERRE MCKENZIE

Université de Montréal and Chaire Digiteo ENS Cachan-École Polytechnique
Same address as first author
mckenzie@iro.umontreal.ca

Supported by Digiteo and the Natural Sciences and Engineering Research Council of Canada

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

The class of languages captured by Constrained Automata (CA) that are unambiguous
is shown to possess more closure properties than the provably weaker class captured by
deterministic CA. Problems decidable for deterministic CA are nonetheless shown to
remain decidable for unambiguous CA, and testing for regularity is added to this set of
decidable problems. Unambiguous CA are then shown incomparable with deterministic
reversal-bounded machines in terms of expressivity, and a deterministic model equivalent
to unambiguous CA is identified.

Keywords: Constrained automata; Parikh automata; unambiguity; regularity test.

1. Introduction

A recent trend in automata theory is to study flavors of nondeterminism, which
are introduced to provide a scale of expressiveness in different models (see [5] for a
survey). The usual goal is to strike a balance between the expressiveness of nonde-
terministic models and the undecidability properties that often come with nondeter-
minism. A natural restriction to nondeterminism is unambiguity, i.e., the property

1

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

2 M. Cadilhac, A. Finkel, and P. McKenzie

that despite the underlying nondeterminism, there be at most one way to accept
an input word. Within the context of finite automata, unambiguity and nonde-
terminism are equally expressive, but many open problems concerning the state
complexity of unambiguity remain. Within more general contexts, the first ques-
tion is often whether unambiguity offers more expressiveness than determinism; if
so, then the examination of the closure and decidability properties of the new class
often reveals that it inherits good properties. Another line of attack is to find a
deterministic model equivalent to an unambiguous model, so as to understand how
unambiguity affects a given model.

In [10], Klaedtke and Rueß studied Constrained Automata (CA),a a model
whose expressive power lies between regular languages and context-sensitive lan-
guages [10, 4]. Klaedtke and Rueß successfully used the CA in the model-checking
of hardware circuits, suggesting that CA is a model of interest for real-life appli-
cations. Bouajjani and Habermehl [2] also used a variant of CA for the model-
checking of FIFO-channel systems. The deterministic variant (DetCA) of the
CA enjoys more closure properties (e.g., complement) and decidability properties
(e.g., universality) than the CA, but is unable to express languages as simple as
{a, b}∗ · {anbn | n ≥ 1} [4]. Buoyed by Colcombet’s recent systematic examination
of unambiguity [5], here we initiate the study of unambiguous CA (UnCA).

We show that UnCA enjoy more closure properties than DetCA, while be-
ing more expressive. The class of languages UnCA defines is indeed closed under
Boolean operations, inverse morphisms, commutative closure, reversal, and right
and left quotient. We show that the problems known to be decidable for DetCA
(emptiness, universality, finiteness, inclusion) remain decidable for UnCA. As the
main technical result of this paper, we show that regularity is decidable for UnCA;
by contrast, regularity is known to be undecidable for CA [4], while its status was
unknown for DetCA. Finally, although DetCA are less powerful than UnCA, we
present a natural deterministic model equivalent to UnCA; as a result of indepen-
dent interest, we show that the nondeterministic variant of this model has the same
expressive power as CA.

Section 2 in this paper contains preliminaries. Section 3 investigates the closure
and expressiveness properties of UnCA. Section 4 compares UnCA and deterministic
reversal-bounded counter machines. Section 5 proceeds with the decidability prop-
erties of UnCA, showing, as our main result, that regularity is decidable. Section 6
shows that there is a natural equivalent deterministic model to UnCA. Section 7
concludes with a brief discussion.

2. Preliminaries

Integers, Vectors, Monoids. We write N for the nonnegative integers. Let d ≥ 1.
Vectors in Nd are noted in bold, e.g., v whose elements are v1, v2, . . . , vd. We write

aIn [10], the model under study is called Parikh automata. CA are but an effectively equivalent
model with an arguably simpler definition.

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

Unambiguous Constrained Automata 3

ei ∈ {0, 1}d for the vector having a 1 only in position i and 0 for the all-zero vector.
We view Nd as the additive monoid (Nd,+), with + the component-wise addition
and 0 the identity element. Given an order on some set Σ = {!1, !2, . . . , !n} we often
refer to the components of a vector v ∈ N|Σ| by x!i instead of xi. In particular, for
! ∈ Σ, x! refers to the i-th component of x where i is such that !i = !.

Let s ≥ 0 and p ≥ 1, we define the congruence ≡s,p, by x ≡s,p y iff (x = y <
s)∨ (x, y ≥ s∧x = y (mod p)), for x, y ∈ N; we write [x]s,p for the equivalence class
of x under ≡s,p. We extend ≡s,p component-wise to vectors x,y ∈ Nd by letting
x ≡s,p y iff xi ≡s,p yi for all 1 ≤ i ≤ d; similarly, [x]s,p is the equivalence class of x
under this relation.

For a monoid (M, ·) and S ⊆M , we write S∗ for the monoid generated by S, i.e.,
the smallest submonoid of (M, ·) containing S. A (monoid) morphism from (M, ·)
to (N, ◦) is a function h : M → N such that h(m1 · m2) = h(m1) ◦ h(m2), and,
with eM (resp. eN) the identity element of M (resp. N), h(eM) = eN . Moreover, if
M = S∗ for some finite set S (and this will always be the case), then h need only
be defined on the elements of S. In this case, h is said to be erasing if there is an
s ∈ S such that h(s) = eN . If in addition N = T ∗ for some finite set T , h is said to
be length-preserving if for all s ∈ S, h(s) ∈ T .

Semilinear Sets, Parikh Image. A subset C of Nd is linear if there exist c ∈ Nd

and a finite set P ⊆ Nd of periods such that C = c+P ∗. The subset C is said to be
semilinear if it is equal to a finite union of linear sets: {4n+56 | n > 0} is semilinear
while {2n | n > 0} is not. We will often use the fact that the semilinear sets are those
sets of natural numbers definable in first-order logic with addition [6]. A semilinear
set is said to be effectively semilinear if its description as a set of c’s and P ’s, or
equivalently as a formula, can be computed from the input to the problem. Let
Σ = {!1, !2, . . . , !n} be an alphabetb and write ε for the empty word. The Parikh
image [6] is the morphism Pkh : Σ∗ → Nn defined by Pkh(!i) = ei, for 1 ≤ i ≤ n —
in particular, we have that Pkh(ε) = 0. The Parikh image of a language L is defined
as Pkh(L) = {Pkh(w) | w ∈ L}. The name of this morphism stems from Parikh’s
theorem [12], which states that the Parikh image of any context-free language is
semilinear. For L ⊆ Σ∗ and C ⊆ Nn, define L!C (read “L constrained by C”) as
{w ∈ L | Pkh(w) ∈ C}.

Languages, Operations. Let u = a1a2 · · · an ∈ Σ∗, ai ∈ Σ. We write |u|!, for
! ∈ Σ, for the number |{i | ai = !}|. We define uR = an · · ·a2a1 as the reversal
of u. For L1, L2 ⊆ Σ∗, define LR

1 as the set of the reversals of each word in L1;
(L1)−1L2 = {v | (∃u ∈ L1)[u · v ∈ L2]} as the left quotient of L2 by L1; and
L1(L2)−1 = {u | (∃v ∈ L2)[u · v ∈ L1]} as the right quotient of L1 by L2. A
language L ⊆ Σ∗ is bounded [7] if there exist n > 0 and a sequence of words
w1, w2, . . . , wn ∈ Σ+, which we call a socle of L, such that L ⊆ w∗

1w
∗
2 · · ·w∗

n. The

bWe will always assume some implicit ordering on the alphabets.

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

4 M. Cadilhac, A. Finkel, and P. McKenzie

iteration set of L w.r.t. this socle is (uniquely) defined as Iter(w1,w2,...,wn)(L) =
{(i1, i2, . . . , in) ∈ Nn | wi1

1 wi2
2 · · ·win

n ∈ L}; an iteration set contains all possible
ways to iterate the words in the socle to obtain a word in L.

Automata. An automaton is a quintuple A = (Q,Σ, δ, q0, F) where Q is the finite
set of states, Σ is an alphabet, δ ⊆ Q×Σ×Q is the set of transitions, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of final states. For a transition t = (q, a, q′) ∈ δ,
we write t = q a q′ and define From(t) = q and To(t) = q′. Moreover, we define
µA : δ∗ → Σ∗ to be the length-preserving morphism given by µA(t) = a, with, in
particular, µA(ε) = ε, and we write µ when A is clear from the context. A path π
on A is a word π = t1t2 · · · tn ∈ δ∗ such that To(ti) = From(ti+1) for 1 ≤ i < n;
we extend From and To to paths, letting From(π) = From(t1) and To(π) = To(tn).
We say that µ(π) is the label of π. A path π is said to be initial if From(π) = q0,
final if To(π) ∈ F , and accepting if it is both initial and final; we write Run(A)
for the language over δ of accepting paths (or runs) on A. We write L(A) for the
language of A, i.e., the labels of the accepting paths. The automaton A is said to
be deterministic if (p a q ∈ δ ∧ p a q′ ∈ δ) implies q = q′. An ε-automaton is an
automaton A = (Q,Σ, δ, q0, F) as above, except with δ ⊆ Q× (Σ∪ {ε})×Q so that
in particular µA becomes an erasing morphism.

Affine Functions. We consider the vectors in Nd to be column vectors. A function
f : Nd → Nd is a (total and positive) affine function of dimension d if there exist
a matrix M ∈ Nd×d and v ∈ Nd such that for any x ∈ Nd, f(x) = M.x + v. We
abusively write f = (M,v). We let Fd be the set of such functions; we view Fd as the
monoid (Fd, -) with (f - g)(x) = g(f(x)), where the identity element of the monoid
is the identity function, i.e., (Id ,0) where Id is the identity matrix of dimension d.
Let U be a monoid morphism from Σ∗ to Fd. For w ∈ Σ∗, we write Uw for U(w), so
that the application of U(w) to a vector v is written Uw(v), and Uε is the identity
function. We define M(U) as the multiplicative matrix monoid generated by the
matrices used to define U , i.e., M(U) = {M | (∃a ∈ Σ)(∃v)[Ua = (M,v)]}∗.

Definition 1 (Constrained automaton [4]) A constrained automaton (CA) is
a pair (A,C) where A is an ε-automaton with d transitions and C ⊆ Nd is semilin-
ear. Its language is L(A,C) = µ(Run(A)!C). The CA is said to be:

• Deterministic (DetCA) if A is a deterministic automaton;
• Unambiguous (UnCA) if A is an unambiguous ε-automaton.

We write LCA, LDetCA,c and LUnCA for the classes of languages recognized by CA,
DetCA, and UnCA, respectively.

cIn [4], LCA and LDetCA are written LPA and LDetPA, in reference to Parikh automata [10], which
are equivalent to CA.

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

Unambiguous Constrained Automata 5

3. Closure properties and expressiveness of UnCA

In this section, we show closure and nonclosure properties, and we give languages
witnessing the strict inclusion chain LDetCA ! LUnCA ! LCA. We start with a tool
that will prove useful when combining UnCA:

Lemma 2. For any UnCA (A,C), there is an UnCA (A′, C′) where A′ has no
ε-transition, L(A) = L(A′), and L(A,C) = L(A′, C′).

Proof. Let (A,C) be an UnCA with A = (Q,Σ, δ, q0, F). We first note that for
p, q ∈ Q, and ! ∈ Σ∪ {ε}, we may suppose there is at most one way to reach q from
p reading !. Indeed, suppose there are two paths π1,π2 from p to q labeled !, and
suppose there is a path ρ1 from q0 to p (otherwise, we may remove p) and a path
ρ2 from q to a final state (otherwise, we may remove q). Then ρ1π1ρ2 and ρ1π2ρ2
are two accepting paths with the same label, contradicting the unambiguity of A.
In particular, this implies that there is no cycle of ε-transitions, since if π is such a
cycle, one may go from and to From(π) reading ε using two paths: π and the empty
path. In the same vein, we note that we may suppose that for a state q, if there is
a path of ε-transitions from q to a final state q′, then it is unique and there is no
such path between q and a different final state.

Now we “backward-close” the ε-automaton A. For p, q ∈ Q and ! ∈ Σ, define
P (p, !, q) to be the only path from p to q labeled ! which ends in a transition
labeled !; if none exists, set P (p, !, q) to ⊥. Likewise, define E(p) to be the unique
path labeled ε from p to a final state of A, if it exists, and ⊥ otherwise. Note that
E(p) = ε if p ∈ F . Define A′ = (Q,Σ, δ′, q0, F ′) where:

δ′ = {p ! q | ! ∈ Σ ∧ P (p, !, q) /= ⊥} ,

F ′ = {p | E(p) /= ⊥} .

Clearly, this automaton has the same language as A. Further, we argue that it is
unambiguous. Let h : δ′∗ → δ∗ be the morphism defined by h(p ! q) = P (p, !, q).
It is not hard to see that h is a bijection from Run(A′) to:

Run(A)−ε = Run(A)({t ∈ δ | µ(t) = ε}∗)−1 ,

that is, the initial paths in A ending in a state from which we can reach a final state
by following ε-transitions.

Now note that there is a one-to-one correspondence that preserves labels between
Run(A) and Run(A)−ε that consists in removing the trailing ε-transitions. As h also
preserves labels, this implies that A′ is unambiguous and L(A′) = L(A). Moreover,
with π′ ∈ Run(A′), the only path π ∈ Run(A) with the same label is given by
π = h(π′)E(To(π′)). We thus define the constraint set C′ so that Pkh(π′) ∈ C′ iff
Pkh(π) ∈ C. For this, we need to know, given the Parikh image of a run in A′, in
which state q the run ends, so that we can add Pkh(E(q)) to retrieve the Parikh
image of the similar path in A:

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

6 M. Cadilhac, A. Finkel, and P. McKenzie

Fact 3. Let A be an automaton. For each final state q of A, the set of Parikh images
of paths in Run(A) ending in q is effectively semilinear. Moreover, those sets are
disjoint.

Now, order δ′ = {t′1, t′2, . . . , t′k}. Next, for q ∈ F ′, let Rq be the semilinear set
of Parikh images of initial paths in A′ ending in q. Note that Fact 3 implies that
for π ∈ Run(A′), Pkh(π) ∈ Rq iff To(π) = q. Then define C′ ⊆ Nk by letting
x = (x1, x2, . . . , xk) ∈ C′ iff:

∧

q∈F ′

[
(x ∈ Rq)→

(
k∑

i=1

xi × Pkh(h(t′i)) + Pkh(E(q))

)
∈ C

]
.

Concluding the proof of Lemma 2, a word w ∈ L(A′, C′) iff w ∈ L(A′) and the
Parikh image of the only path labeled w in Run(A′) is in C′, that is iff w ∈ L(A)
and the Parikh image of the only path labeled w in Run(A) is in C, that is iff
w ∈ L(A,C). 01

Proposition 4. LUnCA is closed under union.

Proof (sketch). First, we note that for an UnCA (A,C) over the alphabet Σ, there
is an UnCA (A′, C′) with L(A′) = Σ∗ and L(A′, C′) = L(A,C). The ε-automaton
A′ is defined as A A where A is a deterministic automaton for L(A)
and the two new transitions are labeled by ε. Then C′ is defined to reject if the
transition to A is taken, and to accept if the run is in A and its Parikh image is in
C. Clearly, A′ is unambiguous.

Now let (A,C) and (B,D) be two UnCA over the same alphabet Σ (w.l.o.g.), and
with L(A) = L(B) = Σ∗, as per the previous discussion. We design an automaton
that runs A and B in parallel. We rely on Lemma 2 to synchronize the two automata.
For any word w, there will be exactly one way to read w over A and B to reach
acceptance, thus only one way to read w over both at the same time. Finally, we
constrain this automaton by extracting the paths in A and B and checking that at
least one of them is in its respective constraint set. 01

Proposition 5. LUnCA is closed under complement, intersection, inverse mor-
phisms and commutative closure.

Proof. (Complement and intersection) Let (A,C) be an UnCA. A word w is not
in L(A,C) iff either w /∈ L(A) or w ∈ L(A) but the Parikh image of the only path
for w in A is rejected by C. Thus L(A,C) = L(A) ∪ L(A,C). Now L(A) is regular,
thus L(A) ∈ LUnCA. Moreover, (A,C) is an UnCA. Thus L(A,C) is the union of
the languages of two UnCA, and by Proposition 4, it is in LUnCA. Closure under
intersection follows from the closure under union and complement.

(Inverse morphisms) Let (A,C) be an UnCA over Σ and h : T∗ → Σ∗ be a
language morphism. Write A = (Q,Σ, δ, q0, F) and P (q, u, q′) the only path in A

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

Unambiguous Constrained Automata 7

from q to q′ labeled u if it exists, and ⊥ otherwise. We set Path(q, ε, q) = ε for any
q. Define B = (Q,T, δ′, q0, F) by: δ′ = {q ! q′ ∈ Q × T×Q | P (q, h(!), q′) /= ⊥}.
Now B is unambiguous as A is. Define C′ ⊆ N|δ′| by letting x = (xt)t∈δ′ ∈ C′ iff∑

t=q ! q′∈δ′ xt × Pkh(P (q, h(!), q′)) ∈ C. It is clear that L(B,C′) = h−1(L(A,C)),
concluding the proof.

(Commutative closure) It is shown in [4] that the commutative closure of a
language in LCA is in LDetCA, and thus in LUnCA. 01

Note that LDetCA is not closed under reversal, as {a, b}∗ ·{anbn | n ≥ 1} is not in
LDetCA while its reversal is [4]. Thus it is a curiosity, especially for a class described
by a deterministic model (see the forthcoming Theorem 32), that we have:

Proposition 6. LUnCA is closed under reversal.

Proof. Let (A,C) be an UnCA. Let B be the ε-automaton A in which a new state
qf is set to be the only final state, and with a transition from each former final state
to qf labeled ε. Clearly, B is unambiguous. Adjust C into C′ so that the added
transitions in B do not affect the acceptance of a word, i.e., L(B,C′) = L(A,C).
Then define D as the ε-automaton B in which every transition is reversed, i.e.,
q ! q′ is a transition of B iff q′ ! q is a transition of D; the order on the transition
set of D is the same as that of B. Additionally, set qf as the initial state and the
former initial state of B as the only final state. Then D is unambiguous: clearly,
Run(B) is the set of paths which are the reversal of paths in Run(D) and where each
transition is reversed, thus the accepting paths in D labeled w are the reversal of
the accepting paths in B labeled wR. As B is unambiguous, only one such path may
exist, thus D is unambiguous. Hence L(D,C′) = (L(B,C′))R = (L(A,C))R. 01

Proposition 7. Let L1 ∈ LCA and L2 ∈ LUnCA. Then L−1
1 L2 ∈ LUnCA.

Proof. Let (A,C) be a CA, (B,D) an UnCA, with A = (QA,Σ, δA, q0,A, FA) and
B = (QB ,Σ, δB, q0,B, FB). We suppose, thanks to Lemma 2, that no transition of
B is labeled by ε, and that each state of B is reachable from q0,B and can reach a
final state. For q ∈ QB, define B q (resp. Bq) to be the ε-automaton B where the
initial state (resp. the only final state) is q, and note that B q is unambiguous, as
any path from q to a final state can be prefixed with a path from q0,B to q to make
an accepting path in B. First, we note that a consequence of Parikh’s theorem [12]
is that:

Fact 8. For any qB ∈ QB, the set EqB = {(Pkh(π),Pkh(ρ)) | π ∈ Run(A) ∧ ρ ∈
Run(BqB) ∧ µA(π) = µB(ρ)} is effectively semilinear.

A word w is in (L(A,C))−1L(B,D) iff there is a state qB ∈ QB and a word
u ∈ L(A,C) such that u ∈ L(BqB), w ∈ L(B qB), and the Parikh image of one (in
fact, the only) path for u in BqB concatenated with the path for w in B qB is in
D. This is the case iff there is a state qB ∈ QB and a pair (x,y) ∈ EqB such that

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

8 M. Cadilhac, A. Finkel, and P. McKenzie

x ∈ C and the Parikh image z of the only path in B qB labeled w plus y is in D.
In symbols, a word w is in (L(A,C))−1L(B,D) iff it is in:

⋃

qB∈QB

L(B qB , {z | (∃(x,y) ∈ EqB)[x ∈ C ∧ y + z ∈ D]}) .

As LUnCA is closed under union (Proposition 4), this implies the result. 01

Remark 9. In the previous proof, if (B,D) is a DetCA, then we obtain at the end
a set of DetCA, the union of the languages of which is (L(A,C))−1L(B,C). As
LDetCA is closed under union, this shows that LDetCA is also closed under left quo-
tient. Moreover, if (B,D) is an UnCA, then Bq is unambiguous: if two accepting
paths therein have the same label, then there are two ways to get from q0,B to q
reading the same word, and since a final state can be reached from q, the unambigu-
ity of B implies that they are the same paths. Likewise, if (B,D) is a DetCA, then
Bq is deterministic. Thus a similar proof as the above shows that both LUnCA and
LDetCA are closed under right quotient — in the case of DetCA, this settles those
questions left open in [10]. An alternative proof of the closure under right quotient
of LUnCA is to note that L1(L2)−1 = ((LR

2)
−1LR

1)
R. Thus the closure of LUnCA

under reversal (Proposition 6) and under left quotient (Proposition 7) imply that
LUnCA is indeed closed under right quotient.

We introduce an expressiveness lemma inspired by those in [4], and which is
shown in a similar way. It is based on the idea that given a path π = π1ρπ2ρπ3

where ρ is a cycle, grouping the cycles together (i.e., considering π1ρ2π2π3 and
π1π2ρ2π3) affects neither its being an accepting path, nor its Parikh image.

Lemma 10. Let L ⊆ Σ∗ be in LCA. There exist p, ! ≥ 1 such that for any
v0, v1, . . . , v! ∈ Σ∗ and u1, u2, . . . , u! ∈ Σ≥p such that v0u1v1 · · ·u!v! ∈ L, there
exist 1 ≤ i < j ≤ ! and a nonempty w ∈ Σ∗ with |w| ≤ p such that:
(1). ui = ui,1 · w · ui,2 and uj = uj,1 · w · uj,2,
(2). v0u1v1 · · · (ui,1 · ui,2)vi · · · (uj,1 · w2 · uj,2)vj · · ·u!v! ∈ L,
(3). v0u1v1 · · · (ui,1 · w2 · ui,2)vi · · · (uj,1 · uj,2)vj · · ·u!v! ∈ L.

Now let P1 be the prefixes of the semi-Dyck language of two parentheses:

P1 = {a1a2 · · · ak ∈ {!,"}∗ | (∀i)[ai ∈ Σ ∧ |a1a2 · · · ai|! ≥ |a1a2 · · · ai|"]} .

Proposition 11. P1 /∈ LCA and P1 ∈ LCA \ LUnCA.

Proof. (P1 /∈ LCA.) We use Lemma 10. Suppose P1 ∈ LCA, and let p, ! be as in
Lemma 10. Define v0 = ε and for all 1 ≤ i ≤ !, ui = !p, vi = "p. Lemma 10 then
asserts that there is 1 ≤ k ≤ p such that u1v1 · · ·!p−k"p · · ·!p+k"p · · ·u!v! ∈ P1,
a contradiction.

(P1 ∈ LCA.) We only note that we can design a CA for P1 which guesses a
position in the input word at which the number of !’s read so far is less than the
number of "’s.

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

Unambiguous Constrained Automata 9

(P1 /∈ LUnCA.) If P1 ∈ LUnCA, then P1 ∈ LUnCA (Proposition 5), but as
LUnCA ⊆ LCA, this contradicts P1 /∈ LCA. 01

Theorem 12. LDetCA ! LUnCA ! LCA.

Proof. (LDetCA ! LUnCA.) The inclusion follows from the fact that a determinis-
tic automaton is unambiguous, thus a DetCA is an UnCA. The strictness of the in-
clusion is shown in [3]: the language {a, b}∗·{anbn | n ≥ 1} is in LUnCA\LDetCA. Ad-
ditionally, we already hinted that LDetCA is not closed under reversal while LUnCA

is (Proposition 6), implying that the two classes differ.
(LUnCA ! LCA.) We already noted that the inclusion is immediate, as an

UnCA is a CA. Its strictness comes from Proposition 11, or alternatively, from the
fact that LCA is not closed under complement while LUnCA is. 01

Proposition 13. LUnCA is neither closed under concatenation with a regular lan-
guage, nor under length-preserving morphisms, nor under starring.

Proof. (Concatenation.) Let Σ = {!,"}. The language L< = {w ∈ Σ∗ | |w|! <
|w|"} is in LDetCA and such that P1 = L< ·Σ∗ /∈ LUnCA. Thus if LUnCA were closed
under concatenation, then P1 would be in LUnCA, contradicting Proposition 11.

(Length-preserving morphisms and starring.) Let T = {!,"}, then L< · T∗ ∈
LUnCA. The length-preserving morphism h : (Σ ∪ T)∗ → Σ∗ defined by h(!) =
h(!) = !, h(") = h(") = " is such that h(L< · T∗) = L< · Σ∗ /∈ LUnCA. For
starring, it is shown in [4] that with L = {anbn | n ∈ N} ∈ LDetCA, L∗ /∈ LCA "
LUnCA. 01

4. UnCA and RBCM

It is known that one-way reversal-bounded counter machines (RBCM) [9] are as
powerful as CA [10], while deterministic such machines (DetRBCM) are more pow-
erful than DetCA [4]. In this section, we carry this study further by showing that
the expressive power of DetRBCM is incomparable with that of UnCA.

Proposition 14. LDetRBCM and LUnCA are incomparable.

Proof. (LDetRBCM # LUnCA.) A DetRBCM can deterministically use extra in-
formation provided in the input word to check for a certain property later in the
input; this is illustrated by the fact that the following language is in LDetRBCM:

L = {!nw | w = a1a2 · · · an · · · ∈ {!,"}∗ ∧ |a1a2 · · · an|! < |a1a2 · · ·an|"} .

Indeed, the DetRBCM starts by counting the number of !’s, then decrements this
counter while reading w and counting the number of !’s and "’s. When the number
of !’s reaches zero, the machine checks whether the number of !’s read so far is
strictly less than the number of "’s read and accepts iff it is the case. This is done by

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

10 M. Cadilhac, A. Finkel, and P. McKenzie

decrementing the counters simultaneously until one of them reaches 0, while keeping
the input head in place; this is deterministic w.r.t. the values of the counters.

Suppose L ∈ LUnCA. Proposition 7 then asserts that ({!}∗)−1L ∩ {!,"}∗ is in
LUnCA. But this latter language is P1 /∈ LUnCA (Proposition 11), a contradiction.

(LUnCA # LDetRBCM.) The language {a, b}∗ · {anbn | n ≥ 1} is in LUnCA but
not in LDetRBCM [4]. 01

5. Decision problems for UnCA

We recall the following decidability results, which hold equally well for UnCA:

Proposition 15 ([10, 4]) Given a CA, it is decidable whether its language is
empty, and whether its language is finite.

With the closure properties of LUnCA of Proposition 5, this implies:

Proposition 16. Given an UnCA, it is decidable whether its language is Σ∗. Given
two UnCA, it is decidable whether the language of the first is included in the lan-
guage of the second.

The rest of this section is devoted to the main technical result of our paper,
namely that it is decidable whether the language of an UnCA is regular. Our tech-
nique is in two steps: we first show that it is decidable whether a bounded CA
language (given additionally a socle of the language) is regular (Lemma 20) then
reduce the decision in the general case to the decision with bounded CA languages.

Definition 17. A set C is unary if it is equal to a finite union of linear sets, each
period of each linear set having at most one nonzero coordinate.

Lemma 18 ([8]) Let L ⊆ w∗
1w

∗
2 · · ·w∗

n. The language L is regular iff
Iter(w1,w2,...,wn)(L) is unary.

Lemma 19 ([8]) Given a semilinear set C, it is decidable whether C is unary.

Lemma 20. Given a CA (A,C) and words w1, w2, . . . , wn such that L(A,C) is a
bounded language and (w1, w2, . . . , wn) is one of its socles, it is decidable whether
L(A,C) is regular.

Proof. Let (A,C) be a CA with L(A,C) ⊆ w∗
1w

∗
2 · · ·w∗

n. Let T be the set of new
symbols {!1, !2, . . . , !n} and define the morphism h : T∗ → Σ∗ by h(!i) = wi for
all i. Now let (A′, C′) be the CA with language h−1(L(A,C))∩ !∗1!∗2 · · · !∗n obtained
by the (effective) closures of CA. Then for i ∈ Nn, !i11 !i22 · · · !inn ∈ L(A′, C′) iff
wi1

1 wi2
2 · · ·win

n ∈ L(A,C). Hence:

Pkh(L(A′, C′)) = Iter(w1,w2,...,wn)(L(A,C)) .

Now Pkh(L(A′, C′)) is a semilinear set that can be (effectively) obtained [10], and
we may thus check whether it is unary using Lemma 19. This amounts to deciding,
by Lemma 18, whether L(A,C) is regular. 01

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

Unambiguous Constrained Automata 11

Lemma 21. Let U ⊆ Nd be a unary set. There exist s ≥ 0, p ≥ 1 and F ⊆ [0..s+p]d

such that U =
⋃

f∈F [f]s,p.

Proof. Set s to the maximum basis entry, over the bases of the linear sets Lj

forming U , and p to the product of the nonzero entries occurring in the Lj periods.
An F can be defined from the basis-and-periods representation of the Ljs. 01

We continue with a lemma that allows us to focus on languages of paths :

Lemma 22. The language of an UnCA (A,C) is regular iff Run(A)!C is regular.

Proof. First, suppose Run(A) !C is regular, for a CA (A,C). As by definition
L(A,C) = µ(Run(A) !C) and regular languages are closed under morphisms, we
have that L(A,C) is regular. This part does not rely on unambiguity.

Second, consider an UnCA (A,C). We remark that if an accepting path of A
is labeled by a word in L(A,C), then it is in Run(A)!C (the converse is true of
any CA). Indeed, since a path labeled by a word w in L(A,C) is, by unambiguity,
the only path labeled w in Run(A), it has its Parikh image in C. In other words,
Run(A)!C= µ−1(L(A,C))∩Run(A). Now, as the class of regular languages is closed
under inverse morphisms and intersection, if L(A,C) is regular then Run(A)!C is
regular. 01

Remark 23. The inclusion Run(A)!C⊇ µ−1(L(A,C)) ∩ Run(A) is crucial to the
proof of Lemma 22 and to the decidability of regularity for UnCA. Indeed, both this
inclusion and Lemma 22 fail for CA — in fact, regularity is undecidable for CA [4].
For example, let A be the automaton:

r s

a

a

a

Define C to constrain the two loops on r and s to occur the same number of times.
Then L(A,C) = {a2n+1 | n ∈ N}, a regular language. But with t1, t2, t3 the three
transitions of A, from left to right, Run(A) !C= {tn1 t2tn3 | n ∈ N}, a nonregular
language.

An elementary cycle of A is a nonempty path starting and ending in the same
state and with no other state appearing twice. Let b1, b2, . . . , b! ∈ δ∗ be the elemen-
tary cycles of A. Recall that Run(A) is the set of initial runs of A that are accepting.
Let Init(A) be the set of initial runs of A. Define the finite set

V = {v ∈ Init(A) : ∀i∀j[(v = ubiu
′bju

′′)⇒ (i /= j)]}

of runs with no two explicit occurrences of the same bi. For v = t1t2 · · · t|v| ∈ V
traversing the states s0, s1, s2, . . . , s|v| in A, let Bv ⊆ δ∗ be the bounded language

b∗(s0,1)b
∗
(s0,2)

· · · b∗(s0,·) t1 b∗(s1,1) · · · b
∗
(s1,·) t2 · · · t|v| b∗(s|v|,1) · · · b

∗
(s|v|,·) (1)

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

12 M. Cadilhac, A. Finkel, and P. McKenzie

where, for 0 ≤ j ≤ |v|, b(sj ,1), . . . , b(sj ,·) lists the bis rooted at sj in any order. Define

soclev = (b(s0,1), . . . , b(s0,·), t1, b(s1,1), . . . , t2, . . . , t|v|, b(s|v|,1), . . . , b(s|v|,·))

= (wv,1, wv,2, . . . , wv,dv)

for the appropriate dv ∈ N and wv,1, wv,2, . . . , wv,dv ∈ δ∗. Fix zv ∈ (N|δ|)dv as

zv = (Pkh(wv,1),Pkh(wv,2), . . . ,Pkh(wv,dv))

and fix χv ∈ {0, 1}dv as the dv-tuple having 0 everywhere except at the |v| positions
in which the tj forming v, 1 ≤ j ≤ |v|, now occur in soclev. Hence, slightly abusing
the scalar product, zv · χv = Pkh(v) ∈ N|δ|. When x ∈ Ndv , we let soclexv stand for
wx1

v,1w
x2
v,2 · · · , w

xdv
v,dv

.
Let w ∈ Init(A). We write

w⇒ w′

to mean that w′ results from deleting the first explicit elementary cycle encountered
for the second time as w is scanned from left to right, i.e., w⇒ w′ if

w = u

bi︷ ︸︸ ︷
t1t2 · · · tk−1tk u′ t1t2 · · · tk−1︸ ︷︷ ︸

∈V

tku
′′

w′ = u t1t2 · · · tk−1tk u′u′′

for some unique u, u′, u′′ ∈ δ∗ and 1 ≤ i ≤ !. When v ∈ V , we write

w
∗⇒ v

to mean that zero or more applications of “⇒” lead from w to v; note then that every
word w′ in the derivation from w to v belongs to Init(A) and satisfies States(w) =
States(w′) = States(v).

Lemma 24. Run(A)!C is regular iff (∀v ∈ V) [Bv!C ∩ Run(A) is regular].

Proof . If Run(A)!C is regular, then ∀v ∈ V , Bv ∩ (Run(A)!C) = Bv!C ∩ Run(A) is
regular. Conversely, suppose that ∀v ∈ V , Bv!C ∩ Run(A) is regular. For each v ∈ V ,
appealing to Lemma 18 and Lemma 21, fix sv ≥ 0, pv ≥ 1 and Fv ⊆ [0..sv + pv]dv

such that

Itersoclev(Bv!C ∩ Run(A)) =
⋃

f∈Fv

[f]sv ,pv ⊆ Ndv . (2)

We will construct an NFA N fulfilling

(∀w ∈ Run(A))[Pkh(w) ∈ C iff N accepts w], (3)

which shows that Run(A)!C = Run(A) ∩ L(N) is regular.
The states of the NFA N are the initial state q0 together with the states

(v, u,xv)

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

Unambiguous Constrained Automata 13

where v, u ∈ V and xv ∈ [0..sv + pv]dv . The final states of N are the states

(v, v,x)

such that x ∈ [f]sv ,pv for some f ∈ Fv.
The transition function ∆ of N is completely specified by

∆(q0, ε) = {(v, ε,χv) : v ∈ V }

∆((v, u,x), t) =

{(v, ut,x)} if ut ∈ V

{(v, u′,x+ edv
j)} else if ut = u′bi for any j such that

wv,j = bi occurs as some b(·,·) in (1) for v,

where + sums in Ndv/≡sv,pv and edv
j ∈ Ndv is the unit vector with jth entry 1.

The NFA on input w ∈ δ∗ thus first chooses v ∈ V . This v is fixed until the end
of the computation and the NFA is trying to ascertain that w

∗⇒ v. The absence of
a j such that wv,j = bi = b(·,·) in the definition of ∆ signals a bad choice for v and
blocks the computation. The following invariant is easy to see: ∀w ∈ δ∗ and states
(v, u,y) and (v, u′,x) with socleyv ∈ Bv,

if (v, u,y)
w−→ (v, u′,x) then soclexv ∈ Bv and (∃a ∈ [x]sv ,pv)

[zv · a = zv · y + Pkh(uw)− Pkh(u′)].

Claim: With “·” meaning “don’t care”, the following holds ∀w ∈ δ∗ and ∀v, u ∈ V
such that uw ∈ Run(A): if uw

∗⇒ v then (v, u, ·) w−→ (v, v, ·).
Proof that the claim implies (3): Let w ∈ Run(A). Suppose that Pkh(w) ∈ C.
Because “⇒” is always applicable to a word in Init(A) \ V , there exists v ∈ V such
that w

∗⇒ v. Applying the claim with u = ε and y = χv,

q0
ε−→ (v, ε,χv)

w−→ (v, v,x)

for some x ∈ [0..sv + pv]dv . By the invariant, some a ∈ [x]sv ,pv satisfies zv · a =
Pkh(w). Since Pkh(w) ∈ C, a ∈ Itersoclev (Bv!C ∩ Run(A)). By (2), a ∈ [f]sv ,pv for
f ∈ Fv. But then x ≡sv,pv a ≡sv ,pv f , so (v, v,x) is accepting and N accepts w.

Conversely, suppose that N accepts w. Then for some v ∈ V and f ∈ Fv,

q0
ε−→ (v, ε,χv)

w−→ (v, v,x)

where x ∈ [f]sv ,pv . By the invariant, some a ∈ [x]sv ,pv satisfies zv · a = Pkh(w).
Since a ≡sv,pv x ≡sv ,pv f , a ∈ Itersoclev (Bv!C ∩ Run(A)) by (2) and zv · a ∈ C. So
Pkh(w) = zv · a ∈ C. This completes the proof that the claim implies (3).
Proof of the claim: It remains to prove the claim, by induction on |w|. Let |w| = 0.
For all v, u ∈ V , uw = u

∗⇒ v implies u = v since “⇒” is not applicable to u ∈ V .
Hence (v, u, ·) ε−→ (v, v, ·). For the induction step, let w = tw′ ∈ δ∗ for some t ∈ δ.
Let v, u ∈ V . Suppose that utw′ ∈ Run(A). Let utw′ ∗⇒ v. If ut ∈ V , then

(v, u, ·) t−→ (v, ut, ·) w′

−→ (v, v, ·)

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

14 M. Cadilhac, A. Finkel, and P. McKenzie

where
w′
−→ uses induction. If ut /∈ V , then ut = u′bi for some i. Since States(utw′) =

States(v), the initial state of bi is traversed by v. Hence bi occurs as some b(·,·) listed
in (1) for v, so j exists such that wv,j = bi = b(·,·). Then

(v, u, ·) t−→ (v, u′, ·) w′
−→ (v, v, ·)

where
w′
−→ again follows by induction since u′ 7 u ∈ V , so u′ ∈ V , but now also

subtly appealing to the unique decomposition of utw′ ∗⇒ v as utw′ ⇒ u′w′ ∗⇒ v. In
both cases, (v, u, ·) w−→ (v, v, ·) as required, completing the inductive step, proving
the claim and proving the lemma. "

Theorem 25. Regularity for UnCA is decidable.

Proof. Let an UnCA (A,C) with transition set δ be given. An upper bound r on
the length of words in δ∗ having no repeated elementary cycle is easily computed.
Then the finite set V can be computed, by examining every word in δ∗ of length
at most r. It remains to check the condition from Lemma 24 that for each v ∈ V ,
the language Bv!C ∩ Run(A) is regular, as follows. Let D be a DFA for Bv. The
language Bv!C is that of the CA (D,C′) where C′ checks that the accepted word
has a Parikh image in C. Since Run(A) is regular, another CA has the language
Bv!C ∩ Run(A). The latter is a bounded CA language for which we have a socle
soclev. By Lemma 20, checking the regularity of this language is decidable. 01

A DetCA is an UnCA; moreover, DetCA are effectively equivalent [10] to deter-
ministic extended automata over (Zk,+,0) (defined in [11]). Thus:

Corollary 26. Given a DetCA or an extended automaton over (Zk,+,0), it is
decidable whether its language is regular.

6. A deterministic form of UnCA

We present a deterministic model equivalent to UnCA. This model is a restriction of
the affine Parikh automaton [4] and can be seen as a simple register automaton. As
a result of independent interest, we show that CA are equivalent to the nondeter-
ministic variant of this model, and that a seemingly more powerful model (so-called
finite-monoid affine Parikh automata [3]) is in fact equivalent to CA (resp. UnCA)
in its nondeterministic (resp. deterministic) form.

Definition 27 (Affine Parikh automaton [4]) An affine Parikh automaton
(APA) of dimension d is a triple (A,U,C) where A is an automaton with tran-
sition set δ, U : δ∗ → Fd is a morphism, and C ⊆ Nd is semilinear. Its language is
L(A,U,C) = µA({π ∈ Run(A) | Uπ(0) ∈ C}). The APA is said to be:

• Deterministic (DetAPA) if A is deterministic;
• Finite-monoid (FM-APA, FM-DetAPA) [3] if M(U) is finite;

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

Unambiguous Constrained Automata 15

• Moving (M-APA, M-DetAPA) if for all t ∈ δ, Ut = (M,v) is such that M
is a 0-1-matrix with exactly one 1 per row.

We consider only FM- and M-(Det)APA in the present work. We write LFM-APA,
LFM-DetAPA, LM-APA, and LM-DetAPA for the classes of languages recognized by
FM-APA, FM-DetAPA, M-APA, and M-DetAPA respectively.

Remark 28. An M-(Det)APA of dimension d can be seen as a finite-state (deter-
ministic) register automaton with d registers r1, r2, . . . , rd: each transition performs
actions of the type ri ← rji + ki, with ki ∈ N, 1 ≤ ji ≤ d, for 1 ≤ i ≤ d, and the
device accepts iff the underlying automaton accepts and the values of the registers
at the end of the computation belong to a prescribed semilinear set.

Theorem 29. LCA = LM-APA = LFM-APA.

Proof. (LCA ⊆ LM-APA.) Given a CA (A,C) where A = (Q,Σ, δ, q0, F) and δ =
{t1, t2, . . . , tn}, we define an M-APA (A,U,C) by setting, for all ti ∈ δ, Uti(x) =
x + Pkh(ti). For a path π ∈ δ∗, we have that Uπ(0) = Pkh(π). This implies that
L(A,U,C) = µ({π ∈ Run(A) | Pkh(π) ∈ C}) = L(A,C), and moreover, that
Ut = (M,v) is such that M is the identity matrix, thus (A,U,C) is an M-APA.

(LM-APA ⊆ LFM-APA.) Composing 0-1-matrices with exactly one 1 per row re-
sults in the same type of matrices. Thus the multiplicative M(U) of an M-APA
(A,U,C) is finite, i.e., (A,U,C) is an FM-APA.

(LFM-APA ⊆ LCA.) Let (A,U,C) be an FM-APA, where A = (Q,Σ, δ, q0, F).
For t ∈ δ, we write Ut = (Mt,vt), and for t1t2 · · · tn ∈ δ+, we let Mt1t2···tn =
Mtn · · ·Mt2 · Mt1 . As it is consistent to do, we set Mε = Id , the identity matrix.
We show that L(A,U,C) can be expressed as the union of the languages of a finite
number of CA, and that those CA are unambiguous if A is deterministic. We work
in 3 steps. (1.) We devise a finite set of automata and show that they recognize the
runs π on A while “knowing” Mπ (Fact 30). (2.) We show that this extra knowledge
allows for the extraction of Uπ(0) when π is read (Fact 31). We design a semilinear
set to constrain this extracted value by C. (3.) We conclude that replacing the labels
t of those CA by µA(t) gives a finite set of CA recognizing L(A,U,C).

Step 1: Automata for the Paths of A. The simplest way to construct an automaton
for Run(A) is by replacing the label of each transition t of A by t itself, i.e., we obtain
the automaton (Q, δ,∆, q0, F) where t = q ! q′ ∈ δ ⇔ q t q′ ∈ ∆. This is the first
idea of the present construction. The second idea is that we want, when in a state
q, all the possible Mπ’s for π accepted from q to be the same. Write M = M(U).
We define, for q ∈ Q and M ∈M, B (q,M) = (Q ×M, δ, ∆, (q,M), F × {Mε}),
where ∆ = {(q,M) t (q′,M ′) | t = q µ(t) q′ ∈ δ ∧M ′.Mt = M}.

It is important to note that even if A is deterministic, B (q,M) may not be
deterministic. Indeed, let Z be the all-zero matrix, and suppose that, for some
t ∈ δ, Mt = Z. Then any matrix M ′ verifies M ′.Mt = Z, thus from the state
(From(t), Z) there is a transition labeled t to any state (To(t),M ′) for M ′ ∈M. We

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

16 M. Cadilhac, A. Finkel, and P. McKenzie

now show that these automata indeed recognize the paths π in A, while “knowing”
Mπ. Write A q for A where the initial state is set to q, then:

Fact 30. For any q ∈ Q and M ∈M, L(B (q,M)) = {π ∈ Run(A q) | Mπ = M}.
In particular, Run(A) =

⋃
M∈M L(B (q0,M)).

Step 2: Retrieving Uπ(0). In this step, we argue that our previous construction
helps in retrieving the value of Uπ(0) when π is read over some B (q,M). The
main ingredient is the following simple property: for t ∈ δ and ρ ∈ δ∗, Utρ(0) =
Mρ.vt + Uρ(0). We now show a property on paths over B (q,M). First, identify ∆
with {T1, T2, . . . , Tn}, and each Ti with (qi,Mi) ti (q′i,M

′
i); next, write µB for the

µ function of one of the B (q,M)’s — this morphism is independent of (q,M). Then:

Fact 31. For any q ∈ Q, M ∈M, and Π ∈ Run(B (q,M)), we have UµB(Π)(0) =∑n
i=1 |Π|Ti × (M ′

i .vti).

Now define C′ ⊆ Nn by (x1, x2, . . . , xn) ∈ C′ ⇔ (
∑n

i=1 xi × (M ′
i .vti)) ∈ C.

Fact 30 and Fact 31 imply that, for q ∈ Q and M ∈ M, L(B (q,M), C′) = {π ∈
Run(A q) | Mπ = M ∧ Uπ(0) ∈ C}.
Step 3: from Paths to their Labels. For q ∈ Q and M ∈ M, define D (q,M) to
be the automaton B (q,M) where a transition labeled t in B (q,M) is relabeled
µA(t) in D (q,M). Then L(D (q,M), C′) = µA(L(B (q,M), C′)). Since Run(A) =⋃

M∈M B (q0,M), this implies that L(A,U,C) =
⋃

M∈M L(D (q0,M), C′). As M is
finite by hypothesis, L(A,U,C) is the finite union of CA languages. The closure of
LCA under union [10] implies that L(A,U,C) ∈ LCA. 01

Theorem 32. LUnCA = LM-DetAPA = LFM-DetAPA.

Proof (sketch). LUnCA ⊆ LM-DetAPA is shown in [3]; LM-DetAPA ⊆ LFM-DetAPA is
immediate. For LFM-DetAPA ⊆ LUnCA, we add a step to the proof of the inclusion
LFM-APA ⊆ LCA of Theorem 29. We note, using the same notations, that if A is
deterministic, then for any q ∈ Q and M ∈ M, D (q,M) is unambiguous. LUnCA

being closed under union (Proposition 4) this proves the inclusion. 01

Remark 33. Theorems 29 and 32 are effective, in the sense that one can go from
one model to another following an algorithm. This implies in particular, together
with Theorem 25, that regularity is decidable for FM-DetAPA; we note that it is not
decidable for DetAPA [3], which describes a class of languages strictly larger than
that of UnCA though expected to be incomparable with that of CA.

7. Conclusion

We showed that LUnCA is a class of languages that is closed under the Boolean
operations, inverse morphisms, commutative closure, reversal, and right and left

September 15, 2013 18:36 WSPC/INSTRUCTION FILE article-full

Unambiguous Constrained Automata 17

quotient, and that provably fails to be closed under concatenation with a reg-
ular language, length-preserving morphisms, and starring. Further, the following
problems are decidable for LUnCA: emptiness, universality, finiteness, inclusion, and
regularity. Deciding regularity for UnCA and DetCA is our main result.

We propose three future research avenues. First, the properties of UnCA indicate
its suitability for model-checking, and we could envisage real-world applications of
verification using UnCA. Second, we translated unambiguous CA to a natural model
of deterministic register automata; the close inspection of this translation can lead
to further advances in our understanding of unambiguity, in particular in the open
problems dealing with unambiguous finite automata [5]. Third, we note that the
closure properties of LUnCA imply that this class can be described by a natural
algebraic object (see [1]). This will certainly help in linking UnCA to a first-order
logic framework, and thus to Boolean circuit complexity. Hence we hope that UnCA
can play a role in the study of complexity classes such as NC1.

Acknowledgement. We thank Andreas Krebs for stimulating discussions and
comments concerning this work and the anonymous referees for their careful read-
ing. The first author thanks Benno Salwey and Dave Touchette for comments on
early versions of this paper.

References

[1] C. Behle, A. Krebs and S. Reifferscheid, Typed monoids: an Eilenberg-like theorem
for non regular languages, CAI , (Springer-Verlag, 2011), pp. 97–114.

[2] A. Bouajjani and P. Habermehl, Symbolic reachability analysis of FIFO-channel sys-
tems with nonregular sets of configurations, Theoretical Computer Science 221(1–2)
(1999) 211–250.

[3] M. Cadilhac, A. Finkel and P. McKenzie, Bounded Parikh automata, WORDS ,
(2011), pp. 93–102.

[4] M. Cadilhac, A. Finkel and P. McKenzie, Affine Parikh automata, RAIRO - Theo-
retical Informatics and Applications 46(04) (2012) 511–545.

[5] T. Colcombet, Forms of determinism for automata, STACS , (2012), pp. 1–23.
[6] S. Ginsburg and E. Spanier, Semigroups, Presburger formulas and languages, Pacific

Journal of Mathematics 16(2) (1966) 285–296.
[7] S. Ginsburg and E. H. Spanier, Bounded ALGOL-like languages (1964).
[8] S. Ginsburg and E. H. Spanier, Bounded regular sets, Proceedings of the American

Mathematical Society 17(5) (1966) 1043–1049.
[9] O. H. Ibarra, Reversal-bounded multicounter machines and their decision problems,

J. ACM 25(1) (1978) 116–133.
[10] F. Klaedtke and H. Rueß, Monadic second-order logics with cardinalities, ICALP ,

LNCS 2719, (Springer-Verlag, 2003), pp. 681–696.
[11] V. Mitrana and R. Stiebe, Extended finite automata over groups, Discrete Appl.

Math. 108(3) (2001) 287–300.
[12] R. J. Parikh, On context-free languages, Journal of the ACM 13(4) (1966) 570–581.

