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Département d’informatique et de recherche opérationnelle
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The Parikh finite word automaton model (PA) was introduced and studied by Klaedtke
and Rueß. Here, we present some expressiveness properties of a restriction of the de-
terministic affine PA recently introduced, and use them as a tool to show that the
bounded languages recognized by PA are the same as those recognized by deterministic
PA. Moreover, this class of languages is shown equal to the class of bounded languages
with a semilinear iteration set.
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1. Introduction

Motivation. Adding features to finite automata in order to capture situations be-

yond regularity has been fruitful to many areas of research. Such features include
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making the state sets infinite, adding power to the logical characterizations, hav-

ing the automata operate on infinite domains rather than finite alphabets, adding

stack-like mechanisms, etc. (See, e.g., [1, 3, 10, 16].) Model checking and complex-

ity theory below NC2 are areas that have benefited from an approach of this

type (e.g., [18, 20]). In such areas, determinism plays a key role and is usually

synonymous with a clear understanding of the situation at hand, yet often comes

at the expense of other properties, such as expressiveness. Thus, cases where de-

terminism can be achieved without sacrificing other properties are of particular

interest.

Context. Klaedtke and Rueß introduced the Parikh automaton (PA) as an exten-

sion of the finite automaton [17]. A PA is a pair (A,C) where C is a semilinear

subset of Nd and A is a finite automaton over (Σ×D) for Σ a finite alphabet and

D a finite subset of Nd. The PA accepts the word w1 · · ·wn ∈ Σ∗ if A accepts a

word (w1, v1) · · · (wn, vn) such that
∑

vi ∈ C. Klaedtke and Rueß used the PA to

characterize an extension of (existential) monadic second-order logic in which the

cardinality of sets expressed by second-order variables is available. To use PA as

symbolic representations for model checking, the closure under the Boolean oper-

ations is needed; unfortunately, PA are not closed under complement. Moreover,

although they allow for great expressiveness, they are not determinizable.

Bounded languages and semilinearity. Bounded languages were defined by

Ginsburg and Spanier in 1964 [12] and intensively studied in the sixties. Recently,

they played a role in the theory of acceleration in regular model checking [4, 9]. A

language L ⊆ Σ∗ is bounded if there exist words w1, w2, . . . , wn ∈ Σ∗ such that

L ⊆ w∗
1w

∗
2 · · ·w

∗
n. Bounded context-free languages received much attention thanks

to their better decidability properties than those of context-free languages [11]

(e.g., inclusion between two context-free languages is decidable if one of them is

bounded, while it is undecidable in the general case). Moreover, given a context-

free language it is possible to decide whether it is bounded [12]. Connecting semi-

linearity and boundedness, the class BSL of bounded languages L ⊆ w∗
1 · · ·w

∗
n,

for which {(i1, . . . , in) | w
i1
1 · · ·w

in
n ∈ L} is a semilinear set, was also investi-

gated (e.g., [6, 7, 11, 12]). In particular, the class BSL was very recently charac-

terizeda using one-way deterministic reversal-bounded multi-counter machines [15].

Our contribution. We study PA whose language is bounded. Our main result

is that bounded PA languages are also accepted by deterministic PA, and that

bounded PA languages characterize BSL. We obtain as a consequence that BSL is

captured by another model studied in the literature, the 1-CQDD [4]. We thus pro-

vide characterizations of BSL involving a one-way model (the deterministic PA) that

aThe proceedings of the WORDS 2011 conference, in which we lay claim to possibly providing
the first characterization of BSL in terms of one-way deterministic automata, was already in print
when this characterization was announced by the authors of [15] at the Automata and Formal

Languages Conference held in Debrecen, Hungary, August 17–22, 2011.
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is mildly (but provably) weaker than the one-way deterministic reversal-bounded

multi-counter machine used in [15]. As a tool of independent interest, our argument

uses two related models introduced in [5]: the constrained automaton (CA), which

is equivalent to the PA, and the affine Parikh automaton (APA), which we subject

to the restriction that the matrix semigroup generated by the set of all defining

APA matrices is finite (see Definition 14).

This paper is organized as follows. Section 2 contains preliminaries and settles

notation. Section 3 defines the PA, the equivalent CA, and 1-CQDD. Section 4 shows

that the class of bounded languages recognized by PA is BSL. Section 5 presents

the main result of this work, namely that nondeterministic and deterministic PA

recognize the same bounded languages. Section 6 concludes with a short discussion.

2. Preliminaries

We write N for the nonnegative integers and N+ for N\{0}. Let d > 0 be an integer.

Vectors in Nd are noted with a bar on top, e.g., v whose elements are v1, . . . , vd.

We write ei ∈ {0, 1}d for the vector having a 1 only in position i and 0 for the

all-zero vector. We view Nd as the additive monoid (Nd,+), with + the component-

wise addition and 0 as the identity element. For a monoid (M, ·) and S ⊆ M ,

we write S∗ for the monoid generated by S, i.e., the smallest submonoid of (M, ·)

containing S. A monoid morphism from (M, ·) to (N, ◦) is a function h : M → N

such that h(m1 ·m2) = h(m1)◦h(m2), and, with eM (resp. eN) the identity element

of M (resp. N), h(eM ) = eN . Moreover, if M = S∗ for some finite set S (and this

will always be the case), then h need only be defined on the elements of S.

Semilinear sets and Parikh image. A subset C of Nd is linear if there exist

c ∈ Nd and a finite P ⊆ Nd such that C = c + P ∗. The subset C is said to

be semilinear if it is equal to a finite union of linear sets: {4n + 56 | n > 0} is

semilinear while {2n | n > 0} is not. Let Σ = {a1, . . . , an} be an alphabetb and

write ε for the empty word. The Parikh image is the morphism Φ: Σ∗ → Nn defined

by Φ(ai) = ei, for 1 ≤ i ≤ n — in particular, we have that Φ(ε) = 0. The Parikh

image of a language L is defined as Φ(L) = {Φ(w) | w ∈ L}. The name of this

morphism stems from Parikh’s Theorem [19], which states that the Parikh image

of any context-free language is semilinear.

Bounded languages and branches. A language L ⊆ Σ∗ is bounded [12] if there

exist n > 0 and a sequence of words w1, . . . , wn ∈ Σ+, which we call a socle of L,

such that L ⊆ w∗
1 · · ·w

∗
n. The iteration set of L w.r.t. this socle is (uniquely) defined

as Iter(w1,...,wn)(L) = {(i1, . . . , in) ∈ Nn | wi1
1 · · ·w

in
n ∈ L}; note that an iteration

set contains all possible ways to iterate the words in the socle to obtain a word

in L. BOUNDED stands for the class of bounded languages. We denote by BSL the

bWe will always assume some implicit ordering on the alphabets.
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class of bounded semilinear languages, defined as the class of bounded languages L

for which there exists a socle w1, . . . , wn such that Iter(w1,...,wn)(L) is semilinear;

in particular, the Parikh image of a language in BSL is semilinear. Note that the

converse does not hold, as {a2
n

bam | m,n ∈ N} is bounded and has a semilinear

Parikh image, but is not in BSL.

Regular bounded languages can be characterized by a subclass of regular ex-

pressions. Let Σ be an alphabet. A semilinear c regular expression (SLRE) [9]

is a finite set of branches on alphabet Σ, defined as expressions of the form

y1x
∗
1y2x

∗
2 · · · ynx

∗
nyn+1, where xi ∈ Σ+ and yi ∈ Σ∗. The language of an SLRE

is the union of the languages of each of its branches. A regular language is bounded

iff it is expressible as a SLRE [13].

Automata. We then fix our notation about automata. An automaton is a quin-

tuple A = (Q,Σ, δ, q0, F ) where Q is the finite set of states, Σ is an alphabet,

δ ⊆ Q×Σ×Q is the set of transitions, q0 ∈ Q is the initial state and F ⊆ Q are the

final states. As usual, an automaton A = (Q,Σ, δ, q0, F ) induces a finite directed

labeled graph GA = (Q, δ) where Q is the set of nodes and δ is the set of (labeled)

arcs. For a transition (or a labeled arc) t = (q, a, q′) ∈ δ, we define From(t) = q

and To(t) = q′. Moreover, we define µA : δ∗ → Σ∗ to be the morphism given by

µA(t) = a, with, in particular, µA(ε) = ε, and we write µ when A is clear from the

context. A path π on A is a word π = t1 · · · tn ∈ δ∗ such that To(ti) = From(ti+1)

for 1 ≤ i < n; we extend From and To to paths, letting From(π) = From(t1) and

To(π) = To(tn). We say that µ(π) is the label of π. A path π is said to be accepting if

From(π) = q0 and To(π) ∈ F ; we write Run(A) for the language over δ of accepting

paths on A. We write L(A) for the language of A, i.e., the labels of the accepting

paths. The automaton A is said to be deterministic if ((p, a, q) ∈ δ ∧ (p, a, q′) ∈ δ)

implies q = q′. An ε-automaton is an automaton A = (Q,Σ, δ, q0, F ) as above,

except with δ ⊆ Q × (Σ ∪ {ε}) × Q so that in particular µA becomes an erasing

morphism.

Flat and restricted flat automata. For an ε-automaton A = (Q,Σ, δ, q0, F ),

several notions of flatness have been defined in the literature and we wish to specify

our usage of the word here. A cycle in A is a path π ∈ δ+ such that From(π) = To(π).

An elementary cycle in A is a cycle π in which the only repeated state is the initial

(and final) state From(π). Our notion of flatness is the following: the automaton A

is flat if no two elementary cycles in A share a state. This definition is equivalent

to those in [2, 8].

Note that if A is flat, then A induces a natural directed acyclic graph DA on

the vertex set {[q] : q ∈ Q}, where [q] is the set {q} together with all the states

reachable from q along an elementary cycle: there is an arc between [q] and [q′], with

[q] 6= [q′], iff there are p ∈ [q] and p′ ∈ [q′] such that there is a transition between

p and p′ in A. We introduce a (proper) subclass of flat automata: an ε-automaton

cThe usage of semilinear here is not directly related to its usage in semilinear set.
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A = (Q,Σ, δ, q0, {qf}) is rflat (for restricted flat) if A is flat and DA is a straight

line from [q0] to [qf ].

The following properties are easy to see:

(i) No nested cycles occur in a flat automaton;

(ii) If A is flat then Run(A) is a regular bounded language on δ (hence SLRE);

(iii) Any regular bounded language on δ (hence SLRE) is Run(A) for some flat A;

(iv) If A is rflat then Run(A) is expressible as a branch on δ;

(v) Any language of a branch on δ is Run(A) for some rflat A;

(vi) A is rflat iff it is restricted simple in the sense of [4].

Rational transduction. Let Σ and T be two alphabets. Let A be an automaton

over the alphabet (Σ ∪ {ε}) × (T ∪ {ε}), where the concatenation is defined by

(u1, v1).(u2, v2) = (u1u2, v1v2). Then A defines the rational transduction τA from

languages L on Σ to languages on T given by τA(L) = {v ∈ T∗ | (∃u ∈ L)[(u, v) ∈

L(A)]}. Closure under rational transduction for a class C is the property that for any

language L ∈ C and any automaton A, τA(L) ∈ C. We say that τA is a deterministic

rational transduction if A is deterministic with respect to the first component of

its labels, i.e., if (p, (a, b), q) and (p, (a, b′), q′) are transitions of A, then b = b′ and

q = q′.

Affine functions. We consider the vectors in Nd to be column vectors. A function

f : Nd → Nd is a (total and positive) affine function of dimension d if there exist a

matrix M ∈ Nd×d and v ∈ Nd such that for any x ∈ Nd, f(x) = M.x+ v. We note

f = (M, v) and write Fd for the set of such functions; we view Fd as the monoid

(Fd, ⋄) with (f ⋄ g)(x) = g(f(x)), where the identity element of the monoid is the

identity function. Let U be a monoid morphism from Σ∗ to Fd. For w ∈ Σ∗, we write

Uw for U(w), so that the application of U(w) to a vector v is written Uw(v), and

Uε is the identity function. We define M(U) as the multiplicative matrix monoid

generated by the matrices used to define U , i.e.,M(U) = {M | (∃a ∈ Σ)(∃v)[Ua =

(M, v)]}∗.

3. Parikh Automata and Constrained Automata

The following notations will be used in defining Parikh finite word automata (PA)

formally. Let Σ be an alphabet, d ∈ N+, and D a finite subset of Nd. Following [17],

let Ψ: (Σ × D)∗ → Σ∗ and Φ̃: (Σ × D)∗ → Nd be two morphisms defined, for

ℓ = (a, v) ∈ Σ × D, by Ψ(ℓ) = a and Φ̃(ℓ) = v. The function Ψ is called the

projection on Σ and the function Φ̃ is called the extended Parikh image. As an

example, for a word ω ∈ {(ai, ei) | 1 ≤ i ≤ n}∗, the value of Φ̃(ω) is the Parikh

image of Ψ(ω).

Definition 1 (Parikh automaton [17]) Let Σ be an alphabet, d ∈ N+, and D a

finite subset of Nd. A Parikh automaton (PA) of dimension d over Σ×D is a pair
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(A,C) where A is a finite automaton over Σ×D, and C ⊆ Nd is a semilinear set.

The PA language is L(A,C) = {Ψ(ω) | ω ∈ L(A) ∧ Φ̃(ω) ∈ C}.

The PA is said to be deterministic (DetPA) if for every state q of A and every

a ∈ Σ there exists at most one pair (q′, v) with q′ a state and v ∈ D such that

(q, (a, v), q′) is a transition of A. The PA is said to be rflat if A is rflat. We write

LPA (resp. LDetPA) for the class of languages recognized by PA (resp. DetPA).

In [5], PA are characterized by the following simpler model:

Definition 2 (Constrained automaton [5]) A constrained automaton (CA)

over an alphabet Σ is a pair (A,C) where A is a finite automaton over Σ with d

transitions, and C ⊆ Nd is a semilinear set. Its language is L(A,C) = {µ(π) | π ∈

Run(A) ∧Φ(π) ∈ C}.

The CA is said to be deterministic (DetCA) if A is deterministic. An ε-CA is

defined as a CA except that A is an ε-automaton. Finally, the CA is said to be rflat

if A is rflat.

Theorem 3. (i) PA and CA define the same class of languages [5];

(ii) DetPA and DetCA define the same class of languages [5];

(iii) ε-CA and CA (and thus PA) define the same class of languages;

(iv) Rflat DetPA and rflat DetCA define the same class of languages.

Proof. Parts (i) and (ii) are proved in [5]. Part (iii) follows from (i) and the closure

of the class of PA languages under erasing morphisms [17]. To prove part (iv), we

argue that the proof of (i) and (ii) appearing in [5] applies verbatim.

In one direction, let (A,C) be a DetPA where A is rflat. Define B as the automa-

ton A in which the vector-part of the labels is dropped: a transition (p, (a, v), q) in

A appears as (p, a, q) in B and write h : δA → δB this correspondence. Note that h

is a 1-1 correspondence between the transitions of A and B thanks to the rflatness

of A: indeed, for two transitions t1, t2 in A to get merged by h, they should be

of the form t1 = (p, (a, v1), q) and t2 = (p, (a, v2), q). Suppose that t1 6= t2, hence

v1 6= v2, and this would render A non rflat; we deduce that h is injective and it is

surjective by construction, hence h is a bijection. This 1-1 correspondence shows in

particular that B is rflat, as GA and GB are the same. Moreover (A,C) is a DetPA,

thus it describes a deterministic automaton with respect to the first component of

the labels of A, hence B is deterministic. With {t1, . . . , tn} the set of transitions

of B, define D as the following semilinear set:

(x1, . . . , xn) ∈ D ⇔
n∑

i=1

xi × Φ̃(µA(h
−1(ti))) ∈ C.

Then (B,D) is a rflat DetCA with language L(A,C).

In the other direction, let (A,C) be a DetCA where A = (Q,Σ, δ, q0, F ) is rflat.

Write δ = {t1, . . . , tn}. Define B as the automaton with state set Q and with a

transition (q, (a,Φ(ti)), q
′) for each transition ti = (q, a, q′) of A. Then B is rflat,
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as it has the same graph as A, and (B,C) is a DetPA, as B is deterministic with

respect to the first component of its labels. Finally, the language of B is:

L(B) = {ω | (∃π ∈ Run(A))[Ψ(ω) = µA(π) ∧ Φ̃(ω) = Φ(π)]},

hence L(B,C) = L(A,C).

Finally, we note that a related model has been defined and used in the context

of model checking:

Definition 4 ([4]) A 1-CQDD is a finite set of rflat DetCA. Its language is the

union of the languages of each DetCA. We write L1-CQDD for the class of languages

recognized by 1-CQDD.

4. Bounded Parikh Automata

Let LBoundedPA be the set LPA ∩ BOUNDED of bounded PA languages, and simi-

larly let LBoundedDetPA be LDetPA ∩ BOUNDED.

Theorem 6 below characterizes LBoundedPA as the class BSL of bounded semi-

linear languages.d In one direction of the proof, given L ∈ BSL, an ε-CA for L is

constructed. We describe this simple construction here:

Construction 5 (Canonical ε-CA for w1, . . . , wn subject to C ⊆ Nn) Let

w1, . . . , wn ∈ Σ+ be given words and C ⊆ Nn be a semilinear set. We describe a

PA for the language {wi1
1 wi2

2 · · ·w
in
n | (i1, . . . , in) ∈ C}. Informally, the automaton

A will consist of n elementary cycles labeled w1, . . . , wn which do not share any

state, and traversed at their origins by a single ε-labeled path from k1 leading to a

unique final state kn. Then the semilinear constraint E will be defined to monitor

(#t1, . . . ,#tn) in accordance with C, where ti is the first transition of the cycle

for wi and #ti is the number of occurrences of ti in a run of A. Graphically:

k1

w1

t1

k2

w2

t2

kn

wn

tn(# # #, , . . . , ) ∈ C

ε ε

Formally, let kj =
∑

1≤i<j |wi|, 1 ≤ j ≤ n+1, with, in particular, k1 = 0, and set

Q = {0, 1, . . . , kn+1 − 1}. Then A is the ε-automaton (Q,Σ, δ, q0, F ) where q0 = k1,

dThis result can be deduced from the recent result of Ibarra and Seki [15]. However, we need its
forthcoming proof to provide some corollaries.
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F = {kn} and for any 1 ≤ i < n, there is a transition (ki, ε, ki+1) and for any 1 ≤ i ≤

n an elementary cycle tiρi labeled wi through the states ki, ki + 1, . . . , ki+1 − 1, ki,

where ti is a transition and ρi a path. Then E ⊆ N|δ| is the semilinear set defined

by (#t1, . . . ,#t2, . . . , . . . ,#tn, . . .) ∈ E iff (#t1,#t2, . . . ,#tn) ∈ C. �

Theorem 6. LBoundedPA = BSL.

Proof. (LBoundedPA ⊆ BSL.) Let L ⊆ Σ∗ be a bounded language of LPA, and

w1, . . . , wn be a socle of L. Define E = Iter(w1,...,wn)(L). Let T = {a1, . . . , an} be

a fresh alphabet (T ∩ Σ = ∅), and let h : T∗ → Σ∗ be the morphism defined by

h(ai) = wi. Then the language L′ = h−1(L)∩ (a∗1 · · ·a
∗
n) is in LPA by closure of LPA

under inverse morphism and intersection [17]. But Φ(L′) = E, and as any language

of LPA has a semilinear Parikh image [17], E is semilinear. Thus the iteration set

E of the bounded language L with respect to its socle w1, . . . , wn is semilinear, and

this is the meaning of L belonging to BSL.

(BSL ⊆ LBoundedPA.) Let L ∈ BSL. Of course L ∈ BOUNDED. Let w1, . . . , wn

be a socle of L such that C = Iter(w1,...,wn)(L) is semilinear. We leave out the simple

proof that L equals the language of the “canonical ε-CA for w1, . . . , wn subject to

C” of Construction 5. Since ε-CA and PA capture the same languages by Theorem 3,

L ∈ LPA.

Theorem 6 and the known closure properties of BOUNDED and LPA imply:

Corollary 7. BSL is closed under union, intersection, concatenation, and

morphism.

Proof. Let L1, L2 ∈ BSL. By Theorem 6, both languages are in LPA. More-

over, LPA is closed under union, intersection, concatenation, and morphism [17],

BOUNDED is closed under union, intersection, concatenation, and morphism [11].

This implies that L1 ∪ L2, L1 ∩ L2, L1L2, and h(L1) are all bounded languages in

LPA, and by Theorem 6, are all in BSL.

We note, in the same vein, that although BSL is not closed under inverse mor-

phism (e.g., with h the all-erasing morphism on {a, b}∗, we have h−1({ε}) = {a, b}∗,

which is not bounded) we have:

Corollary 8. BSL is closed under inverse morphism followed by the intersection

with a language in BSL.

Proof. Let L1, L2 ∈ BSL. By Theorem 6, both languages are in LPA. Moreover,

LPA is closed under intersection and inverse morphism [17], and the intersection

of any language with a bounded language is a bounded language [11]. This implies

that h−1(L1) ∩ L2 is a bounded language in LPA, and by Theorem 6, in BSL.
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Moreover, Theorem 6 helps in showing that if the iteration set of a bounded

language w.r.t. one of its socles is semilinear, then for every socle of the language,

the iteration set of the language w.r.t. that socle is semilinear:

Corollary 9. BSL is the set of bounded languages which have all of their iteration

sets semilinear.

Proof. If a bounded language has all of its iteration sets semilinear, then it is in

BSL. For the reverse inclusion, note that the first half of the proof of Theorem 6

shows that for any socle of a language in LBoundedPA, the iteration set of the language

w.r.t. this socle is semilinear. As LBoundedPA = BSL, all the iteration sets of a

language in BSL are semilinear.

Finally, note that the iteration sets of a BSL language are semilinear sets with a

special form, which depends on a socle: they contain all the possible ways to iterate

the words of the socle to obtain a word in the language. Thus defining a bounded

language “using” a semilinear set does not directly show that it is in BSL; e.g.,

C = {(x, y) | x is even ∧ y ∈ N} is a semilinear set defining the language a∗ using

the socle a, a, and yet Iter(a,a)(a
∗) 6= C, so C is not a semilinear iteration set of a∗,

and we may not directly conclude that a∗ ∈ BSL. However, Theorem 6 provides an

easy proof that if a bounded language is defined “using” a semilinear set, then its

iteration sets w.r.t. any other prescribed socle are computable semilinear sets:

Corollary 10. Let w1, . . . , wn ∈ Σ∗ and C ⊆ Nn be a semilinear set. Then L =

{wi1
1 · · ·w

in
n | (i1, . . . , in) ∈ C} is in BSL. Also, for any given socle w′

1, . . . , w
′
m of

L, the iteration set of L w.r.t. w′
1, . . . , w

′
m is a semilinear set that we can compute.

Proof. First, Construction 5 for w1, . . . , wn subject to C provides an ε-CA for L.

This does not directly show that L ∈ BSL, since C is not, in the general case, an

iteration set (i.e., Iter(L) for some socle). However, this shows that L is a bounded

language of LPA, and thus, by Theorem 6, it is a language of BSL.

For the second part, we follow the first half of the proof of Theorem 6 and check

that all the operations are computable. So we construct the morphism h which

maps ai to w′
i for 1 ≤ i ≤ m. The closure properties of PA being effective [17], we

can construct a PA for L′ = h−1(L)∩ (a∗1 · · · a
∗
m). Finally, the Parikh image of L′ is

a semilinear set that we can compute [17], concluding the proof, as this set is the

iteration set of L w.r.t. w′
1, . . . , w

′
m.

To the best of our knowledge, Corollary 10 provides the first effective method to

obtain the iteration set, w.r.t. a prescribed socle, of a bounded semilinear language

described using a semilinear set.
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5. Bounded Parikh Automata are Determinizable

Parikh automata cannot be made deterministic in general. Indeed, Klaedtke and

Rueß [17] have shown that LDetPA is closed under complement while LPA is not, so

that LDetPA ( LPA, and [5] further exhibits languages witnessing the separation. In

this section, we show that PA can be determinized when their language is bounded.

The purpose of this section is to show:

Theorem 11. Every L ∈ LBoundedPA is the union of the languages of rflat DetCA.

This implies:

Corollary 12. BSL = LBoundedPA = LBoundedDetPA = L1-CQDD.

Proof. The first equality is Theorem 6. For the second, we have that

LBoundedDetPA ⊆ LBoundedPA; for the converse, if L ∈ LBoundedPA then it is the

union of the languages of rflat DetCA by Theorem 11, and as LDetPA is closed un-

der union, L ∈ LBoundedDetPA. For the third, we note that rflat DetCA, and thus

1-CQDD, recognize only bounded languages, thus L1-CQDD ⊆ LBoundedPA; for the

converse, Theorem 11 states that LBoundedPA ⊆ L1-CQDD.

We show Theorem 11 in two steps. First, in Section 5.1, we note that the

canonical ε-CA of Construction 5 has a crucial property which we call “constraint-

determinism,” i.e., the fact that the nondeterminism of the automaton is not used in

the constraint set (formal definitions follow). We show that CA with this property

are naturally expressed with a model of one-way deterministic automaton which al-

lows for some counter manipulation: a restricted version of the deterministic affine

PA introduced in [5]. Second, in Section 5.2, we show that any bounded language

accepted by such a device is a finite union of languages of rflat DetCA. We then

conclude the proof of Theorem 11 in Section 5.3.

5.1. From constraint-deterministic CA to deterministic affine PA

We first formally define the property of constraint-determinism:

Definition 13 (Constraint-determinism) A CA (A,C) is said to be constraint-

deterministic if no two paths π1 and π2 in Run(A) for which µA(π1) = µA(π2) can

be distinguished by C. Formally:

(∀π1, π2 ∈ Run(A)) µA(π1) = µA(π2)⇒ (Φ(π1) ∈ C ↔ Φ(π2) ∈ C) .

Given a constraint-deterministic CA (A,C), we will consider the deterministic

version of A and follow, within it, the paths traced in A. To this purpose, we

will need a model which allows for some simple counter manipulations; we propose

the affine Parikh automaton, that we introduced and studied in [5], as the right

model for this task, as it allows for the needed expressiveness while providing a nice

mathematical framework for the proofs.
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Intuitively, an affine Parikh automaton will be defined as a finite automaton that

also operates on a tuple of counters. Each transition of the automaton will blindly

apply an affine function to the tuple of counters. A word w will be deemed accepted

by the affine Parikh automaton iff some accepting run of the finite automaton on

w also has the cumulative effect of transforming the tuple of counters, initially 0,

to a tuple belonging to a prescribed semilinear set.

Definition 14 (Affine Parikh automaton [5]) An affine Parikh automaton

(APA) of dimension d is a triple (A,U,C) where A is an automaton with tran-

sition set δ, U is a morphism from δ∗ to Fd, and C ⊆ Nd is a semilinear set. The

language of the APA is L(A,U,C) = {µ(π) | π ∈ Run(A) ∧ Uπ(0) ∈ C}.

The APA is said to be deterministic (DetAPA) if A is. We write LAPA (resp.

LDetAPA) for the class of languages recognized by APA (resp. DetAPA).

The APA is said to be finite-monoid if M(U) is finite; this is not the general

case.

In other terms, APA are automata equipped with d counters c1, . . . , cd, and

each transition computes some action ci ← ki+
∑

j ai,j × cj on the d counters. One

interesting class of finite-monoid APA, and the one we will focus on, is when no

sum of counter is allowed, i.e., when all ai,j are either 0 or 1, and if ai,j is 1, then

for all j′ 6= j, ai,j′ is 0.

Lemma 15. Any ε-CA (A,C) having the constraint-determinism property has the

same language as a finite-monoid DetAPA (A′, U, E) such that L(A) = L(A′).

Proof. We outline the idea before giving the details. Let (A,C) be the ε-CA. We

first apply the standard subset construction and obtain a deterministic automaton

A equivalent to A. Consider a state q of A. Suppose that after reading some word

w leading A into state q we had, for each q ∈ q, the Parikh image cw,q (counting

transitions in A, i.e., recording the occurrences of each transition in A) of some

initial w-labeled path leading A into state q. Suppose that (q, a, r) is a transition

in A. How can we compute, for each r ∈ r, the Parikh image cwa,r of some initial

wa-labeled path leading A into r? It suffices to pick any q ∈ q for which some a-

labeled path leads A from q to r (possibly using the ε-transitions in A) and to add

to cw,q the contribution of this a-labeled path. A DetAPA transition on a is well-

suited to mimic this computation, since an affine transformation can first “flip” the

current Parikh q-count tuple “over” to the Parikh r-count tuple and then add to it

the q-to-r contribution. Hence a DetAPA (A, ·, ·) upon reading a word w leading to

its state q is able to keep track, for each q ∈ q, of the Parikh image of some initial

w-labeled path leading A into q. We need constraint-determinism only to reach the

final conclusion: if a word w leads A into a final state q, then some q ∈ q is final

in A, and because of constraint-determinism, imposing membership in C for the

Parikh image of the particular initial w-labeled path leading A to q kept track of

by the DetAPA is as good as imposing membership in C for the Parikh image of

any other initial w-labeled path leading A to q.
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We now give the details. Say A = (Q,Σ, δ, q0, F ), and identify Q with

{1, . . . , |Q|}. For p, q ∈ Q and a ∈ Σ define p
a
 q to be a shortest path from

p to q labeled by a — lexicographically smallest among shortest paths, for defi-

niteness, as its length can be greater than one because of ε-transitions, — or ⊥ if

none exists. Let A = (2Q,Σ, δ, q0, F ) be the deterministic version of A defined by

q0 = {q0}, F = {q | q ∩ F 6= ∅}, and:

δ = {(p, a, q) | q ∈ q ↔ (∃p ∈ p)[p
a
 q 6= ⊥]}.

We have that L(A) = L(A). Note that, by construction, for any path π in A from

q0 to q, there exists a path π in A from q0 to a state q such that q ∈ q and

µA(π) = µA(π).

We now attach an affine function to each transition of A, where the functions

are of dimension (|Q|.|δ| + 1). We first define V : δ∗ → F|Q|.|δ|, and will later add

the extra component. We write Vπ for V (π). The intuition is as follows. Consider a

path π on A from the initial state to a state q — the empty path is considered to

be from q0 to q0. We view Vπ(0) as a list of counters (c1, . . . , c|Q|) where cq ∈ N|δ|.

We will ensure that for any q ∈ q, cq is the Parikh image of a path π in A from

q0 to q such that µA(π) = µA(π). If two such paths π1 and π2 exist, we may

choose one arbitrarily, as they are equivalent in the following sense: if ρ is such that

π1ρ ∈ Run(A) and Φ(π1ρ) ∈ C, then the same holds for π2.

For p ⊆ Q, q ∈ Q, and a ∈ Σ, let P (p, q, a) be the smallest p ∈ p such that

p
a
 q 6= ⊥ (we will consider only cases where at least one such p exists). Let

t = (p, a, q) be a transition of A. We define Vt such that for q ∈ q and p = P (p, q, a),

the application of Vt sets cq to cp +Φ(p
a
 q). Formally:

Vt =

(
∑

q∈q

M
(
P (p, q, a), q

)
,

∑

q∈q

N
(
q, Φ(P (p, q, a)

a
 q)

)

)

where M(p, q) is the matrix which transfers the p-th counter to the q-th, and zeroes

the others, and N(q, d) is the shift of d ∈ N|δ| to the q-th counter. More precisely,

M(p, q)i,j = 1 iff there exists 1 ≤ e ≤ |δ| such that i = (q − 1).|δ| + e and j =

(p−1).|δ|+e; likewise, N(q, d) = (0(q−1).|δ|)·d·(0(|Q|−q).|δ|). The matrices appearing

in V are 0-1 matrices with at most one nonzero entry per row; composing such

matrices preserves this property, thusM(V ) is finite.

Assertion 16. Let π be a path on A from q0 to some state q. Let (c1, . . . , c|Q|) =

Vπ(0), where cq ∈ N|δ|. Then for all q ∈ q, cq is the Parikh image of a path in A

from q0 to q labeled by µ(π).

We show Assertion 16 by induction. If |π| = 0, then To(π) = {q0} and cq0 is by

definition all-zero. Thus cq0 is the Parikh image of the empty path from and to q0
in A. Let π be such that |π| > 0, and consider a state q ∈ To(π). Write π = ρ · t,

with t ∈ δ, and let p = P (To(ρ), q, µ(t)) and ζ = p
µ(t)
 q. The induction hypothesis

asserts that the p-th counter of Vρ(0) is the Parikh image of a path ρ on A from q0
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to p labeled by µ(ρ). Thus, the q-th counter of Vπ(0) is Φ(ρ) + Φ(ζ), which is the

Parikh image of ρζ, a path from q0 to q labeled by µ(π). This concludes the proof

of Assertion 16.

We now define U : δ∗ → F|Q|.|δ|+1. We add a component to the functions of V ,

such that for π ∈ Run(A), the last component of Uπ(0) is 0 if To(π) ∩ F = ∅ and

min(To(π) ∩ F ) otherwise. For t = (p, a, q) ∈ δ, let:

Ut : (x, s) 7→

(

Vt(x),

{

q if q is the smallest s.t. q ∈ q ∩ F ,

0 if no such q exists.

)

Now define E ⊆ N|Q|.|δ|+1 to be such that (v1, . . . , v|Q|, q) ∈ E iff vq ∈ C; E is

semilinear. We adjoin 0 to E iff 0 ∈ C, in order to deal with the empty word. Now,

by Assertion 16, a word w is accepted by the DetAPA (A,U,E) iff there exists a

path in A from q0 to q ∈ F , labeled by w, and whose Parikh image belongs to C,

i.e., w ∈ L(A,C).

Finally, recall that L(A) = L(A) and note thatM(U) is finite asM(V ) is: the

extra component of U only adds a column and a row of 0’s to the matrices.

We note, for completeness, that constraint-deterministic CA, and thus finite-

monoid DetAPA, strictly generalize DetPA. Indeed, the language {a, b}∗·{anbn | n ∈

N+} is not expressible by a DetPA [5], but is expressible as a constraint-deterministic

CA (A,C) where A is:

q0 q1 q2 q3 q4
ε

ε

a, b

b a

a

b

b

and C constrains the two loops on q3 and q4 to occur the same number of times.

As any word in {a, b}∗ has at most one accepting path in A, this PA is constraint-

deterministic.

5.2. From finite-monoid DetAPA of bounded language to DetPA

Let us first recall the following classical result:

Lemma 17 (e.g., [11]) Let u, v ∈ Σ∗. Then (u + v)∗ is bounded iff there exists

z ∈ Σ∗ such that u, v ∈ z∗.

We will need the following technical lemma. Bounded languages being closed

under morphism, for all automata A if Run(A) is bounded then so is L(A). The

converse is true when A is deterministic (and false otherwise):

Lemma 18. Let A be a deterministic automaton for a bounded language, then

Run(A) is bounded. Moreover, Run(A) is expressible as a SLRE whose branches
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are of the form ρ1π
∗
1 · · · ρnπ

∗
nρn+1 where ρi 6= ε for all 1 < i ≤ n and the first

transition of πi differs from that of ρi+1 for every i (including i = n if ρn+1 6= ε).

Proof. Recall that bounded languages are closed under deterministic rational

transduction (see, e.g., [11]). Let a deterministic automaton A = (Q,Σ, δ, q0, F )

accept a bounded language and define the automaton A′ as a copy of A over the

alphabet Σ× δ where a transition t is relabeled (µ(t), t). Then τA′ , the determinis-

tic rational transduction defined by A′, is such that Run(A) = τA′(L(A)), and thus

Run(A) is bounded.

It will be useful to note the claim that if Xπ∗
1π

∗
2Y ⊆ Run(A) for some nonempty

paths π1, π2 and some bounded languages X and Y , then for some path π,

Xπ∗
1π

∗
2Y ⊆ Xπ∗Y ⊆ Run(A). To see this, note that if Xπ∗

1π
∗
2Y ⊆ Run(A) then

X(π1 + π2)
∗Y ⊆ Run(A) because π1 and π2 are loops on a same state. Now

X(π1+π2)
∗Y is bounded because Run(A) is bounded, hence (π1+π2)

∗ is bounded.

So pick π such that π1, π2 ∈ π∗ (by Lemma 17). Then X(π1 + π2)
∗Y ⊆ Xπ∗Y . But

π is a loop in A because π1 = πj for some j > 0 is a loop so that From(π) = To(π)

in A. Hence Xπ∗Y ⊆ Run(A). Thus Xπ∗
1π

∗
2Y ⊆ X(π1 + π2)

∗Y ⊆ Xπ∗Y ⊆ Run(A).

Let E be a SLRE for Run(A), and consider one of its branches P =

ρ1π
∗
1 · · · ρnπ

∗
nρn+1. We assume n to be minimal among the set of all n′

such that ρ1π
∗
1 · · · ρnπ

∗
nρn+1 ⊆ ρ′1π

′∗
1 · · · ρ

′
n′π′∗

n′ρ′n′+1 ⊆ Run(A) for some

ρ′1, π
′
1, . . . , ρ

′
n′ , π′

n′ , ρ′n′+1.

First we do the following for i = n, n − 1, . . . , 1 in that order. If πi = ζπ and

ρi+1 = ζρ for some maximal nonempty path ζ and for some paths π and ρ, we

rewrite ρiπ
∗
i ρi+1 as ρ′iπ

′∗
i ρ′i+1 by letting ρ′i = (ρiζ), π

′
i = (πζ) and ρ′i+1 = ρ. This

leaves the language of P unchanged and ensures at the ith stage that the first

transition of π′
j (if any) differs from that of ρ′j+1 (if any) for i ≤ j ≤ n. Note that

n has not changed.

Let ρ′1π
′∗
1 · · · ρ

′
nπ

′∗
n ρ′n+1 be the expression for P resulting from the above process.

By the minimality of n, π′
i 6= ε for 1 ≤ i ≤ n. And for the same reason, ρ′i 6= ε

for 1 < i ≤ n, since ρ′i = ε implies Xπ′∗
i−1π

′∗
i Y ⊆ Xz∗Y ⊆ Run(A) for some z by

the claim above, where X = ρ′1 · · ·π
′∗
i−2ρ

′
i−1 and Y = ρ′i+1π

′∗
i+1 · · · ρ

′
n+1 are bounded

languages.

We are now ready to show the result of this section:

Lemma 19. Let (A,U,C) be a finite-monoid DetAPA such that L(A) is bounded.

Then there exist a finite number of rflat DetCA having L(A,U,C) as the union of

their languages.

Proof. Let A = (QA,Σ, δ, q0, FA) be a deterministic automaton whose language is

bounded, let U : δ∗ → Fd for some d > 0 be a morphism such thatM(U) is finite,

and let C ⊆ Nd be a semilinear set.
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By the finiteness ofM(U), every M ∈ M(U) has a minimum threshold and a

strictly positive minimum period such that M threshold+period = M threshold. Let

0 < s = max{threshold(M) : M ∈ M(U)}+ 1 and

0 < p = lcm{period(M) : M ∈M(U)}.

Then every M ∈M(U) verifies M j+p = M j for every j ≥ s.

Our main task will be to show the following:

Assertion 20. For n ≥ 0, ρ1, π1, . . . , ρn, πn, ρn+1 ∈ δ∗ satisfying the hypothesis of

Lemma 18 and s ≤ j1, . . . , jn < s+ p, there is an automaton D such that (A,C) is

a rflat DetPA with:

(1) The initial state of D has no incoming transition and at most one outgoing

transition, which is labeled by the first transition of ρ1 if ρ1 6= ε,

(2) Ψ(L(D)) is ρ1π
j1
1 (πp

1)
∗ρ2π

j2
2 (πp

2)
∗ · · · ρnπjn

n (πp
n)

∗ρn+1,

(3) ∀ω ∈ L(D), Φ̃(ω) = UΨ(ω)(0).

We first show how Assertion 20 implies the result. Consider the set Run(A) of

accepting paths in A; it is, by Lemma 18, a bounded language. Let P be the language

defined a branch ρ1π
∗
1 · · · ρnπ

∗
nρn+1 of the SLRE for Run(A) given by Lemma 18.

For 0 ≤ j1, . . . , jn < s+ p, define:

P(j1,...,jn) = ρ1π
j1
1 (πp

1)
∗ · · · ρnπ

jn
n (πp

n)
∗ρn+1.

Then P can be (redundantly) described as:

P =
⋃

0≤j1,...,jn<s+p

P(j1,...,jn).

Now, for some 0 ≤ j1, . . . , jn < s + p, we argue that the language {π ∈

P(j1,...,jn) | Uπ(0) ∈ C} is the union of the languages of some rflat DetPA. If

each ji is greater than s, then this is the statement of Assertion 20. Otherwise,

if P(j1,...,jn) is ρ1 · · ·
︸ ︷︷ ︸

α

ρiπ
ji
i (πp

i )
∗ρi+1 · · · ρn+1

︸ ︷︷ ︸

β

with ji < s, it can be expressed as

αρiπ
ji+mp
i (πp

i )
∗ρi+1β together with

m−1⋃

ℓ=0

αρiπ
ji+ℓp
i ρi+1β, (1)

where m = min{ℓ : ji+ℓp ≥ s}. Now αρiπ
ji+ℓp
i ρi+1β can be rewritten as αρ′iβ, with

the first transition of πi−1 still different from the first transition of ρ′i = ρiπ
ji+ℓp
i ρi+1.

Instances of ji′ < s occurring in αρ′i−1β for i′ 6= i can be rewritten as well. When

all occurrences of ji < s have been processed in this way, each resulting language

is the language of a rflat DetPA by Assertion 20.

Now {π ∈ P | Uπ(0) ∈ C} is thus the union of the languages of rflat DetPA

(D,C). Now define D′ as the automaton D where a label (t, u) in D appears as

(µA(t), u) in D′, we argue that (D′, C) is still a rflat DetPA: for any two tran-

sitions (q, (a, u), q′) and (q, (a, v), q′′) in D′, there are two transitions (q, (t, u), q′)
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and (q, (t′, v), q′′) with µA(t) = µA(t
′) in D. Since t and t′ may appear after the

same prefix in Ψ(L(D)) (as any state of a rflat automaton is both accessible and co-

accessible) and as Ψ(L(D)) is a set of paths, this implies that From(t) = From(t′). In

turn, as A is deterministic, this implies that t = t′, and thus, as (D,C) is a DetPA,

that u = v and q′ = q′′, i.e., the two transitions we considered in D′ are the same,

hence (D′, C) is a DetPA. Moreover, since D is rflat and D′ has the same graph as

D, D′ is rflat. Finally, L(D′, C) = µ(L(D,C)), and thus {µ(π) | π ∈ P ∧Uπ(0) ∈ C}

is the union of rflat DetPA languages. Going through all the branches thus leads to

a finite set of rflat DetPA languages, with L(A,U,C) as their union.

We now prove Assertion 20 by induction on n, the number of πi’s. For succinct-

ness, we construct automata where the labels are pairs (π, v) where π = t1t2 · · · tk
is a nonempty word over δ; this is to be understood as a string of transitions with

fresh states in between, with the first transition labeled (t1, v) and the other ones

(ti, 0), i ≥ 2.

Suppose n = 0, then we are only given ρ1. If ρ1 = ε, then D is a single initial

and final state. Otherwise, D is an automaton with states {q0, qf}, q0 initial and qf
final, with a single transition, between q0 and qf , labeled (ρ1, Uρ1(0)). This verifies

the conclusions of Assertion 20.

Suppose n > 0. We introduce a few notations: for a path π = t1t2 · · · tk ∈ δ∗, we

write Mπ for Mtk . . .Mt2Mt1 and ∆π for Uπ(0). Note that, using those notations,

Uπ = (Mπ,∆π). Let π ∈ ρ1π
j1
1 (πp

1)
∗ρ2π

j2
2 (πp

2)
∗ · · · ρnπjn

n (πp
n)

∗ρn+1, and write π =

ρ1π
j1
1 π

pk
1 γ with k maximal. Define M = M

ρ2π
j2
2 ...ρnπ

jn
n ρn+1

, and note that Mγ = M ,

by the finite-monoid property. Then:

∆π = Uγ(Uπ
j1
1
(U

π
pk
1
(Uρ1(0))))

= M(M
π
j1
1
.U

π
pk
1
(∆ρ1) + ∆

π
j1
1
) + ∆γ (as Mγ = M)

= M.∆
π
j1
1

+M.M
π
j1
1
(Mπ

p

1
.U

π
p(k−1)
1

(∆ρ1 ) + ∆π
p

1
) + ∆γ

= M.∆
π
j1
1

+M.M
π
j1
1
(U

π
p(k−1)
1

(∆ρ1) + ∆π
p
1
) + ∆γ (as M

π
j1
1
.Mπ

p
1
= M

π
j1
1
)

... (repeating the two previous lines)

= M.∆
π
j1
1

+M.M
π
j1
1
(∆ρ1 + k.∆π

p
1
) + ∆γ

= M.∆
π
j1
1

+M.M
π
j1
1
.∆ρ1

︸ ︷︷ ︸

K

+k.M.M
π
j1
1
.∆π

p

1
︸ ︷︷ ︸

K′

+∆γ .

Note that the values of K and K ′ are independent of γ and k. Now construct

D′ as the automaton with states {q0, qf}, a transition between q0 and qf labeled

(ρ1π
j1
1 ,K), and a transition from and to qf labeled (πp

1 ,K
′). Let D′′ be the au-

tomaton given by the induction hypothesis on ρ2, π2, . . . , ρn, πn, ρn+1, j2, . . . , jn.

We construct D by merging D′ and D′′: we set q0 initial and identify qf with the

initial state of D′′. Note that (D,C) is indeed a flat DetPA: by induction hypothesis

there is no cycle on the initial state of D′′ and D′′ is rflat, thus D is rflat; moreover,
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since D′′ either has an empty language (if ρ2 = ε, and thus n = 1) or starts with

the first transition of ρ2, which differs from that of π1, (D,C) is a DetPA.

We argue that D fulfills the conclusions of Assertion 20. Point (1) is clear.

Point (2) is verified thanks to the induction hypothesis: the projection of the lan-

guage of D′ is indeed ρ1π
j1
1 (πp

1)
∗, and that of D′′ is ρ2 · · · ρn+1. Finally, for (3): let

ω ∈ L(D), and write ω = ω1ω
k
2ω3 with Ψ(ω1) = ρ1π

j1
1 , Ψ(ω2) = π

p
1 , and k maximal.

Note that ω3 is read over D′′. Then:

Φ̃(ω) = Φ̃(ω1) + k.Φ̃(ω2) + Φ̃(ω3) = K + k.K ′ + Φ̃(ω3)

= K + k.K ′ + UΨ(ω3)(0) (by induction hypothesis)

= K + k.K ′ +∆Ψ(ω3) = ∆Ψ(ω) = UΨ(ω)(0).

This concludes the proof of Assertion 20.

We note that there exist bounded languages with nonsemilinear Parikh image

in LDetAPA (e.g., {anb2
n

}), thus there exist bounded languages in LDetAPA \ LPA.

5.3. Proof of Theorem 11 and effectiveness

Proof of Theorem 11. Let Y ∈ LBoundedPA. By Theorem 6, Y ∈ BSL, so let

w1, . . . , wn be a socle of Y with C = Iter(w1,...,wn)(L) semilinear. Let (A,E) be the

canonical ε-CA for w1, . . . , wn subject to C obtained by applying Construction 5.

By construction, L(A) is bounded. Moreover, (A,E) is constraint-deterministic: if

two accepting paths π1 and π2 in A have the same label w, then π1 and π2 describe

two ways to iterate the words in the socle of Y to get w. As the semilinear set

C describes all ways to iterate these words to get a specific label, Φ(π1) ∈ E iff

Φ(π2) ∈ E.

Now applying Lemma 15 to the ε-CA (A,E) yields a finite-monoid DetAPA for

Y whose underlying automaton has the bounded language L(A). In turn, Lemma 19

yields a finite number of rflat DetCA having Y as the union of their languages.

We note that all the constructions are effective, in the sense that given

words w1, . . . , wn and a semilinear set C ⊆ Nn, we can construct a DetCA for

{wi1
1 · · ·w

in
n | (i1, . . . , in) ∈ C}. We leave open whether there is an effective proce-

dure to determinize a PA when the promise is made that its language is bounded.

6. Discussion and Further Work

We showed that PA and DetPA recognize the same class of bounded languages,

namely BSL. To this end, we used related models (e.g., APA) and provided ex-

pressiveness results of independent interest (e.g., related to constraint-determinism

and the finite-monoid property). Moreover, we noted that the union of rflat DetCA

is a concept that has already been defined as 1-CQDD [4], showing that 1-CQDD
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capture exactly BSL. The closure properties observed in Corollaries 7 and 8 also

apply to 1-CQDD, thus providing alternative proofs to those appearing in [4]. In

particular, given L1-CQDD = BSL, the proof of the closure of 1-CQDD under con-

catenation is a consequence of the simple proofs of closure of LPA and BOUNDED

under concatenation, thus avoiding the long and technical proof of [4].

A related model, reversal-bounded multi-counter machines (RBCM) [14], has

been shown to have the same expressive power as PA [17]. It is known that one-way

deterministic RBCM are strictly more powerful than DetPA [5], thus our result

carries over to RBCM, showing that RBCM and one-way deterministic RBCM

recognize the same class of bounded languages, namely BSL. This provides an al-

ternative proof of the same fact appearing in a recent paper of Ibarra and Seki [15],

and yields as a by-product a characterization of BSL using a model provably weaker

than one-way deterministic RBCM.

Further work includes an in-depth study of the finite-monoid property of APA.

In particular, we suspect that finite-monoid APA are as expressive as PA, and

that finite-monoid DetAPA are as expressive as constraint-deterministic CA. One

further avenue of research is to investigate the related decision problems, e.g., is

it decidable whether the language of a PA is bounded? or whether it is that of a

constraint-deterministic CA?
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[8] Stéphane Demri, Alain Finkel, Valentin Goranko & Govert van Drimmelen (2010):

Model-checking (CTL* ) over Flat Presburger Counter Systems. Journal of Applied

Non-Classical Logics 20(4), pp. 313–344, doi:10.3166/jancl.20.313-344.
[9] Alain Finkel, S. Purushothaman Iyer & Grégoire Sutre (2003): Well-abstracted tran-
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