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Abstract. The unfolding technique is an efficient tool to explore the
runs of a Petri net in a true concurrency semantics, i.e. without con-
structing all the interleavings of concurrent actions. But even small real
systems are never modeled directly as ordinary Petri nets: they use many
high-level features that were designed as extensions of Petri nets. We fo-
cus here on two such features: colors and compositionality. We show
that the symbolic unfolding of a product of colored Petri nets can be ex-
pressed as the product of the symbolic unfoldings of these nets. This is a
necessary result in view of distributed computations based on symbolic
unfoldings, as they have been developed already for standard unfoldings,
to design modular verification techniques, or modular diagnosis proced-
ures, for example. The factorization property of symbolic unfoldings is
valid for several classes of colored or high-level nets. We derive it here for
a class of (high-level) open nets, for which the composition is performed
by connecting places rather than transitions.

1 Introduction

Although they offer a satisfactory representation of concurrency, Petri nets are
often difficult to use to model even small real systems. Their drawback is that
the state of the system is only represented by the position of the tokens in the
places. Consequently, in order to distinguish between the different values that a
variable of the system can take, the simplest way is often to use one place per
value. Even if more subtle codings are possible, the number of necessary places
and transitions becomes very large, or even infinite, which makes the system
very hard to comprehend. For this reason several extensions of Petri nets have
been proposed, like the well-known colored Petri nets [15].

In [17], Khomenko and Koutny, developed a notion of unfoldings for high-
level Petri nets, which is based on a transformation of the high-level model into
a low-level model, in order to reuse the unfolding technique that was developed
for low-level models. We call this method expanded unfolding. Our method yields
a much more compact structure, where the executions are grouped into symbolic
processes that reflect the generic aspect of the model. Symbolic unfoldings were
already studied in [11] and [9]. Here we focus on their factorization properties: we



show how the symbolic unfolding of a large system described as a composition
of several components, can be computed from the symbolic unfoldings of the
components. Some factorization properties are obtained in [10], but only for
high-level processes, not for branching processes or symbolic unfoldings.

We choose a framework where nets are composed via shared places, called
interface places or open places when seen from one component. This way of
composing nets is very popular because it matches nicely the graphical nature
of Petri nets. And it has indeed been introduced in different formalisms. For ex-
ample in net algebras, where nets can be composed by fusion of places [6,19,5,14].
Petri nets with interface of [21,22] use a similar construction. The composition
operator of [23] is motivated by the popularity of this kind of compositions and
remarks that net process are built by assembling tiles via fusion of places. Closer
to our work, [18] defines a partial order semantics for Petri net components that
communicate via interface places with an environment. A categorical formaliz-
ation of open nets was proposed in [2,3], where open net processes are defined,
but no unfolding. We discuss later the differences between this work and ours.

The paper is organized as follows. Next section introduces the net family
that is used in this paper: a variant of colored Petri nets, enriched with interface
places that are used to compose them. We call such nets colored puzzle nets. We
introduce an adequate category setting for them and study their compositionality
properties. Our morphisms differ clearly from those of [2,3], which is crucial to
prepare our main result on unfoldings. Section 3 reviews and adapts a standard
expansion procedure for colored nets, that separates colors in order to transform
a colored net into an equivalent uncolored one. Section 4 contains the main
contribution of the paper. It examines the notion of symbolic unfolding for a
colored puzzle net, and studies its relation both to composition and to expansion.
It is stated there that the symbolic unfolding of a product puzzle net is the
product of the unfoldings of its components.

The detailed proofs can be found in [8].

2 Colored Puzzle (Petri) Nets and their Composition

Colored Petri nets were defined by Jensen in [15], as one possible formalism to
enhance the flexibility of Petri nets and facilitate the modeling of real systems.
In these nets, each token carries some information, traditionally called the color
of the token. Of course, transitions can test the color of the tokens they consume,
and the color of the created tokens may depend on the color of the consumed
tokens. These constraints on the values of the tokens are called guards. In this
paper we are not interested in giving a precise syntax to the guards, therefore we
simply describe them as sets of possible firing modes, each firing mode assigning a
color to each input and output place of the transition. Of course our results about
factorization of unfoldings remain valid in presence of syntactical restrictions for
the guards.

This section introduces colored puzzle nets, or puzzle nets for short, a variant
of colored nets where extra interface places are introduced. These interface places



are used for connectivity purposes. They model the communication between a
component and other components or its environment, as it is the case in reactive
systems. As long as the environment is not modeled, it may consume or create
tokens at any time in interface places. Then it is meaningless to remember the
marking in these places or to test the presence of a token in an interface place
when a transition needs it to fire. For this reason interface places have a special
status: they are neutral in most operations, like the computation of trajectories,
the computation of unfoldings, etc. They only become active when they are
connected to another component, in which case they change status and start
behaving as ordinary places, and thus impose new constraints on the behavior
of the component.

Labels are used for the composition, like in [13] or [1].

2.1 Colored Puzzle Nets

A (possibly infinite) set V of colors is given once for all, and is used in all the
nets of the paper.

Definition 1 (colored puzzle (Petri) net). A colored puzzle net is a tuple

N
def

= (P, P+, P−, T, pre, post , �, �, 
,M0) where

– P , P+ and P− are disjoint (possibly infinite) sets of internal places, posit-
ive places and negative places respectively (think of magnet polarities); We

denote P± def

= P+ ∪ P− the interface places; The polarities are needed when
nets are composed by product (see Section 2.3).

– T is a (possibly infinite) set of transitions;

– pre, post : T −→ 2P∪P±

map each transition t ∈ T to a preset often denoted
∙t

def

= pre(t) and a postset often denoted t∙
def

= post(t) respectively;
– 
 maps each transition t ∈ T to a guard 
(t), that is a set of pairs (�, �) ∈

(∙t −→ V )× (t∙ −→ V ) called firing modes ;
– the initial marking M0 is a multiset of pairs (p, v) ∈ (P ∪ P±) × V . We

sometimes write M0(p) for the multiset of colors in place p.
– � is a label set;
– � : P ∪ P± −→ � assigns a label to each place, such that only internal

places can share the same label, i.e. for all p1, p2 ∈ P ∪ P±, if p1 ∕= p2 and
�(p1) = �(p2), then p1 and p2 are internal places;

The tokens in the interface places P± are not considered in the semantics of
a single component, since they may be created or consumed freely by the en-
vironment. In particular, when a token of an interface place is needed to fire
a transition, one must always consider that the token may have been created
by the environment. Thus, a marking M for the puzzle net N is a multiset
M : P × V → ℕ.3 Transition t is firable from M with firing mode (�, �) ∈ 
(t)

3 Remark that in the definition of the net, the initial marking is defined also on the
interface places. The reason for this is that when we compose two nets, they have
to agree on the initial marking of their shared places, that become internal places of
the product.
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Fig. 1. Two components (on top) and their composition via the product (bottom). The
firing modes of the transitions are omitted on the picture of N0. They are the same as
those of the corresponding transitions of N1 and N2.

iff ∀p ∈ ∙t ∩ P , M(p, �(p)) ≥ 1. This firing produces the marking

M ′ def

= M − {(p, �(p)) ∣ p ∈ ∙t ∩ P}+ {(p, �(p)) ∣ p ∈ t∙ ∩ P} .

We denote M [(t, �, �)⟩M ′. In other words, � represents the colored tokens that
are consumed, and � represents those that are produced.

In the standard sequential semantics, a run of N is a sequence of transition
firings M0 [(t1, �1, �1)⟩M1 . . .Mn−1 [(tn, �n, �n)⟩Mn. Naturally, we will move to
a true concurrency semantics for runs, in the sections devoted to unfoldings.

Figure 1 illustrates puzzle nets. Consider N1: it has two internal places p1
and p2, and two interface places p3, p4 that are both of negative sign (mentioned
in subscript). The initial marking has placed a token of color c in p1 and p3,
while p2 and p4 are empty. The transition modes are represented close to each
transition. t1 has a single firing mode: it consumes a token of color a in p2, and
produces a token of color c in p1. By contrast, t2 has two firing modes. Both
consume a token of color c in p1 and in p3. But the first mode places a token of
color a in p2 and p4, while the second mode places a token of color b in these
places.



Consider now N0, that also obeys the above constraints. Only two maximal
executions are possible. t2 fires first and produces two tokens of the same color
(a or b), one in p2 and one in p4. Then, if these tokens are of color a, t1 and
t3 can fire concurrently and the net stops; otherwise, t3 and t4 fire in sequence.
Notice that because of the guards, no execution contains both t1 and t4. Without
colors these two transitions could have fired concurrently. This phenomenon will
be formalized later as the notion of color conflict.

2.2 Morphisms

Before moving to the definition of composition for colored puzzle nets, we need
the extra notion of morphism between two colored puzzle nets. Morphisms are
relations between nets that ensure the preservation of the behaviors.

Definition 2 (morphism). Let N1 and N2 be two nets such that �2 ⊆ �1

(we add subscript i to elements of Ni). A morphism � from N1 to N2 is a pair
(�T , �P ) of partial functions (the symbol ∗ is used when the function is undefined)

�T : T1 −→ T2 ∪ {∗}

�P :

⎧

⎨

⎩

P1 −→ P2 ∪ P
±
2 ∪ {∗}

P+
1 −→ P+

2 ∪ {∗}
P−
1 −→ P−

2 ∪ {∗}

such that

– ∀p1 ∈ P1 ∪ P
±
1

{

�P (p1) = ∗ iff �1(p1) ∕∈ �2

�1(p1) ∈ �2 =⇒ �2(�
P (p1)) = �1(p1)

– ∀t1 ∈ T1 �T (t1) = ∗ =⇒ �P (∙t1 ∪ t1
∙) ⊆ P±

2 ∪ {∗};
– for all t1 ∈ T1 such that �T (t1) = t2 ∕= ∗,

∙ ∗ ∕∈ �P (∙t1 ∪ t1
∙)

∙ the restriction of �P to ∙t1 is a bijection from ∙t1 to ∙t2
∙ the restriction of �P to t1

∙ is a bijection from t1
∙ to t2

∙

∙ ∀(�1, �1) ∈ 
1(t1), ∃(�2, �2) ∈ 
2(t2) : ∀p1 ∈ ∙t1, �2(�
P (p1)) = �1(p1),

and ∀p1 ∈ t1
∙, �2(�

P (p1)) = �1(p1),
– ∀p2 ∈ P2 ∪ P

±
2 , M0

2 (p2) =
∑

p1: �P (p1)=p2
M0

1 (p1).

In words, �P is defined exactly on places that carry a label of the image net,
and preserves these place labels. �P also preserves the polarity of an interface
place, and may assign a polarity to an internal place. This change of status must
occur for places connected to a transition t1 that is removed by �T , unless if
such places vanish through �P . When a transition t1 is preserved by �T , all its
connected places are preserved as well, and firing modes of this transition t1 are
mapped into the modes of its image t2. Notice in particular that N1 and N2

may be identical up to their firing modes, and the identity mapping is then a
morphism as soon as 
1 ⊆ 
2.

From this definition, it is clear that a run of N1 is naturally mapped by �
into a run of N2.



The composition of two morphisms �1
def

= (�T1 , �
P
1 ) from N1 to N2 and �2

def

=

(�T2 , �
P
2 ) from N2 to N3 is �2 ∘ �1

def

= (�T2 ∘ �T1 , �
P
2 ∘ �P1 ). The identity morphism

for N is 1N
def

= (1T , 1P∪P±).

Theorem 1. The family of colored puzzle nets equipped with the above notion
of morphism forms a category.

Proof sketch. Associativity and identity are straightforward. The proof of the
composition can be found in [8]. ⊓⊔

To simplify the notations we often write � instead of �T or �P . We also denote
by N1 ∼ N2 the fact that N1 and N2 are isomorphic, i.e. the existence of two
morphisms �12 from N1 to N2 and �21 from N2 to N1 such that �21 ∘�12 = 1N1

and �12 ∘ �21 = 1N2
.

Comparison with the category of open nets [2,3]. Forgetting high-level
features like colors and guards, our puzzle nets are close to the open nets pro-
posed in [2,3]. But the morphisms between them are quite different. Apart from
technical aspects (we use partial functions, rather than total ones), a significant
difference is that they preserve runs in the opposite direction: in our category, a
morphism from N1 to N2 maps every run of N1 to a run of N2 (i.e. N2 simulates
N1), whereas in open nets, a morphism from N1 to N2 maps every run of N2 to
a run of N1 (i.e. N1 simulates N2).

The composition operations defined for open net and for puzzle nets are very
similar in their principle: they both amount to identifying places that carry the
same label. In the case of open nets, this labeling comes from the injection of a
common interface net into the two components that must be assembled. In both
categories, the two components that are assembled both simulate the resulting
composed net. However, as morphisms and simulation relations do not have the
same directions in the two settings, the composition is expressed as a pushout
for open nets (a colimit), and as a product for puzzle nets (a limit).

This difference becomes crucial when coming to the construction of processes,
and more generally unfoldings. In the category of open nets, there is a morphism
from a process to the net N , expressing that this process simulates net N . By
contrast, in the category of puzzle nets, the similar morphism from the (branch-
ing) process O to the net N expresses that net N simulates the branching process
O, or more generally the unfolding of N . This choice of direction is crucial to
obtain a universal property on unfoldings, which is the key to transport compos-
tion operations from nets to unfoldings. Notice that this morphism architecture
reproduces the one followed in [24].

2.3 Product

The meaning of interface places appears in the compositon of puzzle nets, that
we are going to express as a categorical product. The composition mechanism is
governed by the following idea, that mimics the one proposed for open nets [2,3]:



when two components are connected, interface places with identical labels will be
merged, provided they have complementary polarities, just like magnets. Once
two places are merged, the resulting pair becomes an ordinary internal place of
the composed (product) net, i.e. the polarity vanishes. Notice that this notion of
polarity has no relation with any idea of input or output place: interface places
can communicate with the environment in any direction.

Polarities represent the part of the interface place that is owned by each
component. This is why morphisms must respect polarities: an interface place
can only be simulated by an interface place with the same polarity. It would be
possible to deal with more than two polarities, meaning that some interface place
could be shared by more than two components. An interface place could then be
seen as a pie-chart, each component owning a part of the pie-chart; as long as the
pie-chart would not be full, the place would keep its status of interface. When
full, the place would become an internal place. This idea of multiple polarities
can help one convince himself that interface places do not need to be used only
as inputs or only as outputs.

Definition 3 (product). Let N1 and N2 be two nets such that

– ∀p1, p2 �1(p1) = �2(p2) =⇒

{

(p1, p2) ∈ (P+
1 × P−

2 ) ∪ (P−
1 × P+

2 )
M0

1 (p1) =M0
2 (p2)

– ∀ti ∈ Ti (∙ti ∪ ti
∙) ∩ Pi ∕= ∅.

We define their product N0, denoted N1 ×N2 and the associated morphisms �1
and �2 as:

places:

P0
def

= (P1 × {∗}) ∪ ({∗} × P2) ∪ {(p1, p2) ∣ �1(p1) = �2(p2)}

P+
0

def

= {(p1, ∗) ∣ p1 ∈ P+
1 ∧ �1(p1) ∕∈ �2} ∪ {(∗, p2) ∣ p2 ∈ P+

2 ∧ �2(p2) ∕∈ �1}

P−
0

def

= {(p1, ∗) ∣ p1 ∈ P−
1 ∧ �1(p1) ∕∈ �2} ∪ {(∗, p2) ∣ p2 ∈ P−

2 ∧ �2(p2) ∕∈ �1}

�P
i ((p1, p2))

def

= pi (even when pi = ∗).
labels:
�0

def

= �1 ∪ �2

�0((p1, p2))
def

= �i(pi) when pi ∕= ∗.
Notice that the restriction of �P

i to �−1
0 (�i) is a bijection to Pi ∪ P

±
i .

initial marking:

M0
0 ((p1, p2))

def

= M0
i (pi) when pi ∕= ∗

transitions:
T0

def

= (T1 × {∗}) ∪ ({∗} × T2)

�T
i ((t1, t2))

def

= ti (even when ti = ∗)
∙(t1, t2)

def

= �i
−1(∙ti) and (t1, t2)

∙ def

= �i
−1(ti

∙) when ti ∕= ∗


(t0)
def

= {(� ∘ �i
−1
∣∙t0

, � ∘ �i
−1
∣t0∙) ∣ (�, �) ∈ 
(�i(t0))} when �i(t0) ∕= ∗

Observe that this composition takes the disjoint union of transitions, by contrast
with several alternate notions of product for Petri nets that rather synchronize
transitions. Since transitions remain private, their flow is preserved, as well as



p1

p2

p3−

p4−

c c

t1{pa

2}, {p
c

1} t2
{pc

1, p
c

3−}, {pa

2 , p
a

4−}

{pc

1, p
c

3−}, {pb

2, p
b

4−}

N1

p1

p2a p2b

p3−

p4−

c c

t1a t2a t2b

Exp(N1)

Fig. 2. A colored puzzle net (left) and its expansion (right).

their firing modes, up to the reshaping of place names performed by the com-
position.

Figure 1 illustrates the composition by product. Places labeled p3 in N1 and
N2 are merged in the product, because they have complementary polarities (the
product would be undefined if they had identical polarities). The same holds for
places labeled p4. So nets N1 and N2 are assembled by these interface places,
that now change their status to internal places.

Theorem 2. Definition 3 corresponds to the categorical product in the category
of puzzle nets (Definitions 1 and 2).

Proof sketch. One has to check that N0 is a net: the non-trivial part is to show
that only internal places share labels. Then we show easily that �i is a morphism
from N0 to Ni.

Finally it remains to check the universal property of the product in this cat-
egory: for any N and any pair of morphisms �i : N −→ Ni, there exists a unique
morphism  from N to N0 = N1 × N2 that makes the diagram commutative,
i.e. that satisfies �i = �i ∘  . This  is necessarily defined by:

∀x ∈ P ∪ P± ∪ T  (x)
def

=

{

∗ if �1(x) = �2(x) = ∗
(�1(x), �2(x)) otherwise.

It is straightforward to check that  satisfies Definition 2. ⊓⊔

3 Expansion

There exists a classical method to expand colored Petri nets into ordinary (or
low-level) nets, which sometimes motivated the use of high-level nets as conveni-
ent generators of low-level models. This expansion operation is called unfolding
by some authors [6]. In this paper, we prefer to call it expansion, and reserve
the term unfolding for its standard meaning, since both operations will be sim-
ultaneously applied to colored puzzle nets.



Definition 4 (expanded net). An expanded net is a colored puzzle net N such
that:

– ∀t ∈ T, ∣
(t)∣ = 1 (the unique element of 
(t) is denoted (�t, �t))
– ∀p ∈ P ∣{�t(p) ∣ p ∈

∙t}∪ {�t(p) ∣ p ∈ t∙}∣ = 1 (the unique color in this set
is denoted col(p))

In other words, transitions have a single firing mode, and places can carry tokens
of a single color of V , which coincides with the mode of all connected transitions.
Notice that the second condition doesn’t apply to interface places: they are
not expanded into their different colors, which corresponds to the idea that a
puzzle net should not restrict the set of colors in a place that will eventually be
shared with another component. Anticipating a little, interface places will not
be duplicated either by the unfolding procedure.

Definition 5 (expansion). Given a colored puzzle net N , we define its ex-

pansion Exp(N)
def

= (P ′, P+, P−, T ′, pre ′, post ′, �, �′, 
′,M0′) and the associated
compression morphism �N : Exp(N) → N as:

places:
P+ and P− are the sets of interface places of N

P ′ def

= {(p, v) ∈ P × V ∣ ∃t ∈ T, (�, �) ∈ 
(t)
(p ∈ ∙t ∧ �(p) = v) ∨ (p ∈ t∙ ∧ �(p) = v)}

col(p, v) = v

transitions and flow:

T ′ def

= {(t, (�, �)) ∣ t ∈ T ∧ (�, �) ∈ 
(t)}
∙(t, (�, �))

def

= {(p, �(p)) ∣ p ∈ ∙t ∩ P} ∪ (∙t ∩ P±)

(t, (�, �))
∙ def

= {(p, �(p)) ∣ p ∈ t∙ ∩ P} ∪ (t∙ ∩ P±)
initial marking:

∀(p, v) ∈ P± × V, M0′(p, v) =M0(p, v)

∀p′ = (p, v) ∈ P ′, ∀v′ ∈ V, M0′(p′, v′) =

{

M0(p, v) if v = v′

0 otherwise

firing modes: for all t′ = (t, (�, �)) ∈ T ′

∀p′ = (p, v) ∈ P ′,

{

�′
t′(p

′)
def

= v iff p′ ∈ ∙t′

�′
t′(p

′)
def

= v iff p′ ∈ t′
∙

∀p ∈ P±, �′
t′(p)

def

= �(p) and �′
t′(p)

def

= �(p)
labels and morphism:
� is the label set of N

∀p ∈ P±, �N (p)
def

= p and �′(p)
def

= �(p)

∀p′ = (p, v) ∈ P ′, �N (p′)
def

= p and �′(p′)
def

= �(p)

∀t′ = (t, (�, �)) ∈ T ′, �N (t′)
def

= t

Proposition 1. The expansion of a colored puzzle net yields an expanded net,
and the mapping �N : Exp(N) → N is a (compression) morphism of colored
puzzle nets.



Proof. We have to show that Exp(N) is an expanded net. The only non-trivial
part here concerns the condition about the colors in internal places (second item
of Definition 4): it is ensured by the definition of the internal places P ′ through
the pre- and post-sets of the expanded transitions.

Checking that �N is a morphism from Exp(N) to N is straightforward. ⊓⊔

Theorem 3 (expansion). The Exp functor establishes a coreflection between
the category of colored puzzle nets, and the full subcategory of expanded nets.

Proof sketch. We have to prove the universal property of each expanded net
Exp(N), associated to its compression morphism �N , i.e. for every morphism �

from an expanded net N ′ to a puzzle net N , there exists a unique morphism
 from N ′ to Exp(N) such that � = �N ∘  . If such a morphsim  exists, this
latter condition imposes the following definition:

–  (x) = ∗ iff �(x) = ∗

– �(p) ∈ P± =⇒  (p)
def

= �(p)

– �(p) ∈ P =⇒  (p)
def

= (�(p), col(p))

–  (t)
def

= (�(t), (�t ∘ �
−1
∣∙t , �t ∘ �

−1
∣t∙ ))

It remains to show that  does satisfy the conditions for being a morphism from
N ′ to Exp(N), and that � = � ∘  . ⊓⊔

A nice consequence of this coreflection is that expansion and product com-
mute. One has first that there exists a product in the subcategory of expanded
nets, defined by N1 ×E N2 = Exp(N1 × N2), where N1 × N2 is the product in
the sense of colored puzzle nets. Notice that the expansion operator in the right
hand side term is necessary in order to expand as well the interface places that
become internal after the standard product of colored nets. Now, since products
are special cases of categorical limits (theorem 2), and given that limits are
preserved by functors that have a left adjoint, one has:

Exp(N1 ×N2) ∼ Exp(N1)×E Exp(N2)

This relation would be tedious to prove directly, so it is interesting to obtain it
by standard structural derivations (that exactly reproduce those of [24] in their
structure).

4 Symbolic Unfolding and its Properties

Unfoldings provide a compact data structure to encode sets of runs of a Petri
net in a true concurrency semantics. By their ability to avoid the combinator-
ial explosion due to the interleaving of concurrent events, they are particularly
suited to analyse properties of distributed systems. And they have indeed been
used in this sense, to check the absence of deadlocks, or for reachability ana-
lysis. Unfoldings have been defined for ordinary (low-level) safe nets, and more
generally for semi-weighted nets. Some authors have extended this construction



p3− c

p4−

p1 c

t2ae1a

p2a

t2be1b

p2b

t1e2

p1

t2ae3a

p2a

t2be3b

p2b

...

U(Exp(N1)) ∼ Exp
O
(U(N1))

Fig. 3. The expanded unfolding of the colored puzzle net N1 of Figure 1.

to colored (or high-level) nets by first performing what is called an expansion in
this paper, and then applying a standard unfolding procedure, as illustrated in
Fig. 3. This is the approach of [17,16] for a model of high-level Petri nets called
M-nets [7].

In this paper, we propose to go further in this direction, and define directly
the unfolding of a colored puzzle net as a symbolic unfolding, that is as some
form of “colored puzzle branching process.” The principles are the same as in
[11] or [9], where we also advocated the interest of symbolic unfoldings for the
diagnosis of distributed systems. We then study the relations between symbolic
unfolding and expansion. The main contribution of this section is the derivation
of a factorization property of symbolic unfoldings, as it was already derived by
Winskel [24] for ordinary unfoldings. Namely, the symbolic unfolding of a product
of puzzle nets is the product (in a specific sense) of the symbolic unfoldings of
the components. This derivation follows the same principles as for the expansion,
by producing an adequate coreflection between categories.

Generic Executions for a Generic Model. In high-level processes we definitely
want to benefit from the generic aspects of the colored puzzle net that we are
considering. Indeed in a colored puzzle net, if several states share the same mark-
ing (that is the tokens are in the same places but do not carry the same values),



we can view these states as instances of a generic family of states. Similarly each
transition is a generic representation of a family of actions, that differ only by the
values/colors of the tokens that are consumed and created. And we consider that
grouping several states into a generic state or several actions into a high-level
transition, results from a choice that was done when the system was modeled.

With respect to this choice, we can identify families of executions of a colored
puzzle net N based on the generic aspects related to its places and transitions.
To do this, our approach is based on the fact that each execution of N can be
mapped to an execution of the underlying low-level Petri net obtained by simply
removing the colors and the guards.

Definition 6 (symbolic occurrence net). A symbolic occurrence net is a

colored puzzle net O
def

= (B,P+, P−, E, pre, post , �, �, 
,M0) where the internal
places, denoted B here, are called conditions and the transitions, denoted E here,
are called events, which satisfies:

– →+ is acyclic, where → denotes the causality relation, defined as (e1 →

e2)
def

⇐⇒ (e1
∙ ∩ ∙e2 ∩ B ∕= ∅). Notice that the interface places induce no

causality, since they are not “unfolded”.
– ∀b ∈ B

{ ∑

v∈V M
0(b, v) = 0 ∧ ∃!e ∈ E b ∈ e∙ (then this e is denoted ∙b)

∨
∑

v∈V M
0(b, v) = 1 ∧ ∄e ∈ E b ∈ e∙ (then we define ∙b

def

= ⊥)

– ∀e ∈ E

⎧

⎨

⎩

⌈e⌉
def

= {f ∈ E ∣ f →∗ e} is finite
∄e1, e2 ∈ ⌈e⌉ e1 ∕= e2 ∧

∙e1 ∩
∙e2 ∩B ∕= ∅

valid colorings(⌈e⌉) ∕= ∅

where, for every set F of events, valid colorings(F ) denotes the set of colorings
Col : (∙F ∪ F ∙) ∩ B −→ V of the input and output conditions of the events in
F , that are compatible with the firing modes of these events and with the color
of the tokens in the initial conditions:

{

∀e ∈ F ∃(�, �) ∈ 
(e) (�∣∙e∩B , �∣e∙∩B) = (Col ∣∙e∩B ,Col ∣e∙∩B)
∀b, v M0(b, v) = 1 =⇒ Col(b) = v .

In an occurrence net, places are usually called conditions, and transitions are
called events. Concerning conditions, the second point in the definition requires
that each of them is created (i.e. immediately preceded) by a unique event, or
it is minimal, and marked with a single token. On events, the requirements are
standard. The first line expresses the well-foundedness (configurations are finite),
and the second line expresses that no node should be in (structural) self-conflict.
Or equivalently that there is no immediate conflict in the past of each event.

Treatment of Interface Places. Note that the interface places are not treated
like the internal places. The idea is that only the behaviour of the component
is represented in the occurrence net, and no assumption is made about the
components it will be connected to. In particular, the events can freely use
tokens from the interface places, considering that they may be filled with any
number of tokens of any kind.



Color Conflict. Processes of a colored Petri net have to satisfy both structural
conditions and conditions imposed by the guards on the possible values for the
firing modes. The structural conditions only depend on the underlying low-level
process and express:

– the causal dependencies (noted →+), which induce a partial ordering on
events,

– the structural conflicts, identified by the consumption of a condition by two
different events, which implies that these two events cannot occur in the
same execution, as well as their successors for the causal relation (conflict is
inherited by causality),

– the concurrency relation: when two events are neither causally related nor
in conflict, they are said to be concurrent. They can then occur in any order
in an execution.

But these structural conditions are not sufficient when we deal with symbolic
occurrence nets: a set of events can be made incompatible by the fact that there
exists no suitable value for the firing modes of the events in their past, even if
they would be concurrent in the underlying low-level process.

We can say that a set E of events of O are in color conflict if they are not in
conflict, but the constraints on the values of the firing modes, coming from the
guards of the transitions, prevent the events of E to appear in the same process
of N .

Observe that in the example of Figure 5 the symbolic unfolding of N0 is finite
because e2 and e5 are in color conflict: they impose contradictory constraints on
the token in p4 after e1 fires: e2 can fire only if it is a, but e5 only if it is b.
Nevertheless, without colors, the unfolding would have been infinite.

Unlike the structural conflict due to the consumption of a single condition
by several events, color conflicts are not binary in general. That is, the minimal
sets of events that are in conflict may have more than two elements.

In the definition of symbolic occurrence nets, color conflicts are treated in
the valid colorings function, which deals both with colors and with the symbolic
aspects. The existence of a valid coloring expresses that, for each event e, there
is a way of coloring the configuration ⌈e⌉ leading to e in a coherent manner.
This coloring assigns a color to every condition and ensures that these colors are
compatible with the firing modes of the events.

We are now equipped to define symbolic unfoldings U(N) of a colored puzzle
net N . A minor and classical restriction on the structure of a Petri net is neces-
sary in order to define its unfolding: we require that every transition consumes at
least one token from an internal place. Interface places do not really participate
in the unfolding and are not duplicated. Moreover the initial marking must not
contain more than one token per place (even if they have different colors).

Remark: when dealing with weighted arcs, another condition is also required:
the output arcs of the transitions must be simple, i.e. no transition should pro-
duce more than one token per output place. These nets are called “semi-weighted



nets” in [20,4]. Here we did not consider weighted arcs, so this condition is sat-
isfied by construction.

In our definition of symbolic unfoldings, we use the canonical coding of events
and conditions introduced in [12], based on a backward chaining principle. As
the unfoldings are occurrence nets, each condition b ∈ B is created by a single
event e denoted ∙b, if we take the convention that ∙b may be either an event of
E or the virtual initial event ⊥ when b represents a token of the initial marking.
Moreover, as each event e of the unfolding of a net N represents an occurrence of
a transition t of N , then the output conditions of e represent the tokens created
in the internal places of t∙ ∩ P . Thus each of these conditions is identified by a
pair (e, p) with p ∈ t∙∩P . Similarly, every event e of the unfolding is itself a pair
(C, t) where t is a transition of N , and C ⊆ B is the set of conditions that are
consumed by e. As an example, in Figure 5, the coding of the events is written
on the right.

The folding morphism �N from the unfolding U(N) to the net N reflects also
the correspondence between the events (respectively conditions) of the unfolding
and the transitions (respectively places) of the net. It is defined as:

– ∀e = (C, t) ∈ E �N (e) = t ,

– ∀b = (e, p) ∈ B �N (b)
def

= p and
– ∀p ∈ P± �N (p) = p , since the interface places are not unfolded.

Definition 7 (symbolic unfolding). Let N be a colored puzzle net such that

– ∀p ∈ P
∑

v∈V M
0((p, v)) ≤ 1 and

– ∀t ∈ T ∙t ∩ P ∕= ∅.

We define its symbolic unfolding

U(N)
def

= (B,P+, P−, E, preU , postU , �, �U , 
U ,M
0
U )

as follows: (B and E are defined inductively)

1. P+ and P− are the sets of interface places of N
2. initial conditions:

⊥∙ ⊆ B, with ⊥∙ def

= {(⊥, p) ∣ p ∈ P, ∃v ∈ V, M0(p, v) = 1}
3. initial marking:

∀p ∈ P± ∀v ∈ V M0
U (p, v)

def

= M0(p, v)

∀(⊥, p) ∈ ⊥∙ ∀v ∈ V M0
U ((⊥, p), v)

def

= M0(p, v)

∀b ∈ B ∖ ⊥∙ ∀v ∈ V M0
U (b, v)

def

= 0
4. input and output of an event:

∀e = (C, t) ∈ E

{

∙e
def

= C ∪ (∙t ∩ P±) and

e∙
def

= {(e, p) ∣ p ∈ t∙ ∩ P} ∪ (t∙ ∩ P±)

5. firing modes (only those that are compatible with a valid coloring of ⌈e⌉):
∀e = (C, t) ∈ E


(e)
def

= {(� ∘ �N ∣∙e, � ∘ �N ∣e∙) ∣ (�, �) ∈ 
(t) ∧
∃Col ∈ valid colorings(⌈e⌉) Col ∣C = � ∘ �N ∣C}
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Fig. 4. The symbolic unfolding of each component of the colored puzzle net of Figure 1.

6. insertion of new events:
∀e = (C, t) ∈ 2B × T, e ∈ E iff

⎧

⎨

⎩

�N ∣C is a bijection from C to ∙t ∩ P
∄e1, e2 ∈ ⌈e⌉ e1 ∕= e2 ∧

∙e1 ∩
∙e2 ∩B = ∅

∃(�, �) ∈ 
(e) ∃Col ∈ valid colorings(⌈e⌉) Col ∣C = �∣C

7. insertion of new conditions created by an event:
∀e ∈ E e∙ ∖ P± ⊆ B

8. labels:
� is the set of labels of N ;
∀x ∈ B ∪ P± �U (x) = �(�N (x))

Proposition 2. U(N) is a symbolic occurrence net, and the folding �N :
U(N) → N is a morphism.

See the proof in [8].

Theorem 4 (symbolic unfolding). The U functor establishes a coreflection
between the category of (unfoldable) colored puzzle nets and the full subcategory
of symbolic occurrence nets.

Proof sketch. We have to prove the universal property of symbolic unfoldings:
Let � be a morphism from a symbolic occurrence net O to an unfoldable net N .
There exists a unique morphism  : O → U(N) such that � = �N ∘ . We prove
easily that if  exists, it is unique and defined as:



p1 c p3c

p5c

t2e1

p2 p4

t1e2

p1

t3 e3

p3 p6

t2e4

p2 p4

t4 e5
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p1 U(N0) ∼ U(N1)×O U(N2)

e1
def
= ({(⊥, p1), (⊥, p3)}, t2)

e2
def
= ({(e1, p2)}, t1)

e3
def
= ({(e1, p4), (⊥, p5)}, t3)

e4
def
= ({(e2, p1), (e3, p3)}, t2)

e5
def
= ({(e3, p6)}, t4)

e6
def
= ({(e4, p2)}, t1)

Fig. 5. The symbolic unfolding of the colored puzzle net N0 = N1 ×N2 of Figure 1.

– �(x) ∈ P± =⇒  (x)
def

= �(x)
–  (x) = ∗ iff �(x) = ∗

–  (e)
def

= ( (∙e) ∖ P±, �(e)) if �(e) ∕= ∗

– �(b) ∈ P =⇒

{

 (b)
def

= (⊥, �(b)) if ∙b = ⊥

 (b)
def

= ( (∙b), �(b)) otherwise

It remains to show that  is a morphism from O to UN . The difficult part is to
show that  maps the events of O to valid events of U(N). ⊓⊔

By the same arguments as for the expansion, one derives immediately the
existence of a product in the subcategory of symbolic occurrence nets, given by

O1 ×O O2
def

= U(O1 × O2). And, again, product is preserved by the symbolic
unfolding functor:

U(N1 ×N2) ∼ U(N1)×O U(N2)

which was the announced result. This is illustrated in Figure 5. Notice that
the factored form on the right hand side is by nature more compact than the
symbolic unfolding of the product, since interface places between N1 and N2 are
not expanded.
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Fig. 6. A colored Petri net N , which is isomorphic to its unfolding U(N), the expansion
Exp(N) of N and the expansion Exp

O
(U(N)) of the unfolding.

4.1 Expanded Unfoldings and Expansion of Colored Occurrence
Nets

Remark that the symbolic unfolding of an expanded puzzle net is an expanded
occurrence net. Actually, when applied to expanded puzzle nets, our definition of
symbolic unfolding matches the usual definition of unfoldings for low-level Petri
nets [24] (up to interface places). This object forms a coreflection from expanded
nets to expanded occurrence nets, and we call it the expanded unfolding.

We are looking for a relation between the symbolic unfolding and the expan-
ded unfolding of a colored puzzle net. The idea is that expanding the symbolic
unfolding should yield the expanded unfolding. But actually the expansion of
an occurrence net is not an occurrence net in general. This fact is illustrated
in Figure 6, where transition t1 of N produces either a token of color a or b in
place p2, and transition t2 consumes it anyway and produces a token of color c
in place p3. If U(N) is expanded as a net, then the two versions of transition t3
converge to the same place p3, which is not suitable for an occurrence net.

The correct expansion functor ExpO for occurrence nets is defined naturally
as ExpO(O) = U(Exp(O)). Composing the two coreflections built in the previ-
ous sections allows one to establish one more between the category of symbolic
occurrence nets and the category of expanded occurrence nets, the former being
viewed as a subcategory of colored puzzle nets (see Fig. 7). In addition, one has
that the expanded unfolding U(Exp(N)) is isomorphic to the expansion by ExpO

of its symbolic unfolding U(N), that is U(Exp(N)) ∼ ExpO(U(N)).

All this results in the commutative diagram in Fig. 7, that displays the
four categories derived from colored puzzle nets by expansion and by symbolic



⊆

⊆

Exp   = U o Exp
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U U⊆ ⊆

Exp

Occurrence Nets
Expanded

Occurrence Nets
Symbolic (Colored)

Expanded
Nets

Colored
Puzzle Nets

Fig. 7. Coreflections between categories derived from colored puzzle nets by symbolic
unfolding and by expansion.

unfolding. The coreflections illustrated in this figure naturally transport cat-
egorical limits. For example, for two symbolic occurrence nets O1, O2, one has
ExpO(O1×OO2) ∼ ExpO(O1)×EOExpO(O2) where the product ×EO in the cat-
egory of expanded occurrence nets is obtained by applying ExpO to the product
×O in the category of symbolic occurrence nets.

5 Conclusion

We have studied the unfoldings of colored puzzle nets, a formalism of high-level
Petri nets using the popular composition mechanism based on shared places. An
adequate categorical framework has been proposed for this family of nets, based
on run-preserving morphisms. Symbolic unfoldings have been also adapted to
colored puzzle nets, and related to previous notions of unfoldings for low-level
nets, through the notion of expansion. In this adequate categorical framework, we
have also illustrated an important property of the symbolic unfolding operation,
namely that it commutes with product. The factorization property of unfoldings
forms the basis of distributed processing methods for distributed systems (for
example distributed diagnosis). We will now explore the interest of symbolic
unfoldings for this purpose.

Let us mention that all derivations are presented for the family of colored
puzzle nets, because we are convinced of the practical interest of composing nets
via shared places. However, the same results remain valid with more ordinary
categories of colored nets, where composition is performed by synchronizing
transitions carrying identical labels.

References

1. P. Baldan, T. Chatain, S. Haar, and B. König. Unfolding-based diagnosis of systems
with an evolving topology. In CONCUR, volume 5201 of LNCS, pages 203–217.
Springer, 2008.

2. P. Baldan, A. Corradini, H. Ehrig, R. Heckel, and B. König. Compositional se-
mantics for open Petri nets based on deterministic processes. Technical report,
University of Pisa, Tech. Rep. TR-01-21, 2001.



3. P. Baldan, A. Corradini, H. Ehrig, and B. König. Open Petri nets: Non-
deterministic processes and compositionality. In ICGT, volume 5214 of LNCS,
pages 257–273. Springer, 2008.

4. P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures, and processes. Information and Computation, 171(1):1–49, 2001.

5. E. Best, R. Devillers, and M. Koutny. The box algebra = Petri nets + process
expressions. Inf. Comput., 178(1):44–100, 2002.

6. E. Best, H. Fleischhack, W. Fraczak, R. P. Hopkins, H. Klaudel, and E. Pelz. A
class of composable high level Petri nets with an application to the semantics of
B(PN)2. In Application and Theory of Petri Nets, volume 935 of LNCS, pages
103–120. Springer, 1995.

7. E. Best, W. Fraczak, R. P. Hopkins, H. Klaudel, and E. Pelz. M-nets: An al-
gebra of high-level Petri nets, with an application to the semantics of concurrent
programming languages. Acta Inf., 35(10):813–857, 1998.
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