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Abstract. In two-player games on graph, the players construct an infinite path
through the game graph and get a reward computed by a payoff function over in-
finite paths. Over weighted graphs, the typical and most studied payoff functions
compute the limit-average or the discounted sum of the rewards along the path.
Besides their simple definition, these two payoff functionsenjoy the property that
memoryless optimal strategies always exist.
In an attempt to construct other simple payoff functions, wedefine a class of
payoff functions which compute an (infinite) weighted average of the rewards.
This new class contains both the limit-average and the discounted sum functions,
and we show that they are the only members of this class which induce memo-
ryless optimal strategies, showing that there is essentially no other simple payoff
functions.

1 Introduction

Two-player games on graphs have many applications in computer science, such as the
synthesis problem [7], and the model-checking of open reactive systems [1]. Games
are also fundamental in logics, topology, and automata theory [17, 14, 20]. Games with
quantitative objectives have been used to design resource-constrained systems [27, 9, 3,
4], and to support quantitative model-checking and robustness [5, 6, 26].

In a two-player game on a graph, a token is moved by the playersalong the edges
of the graph. The set of states is partitioned into player-1 states from which player1
moves the token, and player-2 states from which player2 moves the token. The inter-
action of the two players results in a play, an infinite path through the game graph. In
qualitative zero-sum games, each play is winning exactly for one of the two players;
in quantitative games, a payoff function assigns a value to every play, which is paid by
player2 to player1. Therefore, player1 tries to maximize the payoff while player2
tries to minimize it. Typically, the edges of the graph carrya reward, and the payoff is
computed as a function of the infinite sequences of rewards onthe play.

Two payoff functions have received most of the attention in literature: themean-
payoff function (for example, see [11, 27, 15, 19, 12, 21]) and thediscounted-sumfunc-
tion (for example, see [24, 12, 22, 23, 9]). The mean-payoff value is the long-run average
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of the rewards. The discounted sum is the infinite sum of the rewards under a discount
factor0 < λ < 1. For an infinite sequence of rewardsw = w0w1 . . . , we have:

MeanPayoff(w) = lim inf
n→∞

1

n
·

n−1
∑

i=0

wi DiscSumλ(w) = (1 − λ) ·
∞
∑

i=0

λi · wi

While these payoff functions have a simple, intuitive, and mathematically elegant def-
inition, it is natural to ask why they are playing such a central role in the study of
quantitative games. One answer is perhaps thatmemorylessoptimal strategies exist for
these objectives. A strategy is memoryless if it is independent of the history of the play
and depends only on the current state. Related to this property is the fact that the prob-
lem of deciding the winner in such games is in NP∩ coNP, while no polynomial time
algorithm is known for this problem. The situation is similar to the case of parity games
in the setting of qualitative games where it was proved that the parity objective is the
only prefix-independent objective to admit memoryless winning strategies [8], and the
parity condition is known as a canonical way to expressω-regular languages [25].

In this paper, we prove a similar result in the setting of quantitative games. We con-
sider a general class of payoff functions which compute an infinite weighted average of
the rewards. The payoff functions are parameterized by an infinite sequence of rational
coefficients{cn}n≥0, and defined as follows:

WeightedAvg(w) = lim inf
n→∞

∑n

i=0
ci · wi

∑n

i=0
ci

.

We consider this class of functions for its simple and natural definition, and because
it generalizes both mean-payoff and discounted-sum which can be obtained as special
cases, namely forci = 1 for all4 i ≥ 0, andci = λi respectively. We study the prob-
lem of characterizing which payoff functions in this class admit memoryless optimal
strategies for both players. Our results are as follows:

1. If the series
∑∞

i=0
ci converges (and is finite), then the discounted sum is theonly

payoff function that admits memoryless optimal strategiesfor both players.
2. If the series

∑∞

i=0
ci does not converge, but the sequence{cn}n≥0 is bounded, then

for memoryless optimal strategies the payoff function is equivalent to the mean-
payoff function (equivalent for the optimal value and optimal strategies of both
players).

Thus our results show that the discounted sum and mean-payoff functions, besides
their elegant and intuitive definition, are the only membersfrom a large class of natural
payoff functions such that both players have memoryless optimal strategies. In other
words, there is essentially no other simple payoff functions in the class of weighted
infinite average payoff functions. This further establishes the canonicity of the mean-
payoff and discounted-sum functions, and suggests that they should play a central role
in the emerging theory of quantitative automata and languages [10, 16, 2, 5].

In the study of games on graphs, characterizing the classes of payoff functions that
admit memoryless strategies is a research direction that has been investigated in [13]

4 Note that other sequences also define the mean-payoff function, such asci = 1 + 1/2i.
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which give general conditions on the payoff functions such that both players have mem-
oryless optimal strategies, and [18] which presents similar results when only one player
has memoryless optimal strategies. The conditions given inthese previous works are
useful in this paper, in particular the fact that it is sufficient to check that memory-
less strategies are sufficient in one-player games [13]. However, conditions such as
sub-mixing and selectiveness of the payoff function are notimmediate to establish, es-
pecially when the sum of the coefficients{cn}n≥0 does not converge. We identify the
necessary condition of boundedness of the coefficients{cn}n≥0 to derive the mean-
payoff function. Our results show that if the sequence is convergent, then discounted
sum (specified as{λn}n≥0, for λ < 1) is the only memoryless payoff function; and if
the sequence is divergent and bounded, then mean-payoff (specified as{λn}n≥0 with
λ = 1) is the only memoryless payoff function. However we show that if the sequence
is divergent and unbounded, then there exists a sequence{λn}n≥0, with λ > 1, that
does not induce memoryless optimal strategies.

2 Definitions

Game graphs.A two-playergame graphG = 〈Q, E, w〉 consists of a finite setQ of
states partitioned into player-1 statesQ1 and player-2 statesQ2 (i.e.,Q = Q1 ∪ Q2),
and a setE ⊆ Q×Q of edges such that for allq ∈ Q, there exists (at least one)q′ ∈ Q
such that(q, q′) ∈ E. The weight functionw : E → Q assigns a rational valued reward
to each edge. For a stateq ∈ Q, we writeE(q) = {r ∈ Q | (q, r) ∈ E} for the set of
successor states ofq. A player-1 gameis a game graph whereQ1 = Q andQ2 = ∅.
Player-2 games are defined analogously.

Plays and strategies.A game onG starting from a stateq0 ∈ Q is played in rounds
as follows. If the game is in a player-1 state, then player1 chooses the successor state
from the set of outgoing edges; otherwise the game is in a player-2 state, and player
2 chooses the successor state. The game results in aplay from q0, i.e., an infinite path
ρ = 〈q0q1 . . .〉 such that(qi, qi+1) ∈ E for all i ≥ 0. We writeΩ for the set of all plays.
The prefix of lengthn of ρ is denoted byρ(n) = q0 . . . qn. A strategy for a player is a
recipe that specifies how to extend plays. Formally, astrategyfor player1 is a function
σ : Q∗Q1 → Q such that(q, σ(ρ · q)) ∈ E for all ρ ∈ Q∗ andq ∈ Q1. The strategies
for player 2 are defined analogously. We writeΣ andΠ for the sets of all strategies for
player 1 and player 2, respectively.

An important special class of strategies arememorylessstrategies which do not
depend on the history of a play, but only on the current state.Each memoryless strategy
for player 1 can be specified as a functionσ: Q1 → Q such thatσ(q) ∈ E(q) for all
q ∈ Q1, and analogously for memoryless player 2 strategies.

Given a starting stateq ∈ Q, theoutcomeof strategiesσ ∈ Σ for player 1, andπ ∈
Π for player 2, is the playω(q, σ, π) = 〈q0q1 . . .〉 such that :q0 = q and for allk ≥ 0,
if qk ∈ Q1, thenσ(q0, q1, . . . , qk) = qk+1, and if qk ∈ Q2, thenπ(q0, q1, . . . , qk) =
qk+1.

Payoff functions, optimal strategies.The objective of player1 is to construct a
play that maximizes apayoff functionφ : Ω → R ∪ {−∞, +∞} which is a
measurable function that assigns to every value a real-valued payoff. The value for
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player1 is the maximal payoff that can be achieved against all strategies of the other
player. Formally the value for player 1 for a starting stateq is defined asval1(φ) =
supσ∈Σ infπ∈Π φ(ω(q, σ, π)). A strategyσ∗ is optimal for player 1 fromq if the strat-
egy achieves at least the value of the game against all strategies for player 2, i.e.,
infπ∈Π φ(ω(q, σ∗, π)) = val1(φ). The values and optimal strategies for player 2 are
defined analogously.

The mean-payoff and discounted-sum functions are examplesof payoff functions
that are well studied, probably because they are simple in the sense that they induce
memoryless optimal strategies and that this property yields conceptually simple fix-
point algorithms for game solving [24, 11, 27, 12]. In an attempt to construct other sim-
ple payoff functions, we define the class ofweighted average payoffswhich compute
(infinite) weighted averages of the rewards, and we ask whichpayoff functions in this
class induce memoryless optimal strategies.

We say that a sequence{cn}n≥0 of rational numbers hasno zero partial sumif
∑n

i=0
ci 6= 0 for all n ≥ 0. Given a sequence{cn}n≥0 with no zero partial sum, the

weighted average payoff functionfor a play〈q0q1q2 . . .〉 is

φ (q0q1q2 . . . ) = lim inf
n→∞

∑n

i=0
ci · w(qi, qi+1)
∑n

i=0
ci

.

Note that we uselim infn→∞ in this definition because the plain limit may not exist
in general. The behavior of the weighted average payoff functions crucially depends on
whether the seriesS =

∑∞

i=0
ci converges or not. In particular, the plain limit exists

if S converges (and is finite). Accordingly, we consider the cases of converging and
diverging sum of weights to characterize the class of weighted average payoff functions
that admit memoryless optimal strategies for both players.Note that the case where
ci = 1 for all i ≥ 0 gives the mean-payoff function (andS diverges), and the case
ci = λi for 0 < λ < 1 gives the discounted sum with discount factorλ (and S
converges). All our results hold if we considerlim supn→∞ instead oflim infn→∞

in the definition of weighted average objectives.
In the sequel, we consider payoff functionsφ : Qω → R that maps an infinite se-

quence of rational numbers to a real value with the implicit assumption that the value of
a playq0q1q2 · · · ∈ Qω according toφ is φ(w(q0, q1)w(q1, q2) . . . ) since the sequence
of rewards determines the payoff value.

We recall the following useful necessary condition for memoryless optimal strate-
gies to exist [13]. A payoff functionφ is monotoneif whenever there exists a finite
sequence of rewardsx ∈ Q∗ and two sequencesu, v ∈ Qω such thatφ(xu) ≤ φ(xv),
thenφ(yu) ≤ φ(yv) for all finite sequence of rewardsy ∈ Q∗.

Lemma 2.1 ([13]).If the payoff functionφ induces memoryless optimal strategy for all
two-player game graphs, thenφ is monotone.

3 Weighted Average with Converging Sum of Weights

The main result of this section is that for converging sum of weights (i.e., if
limn→∞

∑n

i=0
ci = c∗ ∈ R), the only weighted average payoff function that induce

memoryless optimal strategies is the discounted sum.
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Fig. 1. Examples of one-player game graphs.

Theorem 3.1. Let (cn)n∈N be a sequence of real numbers with no zero partial sum
such that

∑∞

i=0
ci = c∗ ∈ R. The weighted average payoff function defined by(cn)n∈N

induces optimal memoryless strategies for all two-player game graphs if and only if
there exists0 < λ < 1 such thatci+1 = λ · ci for all i ≥ 0.

To prove Theorem 3.1, we first use its assumptions to obtain necessary conditions
for the weighted average payoff function defined by(cn)n∈N to induce optimal mem-
oryless strategies. Byassumptions of Theorem 3.1, we refer to the fact that(cn)n∈N

is a sequence of real numbers with no zero partial sum such that
∑∞

i=0
ci = c∗ ∈ R,

and that it defines a weighted average payoff function that induces optimal memoryless
strategies for all2-player game graphs. All lemmas of this section use the the assump-
tions of Theorem 3.1, but we generally omit to mention them explicitly.

Let dn =
∑n−1

i=0
ci, l = lim infn→∞

1

dn
andL = lim supn→∞

1

dn
. The assumption

that
∑∞

i=0
ci = c∗ ∈ R implies thatl 6= 0. Note thatc0 6= 0 since(cn)n∈N is a sequence

with no zero partial sum. We can define the sequencec′n = cn

c0
which defines the same

payoff functionφ. Therefore we assume without loss of generality thatc0 = 1.

Discussion about following three lemmas.In the following three lemmas we prove prop-
erties of a sequence(cn)n∈N with the assumption that the sequence induces optimal
memoryless strategies in all game graphs. However note thatthe property we prove is
about the sequence, and hence in all the lemmas we need to showwitness game graphs
where the sequence must satisfy the required properties.

Lemma 3.1. If the weighted average payoff function defined by(cn)n∈N induces opti-
mal memoryless strategies for all two-player game graphs, then0 ≤ l ≤ L ≤ 1.

Proof. Consider the one-player game graphG1 shown in Fig. 1. In one-player
games, strategies correspond to paths. The two memoryless strategies give the paths
0ω and 1ω with payoff value0 and 1 respectively. The strategy which takes the
edge with reward1 once, and then always the edge with reward0 gets the payoff
φ (10ω) = lim infn→∞

1

dn
= l. Similarly, the path01ω has the payoffφ (01ω) =

lim infn→∞

(

1 − 1

dn

)

= 1 − lim supn→∞
1

dn
= 1 − L. As all such payoffs must

be between the payoffs obtained by the only two memoryless strategies, we havel ≥ 0
andL ≤ 1, and the result follows (L ≥ l follows from their definition). ⊓⊔

Lemma 3.2. There existsw0 ∈ N such thatw0 > 1, w0l > 1 and the following
inequalities hold, for allk ≥ 0: ckl ≤ 1 − dkL andckw0l ≥ 1 − dkL.

Proof. Since1 ≥ l > 0 (by Lemma 3.1), we can choosew0 ∈ N such thatw0l > 1 (and
w0 > 1). Consider the game graphG2 shown in Fig. 1 and the case whenw = 1. The
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optimal memoryless strategy is to stay on the starting stateforever becauseφ(10ω) =
l ≤ φ(1w) = 1. Using Lemma 2.1, we conclude that sinceφ(10ω) ≤ φ(1ω), we must

haveφ(0k10ω) ≤ φ(0k1ω) i.e. ckl ≤ 1 −
(

∑k−1

i=0
ci

)

L which impliesckl ≤ 1 − dkL.

Consider the case whenw = w0 in Fig. 1. The optimal memoryless strategy is
to choose the edge with rewardw0 from the starting state sinceφ(w00

ω) = w0l >
φ(1ω) = 1. Using Lemma 2.1, we conclude that sinceφ(w00

ω) > φ(1ω), we must have

φ(0kw00
ω) ≥ φ(0k1ω) i.e.ckw0l ≥ 1−

(

∑k−1

i=0
ci

)

L which impliesckw0l ≥ 1−dkL.
⊓⊔

From the inequalities in Lemma 3.2, it follows that for allk we haveckl ≤ ckw0l;
and sincew0 > 1 andl > 0 we must haveck ≥ 0 for all k.

Corollary 3.1. Assumingc0 = 1, we haveck ≥ 0 for all k ≥ 0.

It follows from Corollary 3.1 that the sequence(dn)n≥0 is increasing and bounded
from above (ifdn was not bounded, then there would exist a subsequence(dnk

) which
diverges, implying that the sequence{ 1

dnk

} converges to0 in contradiction with the

fact thatlim infn→∞
1

dn
= l > 0). Therefore,dn must converge to some real number

sayc∗ > 0 (sincec0 = 1). We need a last lemma to prove Theorem 3.1. Recall that
we haveci ≥ 0 for all i and

∑∞

i=0
ci = c∗ > 0. Given a finite game graphG, let W

be the largest reward in absolute value. For any sequence of rewards(wn) in a run on
G, the sequenceχn =

∑n

i=0
ci(wi + W ) is increasing and bounded from above by

2 ·W ·dn and thus by2 ·W · c∗. Therefore,χn is a convergent sequence and
∑∞

i=0
ciwi

converges as well. Now, we can write the payoff function asφ(w0w1 . . . ) =
P∞

i=0 ciwi

c∗
.

We decomposec∗ into S0 =
∑∞

i=0
c2i andS1 =

∑∞

i=0
c2i+1, i.e.c∗ = S0 + S1. Note

thatS0 andS1 are well defined.

Lemma 3.3. For all reals α, β, γ, if αS0 + βS1 ≤ γ(S0 + S1), then(γ − α)ci ≥
(β − γ)ci+1 for all i ≥ 0.

Proof. Consider the game graphG4 as shown in Fig. 1. The conditionαS0 + βS1 ≤
γ(S0 + S1) implies that the optimal memoryless strategy is to always choose the edge
with rewardγ. This means thatφ(γiαβγω) ≤ φ(γω) henceαci+βci+1 ≤ γ(ci+ci+1),
i.e. (γ − α)ci ≥ (β − γ)ci+1 for all i ≥ 0. ⊓⊔

We are now ready to prove the main theorem of this section.

Proof (of Theorem 3.1).First, we show thatS1 ≤ S0. By contradiction, assume that
S1 > S0. Choosingα = 1, β = −1, andγ = 0 in Lemma 3.3, and sinceS0 − S1 ≤ 0,
we get−ci ≥ −ci+1 for all i ≥ 0 which impliescn ≥ c0 = 1 for all n, which
contradicts that

∑∞

i=0
ci converges toc∗ ∈ R.

Now, we haveS1 ≤ S0 and letλ = S1

S0
≤ 1. Consider a sequence of rational

numbersln
kn

converging toλ from the right, i.e.,ln
kn

≥ λ for all n, andlimn→∞
ln
kn

= λ.
Takingα = 1, β = kn + ln + 1, andγ = ln + 1 in Lemma 3.3, and since the condition
S0 + (kn + ln + 1)S1 ≤ (ln + 1)(S0 + S1) is equivalent toknS1 ≤ lnS0 which holds
since ln

kn
≥ λ, we obtainlnci ≥ knci+1 for all n ≥ 0 and alli ≥ 0, that isci+1 ≤ ln

kn
ci

and in the limit forn → ∞, we getci+1 ≤ λci for all i ≥ 0.
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Similarly, consider a sequence of rational numbersrn

sn
converging toλ from the left.

Takingα = rn + sn +1, β = 1, andγ = sn +1 in Lemma 3.3, and since the condition
(rn + sn + 1)S0 + S1 ≤ (sn + 1)(S0 + S1) is equivalent tornS0 ≤ snS1 which holds
sincern

sn
≤ λ, we obtainrnci ≤ snci+1 for all n ≥ 0 and alli ≥ 0, that isci+1 ≥ rn

sn
ci

and in the limit forn → ∞, we getci+1 ≥ λci for all i ≥ 0.
The two results imply thatci+1 = λci for all i ≥ 0 where0 ≤ λ < 1. Note that

λ 6= 1 because
∑∞

i=0
ci converges. ⊓⊔

Since it is known that forci = λi, the weighted average payoff function induces
memoryless optimal strategies in all two-player games, Theorem 3.1 shows that dis-
counted sum is the only memoryless payoff function when the sum of weights

∑∞

i=0
ci

converges.

4 Weighted Average with Diverging Sum of Weights

In this section we consider weighted average objectives such that the sum of the weights
∑∞

i=0
ci is divergent. We first consider the case when the sequence(cn)n∈N is bounded

and show that the mean-payoff function is the only memoryless one.

4.1 Bounded sequence

We are interested in characterizing the class of weighted average objectives that are
memoryless, under the assumption the sequence(cn) is bounded, i.e., there exists a
constantc such that|cn| ≤ c for all n. The boundedness assumption is satisfied by
the important special case of regular sequence of weights which can be produced by a
deterministic finite automaton. We say that a sequence{cn} is regular if it is eventually
periodic, i.e. there existn0 ≥ 0 andp > 0 such thatcn+p = cn for all n ≥ n0. Recall
that we assume the partial sum to be always non-zero, i.e.,dn =

∑n−1

i=0
ci 6= 0 for all

n. We show the following result.

Theorem 4.1. Let (cn)n∈N be a sequence of real numbers with no zero partial sum
such that

∑∞

i=0
|ci| = ∞ (the sum is divergent) and there exists a constantc such that

|ci| ≤ c for all i ≥ 0 (the sequence is bounded). The weighted average payoff function
φ defined by(cn)n∈N induces optimal memoryless strategies for all two-player game
graphs if and only ifφ coincides with the mean-payoff function over regular words.

Remark.From Theorem 4.1, it follows that all mean-payoff functionsφ over bounded
sequences that induce optimal memoryless strategies are equivalent to the mean-payoff
function, in the sense that the optimal value and optimal strategies forφ are the same as
for the mean-payoff function. This is because memoryless strategies induce a play that
is a regular word. We also point out that it is not necessary that the sequence(cn)n≥0

consists of a constant value to define the mean-payoff function. For example, the payoff
function defined by the sequencecn = 1 + 1/(n + 1)2 also defines the mean-payoff
function.

We prove Theorem 4.1 through a sequence of lemmas (using the the assumptions
of Theorem 4.1, but we generally omit to mention them explicitly). In the following
lemma we prove the existence of the limit of the sequence{ 1

dn
}n≥0.
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Lemma 4.1. If lim infn→∞
1

dn
= 0, thenlim supn→∞

1

dn
= 0.

Proof. Since l = lim infn→∞
1

dn
= 0, there is a subsequence{dnk

} which either
diverges to+∞ or−∞.

1. If the subsequence{dnk
} diverges to+∞, assume without loss of generality that

eachdnk
> 0. Consider the one-player game graphG3 shown in Figure 1. We consider

the run corresponding to taking the edge with weight−1 for the firstnk steps followed
by taking the0 edge forever. The payoff for this run is given by

lim inf
n→∞

−dnk

dn

= −dnk
· lim sup

n→∞

1

dn

= −dnk
· L.

Since we assume the existence of memoryless optimal strategies this payoff should lie
between−1 and0. This implies thatdnk

· L ≤ 1 for all k. SinceL ≥ l ≥ 0 and the
sequencednk

is unbounded, we must haveL = 0.
2. If the subsequence{dnk

} diverges to−∞, assume that eachdnk
< 0. Consider

the one-player game graphG1 shown in Figure 1. We consider the run corresponding
to taking the edge with weight1 for the firstnk steps followed by taking the0 edge
forever. The payoff for this run is given by

lim inf
n→∞

dnk

dn

= −|dnk
| · lim sup

n→∞

1

dn

= −|dnk
| · L.

This payoff should lie between0 and1 (optimal strategies being memoryless), and this
impliesL = 0 as above. ⊓⊔

Sincelim supn→∞ dn = ∞, Lemma 4.1 concludes that the sequence{ 1

dn
} con-

verges to0 i.e. limn→∞
1

dn
= 0. It also gives us the following corollaries which are a

simple consequence of the fact thatlim infn→∞(an + bn) = a + lim infn→∞ bn if an

converges toa.

Corollary 4.1. If l = 0, then the payoff functionφ does not depend upon any finite
prefix of the run, i.e.,φ(a1a2 . . . aku) = φ(0ku) = φ(b1b2 . . . bku) for all ai’s andbi’s.

Corollary 4.2. If l = 0, then the payoff functionφ does not change by modifying finitely
many values in the sequence{cn}n≥0.

By Corollary 4.1, we haveφ(xaω) = a for all a ∈ R. For0 ≤ i ≤ k − 1, consider
the payoffSk,i = φ

(

(0i10k−i−1)ω
)

for the infinite repetition of the finite sequence of
k rewards in which all rewards are0 except the(i + 1)th which is1. We show thatSk,i

is independent ofi.

Lemma 4.2. We haveSk,0 = Sk,1 = · · · = Sk,k−1 ≤ 1

k
.

Proof. If Sk,0 ≤ Sk,1 then by prefixing by the single letter word0 and using Lemma 2.1
we conclude thatSk,1 ≤ Sk,2. We continue this process until we getSk,k−2 ≤ Sk,k−1.
After applying this step again we get

Sk,k−1 ≤ φ
(

0(0k−11)ω
)

= φ
(

1(0k−11)ω
)

= φ
(

(10k−1)ω
)

= Sk,0.
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0k−11

k−1. . . . . .

Fig. 2. The gameG(k, i).

Hence, we haveSk,0 ≤ Sk,1 ≤ · · · ≤ Sk,k−1 ≤ Sk,0. Thus we haveSk,i is a constant
irrespective of the value ofi. A similar argument works in the other case whenSk,0 ≥
Sk,1.

We will show thatSk,i ≤ 1

k
for 0 ≤ i ≤ k − 1. For this, we takeai,n to be

thenth term of the sequence whoselim inf is the valueφ((0ii0k−i−1)ω) = Sk,i i.e.

ai,n =
P

∈{j≥0|jk+i≤n} cjk+i
P

n
j=0 cj

=
P

j∈{0≤j≤n|j≡i(modk)} cj
P

n
j=0 cj

. Clearly,
∑k−1

i=0
ai,n = 1 and

hence using the fact thatlim infn→∞(a0,n +a1,n+ · · ·+ak−1,n) ≥ lim infn→∞ a0,n+

· · ·+lim infn→∞ ak−1,n, we have1 ≥
∑k−1

i=0
Sk,i = kSk,i (since allSk,i’s are constant

with respect toi) and therefore,Sk,i ≤
1

k
for 0 ≤ i ≤ k − 1. ⊓⊔

Let Tk,i = −φ
(

(0i(−1)0k−i−1)ω
)

. By similar argument as in the proof of
Lemma 4.2, we show thatTk,0 = Tk,1 = · · · = Tk,k−1 ≥ 1

k
.

We now show that(dn) must eventually have always the same sign, i.e., there exists
n0 such thatsign(dm) = sign(dn) for all m, n ≥ n0. Note that by the assumption of
non-zero partial sums, we havedn 6= 0 for all n.

Lemma 4.3. Thedn’s eventually have the same sign.

Proof. Let c > 0 be such that|cn| < c for all n. Since(dn) is unbounded, there
existsn0 such that|dn| > c for all n > n0 and then if there existsm > n0 such
thatdm > 0 anddm+1 < 0, we must havedm > c anddm+1 < −c. Thus we have
cm+1 = dm+1−dm < −2c, and hence|cm+1| > 2c which contradicts the boundedness
assumption on(cn). ⊓⊔

If the dn’s are eventually negative then we use the sequence{c′n = −cn} to ob-
tain the same payoff and in this casedn = −

∑∞

i=0
ci will be eventually positive.

Therefore we assume that there is somen0 such thatdn > 0 for all n > n0. Let
β = max{|c0|, |c1|, . . . , |cn0 |}. We replacec0 by 1 and allci’s with β for 1 ≤ i ≤ n0.
By corollary 4.2 we observe that the payoff function will still not change. Hence, we
can also assume thatdn > 0 for all n ≥ 0.

Lemma 4.4. We haveSk,i = 1

k
= Tk,i for all 0 ≤ i ≤ k − 1.

Proof. Consider the game graphG(k, i) which consists of stateq0 in which the player
can choose amongk cycles of lengthk where in theith cycle, all rewards are0 except
on the(i + 1)th edge which has reward1 (see Fig. 2).

Consider the strategy in stateq0 where the player after everyk · r steps (r ≥ 0)
chooses the cycle which maximizes the contribution for the next k edges. Letir be

9



the index such thatkr ≤ ir ≤ kr + k − 1 and cir
= max{ckr, . . . , ckr+k−1} for

r ≥ 0. The payoff for this strategy islim infn→∞ tn wheretn =
ci0+ci1+···+cir−1

dn
for

ir−1 ≤ n < ir.

Note thatcir
≥

Pkr+k−1
i=kr

ci

k
(the maximum is greater than the average), and we get

the following (wherec is a bound on(|cn|)n≥0):

tn ≥

∑n−1

i=0
ci

k · dn

−
c

dn

, hencelim inf
n→∞

tn ≥
1

k
− lim inf

n→∞

c

dn

=
1

k
.

By Lemma 4.2, the payoff of all memoryless strategies inG(k, i) is Sk,0, and the fact
that memoryless optimal strategies exist entails thatSk0 = lim infn→∞ tn ≥ 1

k
, and

thusSk,0 = 1

k
= Sk,i for all 0 ≤ i ≤ k − 1.

Using a similar argument on the graphG(k, i) with reward−1 instead of1, we
obtainTk,0 = 1

k
= Tk,i for all 0 ≤ i ≤ k − 1. ⊓⊔

From Lemma 4.4, it follows that Sk,i = φ((0i10k−i−1)ω) =

limn→∞

P[n
k ]

r=0 ckr+i

dn
= 1

k
, and hence,

φ ((a0a1 . . . ak−1)
ω) = lim inf

n→∞

k−1
∑

i=0



ai ·

∑[n
k ]

r=0 ckr+i

dn



 =

k−1
∑

i=0



ai · lim
n→∞

∑[n
k ]

r=0 ckr+i

dn





=

∑k−1

i=0
ai

k
.

We show that the payoff of a regular wordu = b1b2 . . . bm(a0a1 . . . ak−1)
ω

matches the mean-payoff value.

Lemma 4.5. If u := b1b2 . . . bm(a0a1 . . . ak−1)
ω andv = (a0a1 . . . ak−1)

ω are two

regular sequences of weights thenφ(u) = φ(v) =
Pk−1

i=0 ai

k
.

Proof. Let r ∈ N be such thatkr > m. If φ(v) ≤ φ(0v) then using Lemma 2.1
we obtainφ(0v) ≤ φ(02v). Applying the lemma again and again, we get,φ(v) ≤
φ(0mv) ≤ φ(0krv). From Corollary 4.1 we obtainφ(0mv) = φ(b1b2 . . . bmv) = φ(u)
(henceφ(v) ≤ φ(0mv) = φ(u)) andφ(0krv) = φ ((a1a2 . . . ak)rv) = φ(v) (hence

φ(u) = φ(0mv) ≤ φ(0krv) = φ(v)). Therefore,φ(u) = φ(v) =
Pk−1

i=0 ai

k
. The same

argument goes through for the caseφ(v) ≥ φ(0v). ⊓⊔

Proof (of Theorem 4.1).In Lemma 4.5 we have shown that the payoff functionφ must
match the mean-payoff function for regular words, if the sequence{cn}n≥0 is bounded.
Since memoryless strategies in game graphs result in regular words over weights, it
follows that the only payoff function that induces memoryless optimal strategies is the
mean-payoff function which concludes the proof. ⊓⊔

As every regular sequence is bounded, Corollary 4.3 followsfrom Theorem 4.1.

Corollary 4.3. Let(cn)n∈N be a regular sequence of real numbers with no zero partial
sum such that

∑∞

i=0
|ci| = ∞ (the sum is divergent). The weighted average payoff

functionφ defined by(cn)n∈N induces optimal memoryless strategies for all two-player
game graphs if and only ifφ is the mean-payoff function.

10



4.2 Unbounded sequence

The results of Section 3 and Section 4.1 can be summarized as follows: (1) if the sum
of ci’s is convergent, then the sequence{λi}i≥0, with λ < 1 (discounted sum), is the
only class of payoff functions that induce memoryless optimal strategies; and (2) if the
sum is divergent but the sequence(cn) is bounded, then the mean-payoff function is the
only payoff function with memoryless optimal strategies (and the mean-payoff function
is defined by the sequence{λi}i≥0, with λ = 1). The remaining natural question is that
if the sum is divergent and unbounded, then is the sequence{λi}i≥0, with λ > 1, the
only class that has memoryless optimal strategies. Below weshow with an example that
the class{λi}, with λ > 1, need not necessarily have memoryless optimal strategies.

We consider the payoff function given by the sequencecn = 2n. It is easy to
verify that the sequence satisfies the partial non-zero assumption. We show that the
payoff function does not result into memoryless optimal strategies. To see this, we ob-
serve that the payoff for a regular wordw = b0b1 . . . bt(a0a1 . . . ak−1)

ω is given by

min0≤i≤k−1

(

ai+2ai+1+···+2
k−1ai+k−1

1+2+···+2k−1

)

i.e., the payoff for a regular word is the least

possible weighted average payoff for its cycle consideringall possible cyclic permuta-
tions of its indices (note that the addition in indices is performed modulok).

4 1

0 2

Fig. 3. The gameG1024.

Now, consider the game graphG1024 shown in figure 3. The payoffs for both
the memoryless strategies (choosing the left or the right edge in the start state) are
min

(

5

3
, 4

3

)

andmin
(

4

3
, 8

3

)

which are both equal to4
3
. Although, if we consider the

strategy which alternates between the two edges in the starting state then the payoff ob-
tained ismin

(

37

15
, 26

15
, 28

15
, 14

15

)

= 14

15
which is less than payoff for both the memoryless

strategies. Hence, the player who minimizes the payoff doesnot have a memoryless op-
timal strategy in the gameG1024. The example establishes that the sequence{2n}n≥0

does not induce optimal strategies.

Open question.Though weighted average objectives such that the sequence is diver-
gent and unbounded may not be of the greatest practical relevance, it is an interesting
theoretical question to characterize the subclass that induce memoryless strategies. Our
counter-example shows that{λn}n≥0 with λ > 1 is not in this subclass.
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