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Abstract. In two-player games on graph, the players construct an fefjpath

through the game graph and get a reward computed by a payaefida over in-

finite paths. Over weighted graphs, the typical and mosietiylayoff functions
compute the limit-average or the discounted sum of the m@svalong the path.
Besides their simple definition, these two payoff functienfy the property that
memoryless optimal strategies always exist.

In an attempt to construct other simple payoff functions, deéine a class of
payoff functions which compute an (infinite) weighted aggraf the rewards.
This new class contains both the limit-average and the digea sum functions,
and we show that they are the only members of this class whibiice memo-
ryless optimal strategies, showing that there is esséntialother simple payoff
functions.

1 Introduction

Two-player games on graphs have many applications in cangatence, such as the
synthesis problem [7], and the model-checking of open remaslystems [1]. Games
are also fundamental in logics, topology, and automatayhidd, 14, 20]. Games with
quantitative objectives have been used to design resmantstrained systems [27, 9, 3,
4], and to support quantitative model-checking and rolesstij5, 6, 26].

In a two-player game on a graph, a token is moved by the platerg the edges
of the graph. The set of states is partitioned into playetaies from which playet
moves the token, and player-2 states from which pl&ymoves the token. The inter-
action of the two players results in a play, an infinite patiotigh the game graph. In
qualitative zero-sum games, each play is winning exactiyofee of the two players;
in quantitative games, a payoff function assigns a value¢oyeplay, which is paid by
player2 to playerl. Therefore, playet tries to maximize the payoff while playér
tries to minimize it. Typically, the edges of the graph caarseward, and the payoff is
computed as a function of the infinite sequences of rewardiseplay.

Two payoff functions have received most of the attentioniterdture: themean-
payofffunction (for example, see [11, 27, 15,19, 12, 21]) anddiseounted-surfunc-
tion (for example, see [24,12,22, 23, 9]). The mean-payaff&is the long-run average
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of the rewards. The discounted sum is the infinite sum of theurds under a discount
factor0 < A < 1. For an infinite sequence of rewards= wyw; . .., we have:

n—1 [eS)
1 .
MeanPayoff(w) = lim inf — - g wj DiscSumy(w) = (1 = A) - E AL w;
n—oo N
i=0 i=0

While these payoff functions have a simple, intuitive, aratimematically elegant def-
inition, it is natural to ask why they are playing such a cahtole in the study of
gquantitative games. One answer is perhapsrtenorylessptimal strategies exist for
these objectives. A strategy is memoryless if it is indegendf the history of the play
and depends only on the current state. Related to this gyoigehe fact that the prob-
lem of deciding the winner in such games is in NRoNP, while no polynomial time
algorithm is known for this problem. The situation is similathe case of parity games
in the setting of qualitative games where it was proved thatparity objective is the
only prefix-independent objective to admit memoryless wigrstrategies [8], and the
parity condition is known as a canonical way to expresggular languages [25].

In this paper, we prove a similar result in the setting of ditative games. We con-
sider a general class of payoff functions which compute inifa weighted average of
the rewards. The payoff functions are parameterized byfantmsequence of rational
coefficients{c, }»>0, and defined as follows:

WeightedAvg (i) = lim inf 22i=0 "%
n—oo 3¢
We consider this class of functions for its simple and ndtdedinition, and because
it generalizes both mean-payoff and discounted-sum whachbe obtained as special
cases, namely far; = 1 for all* i > 0, andc; = A respectively. We study the prob-
lem of characterizing which payoff functions in this clagsrét memoryless optimal
strategies for both players. Our results are as follows:

1. If the seriesy” .~ ¢; converges (and is finite), then the discounted sum itig
payoff function that admits memoryless optimal stratefpedoth players.

2. Ifthe serie";” , ¢; does not converge, but the sequefieg},, >0 is bounded, then
for memoryless optimal strategies the payoff function isiegjent to the mean-
payoff function (equivalent for the optimal value and ominstrategies of both
players).

Thus our results show that the discounted sum and meanfgagofions, besides
their elegant and intuitive definition, are the only memieym a large class of natural
payoff functions such that both players have memorylessngpistrategies. In other
words, there is essentially no other simple payoff fundionthe class of weighted
infinite average payoff functions. This further establslige canonicity of the mean-
payoff and discounted-sum functions, and suggests thatstiguld play a central role
in the emerging theory of quantitative automata and langsi§to, 16, 2, 5].

In the study of games on graphs, characterizing the clagges/off functions that
admit memoryless strategies is a research direction tlsabéan investigated in [13]

“ Note that other sequences also define the mean-payoff fupstich ag; = 1 + 1/2°.



which give general conditions on the payoff functions sunet both players have mem-
oryless optimal strategies, and [18] which presents simélsults when only one player
has memoryless optimal strategies. The conditions givehdee previous works are
useful in this paper, in particular the fact that it is suffiti to check that memory-
less strategies are sufficient in one-player games [13].dwew conditions such as
sub-mixing and selectiveness of the payoff function areématediate to establish, es-
pecially when the sum of the coefficienfts, },,>o does not converge. We identify the
necessary condition of boundedness of the coefficiént$, >o to derive the mean-
payoff function. Our results show that if the sequence isveogent, then discounted
sum (specified ag\" },,>o, for A < 1) is the only memoryless payoff function; and if
the sequence is divergent and bounded, then mean-payeffifisg as{\" },,>o with

A = 1) is the only memoryless payoff function. However we show thine sequence
is divergent and unbounded, then there exists a sequeride,>o, with A > 1, that
does not induce memoryless optimal strategies.

2 Definitions

Game graphs.A two-playergame graphG = (Q, F,w) consists of a finite s of
states partitioned into playédrstates), and player-2 stateQ, (i.e.,Q = Q1 U Q2),
and aseF C @ x Q of edges such that for afl € Q, there exists (at least ong) € Q
such thafq, ¢') € E. The weight functionv : E — Q assigns a rational valued reward
to each edge. For a staec @, we write E(q) = {r € Q | (¢,r) € E} for the set of
successor states gf A player-1 gameis a game graph whei®@, = Q and@, = 0.
Player2 games are defined analogously.

Plays and strategiesA game onG starting from a state, € @ is played in rounds
as follows. If the game is in a player-1 state, then playehooses the successor state
from the set of outgoing edges; otherwise the game is in aeplagtate, and player
2 chooses the successor state. The game resultplay&rom ¢q, i.e., an infinite path
p = {qoq1 .. .) suchthatlq;,¢;+1) € E forall i > 0. We write (2 for the set of all plays.
The prefix of lengthn of p is denoted by(n) = o . . . ¢,,. A strategy for a player is a
recipe that specifies how to extend plays. Formalbtrategyfor player1 is a function
o:Q*Q1 — Qsuchthatq,o(p-q)) € Eforall p € Q* andg € Q. The strategies
for player 2 are defined analogously. We wilfeandI7 for the sets of all strategies for
player 1 and player 2, respectively.

An important special class of strategies anemorylesstrategies which do not
depend on the history of a play, but only on the current seedeh memoryless strategy
for player 1 can be specified as a function@; — @ such thato(¢) € E(q) for all
q € @1, and analogously for memoryless player 2 strategies.

Given a starting statg € Q, theoutcomeof strategiesr € X for player 1, andr €
IT for player 2, is the plaw(q, o, 7) = {qoq1 - . .) such that gy = ¢ and for allk > 0,
if g. € Q1,thenc(qo,q1,-..,9x) = qr+1, and if g € Q2, thenw(qo, q1,...,qx) =
k+1-

Payoff functions, optimal strategies.The objective of playen is to construct a
play that maximizes gayoff functiong : 2 — R U {—o0,+oo} which is a
measurable function that assigns to every value a reakdaghayoff. The value for



player1 is the maximal payoff that can be achieved against all gji@seof the other
player. Formally the value for player 1 for a starting stats defined asaly(¢) =
SUp,ex infrem ¢p(w(q, o, )). A strategys™ is optimalfor player 1 fromg if the strat-
egy achieves at least the value of the game against all gieatéor player 2, i.e.,
inf e dlw(q,o*, 7)) = val1(¢). The values and optimal strategies for player 2 are
defined analogously.

The mean-payoff and discounted-sum functions are exanmplpayoff functions
that are well studied, probably because they are simpledrséimse that they induce
memoryless optimal strategies and that this property gietshceptually simple fix-
point algorithms for game solving [24, 11, 27, 12]. In an e to construct other sim-
ple payoff functions, we define the classwéighted average payofighich compute
(infinite) weighted averages of the rewards, and we ask whésfoff functions in this
class induce memoryless optimal strategies.

We say that a sequende,, },>o of rational numbers haso zero partial sumif
Z?:O ¢; # 0forall n > 0. Given a sequencfr, }»>0 With no zero partial sum, the
weighted average payoff functiéor a play(goqi1q2 - . .) is

b (QOQ1(]2 o ) — liminf Zi:() ci:'nw(q“ i+1) )

n—oo i=0 Ci

Note that we uséim inf,,_,, in this definition because the plain limit may not exist
in general. The behavior of the weighted average payofftfans crucially depends on
whether the serie§ = ) ° ¢, converges or not. In particular, the plain limit exists
if S converges (and is finite). Accordingly, we consider the sasfeconverging and
diverging sum of weights to characterize the class of weighierage payoff functions
that admit memoryless optimal strategies for both playete that the case where
¢; = 1forall i > 0 gives the mean-payoff function (arffl diverges), and the case
c¢; = A for0 < X\ < 1 gives the discounted sum with discount factofand S
converges). All our results hold if we considém sup,,_, ., instead ofliminf,,_,
in the definition of weighted average objectives.

In the sequel, we consider payoff functiops Q“ — R that maps an infinite se-
quence of rational numbers to a real value with the impliesuanption that the value of
aplaygoqigz - - - € Q¥ according tap is ¢(w(qo, g1)w(q1,g2) - - . ) since the sequence
of rewards determines the payoff value.

We recall the following useful necessary condition for meyhess optimal strate-
gies to exist [13]. A payoff function is monotonef whenever there exists a finite
sequence of rewards € Q* and two sequences v € Q¥ such thaip(zu) < ¢(xv),
theng(yu) < ¢(yv) for all finite sequence of rewardse Q*.

Lemma 2.1 ([13]).If the payoff functior induces memoryless optimal strategy for all
two-player game graphs, thehis monotone.

3 Weighted Average with Converging Sum of Weights

The main result of this section is that for converging sum dfights (i.e., if
lim, o D1 g = ¢* € R), the only weighted average payoff function that induce
memoryless optimal strategies is the discounted sum.
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Fig. 1. Examples of one-player game graphs.

Theorem 3.1. Let (¢, )nen be a sequence of real numbers with no zero partial sum
suchthay_.” ¢; = ¢* € R. The weighted average payoff function defineddy,,cn
induces optimal memoryless strategies for all two-playamg graphs if and only if
there exist®) < A < 1 suchthat;; = \-¢; forall i > 0.

To prove Theorem 3.1, we first use its assumptions to obtaiagsary conditions
for the weighted average payoff function defined(by),cn to induce optimal mem-
oryless strategies. Bgssumptions of Theorem 3\e refer to the fact thafe, )nen
is a sequence of real numbers with no zero partial sum su¢thpifia, ¢; = ¢* € R,
and that it defines a weighted average payoff function tlttées optimal memoryless
strategies for al2-player game graphs. All lemmas of this section use the thenas-
tions of Theorem 3 1, but we generally omit to mention thepiie')tly

Letd,, = Zl 70 ¢i, 1 = liminf,_ . < d andL = limsup,, d . The assumption
thatzl oci = ¢ € Rimplies thatl # 0. Note thaty # 0 since(c, )nen is a Sequence
with no zero partial sum. We can define the sequefjce <= which defines the same
payoff functiong. Therefore we assume without loss of generallty that 1.

Discussion about following three lemmésthe following three lemmas we prove prop-
erties of a sequende, ),y With the assumption that the sequence induces optimal
memoryless strategies in all game graphs. However notdhbairoperty we prove is
about the sequence, and hence in all the lemmas we need tonstmass game graphs
where the sequence must satisfy the required properties.

Lemma 3.1. If the weighted average payoff function defined &y),.cn induces opti-
mal memoryless strategies for all two-player game gragient < < L <1.

Proof. Consider the one-player game graph shown in Fig. 1. In one-player
games, strategies correspond to paths. The two memorytessgies give the paths
0« and 1* with payoff value0 and 1 respectively. The strategy which takes the
edge with rewardl once, and then always the edge with rewérdets the payoff
¢ (10¥) = liminf, ., - = [. Similarly, the path01“ has the payofiy (01¢) =

liminf,, o (1 — dln 1 — limsup,,_,~ d = 1 — L. As all such payoffs must

be between the payoffs obtained by the only two memoryleasegiies, we have> 0
andL < 1, and the result followsl{ > [ follows from their definition). O

Lemma 3.2. There existawg € N such thatwy > 1, wgl > 1 and the following
inequalities hold, for alk > 0: ¢xl < 1 — dip L andcgwol > 1 — di L.

Proof. Sincel > [ > 0 (by Lemma 3.1), we can choosg € N such thatvy! > 1 (and
wg > 1). Consider the game gra@l, shown in Fig. 1 and the case when= 1. The



optimal memoryless strategy is to stay on the starting $tever because(10+) =
I < ¢(1") = 1. Using Lemma 2.1, we conclude that singd0“) < ¢(1*), we must

haves(0510%) < (051¢) i.e.cpl < 1 — (Zf;; ci) L which impliesel < 1 — d L.
Consider the case whan = wy in Fig. 1. The optimal memoryless strategy is

to choose the edge with rewarg, from the starting state sineg(w,0%) = wol >
#(1¢) = 1. Using Lemma 2.1, we conclude that sintlev,0“) > ¢(1*), we must have

#(0Fwo0%) > ¢p(0F1¢) i.e.crwol > 1— (Zk_ol cl) L which impliesciwgl > 1—dj L.
O

From the inequalities in Lemma 3.2, it follows that for Alive havecy! < cpwl;
and sincawy > 1 and! > 0 we must have;, > 0 for all k.

Corollary 3.1. Assuming; = 1, we have;, > 0 forall £ > 0.

It follows from Corollary 3.1 that the sequeng$,),,>¢ is increasing and bounded
from above (ifd,, was not bounded, then there would exist a subsequehge which
diverges, implying that the sequen{:gl—} converges td in contradiction with the

fact thatlim inf,,_, o, = = =1>0). Thereforedn must converge to some real number
sayc* > 0 (sincecy = 1). We need a last lemma to prove Theorem 3.1. Recall that
we havec; > 0 forall i and)_.° ¢; = ¢* > 0. Given a finite game grap¥, let W/

be the largest reward in absolute value. For any sequen@wvafds(w,,) in a run on

G, the sequencg,, = Z? 0 ci(w; + W) is increasing and bounded from above by
2-W -d, and thus by - W - ¢*. Thereforeyy,, is a convergent sequence any” , c;w;

>R ciwg
converges as well. Now, we can write the payoff functiop@sow ...) = ==%——.

We decompose* into Sy = >~ ca; andSy = .0 coit1, i.€.¢* = Sp + Si. Note
that.Sy andS; are well defined.

Lemma 3.3. For all reals «, 3,7, if Sy + 851 < v(So + S1), then(y — a)e; >
(B —7)ciyq foralli > 0.

Proof. Consider the game graghy, as shown in Fig. 1. The conditianS, + 851 <
~v(So + S1) implies that the optimal memoryless strategy is to alwaysosk the edge
with rewardy. This means that(v‘a37~) < ¢(7*) hencenc; + e 11 < Y(ei+civ1),
i.e.(y—a)e > (8—7)cip foralli > 0. O

We are now ready to prove the main theorem of this section.

Proof (of Theorem 3.1)irst, we show thas; < Sy. By contradiction, assume that
S1 > Sy. Choosingy = 1, 6 = —1, andy = 0 in Lemma 3.3, and sinc&, — S; <0,
we get—c; > —c;qq for all ¢ > 0 which impliese,, > ¢o = 1 for all n, which
contradicts thaEZ o Ci convergeste® € R.

Now, we haveS; < Sy and letA = g; < 1. Consider a sequence of rational

numbersk— converging to\ from the right, i.e. i~ > X for all n, andlim,, _, . L ==\
Takinga=1,8=k, +,+1,andy =1, +1 in Lemma 3.3, and since the condition
So + (k: + 1, +1)S1 < (I, +1)(So + S1) is equivalent td,, S1 < 1,,So which holds
smcekﬂ > A\, we obtain,,¢; > k,c; 1 foralln > 0 and alli > 0, thatisc;;1 < —cZ
and in the limit forn — oo, we gete;+1 < A¢; forall i > 0.



Similarly, consider a sequence of rational numidersonverging to\ from the left.
Takingae =71, +s,+1,8=1,andy =s, +1in Lemma 3.3, and since the condition
(rn+8$n+1)So+ 51 < (sn +1)(So + S1) is equivalentta, Sy < 5,51 which holds
smce’”" < A, we obtainr,¢; < s,c;y1 foralln > 0and alli > 0, thatisc;;1 > —cz
andi |n the limit forn, — oo, We gete; 1 > A¢; forall i > 0.

The two results imply that;.1 = A¢; for all ¢ > 0 where0 < A < 1. Note that
A # 1 becausé . ¢; converges. O

Since it is known that for; = A, the weighted average payoff function induces
memoryless optimal strategies in all two-player gamesofdra 3.1 shows that dis-
counted sum is the only memoryless payoff function when tine sf weightsy_.°  ¢;
converges.

4 Weighted Average with Diverging Sum of Weights

In this section we consider weighted average objectives that the sum of the weights
Z;’io ¢; is divergent. We first consider the case when the sequenggcy is bounded
and show that the mean-payoff function is the only memosyteze.

4.1 Bounded sequence

We are interested in characterizing the class of weightedaae objectives that are
memoryless, under the assumption the sequéngceis boundedi.e., there exists a
constantc such thatc,| < ¢ for all n. The boundedness assumption is satisfied by
the important special case of regular sequence of weighishvdan be produced by a
deterministic finite automaton. We say that a sequéngg is regularif it is eventually
periodic, i.e. there exisiy > 0 andp > 0 such that, 4, = ¢, forall n > ny. Recall
that we assume the partial sum to be always non-zerodj,e= Z?:’Ol ¢; # 0 for all

n. We show the following result.

Theorem 4.1. Let (¢, )nen be a sequence of real numbers with no zero partial sum
such thaty "~ |e;| = oo (the sum is divergent) and there exists a constasuch that

|c;| < cforalli > 0 (the sequence is bounded). The weighted average payofidnc
¢ defined by(c,, )nen induces optimal memoryless strategies for all two-playemng
graphs if and only ity coincides with the mean-payoff function over regular words

Remark.From Theorem 4.1, it follows that all mean-payoff functiehever bounded
sequences that induce optimal memoryless strategies aratmt to the mean-payoff
function, in the sense that the optimal value and optimatatyies fok are the same as
for the mean-payoff function. This is because memoryleassegjies induce a play that
is a regular word. We also point out that it is not necessaaytthe sequence:,,),>o
consists of a constant value to define the mean-payoff famdtior example, the payoff
function defined by the sequencg = 1 + 1/(n + 1)? also defines the mean-payoff
function.

We prove Theorem 4.1 through a sequence of lemmas (usin@p¢hessumptions

of Theorem 4.1, but we generally omit to mention them exghiiIn the following
lemma we prove the existence of the limit of the sequenge ,>o.



Lemma 4.1. If lim inf,, .o i =0, thenlimsup,, . ﬁ =0.
Proof. Sincel = liminf, _ . i = 0, there is a subsequengd,,, } which either
diverges to+oo or —cc. '

1. If the subsequendel,,, } diverges to+oo, assume without loss of generality that
eachd,,, > 0. Consider the one-player game graghshown in Figure 1. We consider
the run corresponding to taking the edge with weightfor the firstn, steps followed
by taking thed edge forever. The payoff for this run is given by
—dp,

1
= —d,,, -limsup — = —d,, - L.

n n—oo n

piy
Since we assume the existence of memoryless optimal seatits payoff should lie
between—1 and0. This implies that,,, - L < 1 for all k. SinceL > [ > 0 and the
sequencd,,, is unbounded, we must have= 0.

2. If the subsequencgl,, } diverges to—oo, assume that eaat),, < 0. Consider
the one-player game graghy shown in Figure 1. We consider the run corresponding
to taking the edge with weight for the firstn,; steps followed by taking the edge
forever. The payoff for this run is given by

n 1
hnrrigfd—k = —|dn,| ~1imsupd— = —|dn,|- L.
This payoff should lie betweehand1 (optimal strategies being memoryless), and this
implies L = 0 as above. O

Sincelimsup,, ., d, = oo, Lemma 4.1 concludes that the seque{ugg} con-
verges td) i.e. lim,, din = 0. It also gives us the following corollaries which are a
simple consequence of the fact thiat inf,, . (a, + b,) = a + liminf,,_, b, if a,
converges ta.

Corollary 4.1. If [ = 0, then the payoff functioph does not depend upon any finite
prefix of the run, i.e¢(ajaz . .. apu) = ¢(0Fu) = ¢(byby ... byu) for all a;’s andb;’s.

Corollary 4.2. If I = 0, then the payoff functiof does not change by modifying finitely
many values in the sequen{g, },,>o0.

By Corollary 4.1, we have(za®) = a foralla € R. For0 < i < k — 1, consider
the payoffS,; = ¢ ((0°10*~*=1)«) for the infinite repetition of the finite sequence of
k rewards in which all rewards afeexcept the(i + 1)th which is1. We show thatSy, ;
is independent of.

Lemma 4.2. We haveSy o = Sp,1 = -+ = Ske—1 < 1.

Proof. If S; o < Si,1 then by prefixing by the single letter wobdind using Lemma 2.1
we conclude thas), ; < Sk 2. We continue this process until we g&f ;2 < Sk r—1.
After applying this step again we get

Skk—1 < ¢ (0(0F11)%) = ¢ (1(0F'1)%) = ¢ ((10*~)*) = Si.o.
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Fig. 2. The game& (k, 7).

Hence, we havé} o < Sk1 < -+ < Sk x—1 < Sko. Thus we havesy, ; is a constant
irrespective of the value af A similar argument works in the other case whgn, >
Sk.1-

We will show thatS;,; < 4 for 0 < i < k — 1. For this, we takez;,, to be
the n' term of the sequence whotien inf is the valuep((0%i0F~i=1)*) = Sy ; i.e.
— Zje{jzo\j7§+i3n}"’f’“+i = Zje{ogjgzuzégmodk)}cﬂ'_ Clearly,zk_l — 1and

Qi = i—0 Fin

j=0Cj j=0CJ

hence using the fact thitn inf,, o (ag n+ 01,0+ -+ ak—1,,) > liminf, . ao.n+
- liminf, o ap_1,,, we havel > SF 1S, = kS, , (since allSy, ;s are constant

with respect t@) and therefore$y, ; < % for0<i<k-—1. O
Let T, = —¢ ((0°(=1)0*~"~1)~). By similar argument as in the proof of
Lemma 4.2, we show thalf, o = Ti1 =+ = T p—1 > 7.

We now show thatd,,) must eventually have always the same sign, i.e., theresexist
no such thasign(d,,) = sign(d,,) for all m,n > ny. Note that by the assumption of
non-zero partial sums, we hadg # 0 for all n.

Lemma 4.3. Thed,,’s eventually have the same sign.

Proof. Let ¢ > 0 be such thatc,| < ¢ for all n. Since(d,,) is unbounded, there
existsng such thatd,| > ¢ for all n > ng and then if there exists: > n( such
thatd,, > 0 andd,,+1 < 0, we must havel,, > c andd,,+; < —c. Thus we have
Cm+1 = dmy1—dm < —2¢, and hencér,,, 11| > 2¢ which contradicts the boundedness
assumption offic,, ). O

If the d,,’s are eventually negative then we use the sequdrf;e= —c,} to ob-
tain the same payoff and in this cadg = — >~ ¢; will be eventually positive.
Therefore we assume that there is somesuch thatd,, > 0 for all n > ng. Let
B8 = max{|co|, |e1], - - -, |cne | }- We replacey by 1 and alle;’s with 3 for 1 < i < ny.
By corollary 4.2 we observe that the payoff function willllstiot change. Hence, we
can also assume that > 0 for all n > 0.

Lemma 4.4. We haveSy,; = 1 = Ty forall 0 < i <k — 1.

Proof. Consider the game graph(k, i) which consists of statg, in which the player
can choose amonigcycles of lengtht where in theith cycle, all rewards aré except
on the(i + 1)th edge which has rewaid(see Fig. 2).

Consider the strategy in stage where the player after every- r steps ¢ > 0)
chooses the cycle which maximizes the contribution for thet& edges. Let, be



the index such thatr < i, < kr +k — 1 andc¢;. = max{ckr,...,Crrik—1} fOr
r > 0. The payoff for this strategy m inf,,_ t, wheret,, = C““l;% for
1 <N < ip.
Zl.c1+k71 Cc; . .
Note thatc;, > =i=t—— (the maximum is greater than the average), and we get
the following (wheree is a bound or{|c,,|)n>0):
Sl e o 1 . . . c 1
> £i=0 *  _Z > — =
tyn > " d. 7 hencehnnigf tn > - hnnllo%f %
By Lemma 4.2, the payoff of all memoryless strategie&:it, ) is Si o, and the fact
that memoryless optimal strategies exist entails figt= liminf,,_,o t, > % and
thusSyo = 7 = Sy forall 0 <i <k — 1.
Using a similar argument on the graghk, i) with reward—1 instead ofl, we
obtamTkof =Ty forall0<i<k-—1. a

From Lemma 4.4, it follows thatS,;, =  ¢((0'10*~~ 1)) =

n

k .
lim,, — 0o w =+, and hence,

Sl Sl

¢((a0al LQk_ 1 = hnnlloréfz . M ; T}i{&%
_Xha
L .

We show that the payoff of a regular word = b1bs...by(a0ay ... ak—1)%
matches the mean-payoff value.

Lemma4.5. If u := biba...bm(aoasr ... ax—1)* andv = (agaz ...ax—1)* are two
k
regular sequences of weights thefu) = ¢(v) = Zogw et

Proof. Let » € N be such thaktr > m. If ¢(v) < ¢(0v) then using Lemma 2.1
we obtaing(0v) < ¢(0%v). Applying the lemma again and again, we gety) <
#(0™v) < ¢(0kv). From Corollary 4.1 we obtai(0™v) = ¢(bibs . ..by,v) = é(u)
(henced(v) < ¢(0™v) = ¢(u)) andp(0"™v) = ¢ ((araz...ar)"v) = d(v) (hence
(u) = $(0™0) < $(0F7v) = ¢(v)). Thereforep(u) = ¢(v) = Z=0% The same
argument goes through for the case) > ¢(0v). O

Proof (of Theorem 4.1)n Lemma 4.5 we have shown that the payoff functiopmust
match the mean-payoff function for regular words, if thetssere{c,, },,>0 is bounded.
Since memoryless strategies in game graphs result in regolals over weights, it
follows that the only payoff function that induces memosgd@ptimal strategies is the
mean-payoff function which concludes the proof. a

As every regular sequence is bounded, Corollary 4.3 follivars Theorem 4.1.

Corollary 4.3. Let(c,)nen be aregular sequence of real numbers with no zero partial
sum such thad~ " |c;| = oo (the sum is divergent). The weighted average payoff
function¢ defined by(c,, ) e induces optimal memoryless strategies for all two-player
game graphs if and only i is the mean-payoff function.
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4.2 Unbounded sequence

The results of Section 3 and Section 4.1 can be summarizedlasd: (1) if the sum
of ¢;'s is convergent, then the sequercé };>o, with A < 1 (discounted sum), is the
only class of payoff functions that induce memoryless optistrategies; and (2) if the
sum is divergent but the sequer{eg) is bounded, then the mean-payoff function is the
only payoff function with memoryless optimal strategiesqahe mean-payoff function
is defined by the sequen¢a‘},~, with A = 1). The remaining natural question is that
if the sum is divergent and unbounded, then is the sequgkide-o, with A > 1, the
only class that has memoryless optimal strategies. Beloghoe with an example that
the clasg{\'}, with A > 1, need not necessarily have memoryless optimal strategies.
We consider the payoff function given by the sequenge= 2". It is easy to
verify that the sequence satisfies the partial non-zerongsson. We show that the
payoff function does not result into memoryless optimat&gies. To see this, we ob-
serve that the payoff for a regular wotd = bob; ...b:(agas ...ar—1)“ is given by

) ) cea k-1, . .
ming<i<p_1 (“1”“11*4:;“?2“{““*1) i.e., the payoff for a regular word is the least

possible weighted average payoff for its cycle consideaithgossible cyclic permuta-
tions of its indices (note that the addition in indices isfpamed modulck).

0 2

Fig. 3. The gamé&ji24.

Now, consider the game gragh 24 shown in figure 3. The payoffs for both
the memoryless strategies (choosing the left or the righedd the start state) are
min (5, 3) andmin (3, 3) which are both equal t¢. Although, if we consider the
strategy which alternates between the two edges in théngtatate then the payoff ob-
tained ismin (22,28 28 '11) — 14 which is less than payoff for both the memoryless
strategies. Hence, the player who minimizes the payoff doekave a memoryless op-
timal strategy in the gam@;24. The example establishes that the sequgnéé,, >
does not induce optimal strategies.

Open questionThough weighted average objectives such that the sequerdieer-
gent and unbounded may not be of the greatest practicabrateyit is an interesting
theoretical question to characterize the subclass thatmthemoryless strategies. Our
counter-example shows th@i™ },,>0 with A > 1 is not in this subclass.
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