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Abstract can be adapted quite naturally to API analysis by consider-

ing the API to be a set of 2-party protocols, each describ-

Key conjuringis the process by which an attacker ob- ing an exchange between the secure hardware module and
tains an unknown, encrypted key by repeatedly calling athe host machine [12, 14, 8]. However, in previous work,
cryptographic API function with random values in place of the key conjuring trick was treated in an ad-hoc fashion, by
keys. We propose a formalism for detecting computation-adding a number of pre-chosen keys to the intruder’s initial
ally feasible key conjuring operations, incorporated imto  knowledge [12, 14, 8], or by adding a rule to allow particu-
Dolev-Yao style model of the security API. We show thatlar keys to be conjured [11]. This raises doubts about com-
security in the presence of key conjuring operations is de- pleteness of the search for attacks, and hence the streingth o
cidable for a particular class of APIs, which includes the any proofs of security.

key management API of IBM’s Common Cryptographic Ar-  The aim of the work in this paper is to address this prob-
chitecture (CCA). lem by proposing a formal model that identifies all com-
putationally feasible key conjuring operations, and aflow
these to be incorporated into a Dolev-Yao style model for
1 Introduction security analysis of the API. We propose a transformation
that automatically computes all the possible ways of per-
forming key conjuring from the API rules. Our transforma-
Cryptographic security APIs are sets of functions de- tjon takes as input a set of formal rules representing the be-
signed to facilitate the secure generation, storage, USehaviour of an API and outputs new formal rules represent-
and destruction of cryptographic keys. Security APIs for ing key conjuring. In this manner, we eliminate the need for
tamper-resistant hardware devices typically manage keys b the user to generate key conjuring rules by hand. As far as
keeping a secret master key inside the device. This is usedye are aware, this paper presents the first formal treatment
to encrypt all the working keys used for operational func- that allows an exhaustive set of key conjuring rules to be
tions, so that they can be securely stored outside the devicegptained.

One technique used by attackers attempting to breach secu- Our second main contribution is to show decidability of

rity is to try calling API functlons_wnh random values in the the security of APIs (expressed as a reachability property)
place of encrypted keys, to see if they are allowed to pass, %%h the presence of key conjuring, for a class of APIs that
whether the device signals an error. This process is known. P y conjuring,

askey conjuring(1]. Learning the encrypted value of a ke includes for example the symmetric key management API
KEY con ) 9 yp Y of IBM’'s Common Cryptographic Architecture (CCA). In
might not seem useful, but several attacks have been pre-

sented that leverage this trick in order to compromise the particular, it requires consideration of the algebraicppro
security of an API [1, 4, 3] erties of the Exclusive Or operation. Our decidability re-

- h ! sis invol sult holds for an unlimited number of sessions, though we
A promising approach to security API_ana YSIS INVOIVES " 44 hound the number of times key conjuring operations are
adapting Dolev-Yao style protocol analysis technique$ [10 oo Indeed, it would not be realistic to allow the intruder

where ddetalls ofdcr)I/pt(_)gr?phlg T\!gonthms ussd ‘?‘Le a}b- to conjure as many keys as he wishes since it requires a sig-
stracted away and a logical model is constructed, with rules 6o it amount of access to the API. This class is related to

describing the operations of the intruder and protocolsThi the class proposed in [8], with two main differences. First,

*This work has been partly supported by the RNTL project PQE, we consider explicit decryption, since it was more appro-

ACI Jeunes Chercheurs JC9005, and EPSRC préjetimated Analysis Priate for mo.delling key conjuring, and it r?ﬂeCtS bett&_f th
of Security Critical Systemgrant number GR/S98139/01. implementation. Second, we have to consider key conjuring




rules which introduce fresh nonces. A precise comparisonagainst the appropriate control vector for the key type. For
can be found in Section 6.5. example, a data key would be encrypted uriderdata.?

In the rest of the paper, we first explain the purpose andWorking keys can then only be used by sending them back
operation of security APIs, and define our formalism for into the HSM under an appropriate API command. Only
describing them (Section 2). We then propose a transfor-particular types of keys will be accepted by the HSM for
mation for key conjuring in Section 3. In Section 4, we ex- particular operations. For example, data keys can be used
plain the security problem we are interested in, and defineto encrypt arbitrary messages, but so-cakéd Derivation
a restricted class of APIs, arguing that these restrictiwas ~ Keys(PDKs, with control vectopin) cannot. This is criti-
quite natural. In Section 5 we show that certain classes ofcal for security: a customer’s PIN is just his account number
key conjuring operations are of no use to the intruder, andencrypted under a PIN derivation key. In 2001, Bond dis-
need not be considered in a formal model. We then showcovered attacks in which the intruder uses API commands
(Section 6) that security for our class of APIs is decidable to change the type of a key, exploiting the algebraic proper-
in the presence of key conjuring operations. The class in-ties of XOR [1]. The attack allows a PIN derivation key to
cludes our motivating example, the key management APl be converted into a data key, which can then be used to en-
of the IBM 4758 Hardware Security Module, which was crypt data. Hence the attack allows the intruder to generate
shown to be vulnerable to key conjuring attacks by Bond a PIN for any account number.
in [1]. We conclude, with a discussion of future work, in Formal work on the CCA first concentrated on rediscov-
Section 7. Due to lack of space, some proofs are omittedering the attacks on the original version of the API [12, 14],

and can be found in [7]. and then on proving both Bond’s proposed fixes [9], and the
fixes IBM actually implemented [8], to be secure. However,
2 Background these works made an informal approximation of the ability

of the intruder to ‘conjure’ keys, a trick used several times
in Bond’s attacks. To explain precisely what key conjuring

In this section, we first explain what a security APl is, . : . :
is, we first need to define some notation.

before going on to define the concept more formally.
2.1 Security APIs 2.2 Definitions

The purpose of a security application program inter- We now define our (mostly standard) notation for reason-
face (API) is to allow untrusted code to access sensitive?ng qboutAPIs, and then define the class of APIs considered
resources in a secure way. Hardware security modulesin this paper.

(HSMs), for example, have security APIs which control ac-  Cryptographic primitives are represented by functional
cess to the cryptoprocessor and memory inside the mod-Symbols. More specifically, we considersignature X

ule. This allows the API to manage access to cwptographicWhiCh consists of an infinite number of constants including
keys. HSMs are deployed in security critical environments @ Special constartt and three non constant symbdlst_
such as the cash machine network, where they are used€ncryption).dec (decryption) ands (XORing) of arity 2.

to protect customers PINs and other sensitive data. TheyVVe also assume an infinite set of variablés The set of
typically consist of a cryptoprocessor and a small amount terms denoted by7 (X, X'), is defined inductively by

of memory inside a tamper-proof enclosure. They are de-
signed so that should an intruder open the casing or insert
probes, the memory will auto-erase in a matter of nanosec-
onds. In a typical ATM network application, all encryp- |
tion, decryption and verification of PINs takes place inside
the HSM. Many different cryptographic keys will be used

I(Oer tshensti ozc:._:)at;otns.elfl\g Scfgf ga?:O‘kPeI [32] Igl?\lm(tjlg:']sat'onresem the message encrypted with the key (using sym-
ys Into various types, su ys, Vation 1 etric encryption) whereas the term; © my represents

keys, import keys and export keys. Each type has an as-

) ) the messagen; XORed with the message,. The con-
sociated publicontrol vector The HSM stores anaster

o nts may represent control v rs or keys for example.
keyin its tamper-proof memory. The keys the HSM uses stants may represent control vectors or keys for example

. . . ) We rely on a sort system for terms. Terms which respect
for its various operations, calledorking keys are stored . : .
outside the HSM encrvpted under the master ke XORedth'S sort-system are said to beell-typed It includes a set
yp y of base typeBase and a set of ciphertext typ&ipher. We

1CCA stands for ‘Common Cryptographic Architecture’, whilé58 have variables and constants of both types. Moreover we
is the model number of the HSM. Sée t p: / / www 3. i bm coml
security/cryptocards/ pcicc. shtm 2@ represents bitwise XOR.

T == terms
T variablex
f(Ty,...,T,,) function application

where f ranges over the functions &f andn matches the
arity of f. For instance, the terrfim} is intended to rep-




assume that our function symbols have the following type: are:

chkEven(z1), chkEven(zs) — chkEven(z; @ x2)

@ : Base x Base — Base
{} : Base x Base — Cipher chkOdd(x1), chkOdd(xz2) — chkEven(zy @ x2)
dec - Cipher x Base — Base chkEven(z1), chkOdd(z2) — chkOdd(z; @ z2)

] ) Intruder capabilities and the protocol behaviour are de-
A pure termt is a well-typed term whose only encryption - s¢riped usingulesas defined below.
symbol (when such a symbol exists) is at its root position.

We say that a termis headed witly if its root symbol isf. Definition 1 (API rule) An API rule is a rule of the form
The set of variables occurring inis denotedvars(t). We chky (u1), .. .,chkg(ug), z1,. .., x, — t, Wwhere

denote byst(t) the set of subterms af This notation is

extended as expected to set of terms. A termgraund if e 11,...,x, are variables,

it has no variable. Substitutions are written= {z; — )

t1, ..., Ty — ty } With dom(c) = {z1,...,2,}. A substi- e tisatermsuch thatars(t) C {z1,...,2u},

tutiono is groundif all of the ¢; are ground. The application
of a substitutiornr to a termt is writtento.

We equip the signaturg with an equational theorlyap,
that models the algebraic properties of our operators:

e uy,...,u; are terms oBase type not headed with,

chk; € {chkOdd, chkEven}, 1 <i < k.

We also assume that the rule only involves pure terms.
{dec(z,y)}, = = zH0 = x ) N ) o )
Eapl i= dec({z},,y) = « z®z = 0 The third cqndmon might seem restrictive. However, it
1®(Y®2) = (2®yY) Dz 2Oy = yda merely requires that we check each component of a sum
rather than the entire sum. For example, if the syn®
-+ - @ v has some expected parity, eagtshould also have
some expected parity, and we ask that their parity is checked
separately.

It defines an equivalence relation that is closed under
substitutions of terms for variables and under application
of contexts. In particular, we say that two termsandis
are equal, denoted by =g,,, t. if they are equal mod-
ulo the equational theoriyap,. If two terms are equal using
only the equations of the last line (resp. involviag, we

Example 1 The intruder capabilities are represented by
the following set of three API rules:

say that they are equal modulo Associativity and Commu- g,y — {z} encryption
tativity (AC) (resp. moduldXor). z: Y — de C(ym’y) decryption
z,y — 20y xoring

In the CCA API, as in many others, symmetric keys are
subject to parity checking. The 4758 uses the DES (andgyample 2 Commands may include several parity checks.
3DES) algorithm for symmetric key encryption. A (single |, Figure 1, we give the symmetric key management subset
length) DES key consists of 64 bits in total, whichis divided ¢ tha 1BM 4758 API. written in our notation. The terms
into eight groups, each consisting of seven key bits and one, imp, exp, kp dat'a and pin denote constant oBase
associated parity bit. For an odd parity key, each parity bit vy he \yhereastype, xk1, ... denote variables. Note that all
must be set so that the overall parity of its group is 0dd. ¢ jes satisfies conditions stated in Definition 1. For in-
For an even parity key, the parity bits must be set so that a"stance, Key Import is used to make a new working key for

groups are of'even parity. If the groups have mixed paritigs, an HSM. The new key is sent to the target HSM encrypted
then the key is of undefined parity and considered invalid. under a transport key. The command decrypts the imported

The CCA API checks that all DES keys are of odd parity, ,cxage, and returns the key encrypted under the local mas-
and all control vectors are even, so that a key XORed agams{)er key XOR the appropriate control vector.

a control vector will give another odd parity key. These par-

ity considerations are important for our analysis of key-con o

juring, and are represented in our formalism by occurrences3 A Formal Theory of Key Conjuring

of the predicate symbotsikEven andchkOdd, each having

aterm as argument. IntuitivelghkOdd(¢) means that has We first introduce key conjuring informally, giving an
an odd parity. Among the constantsi) some have a par- example of a key conjuring attack. This will help to explain
ity. By default (no explicit parity given to a constant), we our transformation. We then formally define our transfor-
will assume that such a constant has no parity. Moreover,mation that takes a set of API rules, and extends it with
we have some rules to infer parity from known facts, which rules that permit key conjuring.



Key Part Imp. 1: xkl, xtype —  {xkl}km@kp@xtype
chkOdd(xk1), chkEven(xtype)
Key Part Imp. 2 chkEven(xtype), y, xk2, xtype — {dec(y, km @& kp @ xtype) @ xk2 }kmakpmxtype
chkOdd(dec(y, km @ kp @ xtype))
chkEven(xk2)

Key Part Imp. 3 chkEven(xtype), y, xk3, xtype — {dec(y, km & kp & xtype) & Xk3}kmextype

chkOdd(dec(y, km @ kp @ xtype))
chkEven(xk3)

Key Import chkEven(xtype), y, xtype, z — {dec(y,dec(z,km & imp) & xtype) }xmaxtype
chkOdd(dec(z, km @ imp))
chkOdd(dec(y, dec(z, km & imp) @ xtype))

Key Export chkOdd(dec(z,km © exp)), y, xtype, z — {dec(y, km @ xtype)} dec(z kmaexp) @xtype
chkOdd(dec(y, km @ xtype))
chkEven(xtype)
Encrypt Data chkOdd(dec(y,km @ data)), X, y —  {X}dec(y,kma@data)
Decrypt Data chkOdd(dec(y, km @ data)), x, y — dec(x, dec(y, km & data))
Translate Key chkEven(xtype), x, xtype, y1, y2 — {dec(x,dec(yl,km @ imp) @ xtype) } dec(y2,kmaexp)@xtype

chkOdd(dec(y1, km @ imp))
chkOdd(dec(y2, km @ exp))
chkOdd(dec(x, dec(yl, km @ imp) @ xtype))

Figure 1. IBM CCA Symmetric Key Management Transaction Set

3.1 Key Conjuring It may seem useless for the intruder to simply guess val-
ues, since the result is a term he knows enciphered un-
As we have seen, key management APIs like the CCA der an unknown key, but used cleverly, this technique can
keep working keys outside the HSM, safely encrypted, soresult in serious attacks. For example, Bond's so called
that they can only be used by sending them back into theimport-export attack [1], uses key conjuring to convert a
HSM under the terms of the API. What happens when an PIN derivation key into an encryption key, allowing an in-
intruder wants to use a particular command in an attack, truder to generate the PIN for any given account number.

but does not have access to an appropriate key? For expescription of Bond’s attack. We give Bond’s attack in
ample, suppose he has no data keys (terms of the formgjgyre 2, written in our formalism, with explicit decryp-
{d1}kmedata), bUt wants to use thEnciphercommand. In tion and parity checking. We assume that the attacker initia
an |mpI|C|t decryption formalism, the command is defined knowledge containgpdk }imapin (@ PIN key encrypted for
like this transfer), the control vectorsin, data, imp, exp, kp, and

X, {xkey }km@data — {X}xkey the constan. Moreover, we model the fact that control

This suggests that the command cannot be used if thevectors are of even parity and secret kéys and pdk are
intruder does not have a data key. However, in reality, anof odd parity by considering the corresponding faetg)(
intruder could just guess a 64 bit value and use that in placechkEven(pin)). We will show how the PIN derivation key
of the data key. The HSM will decrypt the guessed value Pdk can be converted into a data key, which then can be
underkm @ data, and check the parity of the resulting 64 used to encrypt data. Hence the attack allows a criminal to
bit term to see if it is a valid key before, enciphering the generate a PIN for any account number. For this, we show
data. Usually, the check will fail and the HSM will refuse to  that the attacker is able to deriypdk}madata-
process the command, but if the intruder guesses randomly, Step lis a key conjuring step. The attacker is using
he can expect that 1 in every 256 guessed values will resulthe Key Part Import 3command, using the control vec-
in a valid key. This notion is captured by our formalism, in tor imp (for xtype) and the key parb (for xk3) but with-

which we write theEnciphercommand like this: out a term of the form{m }mekpeimp- INStead, he re-
peatedly tries random values until some vatyedecrypts

chkOdd(dec(y, km @ data)), X, y — {X}dec(y,km@data) underkm @ kp @ imp to give a valid key,.e. a term of



1. Key Part Imp. 3

Letr = dec(ny, km @& kp @ imp)
2. Key Part Imp. 3

?,
chkEven(0), chkEven(imp)

ni, imp & exp, imp

new nj
—

0, imp {dec(ny, km @ kp @ imp) }kmaimp, N1

chkOdd(dec(ny, km & kp @ imp))

{r & imp & exp }kmpimp

chkEven(imp), chkEven(imp @ exp)
chkOdd(dec(ny, km & kp @ imp))

3. Key Import

Letr’ = dec(na,r & imp & kp)
4. Key Import

?a Imp @ kpa {r}km@imp
chkOdd(r), chkEven(imp @ kp)

n2, exp @ kp, {r ® imp & exp }kmeimp

new np
—

{dec(ny, r & imp & kp)) kmaimpodkp, N2
chkOdd(dec(ny, r & imp & kp))

chkEven(exp @ kp), chkOdd(r & imp @ exp)
chkOdd(dec(na, r @ imp @ kp))

5. Key Part Imp. 3

{r/}kmEBexp@kpv Oa exp

chkEven(0), chkEven(exp), chkOdd(r")

6. Key Part Imp. 3

{r' km@impokp, Pin & data, imp

chkEven(data @ pin), chkEven(imp), chkOdd(r")

7. Key Export

{pdk}km$pin7 Pim {r/}km®exp7

chkOdd(pdk), chkEven(pin)

8. Key Import

{pdk}r@imp, data, {r' @ data ® pin }kmaimp
chkOdd(pdk), chkOdd(r’ @ data @ pin),

— {r/}kmeaexp@kp

- {r/}kmEBexp

— {r’ @ data @ pin}km@imp

- {Pdk}r’éBpin

— {pdk}kmﬂadata
chkEven(data)

“?" represents inputs that are replaced by random valueiégttacker.

Figure 2. Bond’s Import/Export Attack in our formalism

odd parity. Note that we have written this by labelling
the arrow to show the conjuring of a new temm, and

data key by first exporting it und€r’ }xmsexp UsingKey Ex-
port in Step 7 and then changing the type by re-importing

the odd parity check is now on the right hand side of it using{r’ & data & pin}kmgimp as the importer, iiStep 8
the rule, indicating that the intruder has learnt the fact Having obtained a PIN derivation key as a data key, the in-

chkOdd(dec(ny, km @ kp @ imp)). In the rest of the attack
we writer in place ofdec(ny, km & kp & imp).

Having succeeded in finding a suitable valyehe uses
the command again withmp @ exp as the key part to be
added to the key, istep 2 This yields two unknown key
encrypting keysy andr @ imp & exp, with a known differ-
ence.

In Step 3 the intruder uses key conjuring again, this
time with theKey Importcommand, using random values
in place of {xkey }skek@xtype; anNd Using{r}xmaimp as the
key encrypting key. Again, we write this as the gener-
ation of a new termm,, and the intruder learns the fact
chkOdd(dec(na, r @ imp)). In the rest of the attack we
write r’ in place ofdec(ny, r @ imp). In Step 4 the intruder

truder can now encrypt account numbers to obtain customer
PINs.

In 2003, as a result of work by Youn et. al [14], it came
to light that this attack was impossible in practice, as an
undocumented check in the CCA's implementation prevents
key parts being passed &ey Import This would mean
steps 3 and 4 of the attack couldn’t be executed. However,
further attacks using key conjuring had been discovered by
then, [3, 4], on both the CCA API and other APIs. Clulow
notes in [4] that key conjuring can be prevented by using
a hash or MAC to test the authenticity of keys, but many
designs do not include such measures, which increase the
key management overhead.

Our example attack shows the potential of key conjur-

uses the conjured value again to obtain an export version ofing to mount attacks. It also demonstrates the features of

the key.

our formalism which allow us to detect realistic key con-

The partial keys obtained by these two operations canjuring operations. A straightforward ‘explicit decryptio

then be completed usiri(ey Part Import 3 The exporter is
completed to givEr' }kmaexp, IN Step 5 whilst the importer
is set to change the type of a key frquin to data, in Step 6
A PIN derivation key{ pdk }kmapin Can then be turned into a

model is not sufficient for a key conjuring analysis, since
though this allows an attack like Bond's be discovered, it
doesn't take into account parity checks. This means that the
model cannot distinguish between feasible and non-feasibl



key conjuring steps, leading to false attacks. For example
for a command lik&key Import(see Example 2), an explicit
decryption model without parity checking would allow an
intruder to conjure values for bothandz, which in prac-
tice is highly unlikely: only 1 in every!6 pairs of values

,Example 3 Consider the rulk, namely Key Part Import 3

described below.

y; k3, xtype — {dec(y, km @ kp @ xtype) @ xk3 }mextype
chkEven(xtype)
chkEven(xk3)

will pass. Our transform ensures that the intruder has to chkOdd(dec(y, km & kp & xtype))

guess values for at most one parity check.
3.2 Transformation on the API rules

We propose a transformation allowing us to model key
conjuring. This transformation is generic enough to deal
with any APl made up of rules satisfying the conditions
given in Definition 1.

We first introduce a set afoncesdenoted byV, a sub-

set of the set of constants that does not contain the special

constant). We assume an infinite number of nonces of both

types. A nonce represents a fresh value that has been never

used before. Rules obtained after transformation arectalle
key conjuring rules and have the following form:

new n

—  t,n

chk’ (v1), [chky(n)]

L1yeoo3 Ty

chkl(ul), ey chkk(uk)

The notation|chk)(n)] is used to express the fact that
chkj(n) is optional.

LetR, — R, = chky(u1),...,chkg(ug),z1,..., 2, — ¢

be an API rule. For eachsuch thatl < ¢ < k, sinceu; is

a term ofBase type not headed witth and which contains
no encryption symbol, we have tha{ is either a constant,
a variable or a term of the formtec(z, ¢). In this last case,
we compute the key conjuring rules associateR;te- R,

as follows:

1. Leto = {z — n}, we consider the new rule
(Ry ~ {2, chk;(u;)} """ R, U {z, chk;(uj)})o

2. Moreover, we have that

D 4 q
t=EyioPe P dec(zi.ta).
=1 i=1 =1

for some variableg;, z;, some constants and some
termst;. For eachj such thatl < 5 < p, we let
o = {y; — n} and we consider the new rule

(Ri~A{y;, chk;(u;)} "" Ry U {y;, chk;(u;)})o

Moreover, we push also on the right hand-side the
check performed op; if such a check exists.

Given an API ruleR, we denote byKeyCj(R) the set of
rules obtained after applying the transformation desdribe

above. This notation is extended as expected to sets of API

rules.

The purpose of this rule is to allow a user to add a final
key partxk3 to a partial keyy with control vectoixtype. Af-
ter applying our transformation, the sieyCj(R) contains
the two rules described below:

newn

xk3, xtype "—" {dec(n, km @ kp @ xtype) ® xk3 }xmaxtype

chkEven(xtype) chkOdd(dec(n, km @ kp @ xtype))
chkEven(xk3)
y, xk3 "% {dec(y, km @ kp @ n) @ xk3}eman

chkEven(xk3) chkOdd(dec(y, km & kp @ n))

chkEven(n)

This represents the two ways the intruder can use the
rule for key conjuring. In the first, he conjures a partially
completed key (this is the rule used in step 1 of the Bond
attack in Figure 2). In the second, for a fixed constarite
conjures a control vector that will allow to be decrypted
to form a valid partial key. Note that the conjured control
vector is of even parity, so the intruder learns two parity
facts in this case. Our transform allows this kind of conjur-
ing because it is assumed the intruder can set the parity of
the terms he uses as guesses. The value that is checked for
even parity is under his control. Hence the probability of
success is the same as for the first conjuring variant.

The rules obtained by applying our key conjuring trans-
formation on the IBM CCA Symmetric Key Management
Transaction Set is fully described in Appendix (Figure 3).
Note that our transformation will sometimes produce
rules which the intruder cannot use. This happens when
the fresh nonce appears in a parity check on the left, as in
the first rule forkey Importin Figure 3. The intruder cannot
use this rule, since he does not know any parity information
about the new nonce before the command is used. This cor-
responds to a case where the intruder would have to guess
a value that decrypts to give a valid kéy,such that also
decrypts some other value to give a valid key. For single
length DES keys, this gives the intruder a 2ii chance of
success, which we consider unrealistic. However, if the in-
truder has extended access to a live HSM running the API,
we believe our transformation could be quite naturally ex-
tended to these more costly operations (see Section 7).

3.3 Intruder rules

We denote byZ the three API rules representing the ca-
pabilities of the intruder (see Example 1). We observe that



the intruder does not have to follow any parity checks when We say that is consistentf for any term¢, chkOdd(¢) and
encrypting or decrypting, but that he can also check the par-chkEven(t) are not both inSatChk(.S).

ity of terms he produces. Recall that parity is defined only

on terms ofBase type. If an intruder makes a new term A factis either a ternt or a parity checki.e. chkX(t).
by XOR|ng, he can a|ready predict the panty of the out- A factis grOUndif the termt is grOUnd and it is said pure if
come following the rules in Section 2.2. However, when the termt is pure and oBase type inside a parity check.
decrypting, the intruder may learn new parity information
by decrypting a known constant with a random key, or by
decrypting a random constant with a known key. We refer o

to this as offline key conjuring. The rules corresponding to § = {chkEven(a & ), chkEven(b & c), chkOdd(a & c)}
this are described below: S'is not consistent. Indeed, singedb) ® (b c) =xor abe,
we have thathkEven(a & ¢) € SatChk(S) and also that
chkOdd(a @ ¢) € SatChk(S).

Example 4 Let.S be the following set:

e by decrypting a random constant with a known key

y "% dec(n,y),n .
chkX(dec(n,y)) With X € {Odd, Even} Definition 3 (one-step deducible, deduciblelet A be a

[new n]

set of rules of the forrR; ~ — ~ R,. andE be an equational
theory. LetS be a set of pure ground facts that is consis-
¢ decrypting a known constant with a random key tent. The set of factg is one-step deduciblieom S if there

LetZ;" be the set of these two rules.

[new n]

x "% dec(x,n), n, chkX(n) . exists aruleR; " — " R, € A and a ground substitutiofl
chkY (dec(x, n)) with X, Y € {Odd, Even}  sych that

LetZ; be the set of these four rules. e R;0 C SatChk(S) (moduloE),
In Section 5, we will see that for a certain class of APIs,

the class considered in this paper, the offline key conjuring  *® F=R;6 (moduloE), and

rules can be safely ignored. Our final set of intruder rules, o s fresh, i.en does not occur irs.

including offline key conjuring, is denoted " = 7 U

I UTS. A termu is deduciblefrom S by using the set of ruled
modulo the equational theor§, denoted byS e u
4 A New Decidable Class if €S (modulo E) or there exists some sets of facts

Fy, ..., F, such thatu € F,, and F; is one-step deducible

In this section, we define the semantics of our API-rules fromehU };}E ..U F;y. The sequencéy,..., Iy, is a
and we introduce the class of rules for which we prove our proofthat.s 4 g u.

decidability result. Of course, at each step of the proof the set of ground

facts obtained has to be consistent with respect to the par-
ity checking predicates. However, this will be the case by
construction, since the only rules which add parity facés ar
the key conjuring ones, which always introduce something
fresh in the parity facts.

4.1 Security Problem

The problem we consider is the problem of deciding
whether a particular term, for example a PIN derivation key,
can be learnt by an attacker. The intruder starts with a fixed
set of terms that constitute hisitial knowledge He can  Example 5 Let S = {{s},, a @ b, b}. We have thas is

then use the rules of the API and also the key conjuring deducible frons by using the rule€ moduloEap,. Indeed,
variants of the rules in any order to extend his knowledge. e have thass, {a}, {s} is a proof ofS Iz Ex -

We first need to make sure that parity checks are per-

formed consistently. Example 6 (Bond’s Import/Export attack) Let A be the
Definition 2 (consistent) LetS = {chky(u1), ..., chk;(u;)}U rLueI:a; %23;:22?3\/;:};9:;;2{;_{pm’ data, exp, imp, kp}.
T whereuy, . ..,u; are ground terms oBase type andT '

is a set of terms. We denote BytChk(S) the smallest set o {pdk}kmapin, chkOdd(pdk), chkOdd(km),
which containsS and that is closed by application of the

following rules modulor. e t andchkEven(t) for anyt € V.
chkEven(z1), chkEven(xzs) — chkEven(z; @ ) We have thaf pdk}madata iS deducible fromS by using
chkOdd(z1), chkOdd(z2) — chkEven(x; @ x2) the rules inA U KeyCj(.A) U Z moduloEap;. The proof

chkEven(z;), chkOdd(z3) — chkOdd(z; & x2) witnessing this fact can be easily extracted from Figure 2.



Note that this attack involves two online key conjuring This hypothesis is natural, since it corresponds to the API
steps. Each key conjuring attempt has a 1 in 256 chance ofdesigner being consistent about checking the parity of keys
success, due to the parity checks. Each time the adversarpefore they are used.
wants to conjure a key, it requires a significant amount of ac-
cess to the API. We assume in what follows that the use of Example 7 LetV = {imp, kp, exp, pin, data}. and.S, be a
these rules by the adversary is limited. This is modelled by set that is consistent and which contains at lea&Even(t)
introducing a parametér that bounds the maximum num- foranyt € V andchkOdd(km). The rules given in Figure 1
ber of applications of the key conjuring rules induced by the are such that each term which appears at a key position is
protocol. The value ok could be set based on the amount checked w.r.tSy.
of time an attacker may have access to a live HSM, based
on physical security measures, auditing procedures ireplac Definition 6 (dec-property) LetT' be a set of terms. We
etc. Note however that we do not bound the number of of- S&y thatl” has thedec-property if
fline key conjuring since it is much easier for an adversary
to try numerous values off-line.

Formally, we writeS Pf‘fé’; u if w is deducible fromS We say that a rul® has thedec-property if the set of terms

by using the rules itd; and at mosk instances of therule T = {t | t € Ror chkX(t) € R} satisfies thelec-property.
in A; (moduloEap)). In this paper we rely on a fixed equa-

dec(z,v1),dec(z,v2) € st(T) = v1 = va.

tional theory, denoted biap; (see Section 2.2) and a fixed In the APl we consider, we will assume that all the r_ules
set of intruder rules denoted ly". Hence our problem is  satisfy thedec-property. This hypothesis is natural, since
the following one: it only forbids the API from decrypting the same input un-

der two different keys. Note that thlec-property is clearly

Security Problem satisfied by the rules given in Figure 1.

Entries: A finite setA of API rules, a seb of pure ground
facts that is consistent (the initial knowledge of the at-
tacker), a pure ground term(the secret) and a bound
k € N (number of key conjuring steps).

Definition 7 (well-formed APl rule) Let Sy, be a set of
pure ground fact that is consistent. LiRbe an API rule.

chki(uy),. .., chkg(ug),z1,. .., xn — t
Question: Is the secret deducible fromS by using the ) )
rules in A UZ+ and at most: instané:eg_&f) r<ukles in We say thaR is well-formedw.r.t. Sy if:
. H eyl >
KeyCj(A) (moduloEnpi), i.e. doesS /737, .= 57 e forall i such thatl < i < k, we have that,; € st(t),
4.2 Well-formed API e R satisfies thelec-property,

API-rules as defined in Definition 1 are slightly too gen-  ® 07 @ll v € KeyTerm(R), vis checked iR w.r.t. So.

eral for our decidability result. Hence we introduce furthe  an APJ rule satisfying only the two first points is said to be

assumptions, that we believe are very reasonable in Pracyeakly well-formed

tice. Note that these hypotheses are checked on the API

rules before performing the key conjuring transformation. The first point requires that the API only checks the par-
_— _ ity of objects that are to be used in generating the output.

D_ef|n|t|on 4 LetSo bengvsnet of pure ground fact that is con- Since the form of our rules has only variables on the left,

sistent. LeR = R, "= RT. be a rule a_mdt be a ter.m and all decryption explicitly stated on the right, this istqu

of Base type. We say that is checked inR w.r.t. So if natural. We would not expect an API to check the parity of

chkX(#) € SatChk(So UR UR). a term that is subsequently discarded. For instance, the API

Definition 5 Let R be a rule. KeyTerm(R) are the sub- rules giyen in Figure 1_a_re well-formed. However, the rules

terms ofR which appear at a key position. More formally, describing the capabilities of the attacker (see Example 1)

KeyTerm(R) = {KeyTerm(t) | € R or chkX(t) € R} are not well-formed, but only weakly well-formed.

whereKeyTerm(¢) is defined as follows: . .
4.3 Decidability

KeyTerm(t) = {uz | dec(u,us) € st(t) for someus }
U {us | {u1}u, € st(t) for someu, }. Theorem 1 (Main result) Let P be an instance of the se-

) . ) curity problem (as stated at the end of Section 4.1) where
We will restrict our attention to APIs such that a term

which appears at a key position has to be parity checked. e the set4 of API rules is well-formed w.r.t. the sst



0es, .
* Ve Proposition 1 Let.4 be a set of API rules anfl be a set of

e the terms inS U {s} do not contain any symbdkc. pure ground facts. We have that

_ _ - o KeyGj(A) <k KeyGj(A) <k
We can decide wheth@ris a positive or a negative instance S "AﬁzthAp. uw & S'F AjIJLJI;,EAPI
of the security problem.
whereS’ = SU{cy, ca,chkOdd(cy), chkEven(cy)} andeq,
The remainder of the paper is devoted to the proof of this ¢2 @re constants oBase type that do not appear iod, 5
result. We proceed in several steps: andu.

1. From 7+ to Z. In Section 5. we establish some re- Then, we show that there is no need to consider rules
: . : i ;
duction results allowing us to get rid of the offline key ©f Z2 if the intruder already knows terms of the form
conjuring rules. These results are obtained for any setdec(1, ¢;) of each parity. Intuitively, the intruder knows an
of API rules as defined in Definition 1, and not only Nstance of each of the four rules.

the well-formed ones introduced in Definition 7. Proposition 2 Let. A4 be a set of API rules anfl be a set of

2. From Eap to AC. In Section 6.1, we show that we pure ground facts. We have that

can get rid of some axioms of the equational theory
by using the fact thaEap, satisfies the finite variant
property introduced in [6]. This can be done safely
by considering some new rules, namely the variants
denotedvar(.A), which are obtained from the rule$

we have at the beginning by instantiating them.

KeyCj(A) <k 1 _KeyCj(A) <k
S AUZUZ Eppi & 5 l_.AUI,EAm

whereS’ is the set obtained frorfi by adding

e the constants (Cipher) andcy, co, c3, ¢4 (Base),

chkOdd(dec(1, ¢1)), chkOdd(cq)

3. Controlling the form of the rules. In Section 6.2,
we show that the variants computed at the previ-
ous step satisfy some properties. Given a.4etf
(weakly) well-formed API rules, we have thak- (AU
KeyCj(.A)), rules obtained after our both transforma- e chkEven(dec(1,c4)), chkEven(cy)
tions, are (weakly) well-adapted (see Definition 9).

chkOdd(dec(1, c2)), chkEven(cs)

chkEven(dec(1, ¢3)), chkOdd(c3)

andcy, ¢o, c3, ¢4 do not appear ind, S andu.

4. Existence of a pure attacka Section 6.3, we show that
for a set of weakly well-adapted rules, if there exists an
attack then there is one which only involves pure terms
(see Proposition 5).

The idea of the proof is to replace each application of a rule
x "™ dec(n,x), chkX(dec(x, n)), chkY(n)

. in Z;7 by its corresponding instance. In particulaiis al-

5. Bounded the number of subterms headed witib ways replaced by the same constantWe can show that
Now, to obtain our decidability result it is sufficient to e sill obtain a proof. Intuitively, if it was not the case, i
bound the number of terms headed wdtit in an at-  \yy1d mean that it was important farto be an encryption
tack (see Section 6.4). This allows us to consider only o 5 gecryption. This would be the case only if there was
afinite number of terms. nested encryption on the right hand side of the rule, which

is not the case for API rules.

5 Off-line key conjuring is useless
6 Decidability for Well-Formed APIs

The adversary can perform as many off-line key conjur-
ing as he wishes, since it is very easy for him to try numer-  In the remainder of this section we describe a decision
ous values off-line, until the decryption algorithm yields ~ procedure to deal with any set of well-formed API rules.
bitstring of the desired parity. We show now that in fact,
off-line key conjuring does not provide any extra possibili 6.1 Getting rid of some equations
ties for the adversary to mount an attack. Thus there is no
need to consider these rules. The goal of this section is to get rid of all the axioms of
We first show that the rules @ are useless as soon as the equational theory but associativity and commutativity
the adversary knows a fixed constant of each parity. decomposing the theory into a convergent rewriting system



modulo AC equations. The idea is to pre-compute variants

Now the proposition below is an easy consequence of the

of the rules so that there is no need to apply the full equa-fact thatEap, satisfies the finite variant property.

tional theory anymore.

Let R be a term rewriting system (TRS) arid be an
equational theory, we write —x g/ v whenv can be writ-
ten intov moduloE’. A decomposition of an equational
theoryE is a pair(R,E’) such thatR is anE’-convergent
system foiE, i.e. u =g,,, vifandonlyifu| = v| whereu|
denotes the normalised form ofw.r.t. —x g.

For instance, for the equational thedyp,, we can show
that(Rq, AC) is a decomposition dEap; where

dec({},,1) 2@z — 0
{dec(z,y)}y z®0 — 0
z®(xdy) =y

— T

Re =

— X

Definition 8 (finite variant property) A  decomposition
(R, E’) of a given theoryE has thefinite variant property
if for every termt, there is a finite set of substitutiod¥t)
such that

Vo360 € X(t), 37 such thatv | =g/ 07 A (to)] =g (t0)]7.

In other words, all possible reductions in an in-
stance oft can be computed in advance. Given a
term ¢, we denote byvar(t) the set of its variantsi.e.
var(t) = {(¢t0)] | 6 € (¢)}. In [6], the authors give suf-

ficient condition to establish that a given presentation sat fact thatis consistent. L& = R,

Proposition 3 Let A;, A, be two sets of rules§ be a set
of ground facts and be a ground term (in normal form).

KeyCj(A1) <k
s l_-Al UA2,Eapi

‘Var(Keij(.Al )) <k

u ifand only if S l_'Var(A1UA2)vAC

Moreover, we only need to consider instances of the rules
which involve terms in normal form.

Example 8 For instance, consider the following rufe =
z,y — dec(z,y). We have thavar(R) = {R,R’'} where
R" = {z},,y — z. Note thatR’ is a normalised instance of
R. IndeedR’ = RA| wheref = {z — {z},}.

6.2 Controlling the form of the rules

We need to control the form of the rules after computa-
tion of the key conjuring transformation and computation
of the variants. We show that the set-(A U KeyCj(A))
obtained from a setl which only contains (weakly) well-
formed rules w.r.tS is (weakly) well-adapted w.r.1S.

Definition 9 (well-adapted) Let.Sy be a set of pure ground
R,.. We say thaR

[new n]
—

isfies the finite variant property. Moreover they give an al- IS well-adaptedw.r.t. Sy if

gorithm allowing us to compute the variants associated to a

given term. By using their result, it is easy to establist tha
(Rg,AC) is a decomposition dEap Which satisfies the fi-
nite variant property. The so-called variants of a firlare
obtained by performing narrowing witR ¢, moduloAC.

Narrowing. The subterm of at positionp € O(t) is writ-
tent|,. The term obtained by replacinf, with v is denoted
t[u],. We denote byO(t) the set of non-variable position
of t. Given a TRSR, we say that a term narrows tot’
with the substitutiow, atp € O(t), byl — r € R if there
exists a renaming — ' of | — r € R such thato is
a unifier of¢|, and!’ andt’ = (t[r],)o. In this case, we

write t ~, t/. We writet ~~, t' if there exists a narrow-
ing derivationt = t; ~~,, ta... ~,_ _, t, =t such that
o =o01...0n_1. If E' is a set of equations such that an
E’-unification algorithm exists, we defir€-narrowing as
expected  is anE’-unifier of ¢|,, and!). In particular, this
allows us to defindC-narrowing.

Computation of the variants. LetR be an API rule and
be the number of occurrences{a} , dec and®. According
to [6], we have that

var(R) = {R' | R~~,R’ by a derivation of length at mo#

1. Ris well-typed andiars(R,) C vars(R;) ,

2. a term of typeCipher appearing as a strict subterm
position inR is either a nonce or a variable,

3. for allt € KeyTerm(R), ¢ is checked iR w.r.t. S,

4. there is at most one termin a check inR,. not equal
to n and we are in one of the following cases:

e u=dec(y,n ®u'),
e u = dec(n,u’), or

e n occurs inR; and hence the rul® is useless.

A set of rules which satisfies the two first points is said
to beweakly well-adapted

Proposition 4 Let Sy be a set of pure ground fact that is
consistent. Le# be a set of (weakly) well-formed API rules
w.r.t. Sp. Let A" = var (AU KeyCj(A)). We have tha#’ is

a set of (weakly) well-adapted rules w.15%.

The notion of well-adapted relies on four conditions (see
Definition 9). The conditions 1, 3 and 4 are established by
using the fact that a variaft is just a normalised instance
of well-formed API ruleR, that isR’ = R#| for somed.



Proving condition 2 is more involved. As shown in the ex-
ample below, Condition 2 is not stable BC-narrowing,
i.e. by computation of the variants, thus we had to first en-
force it.

Example 9 LetR = x — {dec(z, k1) }dec(z,k,)- ThE CON-
dition 2 is satisfied bR. Now, consider the rule

R' = {y}kl - {y}dec({y}kl,k’z)

We have thaR’ € var(R). HoweverR’ does not satisfy the
condition. This problem comes from the fact that there is
a variable of typeCipher which involved in two different
subterms headed widec. Here we have that is involved

in dec(z, k1) and also indec(z, k3). Sincek; # ko, the
rule R does not satisfy theéec-property and hence is not a
well-formed rule.

6.3 Existence of a pure attack

We show in this section that we can restrict our attention
to proofs which only involve pure terms. The following re-
sult holds for any set of weakly well-adapted rules. The
conditions 3 and 4 of Definition 9 are only used for the last
part of our decision procedure (see Section 6.4).

A position in a term igmpureif the subterm at that po-
sition is not of the expected type and form. By convention
the root position is always an impure position. Note that in
a pure ternt the only impure position id.

Example 10 Lett = dec(a®b, ¢) wherea, b andc are con-
stant ofBase type. The positiop in ¢ such thatt|, = a ® b
is impure. Lett = dec({a}s, c) wherea, b and c are con-
stant ofBase type. The positiop in ¢ such that|, = {a},
is impure.

We first prove that whenever an impure term occurs in
a deducible ternt at a positiorp, the termt|,, is itself de-
ducible.

Lemma l Let A be a set of weakly well-adapted rules
and S be a set of pure ground facts that is consistent and
which containg). Letu be a ground term deducible fro
and 1, ..., F, be a proof thatS 4 ac u. Letp be anim-
pure position of:. We have that|, € SUF; U ... U F,.

We are now ready to state our result which says that only
pure terms need to be considered when checking for de-

ducibility.

Proposition 5 Let.A be a set of weakly well-adapted rules
and S be a set of pure ground facts that is consistent
and which containg). Letw be a pure ground term. If
S 4 ac u then there is a proof oF -4 ac u which only
involve pure terms.

To establish this result, we assume we are given a
proof P of S 4 ac u, and we show how to compute a proof
P’ from P which only involves pure terms. The prosf
uses exactly the same rule at each step but not the same
instance. In particular any term appearing at an impure po-
sition will be replaced to obtain a pure term. From this, we
easily deduce the following corollary.

Corollary 1 Let.A4,, A; be two set of weakly well-adapted
rules andS be a set of pure ground facts that is consistent
and which containg). Letw be a pure ground term. If
S Fj;,fé u then there is a proof witnessing this fact which
only involves pure terms.

6.4 A bound on the number of dec terms

From Corollary 1 we know that if there is an attack,
there is an attack that involves only pure terms. Pure terms
are well-typed and contain at most one encryption symbol.
However, thedec symbols might be arbitrarily nested. Our
goal is to bound the size of an attack by limiting the use of
dec symbols.

A dec-term is a term of the formdec(u,v). Given a
proof Fi, ..., F;, of some deduction fact Fr ac w, we
say that adec-term is legal if it is checked inS, that is
chkX(t) € SatChk(S) or it has been produced by a key-
conjuring rule, that ishkX(t) € F; for somel < j < n.
The termt is said to beillegal otherwise. Letk’ be the
number of legablec-terms occurring inS. Since there are
at mostk applications of the key-conjuring rules and since
each key-conjuring rule introduces at most one term that is
not a name, there are at mdst- &’ legaldec-terms occur-
ring as subterm in a proafi, ..., F,. We wish to show
that, besides the legdkc-terms, no decryption symbol can
occur under a key position. This ensures that illedgal
terms can only occur as plaintext thus can not be nested.
We first show that illegadlec-term cannot occur in checks.

Lemma 2 (No illegaldec-term in checks) Let A be a set
of well-adapted rules and be a set of pure ground facts
such that nadec terms occurs irKeyTerm(S). Letw be
a pure ground term deducible frosvand F, ..., F,, be a
proof thatS' + 4y, (z),ac w that involves only pure facts.
We assume that there is dec-term subterm ofv. For any
term¢ such thaichk(t) € SatChk(S U Fy U ... U F,), for
anydec(u, v) subterm of, thedec-termdec(u, v) is legal.

The intuitive idea for proving this lemma is that new checks

can only be introduced by the key-conjuring rules, which

are limited. In addition, when ehkX(¢) is introduced, ille-

galdec-terms cannot occur since the rules are well-adapted.
We then prove that illegalec-terms cannot occur in key

position or they can be replaced by 0. LEtand N’ be

two terms. For any termd/, we denote byMdy n+ the



term M where any occurrence df in key positionis re-
placed byN’.

Lemma 3 (Replacement otlec-terms in key position)

Let A be a set of well-adapted rules anfl be a set

of pure ground facts such that néec terms occurs in
KeyTerm(S). Letw be a pure ground term deducible
from S and Fy, ..., F,, be a proof thatS' 4y, (7),ac w

that involves only pure facts. We assume that there is no
dec-term subterm ofv. Lett be a term such thate F; for
somel < j < n and letp be some key position éfsuch
thatt|, = dec(u,v) @& t’ (¢’ being possibly empty in which
case by convention|, = dec(u, v)).

e Either the termdec(u, v) is legal.

e Or F15(dec(1L,1))@t’,O)v SERR) Fjé(dec(u,v)@t’,o) is a pure
prOOf of S }_RU'Var(I),AC té(dec(u,v)@t/,o)-

The lemma is proved by induction.

Now, we are able to prove our main result (Theorem 1).
Proof. Let P be an instance of the security problem where
the setA of API rules is well-formed w.r.t.5 and0 € S.

Let S’ be the set of facts obtained frofhby adding

e 1 (constant of typ&ipher),

e 1, Ca, ¢}, Ch, ¢4, ¢ constants oBase type,

chkOdd(c1), chkOdd(c} ), chkOdd(ch),
chkEven(cz), chkEven(c}), chkEven(c)),

chkOdd(dec(1, ¢})), chkOdd(dec(1, ¢})),
e chkOdd(dec(1,c})), chkOdd(dec(1, c})).

Note that nadec terms occurs ifKey Term(.S”).
Thanks to Propositions 1 and 2, we easily deduce that

KeyCj(A) <k

KeyCj(A) <k
Sk AUZ, Eap

!
AUT+, Enp & Sk
Proposition 3 gives us

S/ l_Keij(A) <k

7 ’Var(Keij(.A)) <k
AUZ, Eppy Sk

w var (AUT), AC

Thanks to the well-formedness of the rulesdnwe de-
duce (Proposition 4) that

e the rules invar(KeyCj(.A)) are well-adapted,
e the rules invar (A) are well-adapted,

e the rules invar (7) are weakly well-adapted.

Note also thatar (A UZ) = Var(A) U var(I).

Now, we apply Corollary 1 and we deduce that if
S’ I—Z:&ﬁi{%{ﬁ? = 4 then there exists a proof witnessing
this fact which involves only pure terms. Lastly, Lemmas 2
and 3 allow us to bound the numberdsk-terms which can
appear in such a proof. This allows us to consider only a fi-
nite number of terms: we have a finite number of constants
and nonces which can only be combined to produce pure
terms involving some preciskc-terms. O

Complexity. Our decision procedure works as follows.
We first guess thé& legal terms that are produced by key
conjuring rules and then saturate the $étwith all de-
ducible terms that are pure terms with no illedat terms
under key position. Let by the number of constants oc-
curring in S’ plus k. lllegal dec terms cannot occur nested
thus it is easy to see that there are at most2" illegal dec
terms. Theseec terms can be arbitrarily XORed in plain-
text position but cannot occur under key position. Thus we
have to consider at mogt” " terms. Thus our procedure
terminates after at moge”" steps. Altogether, we can
show that our algorithm is non-deterministic 2-EXPTIME.

6.5 Related work

The class of well-formed API rules is related to the class
proposed in [8]. There it is shown that secrecy preserva-
tion of protocols is decidable for an unbounded number of
sessions for protocols with XOR, provided they can be ex-
pressed with rules in the WFX-class, that is, a set of rules
of the formt, ..., t, — t,4+1 where each; is

e either axor termthat ist; = @', u;, n > 1 where
eachu; is a variable or a constant.

e ort; = {u}, whereu andv are xor terms.

This is intuitively related to our notion ofell-typed terms
that ensures in particular that at most one encryption sym-
bol can appear in a term. However, there are two main dif-
ferences between the class of well-formed API rules intro-
duced in this paper and the WFX-class.

1. We consider here an equational theory with explicit
decryption. This is necessary for modelling key-
conjuring. Adding the two equations for encryption
and decryption requires a much more careful treatment
when proving that whenever there is an attack, there is
an attack that involves only pure terms.

. In the work presented here, it is not sufficient to bound
the number of encryption symbols, as in [8]. In-
deed, there are an infinite number of well-typed terms
since the number of nested decryption symbols is not



bounded by typing. Thus we had to show that it is not References

necessary to consider nested decryption symbols ex-
cept for a finite number of terms, coming from the ap- 1
plication of key-conjuring rules (thiegal dec terms).

To conclude, the two classes are formally incomparable.
While well-formed API rules enable explicit decryption,
thus potentially more attacks, there are no equality checks
between components of the received messages. For exam-
ple, the following rule

{x}k7l ) {‘T}]Q - k3
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Existence of a pure attack

Lemmal Let A be a set of weakly well-adapted rules

and S be a set of pure ground facts that is consistent and

which containd). Letu be a ground term deducible frofm
and 1, ..., F, be a proof thatS 4 ac u. Letp be anim-
pure position of:. We have that|, € SUF; U ... U F,.

Proof. The proof is by induction on the number of steps
needed to obtaini. The base case,e. u € S, is triv-
ial.

weakly well-adapted rul®; "&" R, and a ground sub-
stitution 6 such thatR;6 C SatChk(SU F; U...UF,_1)
andu € F,, = R,.6 (moduloAC). Letp be an impure posi-
tion in w.

e eitherp = A and in such a case we have that
ulp € SUFRLU...UF,,

new n

e Or u|, is a strict subterm of.. SinceR; — R,
is a weakly well-adapted ruley|, must be a sub-
term of z6 for some variablex € R,. Since
vars(R,) C vars(R;), we have that there exists R;
such thatd € SUF; U...UF,_; andu|, € st(¢0).
Moreover, we can easily check tha, appears at an
impure position intd. By induction hypothesis, we
deduce that|, € S U F; U...U F,_; and thus
ulp € SUFLU...UF,. O

Proposition 5 Let A be a set of weakly well-adapted rules
and S be a set of pure ground facts that is consistent
and which containg). Letw be a pure ground term. If
S Fa.ac u then there is a proof of -4 ac © which only
involve pure terms.

We define the function= over ground terms that re-
places any term at an impure position®gneutral element
of @) or 1 (constant of typ&ipher). More formally =~ is
inductively defined as follows:

if v is a variable or a constant

u = u
wou = W ow’
dec(ui,us) = dec(uy,wz?) if u; € N of typeCipher
dec(uy,us) = dec(1,u3°) otherwise
e = (1)

where =

For the induction step, we have that there exists a

0 are defined by:

0 = u if v is a variable or a constant
of base type
wau = T ewn’
dec(ul,uz)o = dec(uy,uz’) if u; € N of typeCipher
dec(up,uz) = dec(1,u2°) otherwise
2 = 0 otherwise

The functions— and= are extended to sets of facts as ex-
pected. Moreover, the function' is also defined on checks
as follows:

chkx(f) = chkx(i%).

Proof. Consider a proof+, ..., F, of S + u. We show by
induction onn that we can construct sets, . . . , G, which
only involve pure facts such that

e Gi,...,G,isaproofofS+¢ foranyt e SUF, U
.. .UF,,

. cth(t)O € SatChk(S U Gy... U G,) for any
chkX(t) € SatChk(SU Fy U...U Fy,).

This would conclude the proof sineec F,, andu = u.

The base case € S is trivial. For the induction step, we
assume that there are sets of pure ground f&gts . . G,
such that

e G1,...,G, isaproof ofS I- t foranyt € SU Fy U
L UF;

o chkX(f) € SatChk(SUG, U...UG,) for any check
chkX(t) € SatChk(SU Fy U... U F).

and we show that we can construct a set of pure ground
factsGp41 such that

e G1,...,G,y1isaproof ofS ¢ foranyt € SUF;, U
...UFZ'+1,

o chkX(t) € SatChk(S UGy U...UGpqq) for any
Cth(t) € SatChk(S UFLU...U Fl'+1).

The set of ground facts8;; is one-step deducible from
S U Fy U...F;, thus there exists a weakly well-adapted
ruleR; "%" R, € A and a ground substitutiofisuch that
R;0 C SatChk(S UFLU...U Fz) and Fi+1 =R,0 (mOd'

ulo AC). Let#’ be the substitution defined by

o 20’ =20 for anyz € dom(0) of typeBase,

e 20’ = z6 whenz6 is a constant or a nonce of type
Cipher and1 otherwise.

We can show that,; = R,#’ satisfies the required
conditions. O



Key Part Import 2

xk2, xtype
chkEven(xk2), chkEven(xtype)

y, xk2
chkEven(xk2)
Key Part Import 3
xk3, xtype
chkEven(xk3), chkEven(xtype)

y, xk3
chkEven(xk3)
Key Import
y, xtype
chkEven(xtype)
chkOdd(dec(y, dec(n, km & imp) @ xtype))
xtype, z
chkEven(xtype), chkOdd(dec(z, km @ imp))

Y, Z
chkOdd(dec(z, km @ imp))

Key Export

y, xtype
chkEven(xtype)
chkOdd(dec(y, km @ xtype))

xtype, z
chkEven(xtype), chkOdd(dec(z, km & exp))

Y, Z
chkOdd(dec(z, km @ exp))

Encrypt Data X
Decrypt Data X

Translate Key
X, Xtype, y2
chkOdd(dec(y2, km @ exp)), chkEven(xtype)
chkOdd(dec(x, dec(n, km & imp) @ xtype))

X, xtype, yl

chkEven(xtype), chkOdd(dec(yl, km & imp))
chkOdd(dec(x, dec(yl, km @ imp) @ xtype))
chkOdd(dec(y2, km @ exp)), xtype, yl, y2
chkEven(xtype), chkOdd(dec(yl, km & imp))
x, y1, y2

chkOdd(dec(y2, km @ exp))

chkOdd(dec(y1, km @ imp))

new n
—

new n
—

new n
—

new n
—

{dec(n, km & kp & xtype) & xk2 }mekpmxtype, N
chkOdd(dec(n, km @ kp @ xtype))

{dec(y, km @& kp @ n) @ xk2}xmakpen, N
chkEven(n), chkOdd(dec(y, km @ kp @ n))

{dec(n, km & kp @ xtype) & xk3 }kmaxtype, N
chkOdd(dec(n, km @ kp & xtype))

{dec(y, km & kp @ n) & xk3}kmgn, N
chkEven(n), chkOdd(dec(y, km @ kp & n))

{dec(y, dec(n, km & imp) & xtype) }kmaxtype, N
chkOdd(dec(n, km @ imp))

{dec(n, dec(z, km & imp) & xtype) tkmaxtype, N
chkOdd(dec(n, dec(z, km @ imp) @ xtype))

{dec(y, dec(z, km @ imp) ® n) tkm@n, N
chkOdd(dec(y, dec(z, km @ imp) @ n))
chkEven(n)

{deC(Y7 km @ Xtype) }dec(n,km@exp)@xtypea n
chkOdd(dec(n, km & exp))

{dec(n, km @ Xtype)}dec(z,km@exp)@xtypea n
chkOdd(dec(n, km @ xtype))

{dec(y, km @ n) }dec(z kmaexp)@ns N
chkEven(n)
chkOdd(dec(y, km & n))

{x} dec(n,kmadata)» N, chkOdd(dec(n, km & data))

dec(x, dec(n, km @ data)), n
chkOdd(dec(n, km @ data))

{dec(x,dec(n, km @ imp) @ xtype) }dec(y2,km@exp) @xtypes N

chkOdd(dec(n, km @ imp))

{dec(x, dec(yl, km @ 'mp) @ Xtype)}dec(n,km@exp)@xtypev n

chkOdd(dec(n, km @ exp))

{dec(n, dec(y1, km @ imp) @ xtype) }qec(y2,kmaexp)dxtypes N

chkOdd(dec(n, dec(y1, km @ imp) @ xtype))

{dec(x, dec(yl, km @ imp) D n)}dec(y2,km@exp)@m n
chkEven(n), chkOdd(dec(x, dec(yl, km @ imp) @ n))

Note that no key conjuring variant can be obtained fromiag Part Import 1rule.

Figure 3. Key Conjuring variants of the rules of the IBM CCA Key Management Transaction Set



