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Abstract. We consider two-player games played on weighted directaphgr with mean-payoff and total-payoff
objectives, two classical quantitative objectives. Wiilesingle-dimensional games the complexity and memory
bounds for both objectives coincide, we show that in conti@msnulti-dimensional mean-payoff games that are
known to be coNP-complete, multi-dimensional total-pédyg#fmes are undecidable. We introduce conservative
approximations of these objectives, where the payoff isitlamed over a local finite window sliding along a play,
instead of the whole play. For single dimension, we show thaf the window size is polynomial, deciding the
winner takes polynomial time, and) the existence of a bounded window can be decided imN®BNP, and is

at least as hard as solving mean-payoff games. For multipiergsions, we show thdt) the problem with fixed
window size is EXPTIME-complete, ar(@) there is no primitive-recursive algorithm to decide theseice of a
bounded window.

1 Introduction

Mean-payoff and total-payoff gamesTwo-player mean-payoff and total-payoff games are playefinite weighted
directed graphs (in which every edge has an integer weigith)two types of vertices: in player-1 vertices, player 1
chooses the successor vertex from the set of outgoing enfgeksyer-2 vertices, player 2 does likewise. The game
results in an infinite path through the graph, callqulay. The mean-payoff (resp. total-payoff) value of a play is the
long-run average (resp. sum) of the edge-weights alongatie vhile traditionally games on graphs withregular
objectives have been studied for system analysis, reseéfarts have recently focused on quantitative extensions t
model resource constraints of embedded systems, such @& pomsumption, or buffer size [3]. Quantitative games,
such as mean-payoff games, are crucial for the formal aisabfsresource-constrained reactive systems. For the
analysis of systems with multiple resources, multi-diniemgames, where edge weights are integer vectors, provide
the appropriate framework.

Decision problems.The decision problem for mean-payoff and total-payoff garasks, given a starting vertex,
whether player 1 has a strategy that against all stratedidteempponent ensures a play with value at least 0. For
both objectivesmemorylessvinning strategies exist for both players (where a memesgy#rategy is independent of
the past and depends only on the current state) [10,15].€Rsisres that the decision problems belong taNPNP;

and they belong to the intriguing class of problems thatmMR N coNP but whether they are in P (deterministic poly-
nomial time) are long-standing open questions. The studyedn-payoff games has also been extended to multiple
dimensions where the problem is shown to be coNP-compl8i&][2Vhile for one dimension all the results for mean-
payoff and total-payoff coincide, our first contributioross that quite unexpectedly (in contrast to multi-dimenaio
mean-payoff games) the multi-dimensional total-payoffiga are undecidable.

Window objectives. On the one hand, the complexity of single-dimensional meayeff and total-payoff games is
a long-standing open problem, and on the other hand, the-dinlensional problem is undecidable for total-payoff
games. In this work, we propose to study variants of thesectibes, namelhhounded window mean-paya@ihdfixed
window mean-payofbbjectives. In a bounded window mean-payoff objectivedadtof the long-run average along

* Author supported by Austrian Science Fund (FWF) Grant No #2323, FWF NFN Grant No S11407 (RiSE), ERC Start
Grant (279307: Graph Games), Microsoft faculty fellowship

T Author supported by F.R.S.-FNRS. fellowship.

* Author supported by ERC Starting Grant (279499: inVEST).


http://arxiv.org/abs/1302.4248v2

one-dimension k-dimension
complexity P1 mem. | P, mem. complexity P mem. | P, mem.
MP / MP NP coNP mem-less coNP-c./ NRNcoNP| infinite | mem-less
TP/TP NPNcoNP mem-less undec.(Thm. 1)
WMP: fixed P-c.(Thm. 2) mem. req. PSPACE-h.(Thm. 4) .
polynomial window ) EXP-easy(Thm. 4) exponential
WMP: fixed < linear(S -Ima) (Thm. 4)
) P(S,V,I Thm. 2 . EXP-c.(Thm. 4 ’
arbitrary window (S:Vlma) (Thm. 2) (Thm. 2) ¢.(Thm. 4)
WMP: bounded mem-less| infinite
NPNcoNP (Thm. 3 NPR-h. (Thm. 5
window problem CONP (ThM-3) | 10m.3) | (Thm. 3) (Thm. 5)

Table 1: Complexity of deciding the winner and memory reegjwith |S| the number of states of the game (vertices
in the graph)V the length of the binary encoding of weights, drdx the window size. New results in bold (h. for
hard and c. for complete).

the whole play we consider payoffs over a local bounded wingliding along a play, and the objective is that the
average weight must be at least zero over every bounded wifrdm some point on. This objective can be seen as a
strengthening of the mean-payoff objective (resp. of thalyeayoff objective if we require that the window objeetiv

is satisfied from the beginning of the play rather than froomegoint on), i.e., winning for the bounded window
mean-payoff objective implies winning for the mean-payidifective. In the fixed window mean-payoff objective the
window length is fixed and given as a parameter. Observe tinaing for the fixed window objective implies winning
for the bounded window objective.

Attractive features for window objectives. First, they are a strengthening of the mean-payoff objestand hence
provide conservative approximations for mean-payoff ofjes. Second, the window variant is very natural to study
in system analysis. Mean-payoff objectives require awertagsatisfy certain threshold in the long-run (or in the
limit of the infinite path), whereas the window objectivesju@e to provide guarantee on the average, not in the
limit, but within a bounded time, and thus provide betterdiguarantee than the mean-payoff objectives. Third,
the window parameter provides flexibility, as it can be amjdsspecific to applications requirement of strong or
weak time guarantee for system behaviors. Finally, we siihklish that our variant in the single dimension is more
computationally tractable, which makes it an attractiterahtive to mean-payoff objectives.

Our contributions. The main contributions of this work (along with the undedidity of multi-dimensional total-
payoff games) are as follows:

1. Single dimensiorfor the single-dimensional case we present an algorithrthéfixed window problem that is
polynomial in the size of the game graph times the length efltimary encoding of weights times the size of
the fixed window. Thus if the window size is polynomial, we avpolynomial-time algorithm. For the bounded
window problem we show that the decision problem is inMlEoNP, and at least as hard as solving mean-payoff
games. However, winning for mean-payoff games does notimpining for the bounded window mean-payoff
objective, i.e., the winning sets for mean-payoff gamestanhded window mean-payoff games do not coincide.
Moreover, the structure of winning strategies is also véffgint, e.g., in mean-payoff games both players have
memoryless winning strategies, but in bounded window npesyeff games we show that player 2 requires infinite
memory. We also show that if player 1 wins the bounded wind@ampayoff objective, then a window of size
(19 -1)-(]5]-W+1) is sufficient whereSis the state space (the set of vertices of the graph)\arsgithe largest
absolute weight value. Finally, we show tfigta winning strategy for the bounded window mean-payoff abjec
ensures that the mean-payoff is at least 0 regardless afrfiegy of the opponent, arfi) a strategy that ensures
that the mean-payoff is strictly greater than 0 is winningtfee bounded window mean-payoff objective.

2. Multiple dimensionsFor multiple dimensions, we show that the fixed window peoblis EXPTIME-complete
(both for arbitrary dimensions with weights {r-1,0,1} and for two dimensions with arbitrary weights); and if
the window size is polynomial, then the problem is PSPACE}heaor the bounded window problem we show that
the problem is non-primitive recursive hard (i.e., theredgrimitive recursive algorithm to decide the problem).

3. Memory requirementdgzor all the problems for which we prove decidability we al$miacterize the memory
required by winning strategies.



The relevant results are summarized in Table 1: our resdti®dold fonts. In summary, the fixed window problem
provides an attractive approximation of the mean-paydiftatal-payoff games that we show have better algorithmic
complexity. In contrast to the long-standing open probldmrmean-payoff games, the one-dimension fixed window
problem with polynomial window size can be solved in polynaintime; and in contrast to the undecidability of
multi-dimensional total-payoff games, the multi-dimemsfixed window problem is EXPTIME-complete.

Related works. This paper extends the results presented in its precedinfgr@mce version [6] and gives a full
presentation of the technical details. Mean-payoff ganaws been first studied by Ehrenfeucht and Mycielski in [10]
where it is shown that memoryless winning strategies eaidb6th players. This entails that the decision problem lies
in NP N coNP [20,30], and it was later shown to belong to @BoUP [18]. Despite many efforts [16,30,26,22,17], no
polynomial-time algorithm for the mean-payoff games pesblis known so far. Gurvich, Karzanov, Khachivan and
Lebedev [16,20] provided the first (exponential) algoriftemmean-payoff games, later extended by Pisaruk [26]. The
first pseudo-polynomial-time algorithm for mean-payoffrggs was given in [30] and was improved in [2]. Lifshits
and Pavlov [22] propose an algorithm which is polynomialia €ncoding of weights but exponential in the number
of vertices of the graph: it is based on a graph decomposjitionedure. Bjorklund and Vorobyov [17] present a
randomizedalgorithm which is both subexponential and pseudo-polyiabhile all the above works are for single
dimension, multi-dimensional mean-payoff games have Istggtied in [29,5,8]. One-dimension total-payoff games
have been studied in [14] where it is shown that memoryleasiwg strategies exist for both players and the decision
problem is in UPN coUP.

2 Preliminaries

We consider two-player turn-based games and denote thplayersby P; andPs.

Multi-weighted two-player game structures. Multi-weighted two-player game structurase weighted graphs =
(S1,S, E, k,w) where () S; andS; resp. denote the finite sets of vertices, calieates belonging taP; and P, with

S5 NS =0andS= S US; (ii) E C Sx Sis the set okdgessuch that for als € S, there exists € Swith (s,5) € E;

(i) k € N is thedimensiorof the weight vectors; and) w: E — Z¥ is the multi-weight labeling function. When it

is clear from the context that a gar@els one-dimensionak(= 1), we omitk and write it asG = (S, $,E,w). The
game structur& is one-playeiif S, = 0. We denote bV the largest absolute weight that appears in the game. For
complexity issues, we assume that weights are encodedambidence we differentiate between pseudo-polynomial
algorithms (polynomial ilw) and truly polynomial algorithms (polynomialih= [log, W], the number of bits needed

to encode the weights).

A play in G from an initial states,,;; € Sis an infinite sequence of states= 5515, ... such thatsy = s,,;; and
(s,S+1) € Eforalli > 0. Theprefixup to then-th state ofrtis the finite sequence(n) = $3;1 ... . LetLast(m(n)) =
sy denote the last state @f(n). A prefix r(n) belongs taP;, i € {1,2}, if Last(r1(n)) € S. The set of plays 06 is
denoted byPlays(G) and the corresponding set of prefixes is denote@feys(G). The set of prefixes that belong to
Pi is denoted byPrefsi (G). The infinite suffix of a play starting is, is denotedt(n, ).

Thetotal-payoffof a prefixo = 5s1...sis TP(p) = }jgflw(s ,S+1), and itsmean-payoffs MP(p) = %TP(p).
This is naturally extended to plays by considering the comepdwise limit behavior (i.e., limit taken on each di-
mension). Thenfimum (resp. supremum) total-payaff a play it is TP (1) = liminf,_,. TP(71(n)) (resp.TP(m) =
limsup, ., TP(11(n))). Theinfimum (resp. supremum) mean-payoffrr is MP(m) = liminf,_. MP(71(n)) (resp.
MP(m) = limsup, .., MP(7(n))).

Strategies.A strategyfor P;, i € {1,2}, in G is a functionA;: Prefs;(G) — S such that(Last(p),Ai(p)) € E for

all p € Prefsi(G). A strategyA; for P; hasfinite-memonyif it can be encoded by a deterministic Moore machine
(M, mp, ay, an) whereM is a finite set of states (the memory of the strategy)c M is the initial memory state,
ay: M x S— M is an update function, angl,: M x § — Sis the next-action function. If the game is$re § and

m e M is the current memory value, then the strategy chodsesan(m,s) as the next state of the game. When the
game leaves a statec S, the memory is updated t,(m,s). Formally, (M, mg, ay, an) defines the strategy such
thatAi(p-s) = an(au(mo, p),s) for all p € S* ands € §, whered, extendsa, to sequences of states as expected. A
strategy ismemorylessf |M| =1, i.e., it does not depend on history but only on the curratesf the game. We
resp. denote by, AT, andAM the sets of general (i.e., possibly infinite-memory), furitemory, and memoryless
strategies for playep;.



A play rtis said to beconsistentwith a strategyA; of P; if for all n > 0 such thatLast(m(n)) € S, we have
Last(rr(n+ 1)) = Ai(m1(n)). Given an initial stats,,; € S, and two strategied,; for 1 andA; for P,, the unique play
from s,,;y consistent with both strategies is thetcomeof the game, denoted utcomeg(Snit, A1,A2).

Attractors. Theattractor for P, of a setA C Sin G is denoted b)AttrP (A) and computed as the fixed point of the
sequenceﬁkttrp1 "(A) = AttrZ"(A )U{se Si|3(st) €E, te Attrpt"(A)}U{s€ S|V (st) €E, t € Attrg " (A)},
with Attr (A) = A The attractovAttr 1(A) is exactly the set of states from whi@y can ensure to reach no
matter Whath does. The attractoikttrg2 (A) for Py is defined symmetrically.

Objectives.An objectivefor P, in Gis a set of playg C Plays(G). A play € Plays(G) is winningfor an objectivep

if T€ . Given a gamé and an initial stats,;; € S, a strategy\1 of Py is winning if Outcomeg (Sinit, A1,A2) € @ for

all strategies\, of P,. Given a rational threshold vecter QK, we define thénfimum (resp. supremum) total-payoff
(resp. mean-payoff) objectivas follows:

— Totallnfg(v ) {me Plays(G) | TP(m) > v}
— TotalSupg(v) = {me PIays(G) | TP(m) > v}
— MeanlInfg(v) = {m€ Plays(G) | MP(m) > v}
— MeanSupg(v) = {me Plays(G) | MP(m) > v}

Decision problem.Given a game structu®, an initial states,,;; € S, and an inf./sup. total-payoff/mean-payoff objec-
tive ¢ C Plays(G), thethreshold problenasks to decide iP; has a winning strategy for this objective. The threshold
v can be taken equal tf0}* (where{0}* denotes thé-dimension zero vector) w.l.0.g. as we transform the weight
functionw to b-w— afor any threshold, a € Z, b € Ng = N\ {0}.

3 Mean-Payoff and Total-Payoff Objectives

In this section, we discuss classical mean-payoff and-fragbff objectives. We show that while they are closely
related in one dimension, this relation breaks in multipfaehsions. Indeed, we establish that the threshold problem
for total-payoff becomes undecidable, both for the infimurd aupremum variants.

First, consider one-dimension games. In this case, meessgtrategies exist for both players for both objectives
[23,10,13,15] and the sup. and inf. mean-payoff problenisoide (which is not the case for total-payoff). Threshold
problems for mean-payoff and total-payoff are closelytaglaas witnessed by Lemma 1 and both have been shown to
be in NPncoNP [30,14].

Lemma 1. Let G= (S, S, E, k,w) be a two-player game structure angisc S be an initial state. Let A, B, C and D
resp. denote the following assertions.

A. PlayerP; has a winning strategy favleanSupg({0}¥).

B. PlayerP; has a winning strategy favleaninfg ({0}¥).

C. There exists a thresholdavQ¥ such thatP; has a winning strategy foFotallnfg(v).
D. There exists a threshold & QX such thatP; has a winning strategy foFotalSupg(V).

For games with one-dimension £k 1) weights, all four assertions are equivalent. For gameswitulti-dimension
(k> 1) weights, the only implications that hold are:=€ D = A and C=- B =- A. All other implications are false.

The statement of Lemma 1 is depicted in Fig. 1: the only ingtions that extend to the multi-dimension case are
depicted by solid arrows.

Proof. Specifically, the implications that remain true in multiigleted games are the trivial ones: satifaction of the
infimum version of a given objective trivially implies sdtistion of its supremum version, and satisfaction of infimum
(resp. supremum) total-payoff for some finite threshotdQ¥ implies satisfaction of infimum (resp. supremum) mean-
payoff for threshold{0} as from some point on, the corresponding sequence of meaffjreima (resp. suprema)

in all dimensiong, 1 <t <k, can be lower-bounded by a sequence of elements of theﬁ%ﬁrmith n the length of

the prefix, which tends to zero for an infinite play. That istketo the sequence of total-payoffs over prefixes being a



A: 3ALE MeanSupg ({0}¥) z==»> D: 3ve QX IAP E TotalSupg(V)

i \gzj,ﬂ 0

B: IAPE Meaninfg({0})  <——=-===> C: 3V € QX IAL E Totallnfg(V)

Fig. 1: Equivalence between threshold problems for meawfpand total-payoff objectives. Dashed implications are
only valid for one-dimension games.

sequence of integers: it always achieves the value of it ift) instead of only tending to it asymptotically as could
a sequence of rationals such as the mean-payoffs. This quto€u=- D = AandC = B = A being true even in the
multi-dimension setting.

In the one-dimension case, all assertions are equivalgst, we have that infimum and supremum mean-payoff
problems coincide as memoryless strategies suffice foragters. Thus, we addl = B andD =- B by transitivity.
Second, consider an optimal strategy far for the mean-payoff objective of threshold 0. This strateggguch that
all cycles formed in the outcome have non-negative effettieravise’”; cannot ensure winning. Thus, the total-
payoff over any outcome that is consistent with the samear@itstrategy is at all times bounded from below by
—2-(]§ —1)-W (once for the initial cycle-free prefix, and once for the emtrcycle being formed). Therefore, we
have thaB = C, and we obtain all other implications by transitive closure

(-1,-1,-1)

! !
a-a( 1] ey (1.1,@@(1.1,@

(-1,-1,-1)

Fig. 2: Satisfaction of supremum TP does notimply sat- Fig. 3: Satisfaction of infimum MP does not imply sat-
isfaction of infimum MP. isfaction of supremum TP.

For multi-weighted games, all dashed implications aresfalge specifically consider two of them.

1. To show that implicatio® = B does not hold, consider the one-player game depicted ir2Fgjearly, any finite
vectorv € Q for the supremum total-payoff objective can be achievedrbipfinite memory strategy consisting
in playing both loops successively for longer and longerquy, each time switching after getting back above the
threshold in the considered dimension. However, it is insfiils to build any strategy, even with infinite memory,
that provides an infimum mean-payoff @, 0) as the limit mean-payoff would be at best a linear combimedi
the two cycles values, i.e., strictly less than 0 in at least @imension in any case.

2. Lastly, implicationB = D failure in multi-weighted games can be witnessed in Fig.8afy, the strategy that
plays forn steps in the left cycle, then goes foisteps in the right one, then repeats for> n and so on, is a
winning strategy for the infimum mean-payoff objective ofetshold(0,0,0). Nevertheless, for any strategy of
P1, the outcome is such that either (i) it only switches betwagtes a finite number of time, in which case the
sum in dimension 1 or 2 will decrease to infinity from some poim, or (ii) it switches infinitely and the sum of
weights in dimension 3 decreases to infinity. In both cagesstipremum total-payoff objective is not satisfied for
any finite vecton € Q3.

All other implications are deduced false as they would otliee contradict the last two cases by transitivityd

In multi-dimension games, recent results have shown theathteshold problem for inf. mean-payoff is coNP-
complete whereas it is in NPcoNP for sup. mean-payoff [29,28]. In both casBg,needs infinite memory to win,
and memoryless strategies suffice ey [5,28]. When restricted to finite-memory strategies, thebfgm is coNP-
complete [5,28] and requires memory at most exponentidP{ds].



The case of total-payoff objectives in multi-weighted gastrectures has never been considered before. Surpris-
ingly, the relation established in Lemma 1 cannot be fulnsiposed in this context. We show that the threshold
problem indeed becomes undecidable for multi-weightedegsinuctures, even for a fixed number of dimensions.

Theorem 1. The threshold problem for infimum and supremum total-payjéictives is undecidable in multi-dimen-
sion games, for five dimensions.

We reduce the halting problem for two-counter machines éotlineshold problem for two-player total-payoff
games with five dimensions. Counters take valiwgsv,) € N? along an execution, and can be incremented or decre-
mented (if positive). A counter can be tested for equalitzeoo, and the machine can branch accordingly. We build
a game with a sup. (resp. inf.) total-payoff objective ofestrold(0,0,0,0,0) for P1, in which P; has to faithfully
simulate an execution of the machine, @ydcan retaliate if he does not. We present gadgets by wihathecks that
(a) the counters are always non-negative, and(ied zero test is only passed if the value of the counter is really.

The current value of counte(s;, v2) along an execution is encoded as the total sum of weighte $irecstart of the
game,(vq, —V1, V2, —Vo, —V3), with vz being the number of steps of the computation. Hence, aloaitddl execution,
the 1st and 3rd dimensions are always non-negative, wtel@kl, 4th and 5th are always non-positive. To check that
counters never go below zerf; is always able to go to an absorbing state with a self-loopafjht (0,1,1,1,1)
(resp.(1,1,0,1,1)). To check that all zero tests on counter 1 (resp. 2) areftdjtf®, can branch after a test to an
absorbing state with a self-loop of weiglit 0,1,1,1) (resp.(1,1,1,0,1)). Using these gadget®, can punish an un-
faithful simulation as he ensures that the sum in the dine@nsn whichP; has cheated always stays strictly negative
and the outcome is thus losing (it is only the casBiifcheats, otherwise all dimensions become non-negativednwh
an execution halts (with counters equal to zero w.l.o.gérad faithful execution, it goes to an absorbing state with
weight(0,0,0,0,1), ensuring a winning outcome f@?; for the total-payoff objective. If an execution does notthal
the 5th dimension stays strictly negative and the outcortusisg.

Proof. From a two-counter machine (2CMy1, we construct a two-player gant with five dimensions and an
infimum (equivalently supremum) total-payoff objectivesuhatP; wins for threshold0,0,0,0,0) if and only if the
2CM halts.

A 2CM has two counters that can be incremented or decremertddtan test if their value is equal to zero (called
zero test) and branch accordingly. The halting problem €2 is undecidable [25]. Assume w.l.0.g. that we have a
2CM M such that if it halts, it halts with the two counters equaléea? In the game we construd®; has to faithfully
simulate the 2CMM. The role of P, is to ensure that he does so by retaliating if it is not the dasece making the
outcome losing for the total-payoff objective.

The game is built as follows. The states @fare copies of the control states 8ff (plus some special states
discussed in the following). Edges represent transiti@isa/ben these states. The payoff function maps edges to 5-
dimensional vectors of the forrfty, —cy,Cp, —Cp,d), that is, two dimensions for the first count€r, two for the
second counte€y, and one additional dimension. Each increment of couBtefresp.C,) in M is implemented
in G as a transition of weightl,—1,0,0,—1) (resp.(0,0,1,—1,—1). For decrements, we have weights respectively
(-1,1,0,0,—1) and(0,0,—1,1,—1) for C; andC;. Therefore, the current value of countérsg, v,) along an execution
of the 2CMM is represented in the game as the current sum of weights; v, Vo, —V2, —Vv3), with v3 the number of
steps of the computation. The two dimensions per countarsse to enforce faithful simulation of non-negativeness
of counters and zero test. The last dimension is decreasedéfor every transition, except when the machine halts,
from when it is incremented forever (i.e., the playGrgoes to an absorbing state with self-ld@0,0,0,1)). This is
used to ensure that a play @&is winning iff M halts.

We now discuss how this gan@&ensures faithful simulation of the 2CM by P;.

— Increment and decremeaf counter values are easily simulated using the first founedtisions.

— Values of counters may never go below z&mensure this, we allo®, to branch after every step of the 2CM sim-
ulation to two special state%topneg and%topneg, which are absorbing and with self-loops of respective Wisig
(0,1,1,1,1) and(1,1,0,1,1). If a negative value is reached on cour@grresp.C;), P» can clearly win the game

5 This is w.l.0.g. as it suffices to plug a machine that deciehséh counters to zero at the end of the execution of the deresi
machine.



by branching to stats%topneg (resp.ﬁtopneg), as the total-payoff in the dimension corresponding tortegative
counter will always stay strictly negative. On the contrér{P, decides to go teétopneg (resp.ﬁtomeg) when the
value ofC; (resp.Cy) is positive, therP; wins the game as this dimension will be positive and the dinarwill
grow boundlessly. So these transitions are only uséd dheats.

— Zero tests are correctly executdd the same spirit, we allow?, to branch to two absorbing special states after
a zero tests}mZero andsfmZero with self-loops of weight$1,0,1,1,1) and(1,1,1,0,1). Such states are used by
P, if P, cheats on a zero test (i.e., pass the test with a strictitipesiounter value). Indeed, if a zero test was
passed with the value of countey (resp.Cy) strictly greater than zero, then the current sy —vi, Vo, —Vo, V3)
is such that-v; (resp.—V») is strictly negative. By going te},oszem (resp.s%oszem), P, ensures that this sum will
remain strictly negative in the considered dimension ferand the play is lost foP;.

Therefore, ifP; does not faithfully simulateM, he is guaranteed to lose (& On the other hand, iP, stops
a faithful simulation,P; is guaranteed to win. It remains to argue that he wins iff tteeinime halts. Indeed, if the
machineM halts, therfP; simulates its execution faithfully and either he is intptad and wins, or the simulation
ends in an absorbing state with a self-loop of wei@h0,0,0,1) and he also wins. Indeed, given that this state can
only be reached with values of counters equal to zero (by thgsis on the maching1, without loss of generality),
the running sum of weights will reach valu@ 0,0, 0, n) wheren grows to infinity, which ensures satisfaction of the
infimum (and thus supremum) total-payoff objective for #ireld(0,0,0,0,0). On the opposite, if the 2CMA1 does
not halt,’?; has no way to reach the halting state by means of a faithfullsition and the running sum in the fifth
dimension always stays negative, thus inducing a losingfola1, for both variants of the objective.

Consequently, we have that solving multi-weighted gameeifter the supremum or the infimum total-payoff
objective is undecidable. O

We end this section by noting that in multi-weighted totalpff games;?; may need infinite memory to win,
even when all states belong to hi® & 0). Consider the game depicted in Fig. 2. As discussed ipribef of Lemma
1, given any threshold vectarc Q?, P; has a strategy to win the supremum total-payoff objectivsuffices to
alternate between the two loops for longer and longer psyiedch time waiting to get back above the threshold in
the considered dimension before switching. This strateggds infinite memory and actually, there exists no finite-
memory strategy that can achieve a finite threshold vedtemégative amount to compensate grows boundlessly with
each alternation, and thus no amount of finite memory canrensuo above the threshold infinitely often.

4 Window Mean-Payoff Objective

In one dimension, no polynomial algorithm is known for mgmayoff and total-payoff, and in multiple dimensions,
total-payoff is undecidable. In this section, we introdtltewindow mean-payoff objectiva conservative approx-
imation in which local deviations from the threshold mustdoenpensated in a parametrized number of steps. We
consider avindow sliding along a play, within which the compensation mugigen. Our approach can be applied
both to mean-payoff and total-payoff objectives. Since arsideffinite windows, both versions coincide for threshold
zero. Hence we present our results for mean-payoff.

In Sec. 4.1, we define the objective and discuss its relatithmean-payoff and total-payoff objectives. We then
divide our analysis into two subsections: Sec. 4.2 for omegedsion games and Sec. 4.3 for multi-dimension games.
Both provide thorough analysis of tliked window problenfthe bound on the window size is a parameter) and the
bounded window problerfexistence of a bound is the question). We establish sokiggrithms, prove complexity
lower bounds, and study the memory requirements of thesetgs. In Sec. 4.4, we briefly discuss the extension of
our results to a variant of our objective modeling strongeuirements.

4.1 Definition and comparison

Objectives and decision problemsGiven a multi-weighted two-player ganm@ = (S,$, E,k,w) and a rational
thresholdv € QX, we define the following objectives.

6 For brevity, we omit thatt € Plays(G).



— Givenlnax € Np, thegood windowobjective

111
GWg(VImax) = {Tf‘ v, 1<t <k, 3l <lmax, T z W(&T(p: pJFl)) (t) = V(t)}: 1)
I &
whereeq(p, p+1) is the edgé€Last(1(p)), Last(r1(p+ 1))), requires that for all dimensions, there exists a window

starting in the first position and boundedlkyx over which the mean-payoff is at least equal to the threshold
— Givenlmax € Ny, thedirect fixed window mean-payafbjective

DirFiXWMPG(V, Imax) = {rr\ Vj>0, m(j,e) e GWG(v,ImaX)} )

requires that good windows boundedIhyx exist in all positions along the play.
— Thedirect bounded window mean-payafbjective

DirBndWMPg(V) = {n| Almax >0, TE DirFixWMPG(V,ImaX)} @)

asks that there exists a boulRdy such that the play satisfies the direct fixed objective.
— Givenlmax € Ny, thefixed window mean-payofibjective

FixWMPG(V, Imax) = {n\ 3i >0, ni(i, ) € DirFixWMPG(V,ImaX)} (4)

is theprefix-independentersion of the direct fixed window objective: it asks for theséence of a suffix of the
play satisfying it.
— Thebounded window mean-payafbjective

BndWMPGg (V) = {n| Jlmax > 0, M€ FixWMPG(v,Imax)} )

is theprefix-independentersion of the direct bounded window objective.
For anyv € QK andlmax € No, the following inclusions are true:

DirFixWMPg (V, Imax) € FIXWMPG(V, Imax) € BndWMPg (), (6)
DirFixWMPg (V, Imax) C DirBndWMPg(v) € BndWMPg(V). @

Similarly to classical objectives, all objectives can beiealently expressed for threshald= {0} by modifying the
weight function. Hence, given any variant of the objectihe associatedecision problenis to decide the existence
of a winning strategy fofP; for threshold{0}X. Lastly, for complexity purposes, we make a difference leetw
polynomial(in the size of the game) aragbitrary (i.e., non-polynomial) window sizes.

Notice that all those objectives define Borel sets. Hencgdhe determined by Martin’s theorem [24].

Let m=55%... be a play. Fix any dimensidnl <t < k. The window from positiorj to j/, 0< j < j/, isclosed
iff there existsj”, j < j” < j’ such that the sum of weights in dimensioover the sequencg. .. s is non-negative.
Otherwise the window ispen Given a positiorj’ in 77, a window is still open irj’ iff there exists a position & j < j’
such that the window fronji to j’ is open. Consider any edd®,s 1) appearing alongr. If the edge is non-negative
in dimensiont, the window starting in immediately closes. If not, a window opens that must be dasgighin Imax
steps. Consider thiirst positioni’ such that this window closes, then we have that all interengdipened windows
also get closed by, that s, for any”, i <i” <i’, the window starting ifi” is closed before or when reaching position
i’. Indeed, the sum of weights over the window fréhto i’ is strictly greater than the sum over the window froto
i, which is non-negative. We call this fact theluctive property of windows

lllustration. Consider the game depicted in Fig. 4. It has a unique outcantit is winning for the classical mean-
payoff objective of threshold 0, as well as for the infimumsfresupremum) total-payoff objective of thresheld
(resp. 0). Consider the fixed window mean-payoff objectaetifireshold 0. If the size of the window is bounded by
1, the play is losind.However, if the window size is at least 2, the play is winniag,inss we close the window in
two steps and iis4 in one step. Notice that by definition of the objective, itlisar that it is also satisfied for all larger

7 A window size of one actually requires that all infinitely erftvisited edges are of non-negative weights.



Fig. 4: Fixed window is satisfied fdmax > 2, whereas even Fig.5: Mean-payoff is satisfied but none of the
direct bounded window is not. window objectives is.

sizes® As the fixed window objective is satisfied for size 2, the bathdindow objective is also satisfied. On the
other hand, if we restrict the objectives to their direciaats, then none is satisfied, as frggnno window, no matter
how large it is, gets closed.

Consider the game of Fig. 5. Again, the unique strategyicfatisfies the mean-payoff objective for threshold 0. It
also ensures valuel for the infimum and supremum total-payoffs. Consider theet)y of P, that takes the self-loop
once on the first visit 0§, twice on the second, and so on. Clearly, it ensures thatamindtarting ins; stay open
for longer and longer numbers of steps (we say tadlelaysthe closing of the window), hence making the outcome
losing for the bounded window objective (and thus the fixeddeiv objective for anymax € Np). This illustrates the
added guarantee (compared to mean-payoff) asked by th@wiobjective: in this case, no upper bound can be given
on the time needed for a window to close, i.e., on the time eg¢alget the local sum back to non-negative. Note that
P, has to go back ts; at some point: otherwise, the prefix-independence of theatibg$ allows P; to wait for P,
to settle on cycling and win. For the direct variarfs, has a simpler winning strategy consisting in looping forgve
as enforcing one permanently open window is sufficient.

Relation with classical objectivesWe introduce the bounded window objectives as conservappeoximations

of mean-payoff and total-payoff in one-dimension gamedeé&d, in Lemma 2, we show that winning the bounded
window (resp. direct bounded window) objective implies miirg the mean-payoff (resp. total-payoff) objective while
the reverse implication is only true if a strictly positiveeem-payoff (resp. arbitrary high total-payoff) can be eadu

Lemma 2. Given a one-dimension game=5(S;, S, E, w), the following assertions hold.

(a) If the answer to the bounded window mean-payoff probdevteis, then the answer to the mean-payoff threshold
problem for threshold zero is alS6Es.

(b) If there existE > 0 such that the answer to the mean-payoff threshold problerinfesholde is YES, then the
answer to the bounded window mean-payoff problem isédsa

(c) If the answer to the direct bounded window mean-payoftbiem isY Es, then the answer to the supremum total-
payoff threshold problem for threshold zero is al¥Bs.

(d) Ifthe answer to the supremum total-payoff thresholdbfem isY Esfor all integer thresholds (i.e., the total-payoff
value isw), then the answer to the direct bounded window mean-payatffgm is alsoY ES.

Assertionsg(a) and(c) follow from the decomposition of winning plays into boundethdows of non-negative
weights. The key idea for assertiofty and(d) is that mean-payoff and total-payoff objectives always gdrmem-
orylesswinning strategies, for which the consistent outcomes aaadromposed intsimple cyclegi.e., with no
repeated edge) over which the mean-payoff is at least egtia¢tthreshold and which length is bounded. Hence they
correspond to closing windows. Note that strict equivadenih the classical objectives is not verified, as withessed
before (Fig. 5).

Proof. Assertion (a)In the one-dimension case, sup. and inf. mean-payoff probicoincide. Leit € Plays(G) be
such thatt € BndWMPg(0). There exist$ > 0 such that the suffix aff starting ini can be decomposed into an infinite
sequence of bounded segments (i.e., windows) of non-wegagight. Thus, this suffix satisfies the sup. mean-payoff

8 The existential quantification on the window sizébounded bylmax, is indeed crucial in eq. (1) to ensure monotonicity with
increasing maximal window sizes, a desired behavior of diimition for theoretical properties and intuitive use irsifications.

9 Fixed and bounded window mean-payoff objectives are piatiependent: for alp € Prefs(G), 1 € Plays(G), we have that
p - ris winning if and only ifrris winning.



objective as there are infinitely many positions where thal teum fromi is non-negative. Since the mean-payoff
objective is prefix-independent, the plays itself winning.

Assertion (b)Consider a memoryless winning strategyaffor the mean-payoff of threshokd> 0. Only strictly
positive simple cycles can be induced by such a strategysi@enany outcomer = gp010,... consistent with it.
We claim that for any positiof along this play, there exists a positipa- |, with | <Inax= (|9 —-1)- (14|95 -W),
such that the sum of weights over the sequemeed; ... 0y is non-negative. Clearly, if it is the case, then objective
FixWMPG(v,Imax) is satisfied and so is objectiBndWMPg(v). Consider the cycle decompositiotCiCs . ..CnBB of
this sequence obtained as follows. We push successiyety, ... onto a stack, and whenever we push a state that is
already in the stack, a simple cycle is formed that we remowa the stack and append to the cycle decomposition.
The sequencg is decomposed into an acyclic par () B) of length'® at most(|S| — 1) and total sum at least(|S —

1) -W and simple cycles of total sum at least 1 and length at 18s6Given the window sizénay, We have at least
(IS|— 1) -W simple cycles in the cycle decomposition. Hence, the tatal sverp is at least zero, which proves our
point.

Assertion (c) Consider a playt € DirBndWTPg(0). Using the same decomposition argument as for assertion
(a), we have that the sequence of total sums takes infinitely) oftdies at least equal to zero. Thus the limit of this
sequence of moments bounds from below the limit of the semehsuprema and is at least equal to zero, which
shows that the supremum total-payoff objective is alssgati by playr.

Assertion (d) In one-dimension games, the value of the total-payoff, (ite largest threshold for which; has a
winning strategy) iso if and only if the value of mean-payoff is strictly positivé4]. Hence, we apply the argument
of assertior(b), further noticing that the window open in positigiis closed in at modtyax steps for anyj > 0, which
is to say that thelirect objective is satisfied. O

4.2 Games with one dimension

We now study thdixed window mean-payofind thebounded window mean-payafbjectives in one-dimension
games. For the fixed window problem, we establish an algarttiat runs in time polynomial in the size of the game
and in the size of the window and we show that memory is neeatdabtth players. Note that this is in contrast to the
mean-payoff objective, whef@, is memoryless even in the multi-dimension case (cf. TahlMbyeover, the problem

is shown to be P-hard even for polynomial window sizes. Febibunded window problem, we show equivalence with
the fixed window problem for siz8S — 1) - (|§ -W + 1), i.e., this window size is sufficient to win if possible. The
bounded window problem is then shown to be inMIEONP and at least as hard as mean-payoff games.

Fixed window: algorithm. Given a games = (S, S, E,w) and a window sizémax € Np, we present an iterative
algorithmFWMP (Alg. 1) to compute the winning states Bj for the objectiveFixWMPg(0,Imax). Initially, all states
are potentially losing foP;. The algorithm iteratively declares states to be winniegioves them, and continues the
computation on the remaining subgame as follows. In evergiion,i) DirectFWMP computes the s&tj; of states
from which 1 can win the direct fixed window objectivé) it computes the attractor ¥; and then proceeds to
the next iteration on the remaining subgame (the restriadbG to a subset of state& C Sis denotedG | A). In
every iteration, the states of the computeddgare obviously winning for the fixed window objective. Thanéshe
prefix-independence of the fixed window objective, the attatoW; is also winning. Sincé,; must avoid entering
this attractor;P, must restrict his choices to stay in the subgame, and henderage on the remaining subgame.
Thus states removed over all iterations are winningRgr The key argument to establish correctness is as follows:
when the algorithm stops, the remaining set of stéfds such thatP, can ensure to stay W and falsify the direct
fixed window objective by forcing the appearance of one opawew larger tharnmax. Since he stays i, he can
repeatedly use this strategy to falsify the fixed window otdje. Thus the remaining s#l is winning forP,, and the
correctness of the algorithm follows.

The main idea of algorithrDirectFWMP (Alg. 2) is that to win the direct fixed window objectivB; must be able
to repeatedly win the good window objective, which consistsnsuring a non-negative sum in at mbgix steps. A
winning strategy ofP; in a states is thus a strategy that enforces a non-negative sumamsioon as the sum turns
non-negativeéin some state), starts doing the same frogh It is important to start again immediately as it ensures
that all suffixes along the path frogto s also have a non-negative sum thanks to the inductive pryppéwindows.

10 The length of a sequence is the numbeedgest involves.

10



Algorithm 1 FWMP(G, Imax) Algorithm 2 DirectFWMP (G, Imax)

Require: G = (S,$,E,w) andlmax € No Require: G = (S,$,E,w) andlmax € No
Ensure: W is the set of winning states f@p; for FixWMPg(0,lmax) Ensure: Wy is the set of winning states forP; for
n:=0;W:=0 DirFixWMPg(0, Imax)
repeat Waw := GoodWin(G, Imax)
W) := DirectFWMP (G, Imax) if Wy = SorW, = 0 then
W3, = Attrl L (WD) {attractor forPy } W = Wow
Wi=WUWg, ;G:=G| (S\W);n:=n+1 else
until W= SorWh; =0 W := DirectFWMP (G | Wyw, Imax)
return W retum W

Algorithm 3 GoodWin(G,Imax)

Require: G = (S,$,E,w) andlmax € No
Ensure: Wy, is the set of winning states f@&@Wg (0, max)
for all se Sdo

Co(s):=0
forall i € {1,...,Imax} do
forall s€ S do
Ci(9) = MaX gy e (W(S.S)) +Ci1()}
forall s€ S do
Ci(S) = Min¢)ce {W((s,)) + G -1(s)}
return Wy := {s€ S|3i, 1 <i <lmax, Ci(s) > 0}

That is, for any statg’ in between, the window frorg’ to § is closed. The set of states from whigh can ensure
winning for the good window objective is computed by subieiGoodWin (Alg. 3). Intuitively, given a stats € S
and a number of steps> 1, the valueCi(s) is computed iteratively (fror@;_1(s)) and represents the best sum tRat
can ensure frors in exactlyi steps. Hence, the set of winning states7aris the set of states for which there exists
somei, 1 <i <Imaxsuch thatCi(s) > 0. We state the correctness@odWin in Lemma 3.

Lemma 3. Algorithm GoodWin computes the set of winning states7af for the good window objective in time
O (|9 |E| - Imax- V), with V = [log, W1, the length of the binary encoding of weights.

Proof. Let Wy C Sdenote the winning states fGWg(0, Imax). We prove that (a§ € Wy = s € GoodWin(G, Imax),
and (b)s € GoodWin(G,Imax) = s€ Wj.

We first consider case (a). Frosnthere exists a strategy &% that enforces a non-negative sum aftsteps, for
somel, 1 <1 <lInax. Hence, the valu€ (s) computed by the algorithm is non-negative @& GoodWin(G, Imax)-

Case (b). Assumge GoodWin(G,Imax). By definition of the algorithnGoodWin, there exists somle< Imax such
thatC (s) is positive. Consequently, taking the choicd @&dges that achieves the maximum value defines a strategy
for P1 that ensures a positive sum aftesteps, hence closing the window started.iffhat is,s € Wj.

It remains to discuss the complexity GbodWin. Clearly, it takes a number of elementary arithmetic openat
which is bounded by (]S - |E| - Imax) to compute the sétj,. Each elementary arithmetic operation takes time linear
in the number of bitd/ of the encoding of weights, that is, logarithmic in the latgeeightW. Hence, the time
complexity ofGoodWin is O(|S - |E| - Imax- V). O

Thanks to the previous lemma, we establish the algorithrirapthe direct fixed window objective.

Lemma 4. AlgorithmDirectFWMP computes the set of winning stateg®affor the direct fixed window mean-payoff
objective in time? (|2 |E| - Imax- V), with V = [log, W], the length of the binary encoding of weights.

Proof. Let W be the set of winning states f®irFixWMPg(0,Imax), i.€.,
seW & dA e N1, VA e Mo, Outcomeg(s,/\l,)\z) S DirFiXWMPG(O,lmaX).

We first prove (af € DirectFWMP(G,Imax) = s€ W, and then (bl € W = s &€ DirectFWMP(G, Imay). First of all,
notice thatDirectFWMP exactly computes the set of statdlg such that a non-negative sum is achievable in at most
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Imax Steps, using only states from which a non-negative sum ks achieved in at mokfax steps (hence the
property is defined recursively).
Consider case (a). Letc Wy. Consider the following strategy &f;.

1. Play the strategy prescribed GgodWin until a non-negative sum is reached. This is guaranteed tioebease in
at mostinax steps. Let be the state that is reached in this manner.

2. By construction o5, we have thas € Wy. Thus, play the strategy prescribed®yodWin in §.

3. Continue ad infinitum.

We denote this strategy by, and claim it is winning for the direct fixed window objectivieg., s € W. Indeed,
consider any strategy ¢, and letrr= Outcomeg(s,A1,A2). We haverr = 010>. .. Om, Om 41 - - Om, Omy41 - .- With
Vj>0,0; € Sandoy = gm, = S, such that all sequenc@gn) = g, ... Om,,, are of length at modinax+ 1 (Imax
steps) and such that all strict prefixesagh) are strictly negative and all suffixes pfn) are positive. Indeed, starting
in some statey,,, the strategy\; keeps a memory of the current sum and tries to reach a noriiveegalue (using
the strategy prescribed 3oodWin). As soon as such a value is reached in a stgfe, , the memory of the current
sum kept by the strategy is reset to zero and the procesdastess That way, for al|, m, < j < my,1, we have that
the sum over the sequence framto on,,, is non-negative, hence all intermediate windows are atsgecl. Thus, the
window property is satisfied everywhere along the ptagtarting ino; = s, which proves thas € W.

Case (b). Lefd; be a winning strategy oP; for DirFixWMPg(0,Imax). FOr any strategy, of P,, the outcome is
a playmm= 010,... with g1 = s such that the window property is satisfied from all stategdrticular, this implies,
that for all gj, strategy\, enforces a positive sum in at mdshx steps, that isg; € GoodWin(G, Imax). Since it is the
case for all statesj, we have thaf;, has a strategy to ensure a positive sum in at rhgststeps using only states
from which this property is ensured. Therefore, we conchhdés € Wy.

Again, the number of calls of this algorithm is at most the benof state$S. Let Cew denote the complexity of
algorithmGoodWin. Then, the complexity of algorithirectFWMP is O (|- Cew). O

Finally, we prove the correctness of the algorithm for thediswindow problem.

Lemma 5. AlgorithmFWMP computes the set of winning statesaffor the fixed window mean-payoff objective in
time O (|93 |E| - Imax- V), with V = [log, W], the length of the binary encoding of weights.

Proof. Let W C Sbe the set of states that are winning Fi*WMP (0, Imax), i.€.,
seW & dA e N1, VAo e Mo, Outcomeg(s,)\l,/\z) S FiXWMpg(O, |max)-

Note that since we set the threshold to be 0 (w.l.0.g.), we igragre the division by the window sizen eq. (1). We
claim thatFWMP(G, Imax) = W. The proof is in two parts: (& € FWMP(G,Imax) = s€ W, and (b)se W = s¢
FWMP(G, Imax)-

We begin with (a). LetWy)"=° and (Watr )"0 be the finite sequences of sets computed by the iterativeitigo
We have thaEWMP (G, Imax) = Un>0Wat,- For anyn, i’ such thah # ', we have tha\,, AW, =0 andwy ﬂWd”’ =
0. Moreover, for alln > 0, W' C Wi, Lets € FWMP(G,Imax). There exists a unique> 0 such thas € Wg,. By
construction, frors, 1 has a strategy to reach and stay\ii UWIZtUWEL2U .. WY, and thussis winning in the
subgameS | (S\ Wi, t). However,P; still has the possibility to leav/] and reach the st * UWa,2 U ... W,
Since the sequence is finite afd cannot leava\?, we have that at some point, any outcome is trapped in some set
W], 0 < m < n, in which Py wins the direct fixed window objective. Latbe the length of the finite prefix outside
W]". The outcome satisfies the fixed window mean-payoff objedtivi = x. Therefore, we have thatc WW.

Now consider (b). Les € WV be a winning state fdfix\WMPg (0, Imax). We claim thas € FWMP (G, Imax). Suppose
it is not the case and consider the sequerféés"=° and (Wi )">° as before. We have that for ail> 0, s ¢ W1,
In particular,P, can force staying iffrap = S\ Un>0Watr When starting irs. Since the algorithm has stopped, we
have thaDirectFWMP (G | Srap,|max) = 0. As algorithmDirectFWMP is correct, from all states @ap, P2 has a
strategy to spoil the direct fixed window game, i78;,can force a sequence of states such that there exists apgsiti
along it for which the window starting instays open for at leastnax+ 1) steps, and such that this sequence remains
in Srap. ThereforeP, can force staying itsrap and seeing infinitely often such sequences, héhds losing for the
fixed window mean-payoff objective, which contradicts taetfthats € W.
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Finally, consider the complexity of the recursive algantRWMP. Notice that at least one state is declared win-
ning at each iteration. The number of calls is thus at mosntimber of statefS. Computing the attractor is linear in
the number of edge&| < |SJ2. The overall complexity is thu® (|5 - (|E| + Cpw)), whereCpyy is the complexity of
the DirectFWMP algorithm. O

Fixed window: lower bounds. Thanks to the correctness of algorittiwMP, we also deduce linear upper bounds
(in |S - Imaxy) on the memory needed for both players (Lemma 6). Indeed; 4e§ be a winning state foP;. A
winning strategyl; for Py is to (a) reach the set of staté4' that are winning for the direct fixed window objective
in the subgame restricted to stal/$ \ W1, then (b) repeatedly play the strategy prescribedsbydWin in this
subgame (i.e., enforce a non-negative sum in less tharsteps, see proof of Lemma 4).H, leaves for a lower
subgame restricted War{tr, n’ < n, the strategy is to start again part (a) in this subgame.(Bai$ memoryless as it
uses a classical attractor strategy. Part (b) requiresnsider, for each sta® in the set computed bRirectFWMP,

a number of memory states which is bounded hy, as the only memory needed is to select the corresponding
successor state that will maximize t8¢s') value, for all possible values bfthe number of steps remaining to close
a window. Similarly,P, needs to be able to prevent the closing of a window repeatadtytherefore also possibly
needdmax memory states for each state of the game.

To illustrate that memory is needed by both players, comsiefollowing examples. First, consider a game where
all states belong t®; and such that the play starts in a central statad ins, there are three outgoing edges, towards
three simple cycle€;, C2, andCs. All other states have only one outgoing edge. Cytlés composed of six edges
of successive weights,3,5,—1,—1 and—5. CycleC, is 7,—1 and—9. CycleCs is 55 and—11. The objective is
FixWMPg(0,Imax = 4). Clearly, from some point on, a winning strategy®f has to infinitely alternate between
cycles in the following way(C1C,>C3)®. Any other alternation leads to a bad window appearing irgipoften: hence,
the decision ofP; in sdepends on the remaining number of steps to ensure a goodwiSécond, consider a similar
game but with all states belonging®. Again, the initial state is central and there are two cy€eandC, such that
C; is 1 followed by—1, andC, is —1,—1 and 2. The objective iIBixXWMPg(0,Imax = 3). If P, is memoryless, both
possible strategies induce a winning play far. On the other hand, iP, is allowed to alternate, he can choose the
play (C1C2)® which will be losing forP; as the window-1, —1, —1 will appear infinitely often.

Lemma 6. In one-dimension games with a fixed window mean-payoff tsgeenemory is needed by both players
and linear memory in the number of states times the windaisigufficient.

Through Lemma 5, we have shown that the fixed window problemitgca polynomial (inS|, V andlmay) algo-
rithm. In Lemma 7, we prove that even for window slzgx = 1 and weight§ —1, 1}, the problem is P-hard. This is
via a reduction from reachability games. By making the tbstptes absorbing with a self-loop of weight 1, and giving
weight—1 on all other edges, we obtain the reduction, as reachinggattatate is now the only way to ensure that
windows close.

Lemma 7. In two-player one-dimension games, the fixed window megofpproblem is P-hard, even fopdx =1
and weight{—1,1}.

Proof. Let G, = (S1,$,E) be an unweighted game with a reachability objective aslingsit (at least once) a state
of the setR C S. We build the gam& = (S, S, E’,w) by (a) making the target states absorbing with a self-loop of
weight 1, i.e., for als € R, we have(s,s) € E’ andw((s,s)) = 1, and (b) putting weight-1 on all other edges, i.e., for
all edge(s,t) € E such thas ¢ R, we have(s,t) € E’ andw((s,s)) = —1. We claim that?; has a winning strategy in
G, from a states € Sif and only if he has a winning strategy for the objecthieWMPg(0,Imax= 1) in Gfromse S.
Indeed, it is clear that any outcome that never reachesthettset is such that all windows stay indefinitely open, and
conversely, an outcome that reaches this set afseps is winning for the fixed window objective with= n. Since
deciding the winner in reachability games is P-completis,¢bncludes our proof. O

Fixed window: summary. We sum up the complexity analysis of the fixed window problarfiieorem 2.

Theorem 2. In two-player one-dimension games, (a) the fixed arbitraiydaw mean-payoff problem is decidable
in time O (1S3 |E| - Imax-V), with V = [log,W], the length of the binary encoding of weights, and (b) thedfixe
polynomial window mean-payoff problem is P-complete. megal, both players require memory, and memory of size
linear in |S - Imaxis sufficient.
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Bounded window: algorithm. In the following, we focus on the bounded window mean-payoffblem for two-
player one-dimension games. We start with two technicaimesirelated to the classical supremum total-payoff
threshold problem. Using these lemmas, we establish a 8NP algorithm to solve the bounded window prob-
lem and, as a corollary, we get an interesting bound on thdawirsize needed to win the fixed window problem if
possible.

The first technical lemma (Lemma 8) states thaPifhas a strategy to win the supremum total-payoff objective
from some stats,;;, then he can force a non-negative sum from this state in at (i#®s- 1) - (|S - W+ 1) steps, i.e.,
he wins the good window objective for this window size.

Lemma 8. Let G= (S,$,E,w) be a two-player one-dimension gameAf has a strategy to win for objective
TotalSupg(0) from initial state g,;; € S, therP; also has a strategy to win for the good window objec@Weg (0, Imax)
from Snit for Imax= (|9 — 1) - (|S]-W+1).

This result is obtained by considering a memoryless winstrategy ofP; for the total-payoff and the decompo-
sition in simple cycles of any consistent outcome whereifhgesimple cycles are strictly positive, or (b) they are of
value zero but preceded by a non-negative prefix.

Proof. Let A1 € /\{V| be a memoryless winning strategy Bf for TotalSupg(0). Our claim is that for all possible
outcomert consistent withA1 starting in the initial state,;;, there exists a prefip of 1T of size at mostyax such
that the total sum of weights overis non-negative. Letr be any outcome consistent with and p; its prefix of
length(|S|— 1) - (]S -W+1). Consider the cycle decomposition (see the proof of Lemnud 2): A,C1,Co,...,Cm, B,
with A the prefix before the first cycle arigithe suffix after the last cycle ip;. The total length of the acyclic part is
|A|+1|B| < |S|— 1. We claim that there exists a prefpof p; such that the total sum of weights oyeis non-negative.
Consider the following arguments:

1. NocycleC in {C1,...,Cm} can be strictly negative. Otherwise, sinkeis memorylessP, could force cycling in
such a cycle forever and the play would be losing for the supra total-payoff objective, which contradicts
being a winning strategy.

2. Assume that there exists a cy€lén {Ci,...,Cm} such that the sum of weights over this cycle is zero. We define
the high pointof a cycle as the first state where the sum from the start ofytbke ¢akes its highest value. Then,
the prefixp of p1 up to this high point is non-negative and we are done. Indagsijme it is not the case. Then,
the running sum over the outcormas strictly negative when reaching the high point, and stgstly negative in
all positions along the cyclé, by definition of the high point. Therefor®, can force cycling forever i@ since
A1 is memoryless and the outcome becomes losing for the tatadfpobjective.

3. So assume there are only strictly positive cycles in tlideayecomposition gby, that is, they all have a total sum
of value at least 1. The total sum ow&r,...,Cr is at least equal tan. Since each cycle is of length at mdSt
and. AU B is of length at mostS — 1, we have that the number of cyclesin the cycle decomposition ¢ is
atleast((|9—1)-(|9-W+1)— (]9 —1)) /|9 = (|5 — 1) -W. Given that the total sum over prefik is at least
—(|9]— 1) -W, we obtain thap = AC1C>...Cnis the desired prefix with a non-negative total sum, and itgtle
is bounded by{|§ — 1)- (]S -W+1).

This concludes our proof. O

The second technical lemma (Lemma 9) shows th&pihas a strategy to ensure that the supremum total-payoff
from some stats,,;; is strictly negative, then he has a memoryless strategy tm@md any outcome starting ins;;
and consistent with this strategy is such that the direchtded window mean-payoff objective is not satisfied.

Lemma 9. Let G= (S,$,E,w) be a two-player one-dimension gamePi has a spoiling strategy for objective
TotalSupg(0) from initial state g: € S, thenP, has a strategy, € /\2M to ensure that for all possible outcome
TT= 001 ... consistent withh, starting in gp = Sit, there exists a positiont 0 such that for all window sizest 1,
the total sum of weights on the window framto g; | is strictly negative.

Proof. By contradiction. LetA, € /\é\’| be a memoryless spoiling strategy for objectiugtalSupg(0) from s, € S.
Let 7T be a consistent outcome and assume that it does not respdetitma, i.e., for all positionis> 0, there exists
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Algorithm 4 BoundedProblem(G)

Require: GameG = (S;,$,E,w)
Ensure: W, is the set of winning states f@P; for the bounded window
mean-payoff problem

Algorithm 5 UnbOpenWindow(G)

Require: GameG = (S,$,E,w)
Ensure: L is the set of states from whicR, can force a position for which the

Wy 1= 0 window never closes
P ) p:=0;Lo:=0
L := UnbOpenWindow(G) repeat
while L # S\ W, do
;1 Lpi1 = LpUAttrSls, (NegSupTP(G 1(S\ Lp)))
Whp := Attrg 2 (S\ L) pi=pt1
Li= UnbOpenWindow(G | (S\vvop)) :’;glrrl]-pl_:_l_-pl:l
=Llp

return Whp

a window sizd > 1 such that the window frong; to g; is hon-negative. Then the playcan be decomposed as a
sequence of finite windows of non-negative weights. Hermetdtal sum fronog = s,;; takes infinitely often values
at least equal to zero and the limit of its suprema is nonnagd his is in contradiction td, being a winning strategy
for P,. |

Thanks to Lemma 8 and Lemma 9, we are now able to establishraddRP algorithm (Alg. 4) to solve the
bounded window mean-payoff problem on two-player one-disitn games. Lemma 10 states its correctness.

Algorithm BoundedProblem (Alg. 4) computes via a subroutingnbOpenWindow the set of states from which
P, can force the visit of a position such that the window opeminipis position never closes. Clearly, to prevént
from winning the bounded window proble®; must be able to do so repeatedly as the prefix-independeribe of
objective otherwise gives the possibility to wait that aitk bad positions are encountered before taking the windows
into account. Therefore, the states that are natrihOpenWindow(G), as well as their attractor, are winning fBy.
Since the choices dP, are reduced because of the attractofPefbeing declared winning, we compute in several
steps, adding new states to the set of winning stateBfap to stabilization.

Now consider the subroutingnbOpenWindow (Alg. 5). Its correctness is based on Lemma 9. Indeed, it cdesp
the set of states from whic¢h, can force a position for which the window never closes. Toalatsuffices to compute
the attractor fofP, of the set of states from whicR, can enforce a strictly negative supremum total-payoff.tiReu
NegSupTP returns this set of states in NRONP complexity [14]. Again, we compute the fixed point of #egjuence
as at each iteration, the choicesfare reduced.

The main idea of the correctness proof is that from all stat&¥,,, P> has an infinite-memory winning strategy
which is played in rounds, and in rounensures an open window of size at leaby playing the total-payoff strategy
of P, for at mosin- || steps, and then proceeds to rognd- 1) to ensure an open window of size+ 1), and so on.
Hence, windows stay open for arbitrary large periods andbthamded window objective is falsified.

Lemma 10. Given a two-player one-dimension game=GS;, &, E, w), the algorithmBoundedProblem computes
the set of winning states f@; for the bounded window mean-payoff objective of thresBaidime O(|S?- (|E|+C)),
whereC is the complexity of algorithiNegSupTP, i.e., the complexity of computing the set of winning stizteswo-
player one-dimension supremum total-payoff game. Thgsyithm BoundedProblem is in NPN coNP.

Proof. It suffices to show that for all states W, = BoundedProblem(G), there exists a winning strategy @,
whereas for all states i8\ W, there exists one dP».

Consider a statec W, ,. Conside(L™)o<m<n, the finite sequence of sdtshat are computed bgoundedProblem,
with Lo = UnbOpenWindow(G); and (Wg',‘))ogmgn, the corresponding finite sequence of 38 WhereWt?p =0is

empty andAfj, =W, is the returned set of winning states. Forrallm, 0 <’ < m < n, we have that\; > Wb”g
andL™ c L™. By construction, there exists, 1 < m < n such thats Wop = Attrgl(S\ L™1). In the subgame
G| ((S\L™h \Wb”,‘;l), P1 has a memoryless [15] winning strategy for the supremuni-patgoff objective. Hence,

consider the strateglys of P; which is to reach the s¢&\ L™1) (in at most|S| steps) and then play the memoryless
total-payoff strategy in the subgame. It is possiblefgito force leaving this subgame for a lower subsﬁg C Wb”l‘)

with m’ < mbut since the sequence is finite, any outcome is ultimatafyped in some subgarge] ((S\L™ )\ W ).
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Therefore, repeating the strategy in each subgame ensures that after a finite number of stegsh@te a finite
number of positions for which windows never close), a bottarhgameG | ((S\L™)\ W) is reached and, by
Lemma 8, strategy\; ensures satisfaction of the good window objectivelfgr = (|5 — 1) - (|S - W + 1) in this
subgame. Moreover, since this strategy never visits statesf the bottom subgame, it ensures an inductive window
from every state, regardless of the past. Hence, all inteiatewindows are also closed and this strategy is winning
for FixWMPg(0,Imax) € BndWMPg(0) from the initial states. The states that are only visited finitely often before
reaching the bottom subgame have no consequence thankspcefix-independence of the bounded window mean-
payoff objective.

As for P, consider a statee S\ W,,. Consider(Lp)o<p<q, the finite sequence of sdishat are computed in the
last call toUnbOpenWindow by BoundedProblem, with Lo = 0. We define the sequenc@¥y)1<p<q and(Ap)1<p<q
asNp = NegSupTP(G | (S\Lp-1)) andAp=Lp\Lp_1= Attrgf(mp,l) (Np)- We have thas € L, for somep between
1 andg. An infinite memory winning strategy foP, is played in rounds. In round, P, acts as follows. (a) If the
current state is ir\p, play the attractor tdNp and then play the optimal strategy for the supremum totgbfian Np
to ensure that no window will have a non-negative sunmfsteps. (b)P; can leave the sét, for some lower sef\y,
1< p' < p. If so, play the attractor tdly and continue. Ultimately, any outcome is trapped in soméNget Ayr_1,
with 1 < p” < gandAy =0, as inN;, P; cannot leave. TherB; cannot prevent the window being strictly negative for
n steps. When such a window has been enforced &beps, move to rouna+ 1 and start again. This strategy ensures
that the bounded window problem is not satisfied as, infinitdlen, windows stay open for arbitrary large periods
along any outcome.

Finally, we discuss the complexity of algoritfBoundedProblem. Let C be the complexity of routinBegSupTP,
that is, the complexity of solving a one-dimension suprentotal-payoff game. The total complexity of subalgorithm
UnbOpenWindow is O(|S] - (|[E| + C)) as the sequence of computations is of length at n@stnd each computation
takes timeO(|E| + C). The overall complexity oBoundedProblem is thusO(C + |- (|[E| + |- (|[E| + C))) =
O(ISP- (IE[+C)). O

An interesting corollary of Lemma 8 and Lemma 10 is that thts &€ winning states coincide for objectives
FixWMPGg(0,Imax= (|5 —1) - (]S -W+ 1)) andBndWMPg(0), therefore proving a NP coNP membership for the
subset of fixed window problems with window size at ldask (hence an algorithm independent of the window size
whereas Lemma 4 gives an algorithm which is polynomial intivedow size).

Corollary 1. Intwo-player one-dimension games, the fixed window megoffyaroblem is in NP coNP for window
size at leastequal tgg — 1) - (|5 -W+1).

Bounded window: lower bounds.Algorithm BoundedProblem (Lemma 10) provides memoryless winning strategies
for 1 (attractor + memoryless strategy for total-payoff) andiiidd-memory winning strategies f@, (delaying the
closing of windows for increasing number of steps each rpumdne-dimension bounded window mean-payoff
games. Lemma 11 states that infinite memory is necessaBsf@s discussed in Section 472; cannot use the zero
cycle forever, but he must cycle long enough to defeat antefimindow. Hence, its strategy needs to cycle for longer
and longer, which requires infinite memory.

Lemma 11. In one-dimension games with a bounded window mean-payjefftdle, (a) memoryless strategies suffice
for Py, and (b) infinite-memory strategies are neededmgiin general.

In Lemma 14, we give a polynomial reduction from mean-pagafhes to bounded window mean-payoff games,
therefore showing that a polynomial algorithm for the boeshdiindow problem would solve the long-standing ques-
tion of the P membership of the mean-payoff threshold prabl€he proof relies on technical lemmas providing
intermediary reductions. First, we prove that given a g@ndeciding ifP; has a strategy to ensure a non-negative
mean-payoff can be reduced to decidin@ifhas a strategy to ensure a strictly positive mean-payoffwiedghts are
shifted positively by a sufficiently smadl (Lemma 12). Second, we apply Lemma 2 on the shifted game te that
winning this objective implies winning the bounded windomlplem. This gives one direction of the reduction. For
the other one, we show that given a ga@df P; has a strategy to win the bounded window problem when weights
are shifted positively by a sufficiently smal) he has one to win the mean-payoff threshold problef.in
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We define the following notation: given a two-player one-éitsion gamé& = (S, S, E,w) ande € Q, letG, ¢ =
(S1, S, E,w,¢) be the game obtained by shifting all weightséythat is, for alle € E, w, ¢ (e) = w(e) +&.1!

Lemma 12. For all one-dimension game & (S, S, E, w) with integer weights, for alt, 0 < £ < 1/|9, for all initial
state s€ S,P; has a strategy to ensure a non-negative mean-payoff in Gdifoaty if P1 has a strategy to ensure a
strictly positive mean-payoffin G.

Proof. Consider a memoryless winning strategy/af in G from initial states € S. All simple cycles in consistent
outcomes have a sum of weights at least equal to zero. Hemeeotresponding outcome @, ¢ is such that all
simple cycles of length have sums at least equalries > 0, which proves that the strategy is also winnin@an,.
Consider a memoryless winning strategy/afin G from initial states € S. All simple cycles in consistent out-
comes have a strictly negative sum of weights, that is the isuat most equal te-1. Hence, the corresponding
outcome inG, ¢ is such that all simple cycles of lengthhave sums at most equal tol + n- €. Sincen < |§ and
£ < 1/|9, we have that the sum is strictly negative, which provesttimstrategy is also winning iB.;¢.
By determinacy of mean-payoff games, we obtain the claim. O

Lemma 13. For all one-dimension game & (S, S, E, w) with integer weights, for al¢, 0 < € < 1/|S, for all initial
state sc S, if P; has a strategy to win the bounded window mean-payoff probie@ ¢, then’P; has a strategy to
win the mean-payoff threshold problem in G.

Proof. Assume there exists a winning strategy7af for the bounded window mean-payoff problem@ ¢ from
initial states € S. By Lemma 2, assertion (a), we have that this strategy easun®n-negative mean-payoff@.¢.
By shifting weights by—g, this can be equivalently expressed as (Prop. A) the existeha strategy oP; ensuring
a mean-payoff at least equaltee in the games.

For sufficiently small values of, that is for O< € < 1/|5], we claim that (Prop. A) implies that (Prop. B) has a
strategy to ensure a non-negative mean-payd#.iBy contradiction, assume this implication is false, tisate have
that (Prop. A) is true and (Prop. B) is not. It implies the daling.

— (Prop. A) is true P, has a memoryless strategy to ensure that the mean-payoféssaequal te-¢, i.e., strictly
greater than-1/|S|.

— (Prop. B) is false’P, has a memoryless strategy to ensure that all simple cyctemisistent outcomes have a sum
of weights at most-1. Hence, this strategy ensures a mean-payoff at most egudiAg.

Obviously, it is not possible to have both (Prop. A) true aRbp. B) false for any initial statec S, hence proving
our claim. O

Lemma 14. The one-dimension mean-payoff problem reduces in polyaltime to the bounded window mean-payoff
problem.

Proof. Let G = (S, S, E,w) be a game with integer weights, asgd: € Sbe the initial state. Let be any rational
value such that & € < 1/|S. We claim that the answer to the mean-payoff threshold prabh G is YEsif and only
if the answer to the bounded window mean-payoff proble@ R is YES.

The left-to-right implication is proved in two steps. Asseithe answer to the mean-payoff threshold problef@ in
is YES. First, by Lemma 12, we have th®4 has a strategy to ensure a strictly positive mean-paydH,ip. Second,
by Lemma 2, assertion (b), this implies that the answer tdthended window mean-payoff problem® ¢ is YES.

The right-to-left implication is straightforward appligan of Lemma 13. O

Remark 1.The reduction established in Lemma 14 cannot be reversadar to solve bounded window mean-payoff
games via classical mean-payoff games. Indeed, the redueties on the absence of simple cycles of value zero in
the gameG. ¢, which is not verified in general if the reduction starts franbitrary bounded window mean-payoff
games. Indeed it does not suffice to shift the weights symoadlir by —e to obtain an equivalent mean-payoff game,
as witnessed by Fig. 4, for which any negative shift givesragosing for the mean-payoff threshold problem, while
the bounded window problem on the original game is satisfied.

11 Note thatw, can be transformed into an integer valued function withdwtnging the answers to the considered decision
problems.
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Bounded window: summary.We close our study of two-player one-dimension games withofém 3.

Theorem 3. In two-player one-dimension games, the bounded window +pawoff problem is in NP1coNP and at
least as hard as mean-payoff games. Memoryless stratagigsedorP; and infinite-memory strategies are required
for P, in general.

4.3 Games withk dimensions

In this section, we address the case of two-player gamesmitti-dimension weights. For thigxed window mean-
payoff problemwe first present an EXPTIME algorithm that computes the wigrstates ofP;. We also establish
lower bounds on the complexity of the fixed window problem: stw that the problem is EXPTIME-hard (both
in the case of fixed weights and arbitrary dimensions, antérctase of a fixed number of dimensions and arbitrary
weights) for arbitrary window sizes, whereas it is PSPAGIdfor polynomial window sizes. We show that exponen-
tial memory is both sufficient and necessary in general foh Iptayers, even for polynomial window sizes. For the
bounded window mean-payoff problene prove non-primitive recursive hardness.

Fixed window: algorithm. We start by providing an EXPTIME algorithm via a reductioarfr a fixed window mean-
payoff gameG = (S, S, E, k,w) to an exponentially larger unweighted co-Biichi gaBigwhere the objective dP;
is to avoid visiting a set of bad states infinitely often).

Lemma 15. The fixed window mean-payoff problem over a multi-weightedeyG reduces in exponential time to the
co-Blichi problem on an exponentially larger gamé.G

Recall that a winning play is such that, starting in some tmsi > 0, in all dimensions, all opening windows
are closed in at most,ax steps. We keep a counter of the sum over the sequence of edgies doon as it turns
non-negative (in at moshax steps), we reset the sum counter and start a new sequenoh @go must become non-
negative in at mostax Steps). Hence, the reduction is based on accounting fordéaemsion the current negative sum
of weights since the last reset, and the number of stepsehain to achieve a non-negative sum. This accounting
is encoded in the states 6° = (S}, S;,E°), as from the original state spaBewe go toSx ({—lmax:W,...,0} x
{1,...,Imax}): states ofz° are tuples representing a stateSudind the current status of open windows in all dimensions
(sum and remaining steps). We add states reached whenerst@wreaches its maximum sikgax without closing.

We label those asadstates. We have one bad state for every staf dfansitions inG® are built in order to accurately
model the effect of transitions @& on open windows. Clearly, a play is winning for the fixed windoeroblem if and
only if the corresponding play i€ is winning for the co-Biichi objective that asks that theadbad states is not
visited infinitely often, as that means that from some pomtadl windows close in the required number of steps.

Proof. Let G = (S, S, E, k,w) be a game with objectiinxWMPG({O}k,Imax € Np) and initial states,; € S. Let
W denote the maximal absolute value of any edgE.iWe construct the unweighted garGé = (S}, S, E®) in the
following way.

-S§= (Sl X ({=W Imay, - .-, 0} x {1,. ..,Imax})k) U{&,---,qg}- Statesq, ..., gg denote special addéxhd sta-
tes one for each of the original statss ..., Sg € S. The other states are built as tuples that represent (ajtedris
state inG, (b) for each dimension, a couple modeling (b.1) the cursamnt of weights since the last time the sum
in this dimension was non-negative, and (b.2) the numbetepshat remain to reach a non-negative sum in this
dimension (i.e., before reaching the maximum window size).

— S =% ({~W-lmax,---,0} X {1, Imax}).

— We construct the edgééss, (02, 12),..., (O£, X)), (S, (OE, T2), ..., (0K, T¥)) of E€ as follows. For al(sa, ) € E,
letwe = W((Sa, %)), we have

o ((sa, (0}, 1h),..., (05, 1%)),¢) € ES, with ¢, the bad state associated to stgfeiff 3t,1 <t < k such that
) = 1andoj +we(t) <0,
o ((sa, (02, 12),..., (05, TX), (Sb, (O, 1), ..., (0, TK)) € ECiff Vt, 1<t <k, we have
* Oh+We(t) >0— 0f =0, = lmax,
* Op+We(t) <OA Ty >1— 0f = of+Welt), T) = 15— 1,
and we add edgds;, (s, (0,Imax- - - , (0,Imax)) to E€ for all statess € S.
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Intuitively, the gameG°® is built by unfolding the gam& and integrating the current sum of weights in the states
of G¢, as well as the number of steps that remain to close a windath, for each dimension separately. The game
G€ starts in the initial stat€sy;t, (0,max),-- -, (0,Imax)), and each time a transitiofs,s') in the original games is
taken, the gam&® is updated to a state, (o1, 11),..., (0, 1¥)) such that (a) if the current sum becomes positive
in a dimensiort, the corresponding sum counter is reset to zero and the steyear is reset to its maximum value,
Imax (b) if the sum is still strictly negative in a dimensibmand the window for this dimension is not at its maximal
size, the sum is updated and the step counter is decreaskft)ahthe sum stays strictly negative and the maximal
size is reached in any dimension, the game visits the caynelipg bad state and then, all counters are reset for all
dimensions.

We argue that a plagin G is winning for the fixed window mean-payoff objective if analpif the corresponding
play ¢ in G° is winning for the co-Biichi objective asking not to visietbetS; = {G,.. ., g } infinitely often. Indeed,
consider a playt winning for objectiveFixWMPg ({0} Imax). By €q. (4), this play only sees a finite number of bad
windows (windows that are not closed liRax Steps in some dimension). By constructionGS the corresponding
play mi° only visits the se& a finite number of times, hence it is winning for the co-Buchjective. Now, letri® be
a winning play for the co-Biichi objective. By definitiongile exists a positionin 71° such that all states appearing
after positioni belong toS\ &. It remains to prove that for any positigrn> i, for any dimension, 1 <t <k, there
is a valid window of size at mosfax. Again we use the inductive property of windows. We know bpstouction
that a reset of the sum happens in at mggj steps, otherwise we go to a bad state. Assyrigea position with a
sum counter of zero in some dimensigrand j’ is the next such position. Since resets are dmmeoon athe sum
becomes non-negative, all suffixes of the sequence franj’ are non-negative. Hence, it is clear that for all position
i”,j<j" <], the window fromj” to j’ in dimensiont is closed. Consequently, the corresponding ptap G is
winning for the fixed window mean-payoff objective of threthO and window sizé&nax. O

As a direct corollary of this reduction, we obtain an EXPTIMIgorithm to solve the fixed window mean-payoff
problem on multi-dimension games, as solving co-Blichigsatakes quadratic time in the size of the game [7].

Corollary 2. Given a two-player multi-dimension game=3(S;, $;, E, k,w) and a window sizeyax € No, the fixed
window mean-payoff problem can be solved in td€S? - (Imax)** - W?¥) via a reduction to co-Bchi games.

Proof. Lemma 15 uses a co-Biichi game which state space is of size

k )
‘Sx({—W-Imax,...,O}x{1,...,Imax}) ‘+|S|:O(|S|.(Imax)2k,wk)_
The quadratic algorithm for co-Biichi games described Jrinfiplies the result. O
A natural question is whether a distinct algorithm is usefuhe one-dimension case. Remark 2 notes that it is.

Remark 2.The multi-dimension algorithm described in Corollary 2lgiea procedure which is polynomial in the
size of the state space, the window size, and the largeshivieigthe subclass of one-dimension games, hence only
pseudo-polynomigi.e., exponential iV, the length of the encoding of weights), whereas Lemma Ssgivéruly
polynomial algorithm.

Fixed window: lower bounds. We first consider the fixedrbitrary window mean-payoff problem for which we
show (i) in Lemma 16, EXPTIME-hardness f¢r-1,0,1} weights and arbitrary dimensions via a reduction from
the membership problem for alternating polynomial-space Agrmachines (APTMgW], and (ii) in Lemma 17,
EXPTIME-hardness for two dimensions and arbitrary weigiesa reduction frontountdown gamed.9].

Givenan APTMM and aword, € {0,1}*, such that the tape contains at mpg |) cells, wherepis a polynomial
function, the membership problem asks to decidefiiccepts] . We build a fixed arbitrary window mean-payoff game
G so thatP; has to simulate the run 0¥ on {, andP; has a winning strategy i@ if and only if the word is accepted
by the machine. For each tape delt {1,2,...,p(|{])}, we have two dimensiongh, 0) and(h, 1) such that a sum of
weights of value-1 (i.e., an open window) in dimensidh,i), i € {0,1} encodes that in the current configuration of
M, tape cellh contains a bit of valué In each step of the simulation (Fig. 6); has to disclose the symbol under
the tape head: if in positioh, P; discloses a 0 (resp. a 1), he obtains a reward 1 in dimerisi@ (resp.(h,1)).
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To ensure thaP; was faithful,P, is then given the choice to either let the simulation corgirar assign a reward 1

in all dimensions excepth,0) and (h,1) and then restart the game after looping in a zero self-loogroarbitrary
long time. If P; cheats by not disclosing the correct symbol under tapenhcéth can punish him by branching to the
restart state and ensuring a sufficiently long open windatliércorresponding dimension before restarting (as in Fig.
5). But if P; discloses the correct symbol afid still branches, all windows close. In the accepting stdteyiadows

are closed and the game is restarted. The window gigeof the game is function of the existing bound on the length
of an accepting run. To forcP; to go to the accepting state, we add an additional dimensiitih weight—1 on the
initial edge of the game and weight 1 on reaching the acogptate.

Lemma 16. The fixed arbitrary window mean-payoff problem is EXPTIMEehin multi-dimension games with
{-1,0,1} weights and arbitrary dimensions.

Proof. An alternating Turing machin€ATM) [4] is a tuple M = (Q, do, Zin, 0, Gacc) Where:

— Qis the finite set of control states with a partitigQ,, Q) of Q into existential and universal states;
— Qo € Qs the initial state;

— Zin = {0,1} is the input alphabet anB.,. = i, U {#} the tape alphabet, with # the blank symbol;
— 0 C QX Zape X Q X Ziape x {—1,1} is a transition relation;

— there is a special accepting state. € Q. (without loss of generality).

We say thatM is a polynomial-spacalternating Turing machine (APTM) if for some polynomiahfttion p, the
space used byvt on any input word] € % is bounded byp(|{]).

We define the AND-OR graph of the APTIM, p) on the input word{ € X asG(M,p) = (S,,S\,%,4,R)
where

- S, ={(aht)|geQy, 1<h< p(||) andt € =2 ;
~ S.={(a.ht)|geQu, 1<h< p(|¢]) andt € 2
- 5= (qul t) wheret = Z #P(\ZD*\Z\,
((ql,hl,tl) (g2, h2,12)) € A iff there exists(g1,t1(h1),q,y,d) € d such thaty, =g, h, =h; +d, ta(h;) = yand
to(h) =ty (h) for all h # hy;
- R={(a,h,t) € S/[q=Cacc}-

Intuitively, states of the graph correspond to configureti@, h,t) whereq is a control state of the machinke the
position of the tape head, andhe current word written on the tape. Given a siqtef the machineM, tape head
on cellh and a word on the tape, a transition frofg, h,t) to (¢',h’,t’) exists in the graply (M, p) if the transition
relation d of the machineM admits a transition that given this configuration, updatesdontent of celh to the
symbolt’(h), such that the tape now contains the wréind then goes to control stajeand moves the tape head to
an adjacent cel.

Aword { € X isacceptedy an APTM(M, p) if there exists a run tree (obtained by choosing a child istexitial
nodes and keeping all children in universal nodes)p6bn  such that all leafs are accepting configurations. That is,
aword is accepted if and only if, in the two-player game defibgG (M, p), playerP, has a strategy to reach the set
of accepting stateR. Deciding the acceptance of a word by an APTM is an EXPTIMBwglete problem, known as
the membership problem [4].

We construct a fixed window mean-payoff ga@e-= (S, S, E, k, w) simulating the machinéM, p) as follows.
Letk =2-p(|{]) + 1: there is a dimension for each péir,0) and(h,1), for all 1 < h < p(|{]), and one additional
dimension. The set of stat&of the game is

S={0restart } U{lin} U {Tacc }
U{(a,h)lacQ,1<h<p(|¢])}
U{(a,h;i)check [0 € Q, 1 <h < p(|{]),i € {0,1}}
U{(@Mbrancn [d € Q, 1< h < p(|{])}

U{(a,h,i)|[ge Q,1<h<p(|]),i € {0,1}}.
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States of the fornfg, h) belong toP;. States of the forniqg, h,i) belong toP; if g € Q, in the machineM. All other
states belong t@®,. The initial state i9..start- It has two outgoing edges with weights zero in all dimensiane
self-loop, and one edge tp,. The latter is assigned the following weightsi for dimension(h,i) if the letter at
positionh of { isi, —1 in the very last dimension (2(|{|) + 1), and zero everywhere else. Fragp, the game goes
to (qo, 1) and the simulation of\1 begins.

(9,h,0)check [ (g.h,0) — } Transitions of(q, 0)
\ \

@ (9, M) branch Orestart

(0,0, 1) check 4>|/(q,h.1) | } Transitions of(q,1)

Fig. 6: Gadget ensuring a correct simulation of the APTM qeteellh.

The game mimics runs of4, and it is ensured that if the current state of the gane,is) and the cell content
is i, then the sum of weights since the last visiggfin dimension(h,i) is —1. We refer to the segment of play since
the last visit ofg;, as thecurrent round We depict a step of the simulation in Fig. 6. At stégeh), P; has the choice
between state&, h, 0)check @nd(q, h, 1)check, resp. corresponding to declaring a content 0 or 1 of the ¢appé. The
reward for dimensioith,i), i € {0,1} is 1 on statéq, h,i)check- At State(q, h,i)cneck, @ State ofP,, P, checks whether
P1 has correctly revealed the tape content as follows: (i) @&y can choose to go to statg, h)uranch, in which all
dimensions other thafh, 0) and(h, 1), including the very last, are increased by 1, and then gp.{@.« on whichP,
will be able to delay the play; (ii) Playé?, can choose to proceed and continue the simulation: the gagnegbes
to state(q, h,i). State(q, h,i) is either a state dP; or P,, depending on the affiliation of statgn the APTM. Such a
gadget ensures thatff; cheats by not disclosing the correct symtjgl,can force an open window of arbitrary length
in the current round by looping of.s:ar: fOor some time, and then restarting the game. On the other, lilafd is
faithful andP; still decides to branch t@g, h)p.anch, then all windows will be closed for the current round.

If 1 does not cheat ang, acknowledges it by not branching, the game advances toedtétte form(q, h,i).

At such a state, we add transitions as follows: if there sxastransition fromiq, h,i) to (¢/,H,i’) in M, then we add
an edge fronig, h,i) to (d,h’) in the game5, and assign weight 1 in dimension’h,i’), as the tape cell at positidn
containd’ and we ensure that the sum in dimensbyi’) in the current round is-1. At the accepting statéf.c, h),
all dimensions are assigned reward 1, and the next stgig isStated,.. is followed byQestarc. Again there is no risk
in looping as all dimensions are now non-negative.

Formally, blank symbols need to be added. For brevity anglgiity of the presentation, we omit these technical
details.

We fix the window sizdmax equal to three times the size of the configuration graph (damthe length of a
run) plus three, and we argue that the gaiis a faithful simulation of the machin#1, that is,?; wins the fixed
window mean-payoff game if and only if the woddis accepted by\. Notice that the construction ensures that if
P1 cheats in the current roun®, can make this round losing, as discussed before. Simil&rfy; does not cheat
but does not reach the accepting state, dimensigi{|Z|) + 1 will remain negative when arriving iQestarr andP;
will be able to cycle long enough to make the round losing asaimdow in the last dimension will remain open for
Imax steps. ClearlyP; cannot see losing rounds infinitely often otherwise the jddgsing. Assume the word is
accepted by the machine. Then there is an accepting ruratnidehe winning strategy @9, is to follow this run tree
and always reveal the correct symbol. This way, eifhgrestarts and the round is winning because all dimensions are
non-negative, 0P, does not restart and an accepting state., h) is reached within the maximum allowed window
size. Indeed, in the APTM, there is a strategy to reach thepit state in a number of steps bounded by the size of
the configuration graph. In that case, the round is also wmrnConversely, assume that the wdrds not accepted
by the APTM. Consider any stratedy of P1. Clearly,P; cannot cheat as otherwise, he loses. So assume he does not
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cheat. Then there is a path in the run tree obtained fromnuigtfie strategy; in M such that the path never reaches
an accepting state. Hence, the stratégpf P, that follows this path in the gant& ensures that the sum in dimension
2-p(|¢]) + 1 is always strictly negative, and after waiting till the Imoli,ax on the window size is mef?, has made
the round losing and he can restart the game safely. Actisgudy infinitely often,P, can violate the fixed window
objective forP;. It follows thatP; wins in G if and only if the word( is accepted by the APTMA. O

We now prove EXPTIME-hardness for two dimensions and ahjtiveights via a reduction from countdown
games. A countdown gani& consists of a weighted grafl$,7 ), with S the set of states anf C S xNgx S
the transition relation. Configurations are of the faigt), s€ S, ¢ € N. The game starts in an initial configuration
(snit,Co) and transitions from a configuratiés c) are performed as follows: fir§?; chooses a duratiosh 0 < d < c
such that there exists= (s,d,s) € 7 for somes € S, secondP, chooses a stat € S such that = (s,d,s) € 7.
Then, the game advances(& ¢ —d). Terminal configurations are reached whenever no legiénmatve is available.
If such a configuration is of the forrfs,0), P1 wins the play. Otherwise?, wins the play. Deciding the winner in
countdown games given an initial configurati@n;, co) is EXPTIME-complete [19].

Given a countdown gam@&and an initial configuratiofs,i:,Co), we create a gan® = (S, S, E, k,w) with k=2
and a fixed window objective fdmax = 2- ¢o+ 2. The two dimensions are used to store the value of the cowntd
counter and its opposite. Each time a duratibis chosen, an edge of value of val@ed,d) is taken. The game
simulates the moves available ¢h a strict alternation between states7f (representing states &f) and states of
P, (representing transitions available from a staté& aince a duration has been chosen). On statéj ofve add the
possibility to branch to a stag.:..,« Of P2, in whichP, can either take a zero cycle, or go back to the initial statke an
force a restart of the game. By placing weigf@s—cg) on the initial edge, anfty, 0) on the edge branching 8siart,
we ensure that the only way to win fé% is to accumulate a value exactly equatgdn the game before switching to
Sestart- This is possible if and only iP; can reach a configuration of value zerdin

Lemma 17. The fixed arbitrary window mean-payoff problem is EXPTIM#ehin multi-dimension games with two
dimensions and arbitrary weights.

Proof. We establish a polynomial-time reduction from the countd@ame problem to the fixed arbitrary window
problem. LetC = (S,7) be a countdown game [19], with initial configuratiés,;:,Co). We create a corresponding
gameG = (S, S, E, k,w) as follows.

-5 =S.

— Let S’ C S x Ny be the subset of pairs,d) such that there exists a transiti¢sd,s) € 7. Then,S =S U
{Srestart } - Stat€Sestart iS the initial state of game.

— For each transitioiis,d,s') € 7, we add edgess, (s,d)), with s€ S; and(s,d) € S, and((s,d),s), withs € S,
to the set of edges. Edge(s, (s,d)) has weigh{—d,d) and edgé(s,d),s) has weigh{0,0).

— Forallse S, we add an edgés, Seestart) Of Weight(co, 0).

— FromSeestart, we add an edg€S.estart, Snit) Of value (0, —cp).

— ON Seestart, We add a self-lo0fSestart, Srestart) Of Weight(0,0).

We fix the window sizémax= 2- cp+ 2, and we claim thaP; wins the fixed window problem if and only if he wins
the countdown game. Recall that to win a countdown g@menust be able to reach a configuratigD) in the game
C. The key idea to our construction is that in the ga@¢he only way to avoid seeing infinitely often open windows
of size larger thalyyax is to accumulate exactly before restarting, which is equivalent to reaching a conéitjon of
value 0inC.

Notice that the gam@ starts by visiting an edge of valy8, —cp) and afterwards, all edges from state$athave
a value(—d,d) corresponding to the duration he chooses in the countdowre gall except the edge he can decide
to take t0 g0 tGS.estart, Which value is(co,0). Clearly, if P1 decides to go irsstart; he has to close all windows, as
otherwiseP, can use the self-loop to delay the play long enough and peadufficiently long bad window, which
if done repeatedly, induces a losing play. On the other hidirfe; decides to never go towardss:at, he will keep
accumulating negative values in the first dimension and lgu#&anteed to lose. So obviously the behavioPef
should be to play as in the countdown game to accumulatelgxa@dh dimension 2 (and-cg in dimension 1) before
switching t0S.estart, SO thatP, can do no harm by delaying the play as all windows will be aloSéhe accumulated
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value has to bexactly ¢ as () if it is less thaig, dimension 2 will remain negative, and (b) if it is more than
dimension 1 will stay negative (i.e., the ed@eS.start) Will N0t suffice to get it back above zero). Since the minimal
increase is of 1 every two edges by construction, the allomiadow sizel 4y is sufficient to enforce such a behavior,
if possible. This shows th&; wins the fixed window problem from initial stateg.,: in G if and only if he also wins
the countdown gameé from (snit,Cp), as accumulatingg in G is equivalent to reaching a configuration of value zero
inC. a

For the case of polynomial windows, Lemma 18 proves PSPA&##ess via a reduction from generalized reach-
ability games [12]. Filling the gap with the EXPTIME memblaigs given by Corollary 2 is an open problem. The
generalized reachability objective is a conjunction ottesbility objectives: a winning play has to visit a state afle
of a series ok reachability sets. IfP; has a winning strategy in a generalized reachability g&he: (S|,S,,E"),
then he has one that guarantees visit of all sets withilg| steps. We create a modified weighted version of the
game,G = (S, S, E, k,w), such that the weights akedimension vectors. The game starts by opening a window in
all dimensions and the only way f@?; to close the window in dimensidn 1 <t < k is to reach a state of theth
reachability set. We modify the game by givifi the ability to close all open windows and restart the gamé suc
that the prefix-independence of the fixed window objectivenca help?; to win without reaching the target sets.
Then, a play is winning it for the fixed window objective of sizgax = 2-k-|S| if and only if it is winning for the
generalized reachability objective Gi.

Lemma 18. The fixed polynomial window mean-payoff problem is PSPA&H:-h

Proof. We show the PSPACE-hardness by a reduction from the geredatktachability problem [12]. Given a game
graphG' = (S|,S,,E"), a series of reachability sel C S, for 1 <t <k, with k < |S'|, and an initial statg;, € S,
the generalized reachability problem asks if there existsaegy ofP1 such that any consistent outcome starting in
s Visits a state of each s& at least once. It is known that if such a strategy exists, there exists one which
ensures reaching all sets in at mks{S'| steps.

We build ak-dimension fixed window mean-payoff garGe= (S,S, E, k,w) as follows. We defin&,anch C S,
the set ofP;, states such that for als' € S such thaf(s,s') € E', we have thabsy € Syranch. LEtS; = S and$; =
S, U Spranch U {Seestart | - L E be the set of edges such that for@lls’) € E', we have thats,bsy) € E, (bss,5) € E,
(g, Srestart) € E, and such thafSeestart, ;) € E. That is, we introduce in all edges Bf a state ofP, that let him
branch to an added stasgstartOF continue as irG". The new initial state irG is Sesta and there is an edge from
Sestart 0 the old initial states| . The weights are as follows: all edges from stdigg to Sestarthave value 1 in all
dimensions. The edge frosstartto S, has value-1 in all dimensions. All other edges of the game have value, zer
except edges entering a state that belongs to a reachakili®y, which have value 1 in dimensiarand 0 in the other
dimensions. If a state belongs to several sets, then aktgponding dimensions geta 1.

We claim thatP; has a winning strategy fdfixWMPg({0}¥ Imax = 2-k- |S|) if and only if he has a winning
strategy for the generalized reachability objectiv&inConsider the gam®. Clearly, the only edge involving negative
values iS(Srestart S;)» Which value is(—1,...,—1). Therefore, a losing play for eq. (4) should see this edgeitefy
often, as it is the starting position of all open windows. iNethat on the other hand, going from a stadg t0 Sestart
involves an edge of valud, ..., 1), hence if the open window starting $statcomes back isestartbefore hitting its
maximal size, the window will close. So the strategy?afshould be to wait folnax = 2-k-|S'| steps before forcing a
restart. Now, consider a winning strateffyof P; in G. Because of the strategy &, A1 has to ensure obtainingl
in all dimensions by only using transitions entering inessatfS . By construction, this implies that enforces a visit
of all reachability sets, and thus is winning for the geneeal reachability problem. Consider the reverse implozati
Let A] be a winning strategy i®". There exists such a strategy that ensures seeing all talishsets (thus closing
all windows) in at mostmax = 2- k- |S| steps if?, does not branch tgestarr On the other hand, iP, does branch
beforel max steps, all windows also close, as branching edges have {&lue, 1). Hence, this strategy is also winning
for FixWM PG({O}k, Imax). This shows the correctness of the reduction and conclugigsroof. O

We conclude our study of the multi-dimension fixed windowlgem by considering memory bounds. A direct

corollary of Lemma 15 is the existence of winning strategieat most exponential size for both players, as memory-
less strategies are sufficient in co-Blichi games [11]. Akany of the reduction from generalized reachability game
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Fig. 7: Family of games requiring exponential memori: < i <K, V1< j <k w((s,sL))(j) =1if j=2-i—-1,
=—1if j=2.i, and=0 otherwisew((s,s.L)) = —W((s,sr)) =W((ti,ti L)) = —W((ti,tir)); W((c,5)) = W((o,t)) =
(0,...,0).

to the fixed polynomial window problem used to prove Lemmarid@the results of [12, Lemma 2] (showing exponen-
tial lower bounds on memory for generalized reachabilitieotives) is that such memory is needed in general, again
for both players. Another example of a family of games in a3 requires exponential memory (in the number of
dimensions) is given by the family defined in [8, Lemma 6] (FY) introduced in the context of multi energy games.
All examples have in common that the players must be abldferentiate between an exponential number of histories
and act accordingly to achieve their objective: in the gafifeig 7, P1 wins objectiveFixWMPg ({0}*, Imax = |S//2)

only if he is able to make ity the opposite choice d?, in 5, which requires a strategy encoded as a Moore machine
with at least ¥/2 states. Lemma 19 sums up these results.

Lemma 19. In multi-dimension games with a fixed window mean-payoéaihje, exponential memory is both suffi-
cient and necessary for both players in general, even foymmhial window sizes.

Fixed window: summary. We summarize the complexity of the fixed window problem in Giteen 4.

Theorem 4. In two-player multi-dimension games, the fixed arbitrarpaédw mean-payoff problem is EXPTIME-
complete, and the fixed polynomial window mean-payoff prokis PSPACE-hard. For both players, exponential
memory is sufficient and is required in general.

Bounded window. Unlike the one-dimension case, in which it is easier to deti@ bounded problem than the fixed
arbitrary one (i.e., the problem becomes easier when thd fsiadow size is sufficiently large), we prove that the
complexity of the bounded window problem in multi-weightgaimes is at least non-primitive recursifeHence,
there is no hope for efficient algorithms on the completesctdswo-player multi-weighted games.

This result is obtained through a reduction from the probdéheciding the existence of an infinite executionin a
marked reset netilso known as thermination problemA marked reset net [9] is a Petri net withset arcgogether
with an initial marking of its places. Reset arcs are spewies that reset a place (i.e., empty it of all its tokens). The
termination problem for reset nets is decidable but nomipiie recursive hard (as follows from the results of [27],
also discussed in [21]).

Given a reset net/ with an initial markingmg € NIPI (whereP is the set of places of the net), we build a two-player
multi-weighted gamé& with k = |P| 4+ 3 dimensions such th&?; wins the bounded window objective for threshold
{0} if and only if A/’ does not have an infinite execution frarg.

A high level description of our reduction is as follows. Theusture of the game (Fig. 8) is based on the alternance
between two gadgets simulating the net (Fig. 9). Edges amddd byk-dimension weight vectors such that the first
|P| dimensions are used to encode the number of tokens in each. pltaeeach gadge®, chooses transitions to
simulate an execution of the net. During a faithful simulatithere is always a running open window in all the first
|P| dimensions: if place containsn tokens then the negative sum from the start of the simulasien(n+ 1). This
is achieved as follows: if a transitidrconsumes$(t)(p) tokens fromp, then this value is added on the corresponding

12 That is, there exists no primitive recursive function thamnputes the answer to the bounded window problem. A weliskno
example of a decidable but non-primitive recursive funti®othe Ackermann function [1].
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(0,0,1,1) (Tps0,1,-1,1)

restart
delay

restart
(-mg—1,0,0,0)

fire

,,,,,,,,,,,,,,,,,,,

testt @ delay

(Ips01,1,-1)  (0,0,1,1)

Fig. 8: Careful alternation between gadgets is needed iardod P, to win.

dimension, and if produce(t)(p) tokens inp, thenO(t)(p) is removed from the corresponding dimension. When
a placep is reset, a gadget ensures that dimengioaaches value-1 (the coding of zero tokens). This is thanks to
the monotonicity property of reset netsAf does not simulate a full reset, then the situation gets efmi®; as it
leaves him more tokens available. If all executions terteif¥a has to choose an unfireable transition at some point,
consuming unavailable tokens from some placeP. If so, the window in dimensiop closes. After each transition
choice ofP,, P71 can either continue the simulation or branch out of the gartgelose all windows, except in some
dimensionp of his choice. TherP, can arbitrarily extend any still open window in the fif§| + 1) dimensions and
restart the game afterwards. Dimens{@P| + 1) preventsP; from staying forever in a gadget. If an infinite execution
exists, P, simulates it and never has to choose an unfireable transiiemce, wherP; branches out, the window in
some dimensiom stays open. The last two dimensions force him to alternatedmn gadgets so that he cannot take
profit of the prefix-independence to win after a faithful slation. So,P, can delay the closing of the open window
for longer and longer, thus winning the game.

Theorem 5. In two-player multi-dimension games, the bounded windoampayoff problem is non-primitive recur-
sive hard.

Fig. 9: Gadget simulating an execution of the reset net.
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Proof. We prove a reduction from the termination problem on resettoghe bounded window problem on two-player
multi-weighted games. The former is known to be non-primitecursive hard [27,21].
Let V' = (P,T,I,0O,r) be areset nesuch that

— P={p1,p2,---, P} is the set of places;

— T ={ts,tz,..., 47|} is the set of transitions;

— I: T — NIPlis the input function, such that for each transitianT, | (t) is a|P|-dimension vector such that for all
dimensionp € {1,...,|P|}, I (t)(p) specifies the number of tokens from plazeonsumed by the transitian-3

— O: T — NPl is the output function, such that for each transitianT, O(t) is a |P|-dimension vector such that
for all dimensionp € {1,...,|P|}, O(t)(p) specifies the number of tokens produced in platy the transitiort;

— r: T — Pis the reset function, such that for all transitioa T, r(t) specifies the unique place (w.l.0.g.) which is
reset by transitio.

Given an initial marking of the places (i.e., an initial nuentof tokens in each plac@jy € NIPI, the termination
problem asks if there exists an infinite execution of the thett is, if there exists an infinite sequence of transitions
that can be fired fronmg. A transitiont is fireablefrom markingm € NIP! if for all place p € P, I(t)(p) < ™(p).
An execution terminates if no transition can be fired becdlussecessary tokens are unavailable. We first note an
importantmonotonicityproperty of reset nets: for all reset nét= (P, T,1,0,r), for all markingsnnie NPl if m<n
andp € T? is an infinite sequence of transitions fireable fromthenp is also fireable fronm. This property is used
later on.

We claim that given a reset naf and an initial markingng, we can build in polynomial time a multi-weighted
gameG in whichP; has a winning strategy for objectiBdWMPg(0) if and only if there exists no infinite execution
of the net\ from m.

We build the gamés = (S, S, E, k,w) with k = |P| + 3 as represented in Fig. 8 and Fig. 9. Unlabeled edges
have value zero in all dimensions. For clarity, we define tilfing |P|-dimension integer vectord:= (1,...,1)
is the unit vector0 = (0,...,0) is the zero vector, and, fa,b € Z, p € P, the vectora,_,, represents the vector
(a,...,a,b,a,...,a) which has valud in dimensionp anda in the other dimensions. The firf?| dimensions of the
game are used to encode the tokens present in each placeastiee last three are used to conpeto act fairly.
Our construction will ensure that at all times along a vakdaition of the net in a gadget, if a plapes P possess
tokens, then the running sum of weights over the largest afietiow has valu¢—n— 1) in dimensionp.

The states and edges of the game are built as follows.

— Inside a gadget, we have a stéte belonging taP,, with | T | outgoing edges corresponding to {fie transitions
of the net. Each transitidnis encoded as follows:

e an edge frontire to a stateest; belonging toP1, of value(l (t),—1,0,0), such that the running sum is updated
to accurately encode the consumption of tokens;

e in statetest;, (|P| 4+ 1) outgoing edges, giving; the possibility to either branch out of the gadget, going to
the stateclose, corresponding to the dimensi@rof his choice, or continuing via an edge of val@e—1,0,0)
to theresetq state, a state dP; such thaty = r(t) is the unique place reset by transitign

e a self-loop of valug0q_.1,—1,0,0) on theresetq state;

e an edge fromesetq to out; of value(0q,—1, —1,0,0) which purpose is to ensure that in dimensipthere is
a new open window of sum 1 after a full reset (i.e., it encodes that the number of tekeiplaceq is zero);

e an edge fromout; back tofire of value(—O(t), —1,0,0), producing tokens according to the output of transition

t.
— Branching from the left gadget leads to a stdtSe'F?“ of P, with a self-loop of weigh{1,_,0,1,1,—1) and an

outgoing edge to statilay'®™ of P;. ~

— Statedelay'®" possess a self-loop of valyé,0,1,1) and an edge going to the right gadget with valuém, —
1,0,0,0). .

— The right gadget is constructed symmetrically, the onlyngjeabeing that the self-loop on statﬂs'seggh‘ of P1
now has valu¢lp ,,1,—1,1).

13 For simplicity, we usep to refer to a place € P and to the numbere {1,...,|P|} such thaip; = p, that isp indistinctly refers
to the place and the corresponding dimension in the weigitove
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The game starts in the left gadget with an initial edge of @&iumg — 1,0,0,0) corresponding to the initial marking
of the net.

We claim that (i) if there exists no infinite executipne T® of the net\, thenP; has a winning strategy it
for the bounded window objective, and (ii) if there existsts@an execution, the®, has a winning strategy i6. By
determinacy, proving both claims will conclude our proof.

Case (i). Assume that there exists no infinite execytienT “ of the net. Then there exists a boumd N on the
length of any valid execution. HencB, can only simulate the net faithfully fdrsteps, so after at mogb+ 1) steps,
he needs to use an unfireable transition. That is, the nesechoansition requires more tokens than available in some
placep € P. We define a winning strategy; € A1 of Py in G as follows:

1. In a statetest, if the last transitiont was valid (i.e., all firs{P| dimensions have a negative running sum), go to
the correspondingesetq state. Otherwise, there exists a dimengian which the sum has become non-negative
and all windows are closed: exit the gadget and go to the sporading statelosep.

2. In a stateesetq, cycle until the sum in dimensictakes value 0, then go to statet;.

3. In a statelosep, take the loop exactly (b) times before going to statielay, wheref: N — N is a well-chosen
function that we define below (henééb) is constant along the play).

We claim that it is possible to definfgb) sufficiently large to ensure that this strategy is winningt M € N be the
largest number of tokens produced as output of any trangsitidhe net, on any place. We consider the value of the
negative sum in any of the fir§fP| + 1) dimensions at the moment wh@h decides to exit the gadget according to the
strategyA;. Notice that for any dimensiop e {1,...,|P|}, this sum is bounded by= (—mg(p) — 1—b-M). Hence,
the number of loops taken on any visit of stedeety is bounded by. The sum in dimensiofiP|+ 1) is thus bounded
by (b- (44 x) + 1), which we define a$(b). The last two dimensions are not modified inside a gadget. dearly,
looping in stateclosep, for f(b) steps is sufficient to close all windows in all dimensiongesponding to places (recall
that dimensiorp is closed byP, cheating on place), as well as in dimensio(jP| + 1). However, this loop opens
a window in one of the last two dimensions (the last for thédefdget, and the second to last for the right gadget).
As thedelay state ofPP, has a positive effect in those dimensionsPif decides to delay the play fdi(b) steps, all
windows will be closed. If he does not delay, the play will peed to the next gadget, in whi@h is also forced to
cheat befor¢b+ 1) transitions. Hence after looping fé(b) steps in the correspondirtpse, state, the open window
will close (and another will open in the other dimension vihidgll in turn be closed after the next gadget). By keeping
this behaviorP; can thus enforce that any open window along the play willeiosat mos(4- f (b) 4 4) steps. Thus
the outcome is winning for the bounded window objective.

Case (ii). Assume that there exists an infinite execuytianT“ of the net. We define a winning strategy € A»
of P, as follows. The strategy is played in rounds, with the ihittnd being round 1.

1. Every time a gadget is entered, start playing in sfateaccording to the infinite execution, that is, choose
transitions in order to obtain the same trace.

2. When a statdelay is visited during roundh, take the self-loom times then continue to stafee and start round
n+1.

Notice that this strategy requires infinite memory. We cl#iat any consistent outcome of the game is winning#gr

that is, it does not belong 8®ndWMPg(0). First, P; cannot stay forever in a gadget, thanks to dimenéiBp+ 1):

he has to branch at some point otherwise the play is lost.r8edoin stateresetq, 1 decides to cycle for less than
necessary for a full reset, the situation gets betteffpby the monotonicity property of the reset net @sgets

to continue with more tokens than expected). Notice fhatannot accumulate positive values in the sum, as the
next edge will restart a new window and all accumulation Ww#l forgotten with regard to the objective. Third, if
P, branches and exits the gadget to go to some stasep,, then all dimensions corresponding to places, including
dimensionp, have a running open window (dimensipias a strictly negative value singg does not cheat). Hence,
no matter how long?; chooses the self-loop, the window in dimensjpmill stay open (andP; cannot stay here
forever because of the last two dimensions). Fourth, wherpthy reaches a statielay with an open window in
dimensionp € {1,...,|P|}, the strategy\, prescribes thaP, will loop for longer and longer periods of time, thus
enforcing open windows of constantly growing length. As asgmuence, any consistent outcome is such that the
bounded window objective is not satisfied, which proves aintand further concludes our proof. O
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Notice that Theorem 5 implies th&; may need to use a non-primitive recursive window size to wimudti-
dimension bounded window mean-payoff game, whereas a pgsalginomial bound exists in the one-player case
(see Corollary 1). The decidability of the bounded windovamgayoff problem remains open.

4.4 On direct objectives

Through this paper, we have studied the prefix-independensions of the objectives defined in Sec. 4.1. In this
section, we briefly argue that similar complexity results abtained for thelirect variants (Table 2), by slight mod-
ifications of the presented proofs. Notice that memory nexpiénts however change, as it is now sufficient to force
one sufficiently long (for the fixed problem) or never clos{fy the bounded problem) window to make an outcome
losing.

one-dimension k-dimension
complexity | P1 mem. [ P, mem. [| complexity [ P, mem. | P, mem.
direct fixed Pc PSPACE-h.
polynomial window ' mem. req. EXP-easy ’
- - ) exponential
direct fixed P(SLV, ) < linear(9 - Imax) EXP-c
arbitrary window P max :
d,lreCt bounded NPNcoNP | mem-less| linear NPR-h.
window problem

Table 2: Complexities memory requirements for the diregectives. Differences with the prefix-independent objec-
tives are in bold.

One-dimension direct fixed window problem The polynomial algorithm in the size of the game and the eize
the window is given by Lemma 4. For polynomial windows, weaibtP-hardness using the proof of Lemma 7 and
window sizelmax= 2-|9, as if P; can win the reachability game, he has a strategy to do it irpat |8 steps. Lemma 6
extends to direct objectives, and provides linear uppendswn memory with the same arguments. In particular, the
provided examples of games require memory for both playeeswhe direct fixed window objective is considered.

One-dimension direct bounded window problemWe obtain a NIP\coNP algorithm for the direct bounded problem
by simplifying BoundedProblem (Lemma 10) as followsBoundedProblem(G) = S\ UnbOpenWindow(G). Indeed,

as the objective is no longer prefix-independent, it is siefficfor 7P, to force one window that never closes to make
the play losing. Hence, the attractor of the S&tL in algorithm BoundedProblem cannot be declared winning for
P1. While memoryless strategies still suffice 18 (applying the arguments of Lemma 10), winning strategies fo
P> do not need infinite memory anymore, but at most linear menlodeed, a winning strategy @®, is the one
described in the proof of Lemma 10, but without taking rouimdis account (i.e., the play stays forever in round one).
To illustrate that memoryless strategies still do not saffar 7,, consider a variation of Fig. 5, with the initial state
beings,. Clearly,?> must first take the cycle t& then loop forever o1, to ensure a never closing window. Corollary
1 extends in the direct case and gives the same bound on tdewvsize. Finally, the reduction of mean-payoff games
developed in Lemma 14 carries over to the direct boundedavirabjective, as the game with shifted weights is such
that the mean-payoff is strictly positive. In which cases Hupremum total-payoff is infinite and Lemma 2 applies,
implying the result.

Multi-dimension direct fixed window problem. The following results extend to the direct case.

— EXPTIME algorithmLemma 15 presents a reduction from fixed window games torexpzally larger co-Buchi
games. It is easy to obtain a similar reduction from dire@diwindow games by considering a safety objective
for P4 (i.e., reachability for the set of bad states f&). This also implies an exponential-time algorithm.

— EXPTIME-hardness of the arbitrary window problem for weggh-1,0,1} and arbitrary dimensionsThe reduc-
tion of the membership problem for polynomial space altengaluring machines immediately yields the result
for the direct objective. Indeed, the strategies proposelle proof stay winning for this objective. Note that ac-
tually the strategy oP, may be simpler, as he may cycle foreverqag.,,: after branching to punish an unfaithful
symbol disclosure by keeping a window indefinitely open.
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— EXPTIME-hardness of the arbitrary window problem for twonénsions and arbitrary weight$he reduction
from countdown games established in Lemma 17 extends tfaig/ardly to direct objectives, arfél, can use a
simpler winning strategy consisting in looping forevertmzero cycle.

— PSPACE-hardness of the polynomial window probl€&he reduction of generalized reachablity games also holds
without modification for the direct fixed polynomial windovbjective.

— Exponential memory boundsxponential upper bounds follow from the modified Lemmausing safety games.
Lower bounds witnessed by Lemma 19 are also verified in theepted game as well as from the reduction of
generalized reachablity games.

Multi-dimension direct bounded window problem. Non-primitive recursive hardness (Theorem 5) extendfi¢o t
direct objective with a simpler construction. Indeed, isisficient to consider the game using only the f{if{ + 1)
dimensions, and consisting of only one gadget, with the divizng out of the gadget now going to an absorbing state
with a self-loop of weightL,_, such that wherP; decides to branch, all windows get closed eventually, exicethe
dimensionp of his choice, for which the window is only closedf% cheats and stays open forever otherwise.

5 Conclusion

The strong relation between mean-payoff and total-payefiks in multi-weighted games as the total-payoff threshol
problem becomes undecidable. Window objectives provideexvative approximations with timing guarantees. Some
variants prove to be more computationally tractable tharctirresponding classical objectives.
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