
ar
X

iv
:1

30
2.

42
48

v2
  [

cs
.G

T
]  

19
 J

un
 2

01
3

Looking at Mean-Payoff and Total-Payoff through Windows

Krishnendu Chatterjee1,⋆, Laurent Doyen2, Mickael Randour3,†, and Jean-François Raskin4,‡

1 IST Austria (Institute of Science and Technology Austria)
2 LSV - ENS Cachan, France

3 Computer Science Department, Université de Mons (UMONS),Belgium
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Abstract. We consider two-player games played on weighted directed graphs with mean-payoff and total-payoff
objectives, two classical quantitative objectives. Whilefor single-dimensional games the complexity and memory
bounds for both objectives coincide, we show that in contrast to multi-dimensional mean-payoff games that are
known to be coNP-complete, multi-dimensional total-payoff games are undecidable. We introduce conservative
approximations of these objectives, where the payoff is considered over a local finite window sliding along a play,
instead of the whole play. For single dimension, we show that(i) if the window size is polynomial, deciding the
winner takes polynomial time, and(ii) the existence of a bounded window can be decided in NP∩ coNP, and is
at least as hard as solving mean-payoff games. For multiple dimensions, we show that(i) the problem with fixed
window size is EXPTIME-complete, and(ii) there is no primitive-recursive algorithm to decide the existence of a
bounded window.

1 Introduction

Mean-payoff and total-payoff games.Two-player mean-payoff and total-payoff games are played on finite weighted
directed graphs (in which every edge has an integer weight) with two types of vertices: in player-1 vertices, player 1
chooses the successor vertex from the set of outgoing edges;in player-2 vertices, player 2 does likewise. The game
results in an infinite path through the graph, called aplay. The mean-payoff (resp. total-payoff) value of a play is the
long-run average (resp. sum) of the edge-weights along the path. While traditionally games on graphs withω-regular
objectives have been studied for system analysis, researchefforts have recently focused on quantitative extensions to
model resource constraints of embedded systems, such as power consumption, or buffer size [3]. Quantitative games,
such as mean-payoff games, are crucial for the formal analysis of resource-constrained reactive systems. For the
analysis of systems with multiple resources, multi-dimension games, where edge weights are integer vectors, provide
the appropriate framework.

Decision problems.The decision problem for mean-payoff and total-payoff games asks, given a starting vertex,
whether player 1 has a strategy that against all strategies of the opponent ensures a play with value at least 0. For
both objectives,memorylesswinning strategies exist for both players (where a memoryless strategy is independent of
the past and depends only on the current state) [10,15]. Thisensures that the decision problems belong to NP∩ coNP;
and they belong to the intriguing class of problems that are in NP∩ coNP but whether they are in P (deterministic poly-
nomial time) are long-standing open questions. The study ofmean-payoff games has also been extended to multiple
dimensions where the problem is shown to be coNP-complete [29,5]. While for one dimension all the results for mean-
payoff and total-payoff coincide, our first contribution shows that quite unexpectedly (in contrast to multi-dimensional
mean-payoff games) the multi-dimensional total-payoff games are undecidable.

Window objectives.On the one hand, the complexity of single-dimensional mean-payoff and total-payoff games is
a long-standing open problem, and on the other hand, the multi-dimensional problem is undecidable for total-payoff
games. In this work, we propose to study variants of these objectives, namely,bounded window mean-payoffandfixed
window mean-payoffobjectives. In a bounded window mean-payoff objective instead of the long-run average along
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one-dimension k-dimension
complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP∩coNP mem-less coNP-c. / NP∩coNP infinite mem-less

TP / TP NP∩coNP mem-less undec.(Thm. 1) - -

WMP: fixed
P-c. (Thm. 2) mem. req.

≤ linear(|S| · lmax)
(Thm. 2)

PSPACE-h.(Thm. 4)
polynomial window EXP-easy(Thm. 4) exponential

WMP: fixed
P(|S|,V, lmax) (Thm. 2) EXP-c. (Thm. 4)

(Thm. 4)
arbitrary window

WMP: bounded
NP∩coNP (Thm. 3)

mem-less infinite
NPR-h. (Thm. 5) - -

window problem (Thm. 3) (Thm. 3)

Table 1: Complexity of deciding the winner and memory required, with|S| the number of states of the game (vertices
in the graph),V the length of the binary encoding of weights, andlmax the window size. New results in bold (h. for
hard and c. for complete).

the whole play we consider payoffs over a local bounded window sliding along a play, and the objective is that the
average weight must be at least zero over every bounded window from some point on. This objective can be seen as a
strengthening of the mean-payoff objective (resp. of the total-payoff objective if we require that the window objective
is satisfied from the beginning of the play rather than from some point on), i.e., winning for the bounded window
mean-payoff objective implies winning for the mean-payoffobjective. In the fixed window mean-payoff objective the
window length is fixed and given as a parameter. Observe that winning for the fixed window objective implies winning
for the bounded window objective.

Attractive features for window objectives.First, they are a strengthening of the mean-payoff objectives and hence
provide conservative approximations for mean-payoff objectives. Second, the window variant is very natural to study
in system analysis. Mean-payoff objectives require average to satisfy certain threshold in the long-run (or in the
limit of the infinite path), whereas the window objectives require to provide guarantee on the average, not in the
limit, but within a bounded time, and thus provide better time guarantee than the mean-payoff objectives. Third,
the window parameter provides flexibility, as it can be adjusted specific to applications requirement of strong or
weak time guarantee for system behaviors. Finally, we will establish that our variant in the single dimension is more
computationally tractable, which makes it an attractive alternative to mean-payoff objectives.

Our contributions. The main contributions of this work (along with the undecidability of multi-dimensional total-
payoff games) are as follows:

1. Single dimension.For the single-dimensional case we present an algorithm forthe fixed window problem that is
polynomial in the size of the game graph times the length of the binary encoding of weights times the size of
the fixed window. Thus if the window size is polynomial, we have a polynomial-time algorithm. For the bounded
window problem we show that the decision problem is in NP∩ coNP, and at least as hard as solving mean-payoff
games. However, winning for mean-payoff games does not imply winning for the bounded window mean-payoff
objective, i.e., the winning sets for mean-payoff games andbounded window mean-payoff games do not coincide.
Moreover, the structure of winning strategies is also very different, e.g., in mean-payoff games both players have
memoryless winning strategies, but in bounded window mean-payoff games we show that player 2 requires infinite
memory. We also show that if player 1 wins the bounded window mean-payoff objective, then a window of size
(|S|−1) · (|S| ·W+1) is sufficient whereS is the state space (the set of vertices of the graph), andW is the largest
absolute weight value. Finally, we show that(i) a winning strategy for the bounded window mean-payoff objective
ensures that the mean-payoff is at least 0 regardless of the strategy of the opponent, and(ii) a strategy that ensures
that the mean-payoff is strictly greater than 0 is winning for the bounded window mean-payoff objective.

2. Multiple dimensions. For multiple dimensions, we show that the fixed window problem is EXPTIME-complete
(both for arbitrary dimensions with weights in{−1,0,1} and for two dimensions with arbitrary weights); and if
the window size is polynomial, then the problem is PSPACE-hard. For the bounded window problem we show that
the problem is non-primitive recursive hard (i.e., there isno primitive recursive algorithm to decide the problem).

3. Memory requirements.For all the problems for which we prove decidability we also characterize the memory
required by winning strategies.
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The relevant results are summarized in Table 1: our results are in bold fonts. In summary, the fixed window problem
provides an attractive approximation of the mean-payoff and total-payoff games that we show have better algorithmic
complexity. In contrast to the long-standing open problem of mean-payoff games, the one-dimension fixed window
problem with polynomial window size can be solved in polynomial time; and in contrast to the undecidability of
multi-dimensional total-payoff games, the multi-dimension fixed window problem is EXPTIME-complete.

Related works. This paper extends the results presented in its preceding conference version [6] and gives a full
presentation of the technical details. Mean-payoff games have been first studied by Ehrenfeucht and Mycielski in [10]
where it is shown that memoryless winning strategies exist for both players. This entails that the decision problem lies
in NP∩ coNP [20,30], and it was later shown to belong to UP∩ coUP [18]. Despite many efforts [16,30,26,22,17], no
polynomial-time algorithm for the mean-payoff games problem is known so far. Gurvich, Karzanov, Khachivan and
Lebedev [16,20] provided the first (exponential) algorithmfor mean-payoff games, later extended by Pisaruk [26]. The
first pseudo-polynomial-time algorithm for mean-payoff games was given in [30] and was improved in [2]. Lifshits
and Pavlov [22] propose an algorithm which is polynomial in the encoding of weights but exponential in the number
of vertices of the graph: it is based on a graph decompositionprocedure. Bjorklund and Vorobyov [17] present a
randomizedalgorithm which is both subexponential and pseudo-polynomial. While all the above works are for single
dimension, multi-dimensional mean-payoff games have beenstudied in [29,5,8]. One-dimension total-payoff games
have been studied in [14] where it is shown that memoryless winning strategies exist for both players and the decision
problem is in UP∩ coUP.

2 Preliminaries

We consider two-player turn-based games and denote the twoplayersbyP1 andP2.

Multi-weighted two-player game structures.Multi-weighted two-player game structuresare weighted graphsG=
(S1,S2,E,k,w) where (i) S1 andS2 resp. denote the finite sets of vertices, calledstates, belonging toP1 andP2, with
S1∩S2 = /0 andS= S1∪S2; (ii ) E ⊆ S×S is the set ofedgessuch that for alls∈ S, there existss′ ∈ Swith (s,s′) ∈ E;
(iii ) k ∈ N is thedimensionof the weight vectors; and (iv) w: E → Zk is the multi-weight labeling function. When it
is clear from the context that a gameG is one-dimensional (k = 1), we omitk and write it asG= (S1,S2,E,w). The
game structureG is one-playerif S2 = /0. We denote byW the largest absolute weight that appears in the game. For
complexity issues, we assume that weights are encoded in binary. Hence we differentiate between pseudo-polynomial
algorithms (polynomial inW) and truly polynomial algorithms (polynomial inV = ⌈log2W⌉, the number of bits needed
to encode the weights).

A play in G from an initial statesinit ∈ S is an infinite sequence of statesπ = s0s1s2 . . . such thats0 = sinit and
(si ,si+1) ∈ E for all i ≥ 0. Theprefixup to then-th state ofπ is the finite sequenceπ(n) = s0s1 . . .sn. LetLast(π(n)) =
sn denote the last state ofπ(n). A prefix π(n) belongs toPi , i ∈ {1,2}, if Last(π(n)) ∈ Si . The set of plays ofG is
denoted byPlays(G) and the corresponding set of prefixes is denoted byPrefs(G). The set of prefixes that belong to
Pi is denoted byPrefsi(G). The infinite suffix of a play starting insn is denotedπ(n,∞).

Thetotal-payoffof a prefixρ = s0s1 . . .sn isTP(ρ) =∑i=n−1
i=0 w(si ,si+1), and itsmean-payoffisMP(ρ) = 1

nTP(ρ).
This is naturally extended to plays by considering the componentwise limit behavior (i.e., limit taken on each di-
mension). Theinfimum (resp. supremum) total-payoffof a playπ is TP(π) = lim infn→∞TP(π(n)) (resp.TP(π) =
limsupn→∞TP(π(n))). The infimum (resp. supremum) mean-payoffof π is MP(π) = lim infn→∞MP(π(n)) (resp.
MP(π) = limsupn→∞MP(π(n))).
Strategies.A strategyfor Pi , i ∈ {1,2}, in G is a functionλi : Prefsi(G) → S such that(Last(ρ),λi(ρ)) ∈ E for
all ρ ∈ Prefsi(G). A strategyλi for Pi hasfinite-memoryif it can be encoded by a deterministic Moore machine
(M,m0,αu,αn) whereM is a finite set of states (the memory of the strategy),m0 ∈ M is the initial memory state,
αu : M ×S→ M is an update function, andαn : M ×Si → S is the next-action function. If the game is ins∈ Si and
m∈ M is the current memory value, then the strategy choosess′ = αn(m,s) as the next state of the game. When the
game leaves a states∈ S, the memory is updated toαu(m,s). Formally,〈M,m0,αu,αn〉 defines the strategyλi such
thatλi(ρ ·s) = αn(α̂u(m0,ρ),s) for all ρ ∈ S∗ ands∈ Si, whereα̂u extendsαu to sequences of states as expected. A
strategy ismemorylessif |M| = 1, i.e., it does not depend on history but only on the current state of the game. We
resp. denote byΛi ,ΛF

i , andΛM
i the sets of general (i.e., possibly infinite-memory), finite-memory, and memoryless

strategies for playerPi .
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A play π is said to beconsistentwith a strategyλi of Pi if for all n ≥ 0 such thatLast(π(n)) ∈ Si, we have
Last(π(n+1)) = λi(π(n)). Given an initial statesinit ∈ S, and two strategies,λ1 for P1 andλ2 for P2, the unique play
from sinit consistent with both strategies is theoutcomeof the game, denoted byOutcomeG(sinit,λ1,λ2).

Attractors. Theattractor for P1 of a setA⊆ S in G is denoted byAttrP1
G (A) and computed as the fixed point of the

sequenceAttrP1,n+1
G (A) =Attr

P1,n
G (A)∪{s∈S1 |∃(s, t) ∈ E, t ∈Attr

P1,n
G (A)}∪{s∈S2 |∀(s, t) ∈ E, t ∈Attr

P1,n
G (A)},

with Attr
P1,0
G (A) = A. The attractorAttrP1

G (A) is exactly the set of states from whichP1 can ensure to reachA no
matter whatP2 does. The attractorAttrP2

G (A) for P2 is defined symmetrically.

Objectives.An objectivefor P1 in G is a set of playsφ ⊆ Plays(G). A playπ ∈Plays(G) is winningfor an objectiveφ
if π ∈ φ . Given a gameG and an initial statesinit ∈ S, a strategyλ1 of P1 is winning ifOutcomeG(sinit,λ1,λ2) ∈ φ for
all strategiesλ2 of P2. Given a rational threshold vectorv∈ Qk, we define theinfimum (resp. supremum) total-payoff
(resp. mean-payoff) objectivesas follows:

– TotalInfG(v) = {π ∈ Plays(G) | TP(π)≥ v}
– TotalSupG(v) =

{
π ∈ Plays(G) | TP(π)≥ v

}

– MeanInfG(v) = {π ∈ Plays(G) |MP(π)≥ v}
– MeanSupG(v) =

{
π ∈ Plays(G) |MP(π)≥ v

}

Decision problem.Given a game structureG, an initial statesinit ∈ S, and an inf./sup. total-payoff/mean-payoff objec-
tive φ ⊆ Plays(G), thethreshold problemasks to decide ifP1 has a winning strategy for this objective. The threshold
v can be taken equal to{0}k (where{0}k denotes thek-dimension zero vector) w.l.o.g. as we transform the weight
functionw to b ·w−a for any thresholda

b, a∈ Zk, b∈N0 = N\ {0}.

3 Mean-Payoff and Total-Payoff Objectives

In this section, we discuss classical mean-payoff and total-payoff objectives. We show that while they are closely
related in one dimension, this relation breaks in multiple dimensions. Indeed, we establish that the threshold problem
for total-payoff becomes undecidable, both for the infimum and supremum variants.

First, consider one-dimension games. In this case, memoryless strategies exist for both players for both objectives
[23,10,13,15] and the sup. and inf. mean-payoff problems coincide (which is not the case for total-payoff). Threshold
problems for mean-payoff and total-payoff are closely related as witnessed by Lemma 1 and both have been shown to
be in NP∩coNP [30,14].

Lemma 1. Let G= (S1,S2,E,k,w) be a two-player game structure and sinit ∈ S be an initial state. Let A, B, C and D
resp. denote the following assertions.

A. PlayerP1 has a winning strategy forMeanSupG({0}k).
B. PlayerP1 has a winning strategy forMeanInfG({0}k).
C. There exists a threshold v∈Qk such thatP1 has a winning strategy forTotalInfG(v).
D. There exists a threshold v′ ∈Qk such thatP1 has a winning strategy forTotalSupG(v

′).

For games with one-dimension (k= 1) weights, all four assertions are equivalent. For games with multi-dimension
(k> 1) weights, the only implications that hold are: C⇒ D ⇒ A and C⇒ B⇒ A. All other implications are false.

The statement of Lemma 1 is depicted in Fig. 1: the only implications that extend to the multi-dimension case are
depicted by solid arrows.

Proof. Specifically, the implications that remain true in multi-weighted games are the trivial ones: satifaction of the
infimum version of a given objective trivially implies satisfaction of its supremum version, and satisfaction of infimum
(resp. supremum) total-payoff for some finite thresholdv∈Qk implies satisfaction of infimum (resp. supremum) mean-
payoff for threshold{0}k as from some point on, the corresponding sequence of mean-payoff infima (resp. suprema)

in all dimensionst, 1≤ t ≤ k, can be lower-bounded by a sequence of elements of the formv(t)
n with n the length of

the prefix, which tends to zero for an infinite play. That is thanks to the sequence of total-payoffs over prefixes being a
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A: ∃λ A
1 �MeanSupG({0}k) D : ∃v∈Qk, ∃λ D

1 � TotalSupG(v)

B: ∃λ B
1 �MeanInfG({0}k) C: ∃v′ ∈Qk, ∃λC

1 � TotalInfG(v′)

Fig. 1: Equivalence between threshold problems for mean-payoff and total-payoff objectives. Dashed implications are
only valid for one-dimension games.

sequence of integers: it always achieves the value of its limit v(t) instead of only tending to it asymptotically as could
a sequence of rationals such as the mean-payoffs. This sums up toC⇒ D ⇒ A andC⇒ B⇒ A being true even in the
multi-dimension setting.

In the one-dimension case, all assertions are equivalent. First, we have that infimum and supremum mean-payoff
problems coincide as memoryless strategies suffice for bothplayers. Thus, we addA⇒ B andD ⇒ B by transitivity.
Second, consider an optimal strategy forP1 for the mean-payoff objective of threshold 0. This strategyis such that
all cycles formed in the outcome have non-negative effect, otherwiseP1 cannot ensure winning. Thus, the total-
payoff over any outcome that is consistent with the same optimal strategy is at all times bounded from below by
−2 · (|S|−1) ·W (once for the initial cycle-free prefix, and once for the current cycle being formed). Therefore, we
have thatB⇒C, and we obtain all other implications by transitive closure.

s(1,−2) (−2,1)

Fig. 2: Satisfaction of supremum TP does not imply sat-
isfaction of infimum MP.

s1 s2(−1,1,0) (1,−1,0)

(−1,−1,−1)

(−1,−1,−1)

Fig. 3: Satisfaction of infimum MP does not imply sat-
isfaction of supremum TP.

For multi-weighted games, all dashed implications are false. We specifically consider two of them.

1. To show that implicationD⇒ B does not hold, consider the one-player game depicted in Fig.2. Clearly, any finite
vectorv∈ Qk for the supremum total-payoff objective can be achieved by an infinite memory strategy consisting
in playing both loops successively for longer and longer periods, each time switching after getting back above the
threshold in the considered dimension. However, it is impossible to build any strategy, even with infinite memory,
that provides an infimum mean-payoff of(0,0) as the limit mean-payoff would be at best a linear combination of
the two cycles values, i.e., strictly less than 0 in at least one dimension in any case.

2. Lastly, implicationB⇒ D failure in multi-weighted games can be witnessed in Fig. 3. Clearly, the strategy that
plays forn steps in the left cycle, then goes forn steps in the right one, then repeats forn′ > n and so on, is a
winning strategy for the infimum mean-payoff objective of threshold(0,0,0). Nevertheless, for any strategy of
P1, the outcome is such that either (i) it only switches betweencycles a finite number of time, in which case the
sum in dimension 1 or 2 will decrease to infinity from some point on, or (ii) it switches infinitely and the sum of
weights in dimension 3 decreases to infinity. In both cases, the supremum total-payoff objective is not satisfied for
any finite vectorv∈Q3.

All other implications are deduced false as they would otherwise contradict the last two cases by transitivity.⊓⊔

In multi-dimension games, recent results have shown that the threshold problem for inf. mean-payoff is coNP-
complete whereas it is in NP∩ coNP for sup. mean-payoff [29,28]. In both cases,P1 needs infinite memory to win,
and memoryless strategies suffice forP2 [5,28]. When restricted to finite-memory strategies, the problem is coNP-
complete [5,28] and requires memory at most exponential forP1 [8].
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The case of total-payoff objectives in multi-weighted gamestructures has never been considered before. Surpris-
ingly, the relation established in Lemma 1 cannot be fully transposed in this context. We show that the threshold
problem indeed becomes undecidable for multi-weighted game structures, even for a fixed number of dimensions.

Theorem 1. The threshold problem for infimum and supremum total-payoffobjectives is undecidable in multi-dimen-
sion games, for five dimensions.

We reduce the halting problem for two-counter machines to the threshold problem for two-player total-payoff
games with five dimensions. Counters take values(v1,v2) ∈ N2 along an execution, and can be incremented or decre-
mented (if positive). A counter can be tested for equality tozero, and the machine can branch accordingly. We build
a game with a sup. (resp. inf.) total-payoff objective of threshold(0,0,0,0,0) for P1, in whichP1 has to faithfully
simulate an execution of the machine, andP2 can retaliate if he does not. We present gadgets by whichP2 checks that
(a) the counters are always non-negative, and that(b) a zero test is only passed if the value of the counter is reallyzero.
The current value of counters(v1,v2) along an execution is encoded as the total sum of weights since the start of the
game,(v1,−v1,v2,−v2,−v3), with v3 being the number of steps of the computation. Hence, along a faithful execution,
the 1st and 3rd dimensions are always non-negative, while the 2nd, 4th and 5th are always non-positive. To check that
counters never go below zero,P2 is always able to go to an absorbing state with a self-loop of weight (0,1,1,1,1)
(resp.(1,1,0,1,1)). To check that all zero tests on counter 1 (resp. 2) are faithful, P2 can branch after a test to an
absorbing state with a self-loop of weight(1,0,1,1,1) (resp.(1,1,1,0,1)). Using these gadgets,P2 can punish an un-
faithful simulation as he ensures that the sum in the dimension on whichP1 has cheated always stays strictly negative
and the outcome is thus losing (it is only the case ifP1 cheats, otherwise all dimensions become non-negative). When
an execution halts (with counters equal to zero w.l.o.g.) after a faithful execution, it goes to an absorbing state with
weight(0,0,0,0,1), ensuring a winning outcome forP1 for the total-payoff objective. If an execution does not halt,
the 5th dimension stays strictly negative and the outcome islosing.

Proof. From a two-counter machine (2CM)M, we construct a two-player gameG with five dimensions and an
infimum (equivalently supremum) total-payoff objective such thatP1 wins for threshold(0,0,0,0,0) if and only if the
2CM halts.

A 2CM has two counters that can be incremented or decremented, and can test if their value is equal to zero (called
zero test) and branch accordingly. The halting problem for 2CMs is undecidable [25]. Assume w.l.o.g. that we have a
2CMM such that if it halts, it halts with the two counters equal to zero.5 In the game we construct,P1 has to faithfully
simulate the 2CMM. The role ofP2 is to ensure that he does so by retaliating if it is not the case, hence making the
outcome losing for the total-payoff objective.

The game is built as follows. The states ofG are copies of the control states ofM (plus some special states
discussed in the following). Edges represent transitions between these states. The payoff function maps edges to 5-
dimensional vectors of the form(c1,−c1,c2,−c2,d), that is, two dimensions for the first counterC1, two for the
second counterC2, and one additional dimension. Each increment of counterC1 (resp.C2) in M is implemented
in G as a transition of weight(1,−1,0,0,−1) (resp.(0,0,1,−1,−1). For decrements, we have weights respectively
(−1,1,0,0,−1) and(0,0,−1,1,−1) for C1 andC2. Therefore, the current value of counters(v1,v2) along an execution
of the 2CMM is represented in the game as the current sum of weights,(v1,−v1,v2,−v2,−v3), with v3 the number of
steps of the computation. The two dimensions per counter areused to enforce faithful simulation of non-negativeness
of counters and zero test. The last dimension is decreased byone for every transition, except when the machine halts,
from when it is incremented forever (i.e., the play inG goes to an absorbing state with self-loop(0,0,0,0,1)). This is
used to ensure that a play inG is winning iff M halts.

We now discuss how this gameG ensures faithful simulation of the 2CMM byP1.

– Increment and decrementof counter values are easily simulated using the first four dimensions.
– Values of counters may never go below zero. To ensure this, we allowP2 to branch after every step of the 2CM sim-

ulation to two special states,s1
stop neg ands2

stop neg, which are absorbing and with self-loops of respective weights
(0,1,1,1,1) and(1,1,0,1,1). If a negative value is reached on counterC1 (resp.C2), P2 can clearly win the game

5 This is w.l.o.g. as it suffices to plug a machine that decreases both counters to zero at the end of the execution of the considered
machine.
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by branching to states1
stop neg (resp.s2

stop neg), as the total-payoff in the dimension corresponding to thenegative
counter will always stay strictly negative. On the contrary, if P2 decides to go tos1

stop neg (resp.s2
stop neg) when the

value ofC1 (resp.C2) is positive, thenP1 wins the game as this dimension will be positive and the otherfour will
grow boundlessly. So these transitions are only used ifP1 cheats.

– Zero tests are correctly executed. In the same spirit, we allowP2 to branch to two absorbing special states after
a zero test,s1

poszero ands2
poszero with self-loops of weights(1,0,1,1,1) and(1,1,1,0,1). Such states are used by

P2 if P1 cheats on a zero test (i.e., pass the test with a strictly positive counter value). Indeed, if a zero test was
passed with the value of counterC1 (resp.C2) strictly greater than zero, then the current sum(v1,−v1,v2,−v2,v3)
is such that−v1 (resp.−v2) is strictly negative. By going tos1

poszero (resp.s2
poszero), P2 ensures that this sum will

remain strictly negative in the considered dimension forever and the play is lost forP1.

Therefore, ifP1 does not faithfully simulateM, he is guaranteed to lose inG. On the other hand, ifP2 stops
a faithful simulation,P1 is guaranteed to win. It remains to argue that he wins iff the machine halts. Indeed, if the
machineM halts, thenP1 simulates its execution faithfully and either he is interrupted and wins, or the simulation
ends in an absorbing state with a self-loop of weight(0,0,0,0,1) and he also wins. Indeed, given that this state can
only be reached with values of counters equal to zero (by hypothesis on the machineM, without loss of generality),
the running sum of weights will reach values(0,0,0,0,n) wheren grows to infinity, which ensures satisfaction of the
infimum (and thus supremum) total-payoff objective for threshold(0,0,0,0,0). On the opposite, if the 2CMM does
not halt,P1 has no way to reach the halting state by means of a faithful simulation and the running sum in the fifth
dimension always stays negative, thus inducing a losing play for P1, for both variants of the objective.

Consequently, we have that solving multi-weighted games for either the supremum or the infimum total-payoff
objective is undecidable. ⊓⊔

We end this section by noting that in multi-weighted total-payoff games,P1 may need infinite memory to win,
even when all states belong to him (S2 = /0). Consider the game depicted in Fig. 2. As discussed in theproof of Lemma
1, given any threshold vectorv ∈ Q2, P1 has a strategy to win the supremum total-payoff objective: it suffices to
alternate between the two loops for longer and longer periods, each time waiting to get back above the threshold in
the considered dimension before switching. This strategy needs infinite memory and actually, there exists no finite-
memory strategy that can achieve a finite threshold vector: the negative amount to compensate grows boundlessly with
each alternation, and thus no amount of finite memory can ensure to go above the threshold infinitely often.

4 Window Mean-Payoff Objective

In one dimension, no polynomial algorithm is known for mean-payoff and total-payoff, and in multiple dimensions,
total-payoff is undecidable. In this section, we introducethe window mean-payoff objective, a conservative approx-
imation in which local deviations from the threshold must becompensated in a parametrized number of steps. We
consider awindow, sliding along a play, within which the compensation must happen. Our approach can be applied
both to mean-payoff and total-payoff objectives. Since we considerfinitewindows, both versions coincide for threshold
zero. Hence we present our results for mean-payoff.

In Sec. 4.1, we define the objective and discuss its relation with mean-payoff and total-payoff objectives. We then
divide our analysis into two subsections: Sec. 4.2 for one-dimension games and Sec. 4.3 for multi-dimension games.
Both provide thorough analysis of thefixed window problem(the bound on the window size is a parameter) and the
bounded window problem(existence of a bound is the question). We establish solvingalgorithms, prove complexity
lower bounds, and study the memory requirements of these objectives. In Sec. 4.4, we briefly discuss the extension of
our results to a variant of our objective modeling stronger requirements.

4.1 Definition and comparison

Objectives and decision problems.Given a multi-weighted two-player gameG = (S1,S2,E,k,w) and a rational
thresholdv∈Qk, we define the following objectives.6

6 For brevity, we omit thatπ ∈ Plays(G).
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– Givenlmax∈ N0, thegood windowobjective

GWG(v, lmax) =
{

π | ∀ t, 1≤ t ≤ k, ∃ l ≤ lmax,
1
l

l−1

∑
p=0

w
(

eπ (p, p+1)
)
(t)≥ v(t)

}
, (1)

whereeπ(p, p+1) is the edge(Last(π(p)),Last(π(p+1))), requires that for all dimensions, there exists a window
starting in the first position and bounded bylmax over which the mean-payoff is at least equal to the threshold.

– Givenlmax∈ N0, thedirect fixed window mean-payoffobjective

DirFixWMPG(v, lmax) =
{

π | ∀ j ≥ 0, π( j ,∞) ∈ GWG(v, lmax)
}

(2)

requires that good windows bounded bylmax exist in all positions along the play.
– Thedirect bounded window mean-payoffobjective

DirBndWMPG(v) =
{

π | ∃ lmax> 0, π ∈DirFixWMPG(v, lmax)
}

(3)

asks that there exists a boundlmax such that the play satisfies the direct fixed objective.
– Givenlmax∈ N0, thefixed window mean-payoffobjective

FixWMPG(v, lmax) =
{

π | ∃ i ≥ 0, π(i,∞) ∈ DirFixWMPG(v, lmax)
}

(4)

is theprefix-independentversion of the direct fixed window objective: it asks for the existence of a suffix of the
play satisfying it.

– Thebounded window mean-payoffobjective

BndWMPG(v) =
{

π | ∃ lmax> 0, π ∈ FixWMPG(v, lmax)
}

(5)

is theprefix-independentversion of the direct bounded window objective.

For anyv∈Qk andlmax∈ N0, the following inclusions are true:

DirFixWMPG(v, lmax)⊆ FixWMPG(v, lmax)⊆ BndWMPG(v), (6)

DirFixWMPG(v, lmax)⊆ DirBndWMPG(v)⊆ BndWMPG(v). (7)

Similarly to classical objectives, all objectives can be equivalently expressed for thresholdv= {0}k by modifying the
weight function. Hence, given any variant of the objective,the associateddecision problemis to decide the existence
of a winning strategy forP1 for threshold{0}k. Lastly, for complexity purposes, we make a difference between
polynomial(in the size of the game) andarbitrary (i.e., non-polynomial) window sizes.

Notice that all those objectives define Borel sets. Hence they are determined by Martin’s theorem [24].
Let π = s0s1s2 . . . be a play. Fix any dimensiont,1≤ t ≤ k. The window from positionj to j ′, 0≤ j < j ′, is closed

iff there existsj ′′, j < j ′′ ≤ j ′ such that the sum of weights in dimensiont over the sequencesj . . .sj ′′ is non-negative.
Otherwise the window isopen. Given a positionj ′ in π , a window is still open inj ′ iff there exists a position 0≤ j < j ′

such that the window fromj to j ′ is open. Consider any edge(si ,si+1) appearing alongπ . If the edge is non-negative
in dimensiont, the window starting ini immediately closes. If not, a window opens that must be closed within lmax

steps. Consider thefirst positioni′ such that this window closes, then we have that all intermediary opened windows
also get closed byi′, that is, for anyi′′, i < i′′ ≤ i′, the window starting ini′′ is closed before or when reaching position
i′. Indeed, the sum of weights over the window fromi′′ to i′ is strictly greater than the sum over the window fromi to
i′, which is non-negative. We call this fact theinductive property of windows.

Illustration. Consider the game depicted in Fig. 4. It has a unique outcome,and it is winning for the classical mean-
payoff objective of threshold 0, as well as for the infimum (resp. supremum) total-payoff objective of threshold−1
(resp. 0). Consider the fixed window mean-payoff objective for threshold 0. If the size of the window is bounded by
1, the play is losing.7 However, if the window size is at least 2, the play is winning,as ins3 we close the window in
two steps and ins4 in one step. Notice that by definition of the objective, it is clear that it is also satisfied for all larger

7 A window size of one actually requires that all infinitely often visited edges are of non-negative weights.
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s1 s2 s3 s4
1 −1

−1

1

Fig. 4: Fixed window is satisfied forlmax ≥ 2, whereas even
direct bounded window is not.

s1 s2 0

−1

1

Fig. 5: Mean-payoff is satisfied but none of the
window objectives is.

sizes.8 As the fixed window objective is satisfied for size 2, the bounded window objective is also satisfied. On the
other hand, if we restrict the objectives to their direct variants, then none is satisfied, as froms2, no window, no matter
how large it is, gets closed.

Consider the game of Fig. 5. Again, the unique strategy ofP1 satisfies the mean-payoff objective for threshold 0. It
also ensures value−1 for the infimum and supremum total-payoffs. Consider the strategy ofP2 that takes the self-loop
once on the first visit ofs2, twice on the second, and so on. Clearly, it ensures that windows starting ins1 stay open
for longer and longer numbers of steps (we say thatP2 delaysthe closing of the window), hence making the outcome
losing for the bounded window objective (and thus the fixed window objective for anylmax∈ N0). This illustrates the
added guarantee (compared to mean-payoff) asked by the window objective: in this case, no upper bound can be given
on the time needed for a window to close, i.e., on the time needed to get the local sum back to non-negative. Note that
P2 has to go back tos1 at some point: otherwise, the prefix-independence of the objectives9 allowsP1 to wait forP2

to settle on cycling and win. For the direct variants,P2 has a simpler winning strategy consisting in looping forever,
as enforcing one permanently open window is sufficient.

Relation with classical objectives.We introduce the bounded window objectives as conservativeapproximations
of mean-payoff and total-payoff in one-dimension games. Indeed, in Lemma 2, we show that winning the bounded
window (resp. direct bounded window) objective implies winning the mean-payoff (resp. total-payoff) objective while
the reverse implication is only true if a strictly positive mean-payoff (resp. arbitrary high total-payoff) can be ensured.

Lemma 2. Given a one-dimension game G= (S1,S2,E,w), the following assertions hold.

(a) If the answer to the bounded window mean-payoff problem is YES, then the answer to the mean-payoff threshold
problem for threshold zero is alsoYES.

(b) If there existsε > 0 such that the answer to the mean-payoff threshold problem for thresholdε is YES, then the
answer to the bounded window mean-payoff problem is alsoYES.

(c) If the answer to the direct bounded window mean-payoff problem isYES, then the answer to the supremum total-
payoff threshold problem for threshold zero is alsoYES.

(d) If the answer to the supremum total-payoff threshold problem isYES for all integer thresholds (i.e., the total-payoff
value is∞), then the answer to the direct bounded window mean-payoff problem is alsoYES.

Assertions(a) and (c) follow from the decomposition of winning plays into boundedwindows of non-negative
weights. The key idea for assertions(b) and(d) is that mean-payoff and total-payoff objectives always admit mem-
orylesswinning strategies, for which the consistent outcomes can be decomposed intosimple cycles(i.e., with no
repeated edge) over which the mean-payoff is at least equal to the threshold and which length is bounded. Hence they
correspond to closing windows. Note that strict equivalence with the classical objectives is not verified, as witnessed
before (Fig. 5).

Proof. Assertion (a). In the one-dimension case, sup. and inf. mean-payoff problems coincide. Letπ ∈ Plays(G) be
such thatπ ∈BndWMPG(0). There existsi ≥ 0 such that the suffix ofπ starting ini can be decomposed into an infinite
sequence of bounded segments (i.e., windows) of non-negative weight. Thus, this suffix satisfies the sup. mean-payoff

8 The existential quantification on the window sizel , bounded bylmax, is indeed crucial in eq. (1) to ensure monotonicity with
increasing maximal window sizes, a desired behavior of the definition for theoretical properties and intuitive use in specifications.

9 Fixed and bounded window mean-payoff objectives are prefix-independent: for allρ ∈ Prefs(G), π ∈ Plays(G), we have that
ρ ·π is winning if and only ifπ is winning.
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objective as there are infinitely many positions where the total sum fromi is non-negative. Since the mean-payoff
objective is prefix-independent, the playπ is itself winning.

Assertion (b). Consider a memoryless winning strategy ofP1 for the mean-payoff of thresholdε > 0. Only strictly
positive simple cycles can be induced by such a strategy. Consider any outcomeπ = σ0σ1σ2 . . . consistent with it.
We claim that for any positionj along this play, there exists a positionj + l , with l ≤ lmax= (|S|−1) · (1+ |S| ·W),
such that the sum of weights over the sequenceρ = σ j . . .σ j+l is non-negative. Clearly, if it is the case, then objective
FixWMPG(v, lmax) is satisfied and so is objectiveBndWMPG(v). Consider the cycle decompositionAC1C2 . . .CnB of
this sequence obtained as follows. We push successivelyσ0,σ1, . . . onto a stack, and whenever we push a state that is
already in the stack, a simple cycle is formed that we remove from the stack and append to the cycle decomposition.
The sequenceρ is decomposed into an acyclic part (A∪B) of length10 at most(|S|−1) and total sum at least−(|S|−
1) ·W and simple cycles of total sum at least 1 and length at most|S|. Given the window sizelmax, we have at least
(|S|−1) ·W simple cycles in the cycle decomposition. Hence, the total sum overρ is at least zero, which proves our
point.

Assertion (c). Consider a playπ ∈ DirBndWTPG(0). Using the same decomposition argument as for assertion
(a), we have that the sequence of total sums takes infinitely often values at least equal to zero. Thus the limit of this
sequence of moments bounds from below the limit of the sequence of suprema and is at least equal to zero, which
shows that the supremum total-payoff objective is also satisfied by playπ .

Assertion (d). In one-dimension games, the value of the total-payoff (i.e., the largest threshold for whichP1 has a
winning strategy) is∞ if and only if the value of mean-payoff is strictly positive [14]. Hence, we apply the argument
of assertion(b), further noticing that the window open in positionj is closed in at mostlmax steps for anyj ≥ 0, which
is to say that thedirect objective is satisfied. ⊓⊔

4.2 Games with one dimension

We now study thefixed window mean-payoffand thebounded window mean-payoffobjectives in one-dimension
games. For the fixed window problem, we establish an algorithm that runs in time polynomial in the size of the game
and in the size of the window and we show that memory is needed for both players. Note that this is in contrast to the
mean-payoff objective, whereP2 is memoryless even in the multi-dimension case (cf. Table 1). Moreover, the problem
is shown to be P-hard even for polynomial window sizes. For the bounded window problem, we show equivalence with
the fixed window problem for size(|S|−1) · (|S| ·W+1), i.e., this window size is sufficient to win if possible. The
bounded window problem is then shown to be in NP∩coNP and at least as hard as mean-payoff games.

Fixed window: algorithm. Given a gameG = (S1,S2,E,w) and a window sizelmax ∈ N0, we present an iterative
algorithmFWMP (Alg. 1) to compute the winning states ofP1 for the objectiveFixWMPG(0, lmax). Initially, all states
are potentially losing forP1. The algorithm iteratively declares states to be winning, removes them, and continues the
computation on the remaining subgame as follows. In every iteration,i) DirectFWMP computes the setWd of states
from whichP1 can win the direct fixed window objective;ii) it computes the attractor toWd; and then proceeds to
the next iteration on the remaining subgame (the restriction of G to a subset of statesA ⊆ S is denotedG ⇂ A). In
every iteration, the states of the computed setWd are obviously winning for the fixed window objective. Thanksto the
prefix-independence of the fixed window objective, the attractor toWd is also winning. SinceP2 must avoid entering
this attractor,P2 must restrict his choices to stay in the subgame, and hence weiterate on the remaining subgame.
Thus states removed over all iterations are winning forP1. The key argument to establish correctness is as follows:
when the algorithm stops, the remaining set of statesW is such thatP2 can ensure to stay inW and falsify the direct
fixed window objective by forcing the appearance of one open window larger thanlmax. Since he stays inW, he can
repeatedly use this strategy to falsify the fixed window objective. Thus the remaining setW is winning forP2, and the
correctness of the algorithm follows.

The main idea of algorithmDirectFWMP (Alg. 2) is that to win the direct fixed window objective,P1 must be able
to repeatedly win the good window objective, which consistsin ensuring a non-negative sum in at mostlmax steps. A
winning strategy ofP1 in a states is thus a strategy that enforces a non-negative sum and,as soon as the sum turns
non-negative(in some states′), starts doing the same froms′. It is important to start again immediately as it ensures
that all suffixes along the path froms to s′ also have a non-negative sum thanks to the inductive property of windows.

10 The length of a sequence is the number ofedgesit involves.
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Algorithm 1 FWMP(G, lmax)

Require: G= (S1,S2,E,w) andlmax ∈N0

Ensure: W is the set of winning states forP1 for FixWMPG(0, lmax)
n := 0 ;W := /0
repeat

Wn
d :=DirectFWMP(G, lmax)

Wn
attr := Attr

P1
G (Wn

d ) {attractor forP1}
W :=W∪Wn

attr ; G := G ⇂ (S\W) ; n := n+1
until W = Sor Wn−1

attr = /0
return W

Algorithm 2 DirectFWMP(G, lmax)

Require: G= (S1,S2,E,w) andlmax ∈N0
Ensure: Wd is the set of winning states forP1 for

DirFixWMPG(0, lmax)
Wgw := GoodWin(G, lmax)
if Wgw = Sor Wgw = /0 then

Wd :=Wgw

else
Wd := DirectFWMP(G ⇂Wgw, lmax)

return Wd

Algorithm 3 GoodWin(G, lmax)

Require: G= (S1,S2,E,w) andlmax ∈N0
Ensure: Wgw is the set of winning states forGWG(0, lmax)

for all s∈ Sdo
C0(s) := 0

for all i ∈ {1, . . . , lmax} do
for all s∈ S1 do

Ci(s) := max(s,s′)∈E{w((s,s′))+Ci−1(s′)}
for all s∈ S2 do

Ci(s) := min(s,s′)∈E{w((s,s′))+Ci−1(s′)}
return Wgw := {s∈ S|∃ i, 1≤ i ≤ lmax,Ci(s)≥ 0}

That is, for any states′′ in between, the window froms′′ to s′ is closed. The set of states from whichP1 can ensure
winning for the good window objective is computed by subroutineGoodWin (Alg. 3). Intuitively, given a states∈ S
and a number of stepsi ≥ 1, the valueCi(s) is computed iteratively (fromCi−1(s)) and represents the best sum thatP1

can ensure froms in exactlyi steps. Hence, the set of winning states forP1 is the set of states for which there exists
somei, 1≤ i ≤ lmax such thatCi(s) ≥ 0. We state the correctness ofGoodWin in Lemma 3.

Lemma 3. Algorithm GoodWin computes the set of winning states ofP1 for the good window objective in time
O (|S| · |E| · lmax·V), with V = ⌈log2W⌉, the length of the binary encoding of weights.

Proof. Let Wg ⊆ Sdenote the winning states forGWG(0, lmax). We prove that (a)s∈Wg ⇒ s∈ GoodWin(G, lmax),
and (b)s∈ GoodWin(G, lmax)⇒ s∈Wg.

We first consider case (a). Froms, there exists a strategy ofP1 that enforces a non-negative sum afterl steps, for
somel , 1≤ l ≤ lmax. Hence, the valueCl (s) computed by the algorithm is non-negative ands∈ GoodWin(G, lmax).

Case (b). Assumes∈ GoodWin(G, lmax). By definition of the algorithmGoodWin, there exists somel ≤ lmax such
thatCl (s) is positive. Consequently, taking the choice ofl edges that achieves the maximum value defines a strategy
for P1 that ensures a positive sum afterl steps, hence closing the window started ins. That is,s∈Wg.

It remains to discuss the complexity ofGoodWin. Clearly, it takes a number of elementary arithmetic operations
which is bounded byO (|S| · |E| · lmax) to compute the setWgw. Each elementary arithmetic operation takes time linear
in the number of bitsV of the encoding of weights, that is, logarithmic in the largest weightW. Hence, the time
complexity ofGoodWin isO (|S| · |E| · lmax·V). ⊓⊔

Thanks to the previous lemma, we establish the algorithm solving the direct fixed window objective.

Lemma 4. AlgorithmDirectFWMP computes the set of winning states ofP1 for the direct fixed window mean-payoff
objective in timeO

(
|S|2 · |E| · lmax·V

)
, with V = ⌈log2W⌉, the length of the binary encoding of weights.

Proof. Let W be the set of winning states forDirFixWMPG(0, lmax), i.e.,

s∈W ⇔ ∃ λ1 ∈ Λ1, ∀λ2 ∈ Λ2, OutcomeG(s,λ1,λ2) ∈ DirFixWMPG(0, lmax).

We first prove (a)s∈ DirectFWMP(G, lmax)⇒ s∈W , and then (b)s∈W ⇒ s∈ DirectFWMP(G, lmax). First of all,
notice thatDirectFWMP exactly computes the set of statesWd such that a non-negative sum is achievable in at most
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lmax steps, using only states from which a non-negative sum can also be achieved in at mostlmax steps (hence the
property is defined recursively).

Consider case (a). Lets∈Wd. Consider the following strategy ofP1.

1. Play the strategy prescribed byGoodWin until a non-negative sum is reached. This is guaranteed to bethe case in
at mostlmax steps. Lets′ be the state that is reached in this manner.

2. By construction ofWd, we have thats′ ∈Wd. Thus, play the strategy prescribed byGoodWin in s′.
3. Continue ad infinitum.

We denote this strategy byλ1 and claim it is winning for the direct fixed window objective,i.e., s∈ W . Indeed,
consider any strategy ofP2 and letπ = OutcomeG(s,λ1,λ2). We haveπ = σ1σ2 . . .σm1σm1+1 . . .σm2σm2+1 . . . with
∀ j ≥ 0, σ j ∈ S andσ1 = σm0 = s, such that all sequencesρ(n) = σmn . . .σmn+1 are of length at mostlmax+ 1 (lmax

steps) and such that all strict prefixes ofρ(n) are strictly negative and all suffixes ofρ(n) are positive. Indeed, starting
in some stateσmn, the strategyλ1 keeps a memory of the current sum and tries to reach a non-negative value (using
the strategy prescribed byGoodWin). As soon as such a value is reached in a stateσmn+1, the memory of the current
sum kept by the strategy is reset to zero and the process is restarted. That way, for allj, mn ≤ j < mn+1, we have that
the sum over the sequence fromσ j to σmn+1 is non-negative, hence all intermediate windows are also closed. Thus, the
window property is satisfied everywhere along the playπ , starting inσ1 = s, which proves thats∈W .

Case (b). Letλ1 be a winning strategy ofP1 for DirFixWMPG(0, lmax). For any strategyλ2 of P2, the outcome is
a playπ = σ1σ2 . . . with σ1 = s such that the window property is satisfied from all states. Inparticular, this implies,
that for allσ j , strategyλ1 enforces a positive sum in at mostlmax steps, that is,σ j ∈ GoodWin(G, lmax). Since it is the
case for all statesσ j , we have thatP1 has a strategy to ensure a positive sum in at mostlmax steps using only states
from which this property is ensured. Therefore, we concludethats∈Wd.

Again, the number of calls of this algorithm is at most the number of states|S|. LetCGW denote the complexity of
algorithmGoodWin. Then, the complexity of algorithmDirectFWMP isO (|S| ·CGW). ⊓⊔

Finally, we prove the correctness of the algorithm for the fixed window problem.

Lemma 5. AlgorithmFWMP computes the set of winning states ofP1 for the fixed window mean-payoff objective in
timeO

(
|S|3 · |E| · lmax·V

)
, with V = ⌈log2W⌉, the length of the binary encoding of weights.

Proof. Let W ⊆ Sbe the set of states that are winning forFixWMPG(0, lmax), i.e.,

s∈W ⇔ ∃λ1 ∈ Λ1, ∀λ2 ∈ Λ2, OutcomeG(s,λ1,λ2) ∈ FixWMPG(0, lmax).

Note that since we set the threshold to be 0 (w.l.o.g.), we mayignore the division by the window sizel in eq. (1). We
claim thatFWMP(G, lmax) =W . The proof is in two parts: (a)s∈ FWMP(G, lmax)⇒ s∈ W , and (b)s∈ W ⇒ s∈
FWMP(G, lmax).

We begin with (a). Let(Wd)
n≥0 and(Wattr)

n≥0 be the finite sequences of sets computed by the iterative algorithm.
We have thatFWMP(G, lmax) =

⋃
n≥0Wn

attr . For anyn,n′ such thatn 6= n′, we have thatWn
attr∩Wn′

attr = /0 andWn
d ∩Wn′

d =
/0. Moreover, for alln≥ 0, Wn

d ⊆ Wn
attr. Let s∈ FWMP(G, lmax). There exists a uniquen≥ 0 such thats∈Wn

attr . By
construction, froms, P1 has a strategy to reach and stay inWn

d ∪Wn−1
attr ∪Wn−2

attr ∪ . . .W0
attr and thuss is winning in the

subgameG ⇂ (S\Wn−1
attr ). However,P2 still has the possibility to leaveWn

d and reach the setWn−1
attr ∪Wn−2

attr ∪ . . .W0
attr.

Since the sequence is finite andP2 cannot leaveW0
d , we have that at some point, any outcome is trapped in some set

Wm
d , 0≤ m≤ n, in whichP1 wins the direct fixed window objective. Letx be the length of the finite prefix outside

Wm
d . The outcome satisfies the fixed window mean-payoff objective for i = x. Therefore, we have thats∈W .

Now consider (b). Lets∈W be a winning state forFixWMPG(0, lmax). We claim thats∈FWMP(G, lmax). Suppose
it is not the case and consider the sequences(Wd)

n≥0 and(Wattr)
n≥0 as before. We have that for alln≥ 0, s 6∈ Wn

attr.
In particular,P2 can force staying inStrap = S\

⋃
n≥0Wn

attr when starting ins. Since the algorithm has stopped, we
have thatDirectFWMP(G ⇂ Strap, lmax) = /0. As algorithmDirectFWMP is correct, from all states ofStrap, P2 has a
strategy to spoil the direct fixed window game, i.e.,P2 can force a sequence of states such that there exists a position j
along it for which the window starting inj stays open for at least(lmax+1) steps, and such that this sequence remains
in Strap. Therefore,P2 can force staying inStrap and seeing infinitely often such sequences, henceP1 is losing for the
fixed window mean-payoff objective, which contradicts the fact thats∈W .
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Finally, consider the complexity of the recursive algorithm FWMP. Notice that at least one state is declared win-
ning at each iteration. The number of calls is thus at most thenumber of states|S|. Computing the attractor is linear in
the number of edges|E| ≤ |S|2. The overall complexity is thusO (|S| · (|E|+CDW)), whereCDW is the complexity of
theDirectFWMP algorithm. ⊓⊔

Fixed window: lower bounds.Thanks to the correctness of algorithmFWMP, we also deduce linear upper bounds
(in |S| · lmax) on the memory needed for both players (Lemma 6). Indeed, lets∈ S be a winning state forP1. A
winning strategyλ1 for P1 is to (a) reach the set of statesWn

d that are winning for the direct fixed window objective
in the subgame restricted to statesWn

d \Wn−1
attr , then (b) repeatedly play the strategy prescribed byGoodWin in this

subgame (i.e., enforce a non-negative sum in less thanlmax steps, see proof of Lemma 4). IfP2 leaves for a lower
subgame restricted toWn′

attr , n′ < n, the strategy is to start again part (a) in this subgame. Part(a) is memoryless as it
uses a classical attractor strategy. Part (b) requires to consider, for each states′ in the set computed byDirectFWMP,
a number of memory states which is bounded bylmax, as the only memory needed is to select the corresponding
successor state that will maximize theCl (s′) value, for all possible values ofl , the number of steps remaining to close
a window. Similarly,P2 needs to be able to prevent the closing of a window repeatedly, and therefore also possibly
needslmax memory states for each state of the game.

To illustrate that memory is needed by both players, consider the following examples. First, consider a game where
all states belong toP1 and such that the play starts in a central statesand ins, there are three outgoing edges, towards
three simple cyclesC1, C2, andC3. All other states have only one outgoing edge. CycleC1 is composed of six edges
of successive weights 3,3,5,−1,−1 and−5. CycleC2 is 7,−1 and−9. CycleC3 is 5,5 and−11. The objective is
FixWMPG(0, lmax = 4). Clearly, from some point on, a winning strategy ofP1 has to infinitely alternate between
cycles in the following way:(C1C2C3)

ω . Any other alternation leads to a bad window appearing infinitely often: hence,
the decision ofP1 in sdepends on the remaining number of steps to ensure a good window. Second, consider a similar
game but with all states belonging toP2. Again, the initial state is central and there are two cyclesC1 andC2 such that
C1 is 1 followed by−1, andC2 is −1,−1 and 2. The objective isFixWMPG(0, lmax= 3). If P2 is memoryless, both
possible strategies induce a winning play forP1. On the other hand, ifP2 is allowed to alternate, he can choose the
play (C1C2)

ω which will be losing forP1 as the window−1,−1,−1 will appear infinitely often.

Lemma 6. In one-dimension games with a fixed window mean-payoff objective, memory is needed by both players
and linear memory in the number of states times the window size is sufficient.

Through Lemma 5, we have shown that the fixed window problem admits a polynomial (in|S|, V andlmax) algo-
rithm. In Lemma 7, we prove that even for window sizelmax= 1 and weights{−1,1}, the problem is P-hard. This is
via a reduction from reachability games. By making the target states absorbing with a self-loop of weight 1, and giving
weight−1 on all other edges, we obtain the reduction, as reaching a target state is now the only way to ensure that
windows close.

Lemma 7. In two-player one-dimension games, the fixed window mean-payoff problem is P-hard, even for lmax = 1
and weights{−1,1}.

Proof. Let Gr = (S1,S2,E) be an unweighted game with a reachability objective asking to visit (at least once) a state
of the setR⊆ S. We build the gameG= (S1,S2,E′,w) by (a) making the target states absorbing with a self-loop of
weight 1, i.e., for alls∈ R, we have(s,s) ∈ E′ andw((s,s)) = 1, and (b) putting weight−1 on all other edges, i.e., for
all edge(s, t) ∈ E such thats 6∈ R, we have(s, t) ∈ E′ andw((s,s)) = −1. We claim thatP1 has a winning strategy in
Gr from a states∈ S if and only if he has a winning strategy for the objectiveFixWMPG(0, lmax= 1) in G from s∈ S.
Indeed, it is clear that any outcome that never reaches the target set is such that all windows stay indefinitely open, and
conversely, an outcome that reaches this set aftern steps is winning for the fixed window objective withi = n. Since
deciding the winner in reachability games is P-complete, this concludes our proof. ⊓⊔

Fixed window: summary. We sum up the complexity analysis of the fixed window problem in Theorem 2.

Theorem 2. In two-player one-dimension games, (a) the fixed arbitrary window mean-payoff problem is decidable
in time O

(
|S|3 · |E| · lmax·V

)
, with V = ⌈log2W⌉, the length of the binary encoding of weights, and (b) the fixed

polynomial window mean-payoff problem is P-complete. In general, both players require memory, and memory of size
linear in |S| · lmax is sufficient.
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Bounded window: algorithm. In the following, we focus on the bounded window mean-payoffproblem for two-
player one-dimension games. We start with two technical lemmas related to the classical supremum total-payoff
threshold problem. Using these lemmas, we establish a NP∩ coNP algorithm to solve the bounded window prob-
lem and, as a corollary, we get an interesting bound on the window size needed to win the fixed window problem if
possible.

The first technical lemma (Lemma 8) states that ifP1 has a strategy to win the supremum total-payoff objective
from some statesinit, then he can force a non-negative sum from this state in at most (|S|−1) · (|S| ·W+1) steps, i.e.,
he wins the good window objective for this window size.

Lemma 8. Let G= (S1,S2,E,w) be a two-player one-dimension game. IfP1 has a strategy to win for objective
TotalSupG(0) from initial state sinit ∈S, thenP1 also has a strategy to win for the good window objectiveGWG(0, lmax)
from sinit for lmax= (|S|−1) · (|S| ·W+1).

This result is obtained by considering a memoryless winningstrategy ofP1 for the total-payoff and the decompo-
sition in simple cycles of any consistent outcome where (a) either simple cycles are strictly positive, or (b) they are of
value zero but preceded by a non-negative prefix.

Proof. Let λ1 ∈ ΛM
1 be a memoryless winning strategy ofP1 for TotalSupG(0). Our claim is that for all possible

outcomeπ consistent withλ1 starting in the initial statesinit, there exists a prefixρ of π of size at mostlmax such
that the total sum of weights overρ is non-negative. Letπ be any outcome consistent withλ1 andρ1 its prefix of
length(|S|−1) · (|S| ·W+1). Consider the cycle decomposition (see the proof of Lemma 2)of ρ1: A,C1,C2, . . . ,Cm,B,
with A the prefix before the first cycle andB the suffix after the last cycle inρ1. The total length of the acyclic part is
|A|+ |B|< |S|−1. We claim that there exists a prefixρ of ρ1 such that the total sum of weights overρ is non-negative.
Consider the following arguments:

1. No cycleC in {C1, . . . ,Cm} can be strictly negative. Otherwise, sinceλ1 is memoryless,P2 could force cycling in
such a cycle forever and the play would be losing for the supremum total-payoff objective, which contradictsλ1

being a winning strategy.
2. Assume that there exists a cycleC in {C1, . . . ,Cm} such that the sum of weights over this cycle is zero. We define

thehigh pointof a cycle as the first state where the sum from the start of the cycle takes its highest value. Then,
the prefixρ of ρ1 up to this high point is non-negative and we are done. Indeed,assume it is not the case. Then,
the running sum over the outcomeπ is strictly negative when reaching the high point, and staysstrictly negative in
all positions along the cycleC, by definition of the high point. Therefore,P2 can force cycling forever inC since
λ1 is memoryless and the outcome becomes losing for the total-payoff objective.

3. So assume there are only strictly positive cycles in the cycle decomposition ofρ1, that is, they all have a total sum
of value at least 1. The total sum overC1, . . . ,Cm is at least equal tom. Since each cycle is of length at most|S|
andA∪B is of length at most|S|−1, we have that the number of cyclesm in the cycle decomposition ofρ1 is
at least((|S|−1) · (|S| ·W+1)− (|S|−1))/ |S|= (|S|−1) ·W. Given that the total sum over prefixA is at least
−(|S|−1) ·W, we obtain thatρ =AC1C2 . . .Cm is the desired prefix with a non-negative total sum, and its length
is bounded by(|S|−1) · (|S| ·W+1).

This concludes our proof. ⊓⊔

The second technical lemma (Lemma 9) shows that ifP2 has a strategy to ensure that the supremum total-payoff
from some statesinit is strictly negative, then he has a memoryless strategy to doso and any outcomeπ starting insinit
and consistent with this strategy is such that the direct bounded window mean-payoff objective is not satisfied.

Lemma 9. Let G= (S1,S2,E,w) be a two-player one-dimension game. IfP2 has a spoiling strategy for objective
TotalSupG(0) from initial state sinit ∈ S, thenP2 has a strategyλ2 ∈ ΛM

2 to ensure that for all possible outcome
π = σ0σ1 . . . consistent withλ2 starting inσ0 = sinit, there exists a position i≥ 0 such that for all window sizes l≥ 1,
the total sum of weights on the window fromσi to σi+l is strictly negative.

Proof. By contradiction. Letλ2 ∈ ΛM
2 be a memoryless spoiling strategy for objectiveTotalSupG(0) from sinit ∈ S.

Let π be a consistent outcome and assume that it does not respect the lemma, i.e., for all positionsi ≥ 0, there exists
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Algorithm 4 BoundedProblem(G)

Require: GameG= (S1,S2,E,w)
Ensure: Wbp is the set of winning states forP1 for the bounded window

mean-payoff problem
Wbp := /0
L := UnbOpenWindow(G)
while L 6= S\Wbp do

Wbp := Attr
P1
G (S\L)

L := UnbOpenWindow
(

G ⇂ (S\Wbp)
)

return Wbp

Algorithm 5 UnbOpenWindow(G)

Require: GameG= (S1,S2,E,w)
Ensure: L is the set of states from whichP2 can force a position for which the

window never closes
p := 0 ; L0 := /0
repeat

Lp+1 := Lp ∪Attr
P2
G⇂(S\Lp)

(
NegSupTP

(
G ⇂ (S\Lp)

))

p := p+1
until Lp = Lp−1
return L := Lp

a window sizel ≥ 1 such that the window fromσi to σi+l is non-negative. Then the playπ can be decomposed as a
sequence of finite windows of non-negative weights. Hence, the total sum fromσ0 = sinit takes infinitely often values
at least equal to zero and the limit of its suprema is non-negative. This is in contradiction toλ2 being a winning strategy
for P2. ⊓⊔

Thanks to Lemma 8 and Lemma 9, we are now able to establish a NP∩ coNP algorithm (Alg. 4) to solve the
bounded window mean-payoff problem on two-player one-dimension games. Lemma 10 states its correctness.

Algorithm BoundedProblem (Alg. 4) computes via a subroutineUnbOpenWindow the set of states from which
P2 can force the visit of a position such that the window openingin this position never closes. Clearly, to preventP1

from winning the bounded window problem,P2 must be able to do so repeatedly as the prefix-independence ofthe
objective otherwise gives the possibility to wait that all such bad positions are encountered before taking the windows
into account. Therefore, the states that are not inUnbOpenWindow(G), as well as their attractor, are winning forP1.
Since the choices ofP2 are reduced because of the attractor ofP1 being declared winning, we compute in several
steps, adding new states to the set of winning states forP1 up to stabilization.

Now consider the subroutineUnbOpenWindow (Alg. 5). Its correctness is based on Lemma 9. Indeed, it computes
the set of states from whichP2 can force a position for which the window never closes. To do so, it suffices to compute
the attractor forP2 of the set of states from whichP2 can enforce a strictly negative supremum total-payoff. Routine
NegSupTP returns this set of states in NP∩coNP complexity [14]. Again, we compute the fixed point of thesequence
as at each iteration, the choices ofP1 are reduced.

The main idea of the correctness proof is that from all statesin Wbp, P2 has an infinite-memory winning strategy
which is played in rounds, and in roundn ensures an open window of size at leastn by playing the total-payoff strategy
of P2 for at mostn· |S| steps, and then proceeds to round(n+1) to ensure an open window of size(n+1), and so on.
Hence, windows stay open for arbitrary large periods and thebounded window objective is falsified.

Lemma 10. Given a two-player one-dimension game G= (S1,S2,E,w), the algorithmBoundedProblem computes
the set of winning states forP1 for the bounded window mean-payoff objective of threshold0 in timeO(|S|2 ·(|E|+C)),
whereC is the complexity of algorithmNegSupTP, i.e., the complexity of computing the set of winning statesin a two-
player one-dimension supremum total-payoff game. Thus, algorithmBoundedProblem is in NP∩coNP.

Proof. It suffices to show that for all states inWbp = BoundedProblem(G), there exists a winning strategy ofP1,
whereas for all states inS\Wbp, there exists one ofP2.

Consider a states∈Wbp. Consider(Lm)0≤m≤n, the finite sequence of setsL that are computed byBoundedProblem,
with L0 = UnbOpenWindow(G); and(Wm

bp)0≤m≤n, the corresponding finite sequence of setsWbp whereW0
bp = /0 is

empty andWn
bp = Wbp is the returned set of winning states. For allm′,m, 0≤ m′ < m≤ n, we have thatWm

bp ⊃ Wm′

bp

andLm ⊂ Lm′
. By construction, there existsm, 1 ≤ m≤ n such thats∈ Wm

bp = Attr
P1
G (S\ Lm−1). In the subgame

G ⇂ ((S\Lm−1)\Wm−1
bp ), P1 has a memoryless [15] winning strategy for the supremum total-payoff objective. Hence,

consider the strategyλ1 of P1 which is to reach the set(S\Lm−1) (in at most|S| steps) and then play the memoryless
total-payoff strategy in the subgame. It is possible forP2 to force leaving this subgame for a lower subsetWm′

bp ⊂Wm
bp

with m′ <mbut since the sequence is finite, any outcome is ultimately trapped in some subgameG ⇂ ((S\Lm′′
)\Wm′′

bp ).

15



Therefore, repeating the strategyλ1 in each subgame ensures that after a finite number of steps (and hence a finite
number of positions for which windows never close), a bottomsubgameG ⇂ ((S\ Lm′′

) \Wm′′

bp ) is reached and, by
Lemma 8, strategyλ1 ensures satisfaction of the good window objective forlmax = (|S| − 1) · (|S| ·W+ 1) in this
subgame. Moreover, since this strategy never visits statesout of the bottom subgame, it ensures an inductive window
from every state, regardless of the past. Hence, all intermediate windows are also closed and this strategy is winning
for FixWMPG(0, lmax) ⊆ BndWMPG(0) from the initial states. The states that are only visited finitely often before
reaching the bottom subgame have no consequence thanks to the prefix-independence of the bounded window mean-
payoff objective.

As forP2, consider a states∈ S\Wbp. Consider(Lp)0≤p≤q, the finite sequence of setsL that are computed in the
last call toUnbOpenWindow by BoundedProblem, with L0 = /0. We define the sequences(Np)1≤p≤q and(Ap)1≤p≤q

asNp =NegSupTP(G ⇂ (S\Lp−1)) andAp = Lp\Lp−1 =Attr
P2
G⇂(S\Lp−1)

(Np). We have thats∈ Lp for somep between

1 andq. An infinite memory winning strategy forP2 is played in rounds. In roundn, P2 acts as follows. (a) If the
current state is inAp, play the attractor toNp and then play the optimal strategy for the supremum total-payoff in Np

to ensure that no window will have a non-negative sum forn steps. (b)P1 can leave the setAp for some lower setAp′ ,
1≤ p′ < p. If so, play the attractor toNp′ and continue. Ultimately, any outcome is trapped in some setNp′′ \Ap′′−1,
with 1≤ p′′ ≤ q andA0 = /0, as inN1,P1 cannot leave. ThereP1 cannot prevent the window being strictly negative for
n steps. When such a window has been enforced forn steps, move to roundn+1 and start again. This strategy ensures
that the bounded window problem is not satisfied as, infinitely often, windows stay open for arbitrary large periods
along any outcome.

Finally, we discuss the complexity of algorithmBoundedProblem. LetC be the complexity of routineNegSupTP,
that is, the complexity of solving a one-dimension supremumtotal-payoff game. The total complexity of subalgorithm
UnbOpenWindow isO(|S| · (|E|+C)) as the sequence of computations is of length at most|S| and each computation
takes timeO(|E|+C). The overall complexity ofBoundedProblem is thusO(C+ |S| · (|E|+ |S| · (|E|+C))) =
O(|S|2 · (|E|+C)). ⊓⊔

An interesting corollary of Lemma 8 and Lemma 10 is that the sets of winning states coincide for objectives
FixWMPG(0, lmax= (|S|−1) · (|S| ·W+1)) andBndWMPG(0), therefore proving a NP∩ coNP membership for the
subset of fixed window problems with window size at leastlmax (hence an algorithm independent of the window size
whereas Lemma 4 gives an algorithm which is polynomial in thewindow size).

Corollary 1. In two-player one-dimension games, the fixed window mean-payoff problem is in NP∩coNP for window
size at least equal to(|S|−1) · (|S| ·W+1).

Bounded window: lower bounds.AlgorithmBoundedProblem (Lemma 10) provides memoryless winning strategies
for P1 (attractor + memoryless strategy for total-payoff) and infinite-memory winning strategies forP2 (delaying the
closing of windows for increasing number of steps each round) in one-dimension bounded window mean-payoff
games. Lemma 11 states that infinite memory is necessary forP2, as discussed in Section 4.1:P2 cannot use the zero
cycle forever, but he must cycle long enough to defeat any finite window. Hence, its strategy needs to cycle for longer
and longer, which requires infinite memory.

Lemma 11. In one-dimension games with a bounded window mean-payoff objective, (a) memoryless strategies suffice
for P1, and (b) infinite-memory strategies are needed forP2 in general.

In Lemma 14, we give a polynomial reduction from mean-payoffgames to bounded window mean-payoff games,
therefore showing that a polynomial algorithm for the bounded window problem would solve the long-standing ques-
tion of the P membership of the mean-payoff threshold problem. The proof relies on technical lemmas providing
intermediary reductions. First, we prove that given a gameG, deciding ifP1 has a strategy to ensure a non-negative
mean-payoff can be reduced to deciding ifP1 has a strategy to ensure a strictly positive mean-payoff when weights are
shifted positively by a sufficiently smallε (Lemma 12). Second, we apply Lemma 2 on the shifted game to prove that
winning this objective implies winning the bounded window problem. This gives one direction of the reduction. For
the other one, we show that given a gameG, if P1 has a strategy to win the bounded window problem when weights
are shifted positively by a sufficiently smallε, he has one to win the mean-payoff threshold problem inG.
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We define the following notation: given a two-player one-dimension gameG= (S1,S2,E,w) andε ∈Q, let G+ε =
(S1,S2,E,w+ε ) be the game obtained by shifting all weights byε, that is, for alle∈ E, w+ε (e) = w(e)+ ε.11

Lemma 12. For all one-dimension game G= (S1,S2,E,w) with integer weights, for allε, 0< ε < 1/|S|, for all initial
state s∈ S,P1 has a strategy to ensure a non-negative mean-payoff in G if and only ifP1 has a strategy to ensure a
strictly positive mean-payoff in G+ε .

Proof. Consider a memoryless winning strategy ofP1 in G from initial states∈ S. All simple cycles in consistent
outcomes have a sum of weights at least equal to zero. Hence, the corresponding outcome inG+ε is such that all
simple cycles of lengthn have sums at least equal ton · ε > 0, which proves that the strategy is also winning inG+ε .

Consider a memoryless winning strategy ofP2 in G from initial states∈ S. All simple cycles in consistent out-
comes have a strictly negative sum of weights, that is the sumis at most equal to−1. Hence, the corresponding
outcome inG+ε is such that all simple cycles of lengthn have sums at most equal to−1+ n · ε. Sincen ≤ |S| and
ε < 1/|S|, we have that the sum is strictly negative, which proves thatthe strategy is also winning inG+ε .

By determinacy of mean-payoff games, we obtain the claim. ⊓⊔

Lemma 13. For all one-dimension game G= (S1,S2,E,w) with integer weights, for allε, 0< ε < 1/|S|, for all initial
state s∈ S, ifP1 has a strategy to win the bounded window mean-payoff problemin G+ε , thenP1 has a strategy to
win the mean-payoff threshold problem in G.

Proof. Assume there exists a winning strategy ofP1 for the bounded window mean-payoff problem inG+ε from
initial states∈ S. By Lemma 2, assertion (a), we have that this strategy ensures a non-negative mean-payoff inG+ε .
By shifting weights by−ε, this can be equivalently expressed as (Prop. A) the existence of a strategy ofP1 ensuring
a mean-payoff at least equal to−ε in the gameG.

For sufficiently small values ofε, that is for 0< ε < 1/|S|, we claim that (Prop. A) implies that (Prop. B)P1 has a
strategy to ensure a non-negative mean-payoff inG. By contradiction, assume this implication is false, that is we have
that (Prop. A) is true and (Prop. B) is not. It implies the following.

– (Prop. A) is true: P1 has a memoryless strategy to ensure that the mean-payoff is at least equal to−ε, i.e., strictly
greater than−1/|S|.

– (Prop. B) is false: P2 has a memoryless strategy to ensure that all simple cycles inconsistent outcomes have a sum
of weights at most−1. Hence, this strategy ensures a mean-payoff at most equal to−1/|S|.

Obviously, it is not possible to have both (Prop. A) true and (Prop. B) false for any initial states∈ S, hence proving
our claim. ⊓⊔

Lemma 14. The one-dimension mean-payoff problem reduces in polynomial time to the bounded window mean-payoff
problem.

Proof. Let G = (S1,S2,E,w) be a game with integer weights, andsinit ∈ S be the initial state. Letε be any rational
value such that 0< ε < 1/|S|. We claim that the answer to the mean-payoff threshold problem inG is YES if and only
if the answer to the bounded window mean-payoff problem inG+ε is YES.

The left-to-right implication is proved in two steps. Assume the answer to the mean-payoff threshold problem inG
is YES. First, by Lemma 12, we have thatP1 has a strategy to ensure a strictly positive mean-payoff inG+ε . Second,
by Lemma 2, assertion (b), this implies that the answer to thebounded window mean-payoff problem inG+ε is YES.

The right-to-left implication is straightforward application of Lemma 13. ⊓⊔

Remark 1.The reduction established in Lemma 14 cannot be reversed in order to solve bounded window mean-payoff
games via classical mean-payoff games. Indeed, the reduction relies on the absence of simple cycles of value zero in
the gameG+ε , which is not verified in general if the reduction starts fromarbitrary bounded window mean-payoff
games. Indeed it does not suffice to shift the weights symmetrically by−ε to obtain an equivalent mean-payoff game,
as witnessed by Fig. 4, for which any negative shift gives a game losing for the mean-payoff threshold problem, while
the bounded window problem on the original game is satisfied.

11 Note thatw+ε can be transformed into an integer valued function without changing the answers to the considered decision
problems.

17



Bounded window: summary.We close our study of two-player one-dimension games with Theorem 3.

Theorem 3. In two-player one-dimension games, the bounded window mean-payoff problem is in NP∩coNP and at
least as hard as mean-payoff games. Memoryless strategies suffice forP1 and infinite-memory strategies are required
for P2 in general.

4.3 Games withk dimensions

In this section, we address the case of two-player games withmulti-dimension weights. For thefixed window mean-
payoff problem, we first present an EXPTIME algorithm that computes the winning states ofP1. We also establish
lower bounds on the complexity of the fixed window problem: weshow that the problem is EXPTIME-hard (both
in the case of fixed weights and arbitrary dimensions, and in the case of a fixed number of dimensions and arbitrary
weights) for arbitrary window sizes, whereas it is PSPACE-hard for polynomial window sizes. We show that exponen-
tial memory is both sufficient and necessary in general for both players, even for polynomial window sizes. For the
bounded window mean-payoff problem, we prove non-primitive recursive hardness.

Fixed window: algorithm. We start by providing an EXPTIME algorithm via a reduction from a fixed window mean-
payoff gameG= (S1,S2,E,k,w) to an exponentially larger unweighted co-Büchi gameGc (where the objective ofP1

is to avoid visiting a set of bad states infinitely often).

Lemma 15. The fixed window mean-payoff problem over a multi-weighted game G reduces in exponential time to the
co-Büchi problem on an exponentially larger game Gc.

Recall that a winning play is such that, starting in some position i ≥ 0, in all dimensions, all opening windows
are closed in at mostlmax steps. We keep a counter of the sum over the sequence of edges and as soon as it turns
non-negative (in at mostlmax steps), we reset the sum counter and start a new sequence (which also must become non-
negative in at mostlmaxsteps). Hence, the reduction is based on accounting for eachdimension the current negative sum
of weights since the last reset, and the number of steps that remain to achieve a non-negative sum. This accounting
is encoded in the states ofGc = (Sc

1,S
c
2,E

c), as from the original state spaceS, we go toS× ({−lmax ·W, . . . ,0}×
{1, . . . , lmax})k: states ofGc are tuples representing a state ofGand the current status of open windows in all dimensions
(sum and remaining steps). We add states reached whenever a window reaches its maximum sizelmax without closing.
We label those asbadstates. We have one bad state for every state ofG. Transitions inGc are built in order to accurately
model the effect of transitions ofG on open windows. Clearly, a play is winning for the fixed window problem if and
only if the corresponding play inGc is winning for the co-Büchi objective that asks that the setof bad states is not
visited infinitely often, as that means that from some point on, all windows close in the required number of steps.

Proof. Let G = (S1,S2,E,k,w) be a game with objectiveFixWMPG({0}k, lmax ∈ N0) and initial statesinit ∈ S. Let
W denote the maximal absolute value of any edge inE. We construct the unweighted gameGc = (Sc

1,S
c
2,E

c) in the
following way.

– Sc
1 =

(
S1× ({−W · lmax, . . . ,0}×{1, . . . , lmax})

k
)
∪{ς1, . . . ,ς|S|}. Statesς1, . . . ,ς|S| denote special addedbad sta-

tes, one for each of the original statess1, . . . ,s|S| ∈ S. The other states are built as tuples that represent (a) a visited
state inG, (b) for each dimension, a couple modeling (b.1) the currentsum of weights since the last time the sum
in this dimension was non-negative, and (b.2) the number of steps that remain to reach a non-negative sum in this
dimension (i.e., before reaching the maximum window size).

– Sc
2 = S2× ({−W · lmax, . . . ,0}×{1, . . . , lmax})

k.
– We construct the edges((sa,(σ1

a ,τ1
a), . . . ,(σk

a ,τk
a)),(sb,(σ1

b ,τ
1
b), . . . ,(σ

k
b ,τ

k
b)) of Ec as follows. For all(sa,sb)∈E,

let we = w((sa,sb)), we have
• ((sa,(σ1

a ,τ1
a), . . . ,(σk

a ,τk
a)),ςb) ∈ Ec, with ςb the bad state associated to statesb, iff ∃ t, 1 ≤ t ≤ k such that

τt
1 = 1 andσ t

1+we(t)< 0,
• ((sa,(σ1

a ,τ1
a), . . . ,(σk

a ,τk
a)),(sb,(σ1

b ,τ
1
b), . . . ,(σ

k
b,τ

k
b)) ∈ Ec iff ∀ t, 1≤ t ≤ k, we have

∗ σ t
a+we(t)≥ 0→ σ t

b = 0,τt
b = lmax,

∗ σ t
a+we(t)< 0∧ τt

a > 1→ σ t
b = σ t

a+we(t),τt
b = τt

a−1,
and we add edges(ςi ,(si ,(0, lmax, . . . ,(0, lmax)) to Ec for all statessi ∈ S.
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Intuitively, the gameGc is built by unfolding the gameG and integrating the current sum of weights in the states
of Gc, as well as the number of steps that remain to close a window, both for each dimension separately. The game
Gc starts in the initial state(sinit,(0, lmax), . . . ,(0, lmax)), and each time a transition(s,s′) in the original gameG is
taken, the gameGc is updated to a state(s′,(σ1,τ1), . . . ,(σk,τk)) such that (a) if the current sum becomes positive
in a dimensiont, the corresponding sum counter is reset to zero and the step counter is reset to its maximum value,
lmax, (b) if the sum is still strictly negative in a dimensiont and the window for this dimension is not at its maximal
size, the sum is updated and the step counter is decreased, and (c) if the sum stays strictly negative and the maximal
size is reached in any dimension, the game visits the corresponding bad state and then, all counters are reset for all
dimensions.

We argue that a playπ in G is winning for the fixed window mean-payoff objective if and only if the corresponding
playπc in Gc is winning for the co-Büchi objective asking not to visit the setSς = {ς1, . . . ,ς|S|} infinitely often. Indeed,
consider a playπ winning for objectiveFixWMPG({0}k, lmax). By eq. (4), this play only sees a finite number of bad
windows (windows that are not closed inlmax steps in some dimension). By construction ofGc, the corresponding
play πc only visits the setSς a finite number of times, hence it is winning for the co-Büchiobjective. Now, letπc be
a winning play for the co-Büchi objective. By definition, there exists a positioni in πc such that all states appearing
after positioni belong toS\Sς . It remains to prove that for any positionj ≥ i, for any dimensiont, 1≤ t ≤ k, there
is a valid window of size at mostlmax. Again we use the inductive property of windows. We know by construction
that a reset of the sum happens in at mostlmax steps, otherwise we go to a bad state. Assumej is a position with a
sum counter of zero in some dimensiont, and j ′ is the next such position. Since resets are doneas soon asthe sum
becomes non-negative, all suffixes of the sequence fromj to j ′ are non-negative. Hence, it is clear that for all position
j ′′, j < j ′′ < j ′, the window from j ′′ to j ′ in dimensiont is closed. Consequently, the corresponding playπ in G is
winning for the fixed window mean-payoff objective of threshold 0 and window sizelmax. ⊓⊔

As a direct corollary of this reduction, we obtain an EXPTIMEalgorithm to solve the fixed window mean-payoff
problem on multi-dimension games, as solving co-Büchi games takes quadratic time in the size of the game [7].

Corollary 2. Given a two-player multi-dimension game G= (S1,S2,E,k,w) and a window size lmax ∈ N0, the fixed
window mean-payoff problem can be solved in timeO(|S|2 · (lmax)

4·k ·W2·k) via a reduction to co-B̈uchi games.

Proof. Lemma 15 uses a co-Büchi game which state space is of size
∣∣∣S×

(
{−W · lmax, . . . ,0}×{1, . . . , lmax}

)k
∣∣∣+ |S|=O

(
|S| · (lmax)

2·k ·Wk
)
.

The quadratic algorithm for co-Büchi games described in [7] implies the result. ⊓⊔

A natural question is whether a distinct algorithm is usefulin the one-dimension case. Remark 2 notes that it is.

Remark 2.The multi-dimension algorithm described in Corollary 2 yields a procedure which is polynomial in the
size of the state space, the window size, and the largest weight for the subclass of one-dimension games, hence only
pseudo-polynomial(i.e., exponential inV, the length of the encoding of weights), whereas Lemma 5 gives a truly
polynomial algorithm.

Fixed window: lower bounds. We first consider the fixedarbitrary window mean-payoff problem for which we
show (i) in Lemma 16, EXPTIME-hardness for{−1,0,1} weights and arbitrary dimensions via a reduction from
the membership problem for alternating polynomial-space Turing machines (APTMs)[4], and (ii) in Lemma 17,
EXPTIME-hardness for two dimensions and arbitrary weightsvia a reduction fromcountdown games[19].

Given an APTMM and a wordζ ∈{0,1}∗, such that the tape contains at mostp(|ζ |) cells, wherep is a polynomial
function, the membership problem asks to decide ifM acceptsζ . We build a fixed arbitrary window mean-payoff game
G so thatP1 has to simulate the run ofM onζ , andP1 has a winning strategy inG if and only if the word is accepted
by the machine. For each tape cellh∈ {1,2, . . . , p(|ζ |)}, we have two dimensions,(h,0) and(h,1) such that a sum of
weights of value−1 (i.e., an open window) in dimension(h, i), i ∈ {0,1} encodes that in the current configuration of
M, tape cellh contains a bit of valuei. In each step of the simulation (Fig. 6),P1 has to disclose the symbol under
the tape head: if in positionh, P1 discloses a 0 (resp. a 1), he obtains a reward 1 in dimension(h,0) (resp.(h,1)).

19



To ensure thatP1 was faithful,P2 is then given the choice to either let the simulation continue, or assign a reward 1
in all dimensions except(h,0) and(h,1) and then restart the game after looping in a zero self-loop for an arbitrary
long time. IfP1 cheats by not disclosing the correct symbol under tape cellh, P2 can punish him by branching to the
restart state and ensuring a sufficiently long open window inthe corresponding dimension before restarting (as in Fig.
5). But if P1 discloses the correct symbol andP2 still branches, all windows close. In the accepting state, all windows
are closed and the game is restarted. The window sizelmax of the game is function of the existing bound on the length
of an accepting run. To forceP1 to go to the accepting state, we add an additional dimension,with weight−1 on the
initial edge of the game and weight 1 on reaching the accepting state.

Lemma 16. The fixed arbitrary window mean-payoff problem is EXPTIME-hard in multi-dimension games with
{−1,0,1} weights and arbitrary dimensions.

Proof. An alternating Turing machine(ATM) [4] is a tupleM= (Q,q0,Σin,δ ,qacc) where:

– Q is the finite set of control states with a partition(Q∨,Q∧) of Q into existential and universal states;
– q0 ∈ Q is the initial state;
– Σin = {0,1} is the input alphabet andΣtape = Σin∪{#} the tape alphabet, with # the blank symbol;
– δ ⊆ Q×Σtape×Q×Σtape×{−1,1} is a transition relation;
– there is a special accepting stateqacc ∈ Q∨ (without loss of generality).

We say thatM is a polynomial-spacealternating Turing machine (APTM) if for some polynomial function p, the
space used byM on any input wordζ ∈ Σ∗

in is bounded byp(|ζ |).
We define the AND-OR graph of the APTM(M, p) on the input wordζ ∈ Σ∗

in asG(M, p) = 〈S∨,S∧,s0,∆ ,R〉
where

– S∨ = {(q,h, t) |q∈ Q∨, 1≤ h≤ p(|ζ |) andt ∈ Σ p(|ζ |)
tape };

– S∧ = {(q,h, t) |q∈ Q∧, 1≤ h≤ p(|ζ |) andt ∈ Σ p(|ζ |)
tape };

– s0 = (q0,1, t) wheret = ζ ·#p(|ζ |)−|ζ |;
– ((q1,h1, t1),(q2,h2, t2)) ∈ ∆ iff there exists(q1, t1(h1),q,γ,d) ∈ δ such thatq2 = q, h2 = h1+d, t2(h1) = γ and

t2(h) = t1(h) for all h 6= h1;
– R= {(q,h, t) ∈ S∨ |q= qacc}.

Intuitively, states of the graph correspond to configurations (q,h, t) whereq is a control state of the machine,h the
position of the tape head, andt the current word written on the tape. Given a stateq of the machineM, tape head
on cellh and a wordt on the tape, a transition from(q,h, t) to (q′,h′, t ′) exists in the graphG(M, p) if the transition
relationδ of the machineM admits a transition that given this configuration, updates the content of cellh to the
symbolt ′(h), such that the tape now contains the wordt ′, and then goes to control stateq′ and moves the tape head to
an adjacent cellh′.

A wordζ ∈Σ∗
in isacceptedby an APTM(M, p) if there exists a run tree (obtained by choosing a child in existential

nodes and keeping all children in universal nodes) ofM on ζ such that all leafs are accepting configurations. That is,
a word is accepted if and only if, in the two-player game defined byG(M, p), playerP∨ has a strategy to reach the set
of accepting statesR. Deciding the acceptance of a word by an APTM is an EXPTIME-complete problem, known as
the membership problem [4].

We construct a fixed window mean-payoff gameG = (S1,S2,E,k,w) simulating the machine(M, p) as follows.
Let k = 2 · p(|ζ |)+1: there is a dimension for each pair(h,0) and(h,1), for all 1≤ h ≤ p(|ζ |), and one additional
dimension. The set of statesSof the game is

S={qrestart}∪{qin}∪{q̂acc}

∪{(q,h) |q∈ Q, 1≤ h≤ p(|ζ |)}
∪{(q,h, i)check |q∈ Q, 1≤ h≤ p(|ζ |), i ∈ {0,1}}

∪{(q,h)branch |q∈ Q, 1≤ h≤ p(|ζ |)}
∪{(q,h, i) |q∈ Q, 1≤ h≤ p(|ζ |), i ∈ {0,1}}.
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States of the form(q,h) belong toP1. States of the form(q,h, i) belong toP1 if q∈ Q∨ in the machineM. All other
states belong toP2. The initial state isqrestart. It has two outgoing edges with weights zero in all dimensions: one
self-loop, and one edge toqin. The latter is assigned the following weights:−1 for dimension(h, i) if the letter at
positionh of ζ is i, −1 in the very last dimension (2· p(|ζ |)+1), and zero everywhere else. Fromqin, the game goes
to (q0,1) and the simulation ofM begins.

(q,h)

(q,h,0)check

(q,h,1)check

(q,h)branch qrestart

(q,h,0)

(q,h,1)

Transitions of(q,0)

Transitions of(q,1)

Fig. 6: Gadget ensuring a correct simulation of the APTM on tape cellh.

The game mimics runs ofM, and it is ensured that if the current state of the game is(q,h) and the cell content
is i, then the sum of weights since the last visit ofqin in dimension(h, i) is −1. We refer to the segment of play since
the last visit ofqin as thecurrent round. We depict a step of the simulation in Fig. 6. At state(q,h), P1 has the choice
between states(q,h,0)check and(q,h,1)check, resp. corresponding to declaring a content 0 or 1 of the tapecell h. The
reward for dimension(h, i), i ∈ {0,1} is 1 on state(q,h, i)check. At state(q,h, i)check, a state ofP2, P2 checks whether
P1 has correctly revealed the tape content as follows: (i) PlayerP2 can choose to go to state(q,h)branch, in which all
dimensions other than(h,0) and(h,1), including the very last, are increased by 1, and then go toqrestart on whichP2

will be able to delay the play; (ii) PlayerP2 can choose to proceed and continue the simulation: the game then goes
to state(q,h, i). State(q,h, i) is either a state ofP1 orP2, depending on the affiliation of stateq in the APTM. Such a
gadget ensures that ifP1 cheats by not disclosing the correct symbol,P2 can force an open window of arbitrary length
in the current round by looping onqrestart for some time, and then restarting the game. On the other hand, if P1 is
faithful andP2 still decides to branch to(q,h)branch, then all windows will be closed for the current round.

If P1 does not cheat andP2 acknowledges it by not branching, the game advances to a state of the form(q,h, i).
At such a state, we add transitions as follows: if there exists a transition from(q,h, i) to (q′,h′, i′) in M, then we add
an edge from(q,h, i) to (q′,h′) in the gameG, and assign weight−1 in dimension(h, i′), as the tape cell at positionh
containsi′ and we ensure that the sum in dimension(h, i′) in the current round is−1. At the accepting states(qacc,h),
all dimensions are assigned reward 1, and the next state isq̂acc. Stateq̂acc is followed byqrestart. Again there is no risk
in looping as all dimensions are now non-negative.

Formally, blank symbols need to be added. For brevity and simplicity of the presentation, we omit these technical
details.

We fix the window sizelmax equal to three times the size of the configuration graph (bound on the length of a
run) plus three, and we argue that the gameG is a faithful simulation of the machineM, that is,P1 wins the fixed
window mean-payoff game if and only if the wordζ is accepted byM. Notice that the construction ensures that if
P1 cheats in the current round,P2 can make this round losing, as discussed before. Similarly,if P1 does not cheat
but does not reach the accepting state, dimension 2· p(|ζ |)+1 will remain negative when arriving inqrestart andP2

will be able to cycle long enough to make the round losing as the window in the last dimension will remain open for
lmax steps. Clearly,P1 cannot see losing rounds infinitely often otherwise the playis losing. Assume the wordζ is
accepted by the machine. Then there is an accepting run tree,and the winning strategy ofP1 is to follow this run tree
and always reveal the correct symbol. This way, eitherP2 restarts and the round is winning because all dimensions are
non-negative, orP2 does not restart and an accepting state(qacc,h) is reached within the maximum allowed window
size. Indeed, in the APTM, there is a strategy to reach the accepting state in a number of steps bounded by the size of
the configuration graph. In that case, the round is also winning. Conversely, assume that the wordζ is not accepted
by the APTM. Consider any strategyλ1 of P1. Clearly,P1 cannot cheat as otherwise, he loses. So assume he does not
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cheat. Then there is a path in the run tree obtained from playing the strategyλ1 in M such that the path never reaches
an accepting state. Hence, the strategyλ2 of P2 that follows this path in the gameG ensures that the sum in dimension
2 · p(|ζ |)+1 is always strictly negative, and after waiting till the bound lmax on the window size is met,P2 has made
the round losing and he can restart the game safely. Acting this way infinitely often,P2 can violate the fixed window
objective forP1. It follows thatP1 wins inG if and only if the wordζ is accepted by the APTMM. ⊓⊔

We now prove EXPTIME-hardness for two dimensions and arbitrary weights via a reduction from countdown
games. A countdown gameC consists of a weighted graph(S,T ), with S the set of states andT ⊆ S ×N0 ×S
the transition relation. Configurations are of the form(s,c), s∈ S, c ∈ N. The game starts in an initial configuration
(sinit,c0) and transitions from a configuration(s,c) are performed as follows: firstP1 chooses a durationd, 0< d ≤ c
such that there existst = (s,d,s′) ∈ T for somes′ ∈ S, secondP2 chooses a states′ ∈ S such thatt = (s,d,s′) ∈ T .
Then, the game advances to(s′,c−d). Terminal configurations are reached whenever no legitimate move is available.
If such a configuration is of the form(s,0), P1 wins the play. Otherwise,P2 wins the play. Deciding the winner in
countdown games given an initial configuration(sinit,c0) is EXPTIME-complete [19].

Given a countdown gameC and an initial configuration(sinit,c0), we create a gameG= (S1,S2,E,k,w) with k= 2
and a fixed window objective forlmax= 2 · c0+2. The two dimensions are used to store the value of the countdown
counter and its opposite. Each time a durationd is chosen, an edge of value of value(−d,d) is taken. The game
simulates the moves available inC: a strict alternation between states ofP1 (representing states ofS) and states of
P2 (representing transitions available from a state ofS once a duration has been chosen). On states ofP1, we add the
possibility to branch to a statesrestart of P2, in whichP2 can either take a zero cycle, or go back to the initial state and
force a restart of the game. By placing weights(0,−c0) on the initial edge, and(c0,0) on the edge branching tosrestart,
we ensure that the only way to win forP1 is to accumulate a value exactly equal toc0 in the game before switching to
srestart. This is possible if and only ifP1 can reach a configuration of value zero inC.

Lemma 17. The fixed arbitrary window mean-payoff problem is EXPTIME-hard in multi-dimension games with two
dimensions and arbitrary weights.

Proof. We establish a polynomial-time reduction from the countdown game problem to the fixed arbitrary window
problem. LetC = (S,T ) be a countdown game [19], with initial configuration(sinit,c0). We create a corresponding
gameG= (S1,S2,E,k,w) as follows.

– S1 = S.
– Let ST ⊆ S ×N0 be the subset of pairs(s,d) such that there exists a transition(s,d,s′) ∈ T . Then,S2 = ST ∪
{srestart}. Statesrestart is the initial state of gameG.

– For each transition(s,d,s′) ∈ T , we add edges(s,(s,d)), with s∈ S1 and(s,d) ∈ S2, and((s,d),s′), with s′ ∈ S1,
to the set of edgesE. Edge(s,(s,d)) has weight(−d,d) and edge((s,d),s′) has weight(0,0).

– For all s∈ S1, we add an edge(s,srestart) of weight(c0,0).
– Fromsrestart, we add an edge(srestart,sinit) of value(0,−c0).
– Onsrestart, we add a self-loop(srestart,srestart) of weight(0,0).

We fix the window sizelmax= 2·c0+2, and we claim thatP1 wins the fixed window problem if and only if he wins
the countdown game. Recall that to win a countdown game,P1 must be able to reach a configuration(s,0) in the game
C. The key idea to our construction is that in the gameG, the only way to avoid seeing infinitely often open windows
of size larger thanlmax is to accumulate exactlyc0 before restarting, which is equivalent to reaching a configuration of
value 0 inC.

Notice that the gameG starts by visiting an edge of value(0,−c0) and afterwards, all edges from states ofP1 have
a value(−d,d) corresponding to the duration he chooses in the countdown game. All except the edge he can decide
to take to go tosrestart, which value is(c0,0). Clearly, ifP1 decides to go insrestart, he has to close all windows, as
otherwiseP2 can use the self-loop to delay the play long enough and provoke a sufficiently long bad window, which
if done repeatedly, induces a losing play. On the other hand,if P1 decides to never go towardssrestart, he will keep
accumulating negative values in the first dimension and he isguaranteed to lose. So obviously the behavior ofP1

should be to play as in the countdown game to accumulate exactly c0 in dimension 2 (and−c0 in dimension 1) before
switching tosrestart, so thatP2 can do no harm by delaying the play as all windows will be closed. The accumulated
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value has to beexactly c0 as (a) if it is less thanc0, dimension 2 will remain negative, and (b) if it is more thanc0,
dimension 1 will stay negative (i.e., the edge(s,srestart) will not suffice to get it back above zero). Since the minimal
increase is of 1 every two edges by construction, the allowedwindow sizelmax is sufficient to enforce such a behavior,
if possible. This shows thatP1 wins the fixed window problem from initial statesrestart in G if and only if he also wins
the countdown gameC from (sinit,c0), as accumulatingc0 in G is equivalent to reaching a configuration of value zero
in C. ⊓⊔

For the case of polynomial windows, Lemma 18 proves PSPACE-hardness via a reduction from generalized reach-
ability games [12]. Filling the gap with the EXPTIME membership given by Corollary 2 is an open problem. The
generalized reachability objective is a conjunction of reachability objectives: a winning play has to visit a state of each
of a series ofk reachability sets. IfP1 has a winning strategy in a generalized reachability gameGr = (Sr

1,S
r
2,E

r),
then he has one that guarantees visit of all sets withink · |Sr | steps. We create a modified weighted version of the
game,G= (S1,S2,E,k,w), such that the weights arek-dimension vectors. The game starts by opening a window in
all dimensions and the only way forP1 to close the window in dimensiont, 1≤ t ≤ k is to reach a state of thet-th
reachability set. We modify the game by givingP2 the ability to close all open windows and restart the game such
that the prefix-independence of the fixed window objective cannot helpP1 to win without reaching the target sets.
Then, a play is winning inG for the fixed window objective of sizelmax= 2 ·k · |Sr| if and only if it is winning for the
generalized reachability objective inGr .

Lemma 18. The fixed polynomial window mean-payoff problem is PSPACE-hard.

Proof. We show the PSPACE-hardness by a reduction from the generalized reachability problem [12]. Given a game
graphGr = (Sr

1,S
r
2,E

r), a series of reachability setsRt ⊆ Sr , for 1≤ t ≤ k, with k≤ |Sr |, and an initial statesr
init ∈ Sr ,

the generalized reachability problem asks if there exists astrategy ofP1 such that any consistent outcome starting in
sr
init visits a state of each setRt at least once. It is known that if such a strategy exists, thenthere exists one which

ensures reaching all sets in at mostk · |Sr | steps.
We build ak-dimension fixed window mean-payoff gameG= (S1,S2,E,k,w) as follows. We defineSbranch ⊂ S2,

the set ofP2 states such that for alls,s′ ∈ Sr such that(s,s′) ∈ Er , we have thatbs,s′ ∈ Sbranch. Let S1 = Sr
1 andS2 =

Sr
2∪Sbranch∪{srestart}. Let E be the set of edges such that for all(s,s′) ∈ Er , we have that(s,bs,s′) ∈ E, (bs,s′ ,s

′) ∈ E,
(bs,s′ ,srestart) ∈ E, and such that(srestart,sr

init) ∈ E. That is, we introduce in all edges ofEr a state ofP2 that let him
branch to an added statesrestart or continue as inGr . The new initial state inG is srestart, and there is an edge from
srestart to the old initial statesr

init. The weights are as follows: all edges from statesbs,s′ to srestart have value 1 in all
dimensions. The edge fromsrestartto sr

init has value−1 in all dimensions. All other edges of the game have value zero,
except edges entering a state that belongs to a reachabilitysetRt , which have value 1 in dimensiont and 0 in the other
dimensions. If a state belongs to several sets, then all corresponding dimensions get a 1.

We claim thatP1 has a winning strategy forFixWMPG({0}k, lmax = 2 · k · |Sr |) if and only if he has a winning
strategy for the generalized reachability objective inGr . Consider the gameG. Clearly, the only edge involving negative
values is(srestart,sr

init), which value is(−1, . . . ,−1). Therefore, a losing play for eq. (4) should see this edge infinitely
often, as it is the starting position of all open windows. Notice that on the other hand, going from a statebs,s′ to srestart

involves an edge of value(1, . . . ,1), hence if the open window starting insrestartcomes back insrestartbefore hitting its
maximal size, the window will close. So the strategy ofP2 should be to wait forlmax= 2·k · |Sr | steps before forcing a
restart. Now, consider a winning strategyλ1 of P1 in G. Because of the strategy ofP2, λ1 has to ensure obtaining+1
in all dimensions by only using transitions entering in states ofSr . By construction, this implies thatλ1 enforces a visit
of all reachability sets, and thus is winning for the generalized reachability problem. Consider the reverse implication.
Let λ r

1 be a winning strategy inGr . There exists such a strategy that ensures seeing all reachability sets (thus closing
all windows) in at mostlmax = 2 · k · |Sr | steps ifP2 does not branch tosrestart. On the other hand, ifP2 does branch
beforelmax steps, all windows also close, as branching edges have value(1, . . . ,1). Hence, this strategy is also winning
for FixWMPG({0}k, lmax). This shows the correctness of the reduction and concludes our proof. ⊓⊔

We conclude our study of the multi-dimension fixed window problem by considering memory bounds. A direct
corollary of Lemma 15 is the existence of winning strategiesof at most exponential size for both players, as memory-
less strategies are sufficient in co-Büchi games [11]. A corollary of the reduction from generalized reachability games
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Fig. 7: Family of games requiring exponential memory:∀1 ≤ i ≤ K, ∀1 ≤ j ≤ k, w((si ,si,L))( j) = 1 if j = 2 · i −1,
=−1 if j = 2· i, and= 0 otherwise;w((si ,si,L)) =−w((si ,si,R)) =w((ti , ti,L)) =−w((ti , ti,R)); w((◦,si)) =w((◦, ti)) =
(0, . . . ,0).

to the fixed polynomial window problem used to prove Lemma 18 and the results of [12, Lemma 2] (showing exponen-
tial lower bounds on memory for generalized reachability objectives) is that such memory is needed in general, again
for both players. Another example of a family of games in which P1 requires exponential memory (in the number of
dimensions) is given by the family defined in [8, Lemma 6] (Fig. 7), introduced in the context of multi energy games.
All examples have in common that the players must be able to differentiate between an exponential number of histories
and act accordingly to achieve their objective: in the game of Fig. 7,P1 wins objectiveFixWMPG({0}k, lmax= |S|/2)
only if he is able to make inti the opposite choice ofP2 in si , which requires a strategy encoded as a Moore machine
with at least 2k/2 states. Lemma 19 sums up these results.

Lemma 19. In multi-dimension games with a fixed window mean-payoff objective, exponential memory is both suffi-
cient and necessary for both players in general, even for polynomial window sizes.

Fixed window: summary. We summarize the complexity of the fixed window problem in Theorem 4.

Theorem 4. In two-player multi-dimension games, the fixed arbitrary window mean-payoff problem is EXPTIME-
complete, and the fixed polynomial window mean-payoff problem is PSPACE-hard. For both players, exponential
memory is sufficient and is required in general.

Bounded window.Unlike the one-dimension case, in which it is easier to decide the bounded problem than the fixed
arbitrary one (i.e., the problem becomes easier when the fixed window size is sufficiently large), we prove that the
complexity of the bounded window problem in multi-weightedgames is at least non-primitive recursive.12 Hence,
there is no hope for efficient algorithms on the complete class of two-player multi-weighted games.

This result is obtained through a reduction from the problemof deciding the existence of an infinite execution in a
marked reset net, also known as thetermination problem. A marked reset net [9] is a Petri net withreset arcstogether
with an initial marking of its places. Reset arcs are specialarcs that reset a place (i.e., empty it of all its tokens). The
termination problem for reset nets is decidable but non-primitive recursive hard (as follows from the results of [27],
also discussed in [21]).

Given a reset netN with an initial markingm0 ∈N|P| (whereP is the set of places of the net), we build a two-player
multi-weighted gameG with k = |P|+3 dimensions such thatP1 wins the bounded window objective for threshold
{0}k if and only if N does not have an infinite execution fromm0.

A high level description of our reduction is as follows. The structure of the game (Fig. 8) is based on the alternance
between two gadgets simulating the net (Fig. 9). Edges are labeled byk-dimension weight vectors such that the first
|P| dimensions are used to encode the number of tokens in each place. In each gadget,P2 chooses transitions to
simulate an execution of the net. During a faithful simulation, there is always a running open window in all the first
|P| dimensions: if placep containsn tokens then the negative sum from the start of the simulationis −(n+1). This
is achieved as follows: if a transitiont consumesI(t)(p) tokens fromp, then this value is added on the corresponding

12 That is, there exists no primitive recursive function that computes the answer to the bounded window problem. A well-known
example of a decidable but non-primitive recursive function is the Ackermann function [1].
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Fig. 8: Careful alternation between gadgets is needed in order forP1 to win.

dimension, and ift producesO(t)(p) tokens inp, thenO(t)(p) is removed from the corresponding dimension. When
a placep is reset, a gadget ensures that dimensionp reaches value−1 (the coding of zero tokens). This is thanks to
the monotonicity property of reset nets: ifP1 does not simulate a full reset, then the situation gets easier for P2 as it
leaves him more tokens available. If all executions terminate,P2 has to choose an unfireable transition at some point,
consuming unavailable tokens from some placep∈ P. If so, the window in dimensionp closes. After each transition
choice ofP2, P1 can either continue the simulation or branch out of the gadget to close all windows, except in some
dimensionp of his choice. ThenP2 can arbitrarily extend any still open window in the first(|P|+1) dimensions and
restart the game afterwards. Dimension(|P|+1) preventsP1 from staying forever in a gadget. If an infinite execution
exists,P2 simulates it and never has to choose an unfireable transition. Hence, whenP1 branches out, the window in
some dimensionp stays open. The last two dimensions force him to alternate between gadgets so that he cannot take
profit of the prefix-independence to win after a faithful simulation. So,P2 can delay the closing of the open window
for longer and longer, thus winning the game.

Theorem 5. In two-player multi-dimension games, the bounded window mean-payoff problem is non-primitive recur-
sive hard.
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Fig. 9: Gadget simulating an execution of the reset net.
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Proof. We prove a reduction from the termination problem on reset nets to the bounded window problem on two-player
multi-weighted games. The former is known to be non-primitive recursive hard [27,21].

LetN = 〈P,T, I ,O, r〉 be areset netsuch that

– P= {p1, p2, . . . , p|P|} is the set of places;
– T = {t1, t2, . . . , t|T|} is the set of transitions;
– I : T →N|P| is the input function, such that for each transitiont ∈ T, I(t) is a|P|-dimension vector such that for all

dimensionp∈ {1, . . . , |P|}, I(t)(p) specifies the number of tokens from placep consumed by the transitiont;13

– O: T → N|P| is the output function, such that for each transitiont ∈ T, O(t) is a |P|-dimension vector such that
for all dimensionp∈ {1, . . . , |P|}, O(t)(p) specifies the number of tokens produced in placep by the transitiont;

– r : T → P is the reset function, such that for all transitiont ∈ T, r(t) specifies the unique place (w.l.o.g.) which is
reset by transitiont.

Given an initial marking of the places (i.e., an initial number of tokens in each place)m0 ∈ N|P|, the termination
problem asks if there exists an infinite execution of the net,that is, if there exists an infinite sequence of transitions
that can be fired fromm0. A transitiont is fireable from markingm∈ N|P| if for all place p ∈ P, I(t)(p) ≤ m(p).
An execution terminates if no transition can be fired becausethe necessary tokens are unavailable. We first note an
importantmonotonicityproperty of reset nets: for all reset netN = 〈P,T, I ,O, r〉, for all markingsm,n∈N|P|, if m≤ n
andρ ∈ Tω is an infinite sequence of transitions fireable fromm, thenρ is also fireable fromn. This property is used
later on.

We claim that given a reset netN and an initial markingm0, we can build in polynomial time a multi-weighted
gameG in whichP1 has a winning strategy for objectiveBndWMPG(0) if and only if there exists no infinite execution
of the netN from m0.

We build the gameG = (S1,S2,E,k,w) with k = |P|+ 3 as represented in Fig. 8 and Fig. 9. Unlabeled edges
have value zero in all dimensions. For clarity, we define the following |P|-dimension integer vectors:1 = (1, . . . ,1)
is the unit vector,0 = (0, . . . ,0) is the zero vector, and, fora,b ∈ Z, p ∈ P, the vectorap→b represents the vector
(a, . . . ,a,b,a, . . . ,a) which has valueb in dimensionp anda in the other dimensions. The first|P| dimensions of the
game are used to encode the tokens present in each place, whereas the last three are used to compelP1 to act fairly.
Our construction will ensure that at all times along a valid execution of the net in a gadget, if a placep∈ P possessn
tokens, then the running sum of weights over the largest openwindow has value(−n−1) in dimensionp.

The states and edges of the game are built as follows.

– Inside a gadget, we have a statefire belonging toP2, with |T| outgoing edges corresponding to the|T| transitions
of the net. Each transitiont is encoded as follows:
• an edge fromfire to a statetestt belonging toP1, of value(I(t),−1,0,0), such that the running sum is updated

to accurately encode the consumption of tokens;
• in statetestt , (|P|+1) outgoing edges, givingP1 the possibility to either branch out of the gadget, going to

the stateclosep corresponding to the dimensionp of his choice, or continuing via an edge of value(0,−1,0,0)
to theresetq state, a state ofP1 such thatq= r(t) is the unique place reset by transitiont;

• a self-loop of value(0q→1,−1,0,0) on theresetq state;
• an edge fromresetq to outt of value(0q→−1,−1,0,0) which purpose is to ensure that in dimensionq, there is

a new open window of sum−1 after a full reset (i.e., it encodes that the number of tokens in placeq is zero);
• an edge fromoutt back tofire of value(−O(t),−1,0,0), producing tokens according to the output of transition

t.
– Branching from the left gadget leads to a statecloseleft

p of P1 with a self-loop of weight(1p→0,1,1,−1) and an

outgoing edge to statedelayleft of P2.
– Statedelayleft possess a self-loop of value(0,0,1,1) and an edge going to the right gadget with value(−m0−

1,0,0,0).
– The right gadget is constructed symmetrically, the only change being that the self-loop on statescloseright

p of P1

now has value(1p→0,1,−1,1).

13 For simplicity, we usep to refer to a placep∈ P and to the numberi ∈ {1, . . . , |P|} such thatpi = p, that isp indistinctly refers
to the place and the corresponding dimension in the weight vectors.
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The game starts in the left gadget with an initial edge of value (−m0−1,0,0,0) corresponding to the initial marking
of the net.

We claim that (i) if there exists no infinite executionρ ∈ Tω of the netN , thenP1 has a winning strategy inG
for the bounded window objective, and (ii) if there exists such an execution, thenP2 has a winning strategy inG. By
determinacy, proving both claims will conclude our proof.

Case (i). Assume that there exists no infinite executionρ ∈ Tω of the net. Then there exists a boundb∈ N on the
length of any valid execution. Hence,P2 can only simulate the net faithfully forb steps, so after at most(b+1) steps,
he needs to use an unfireable transition. That is, the next chosen transition requires more tokens than available in some
placep∈ P. We define a winning strategyλ1 ∈ Λ1 of P1 in G as follows:

1. In a statetestt , if the last transitiont was valid (i.e., all first|P| dimensions have a negative running sum), go to
the correspondingresetq state. Otherwise, there exists a dimensionp in which the sum has become non-negative
and all windows are closed: exit the gadget and go to the corresponding stateclosep.

2. In a stateresetq, cycle until the sum in dimensionq takes value 0, then go to stateoutt .
3. In a stateclosep, take the loop exactlyf (b) times before going to statedelay, where f : N→ N is a well-chosen

function that we define below (hencef (b) is constant along the play).

We claim that it is possible to definef (b) sufficiently large to ensure that this strategy is winning. Let M ∈ N be the
largest number of tokens produced as output of any transition of the net, on any place. We consider the value of the
negative sum in any of the first(|P|+1) dimensions at the moment whenP1 decides to exit the gadget according to the
strategyλ1. Notice that for any dimensionp∈ {1, . . . , |P|}, this sum is bounded byx= (−m0(p)−1−b ·M). Hence,
the number of loops taken on any visit of stateresetq is bounded byx. The sum in dimension(|P|+1) is thus bounded
by (b · (4+ x)+1), which we define asf (b). The last two dimensions are not modified inside a gadget. Nowclearly,
looping in stateclosep for f (b) steps is sufficient to close all windows in all dimensions corresponding to places (recall
that dimensionp is closed byP2 cheating on placep), as well as in dimension(|P|+1). However, this loop opens
a window in one of the last two dimensions (the last for the left gadget, and the second to last for the right gadget).
As thedelay state ofP2 has a positive effect in those dimensions, ifP2 decides to delay the play forf (b) steps, all
windows will be closed. If he does not delay, the play will proceed to the next gadget, in whichP2 is also forced to
cheat before(b+1) transitions. Hence after looping forf (b) steps in the correspondingclosep state, the open window
will close (and another will open in the other dimension which will in turn be closed after the next gadget). By keeping
this behavior,P1 can thus enforce that any open window along the play will close in at most(4· f (b)+4) steps. Thus
the outcome is winning for the bounded window objective.

Case (ii). Assume that there exists an infinite executionρ ∈ Tω of the net. We define a winning strategyλ2 ∈ Λ2

of P2 as follows. The strategy is played in rounds, with the initial round being round 1.

1. Every time a gadget is entered, start playing in statefire according to the infinite executionρ , that is, choose
transitions in order to obtain the same trace.

2. When a statedelay is visited during roundn, take the self-loopn times then continue to statefire and start round
n+1.

Notice that this strategy requires infinite memory. We claimthat any consistent outcome of the game is winning forP2,
that is, it does not belong toBndWMPG(0). First,P1 cannot stay forever in a gadget, thanks to dimension(|P|+1):
he has to branch at some point otherwise the play is lost. Second, if in stateresetq, P1 decides to cycle for less than
necessary for a full reset, the situation gets better forP2 by the monotonicity property of the reset net (asP2 gets
to continue with more tokens than expected). Notice thatP1 cannot accumulate positive values in the sum, as the
next edge will restart a new window and all accumulation willbe forgotten with regard to the objective. Third, if
P1 branches and exits the gadget to go to some stateclosep, then all dimensions corresponding to places, including
dimensionp, have a running open window (dimensionp has a strictly negative value sinceP2 does not cheat). Hence,
no matter how longP1 chooses the self-loop, the window in dimensionp will stay open (andP1 cannot stay here
forever because of the last two dimensions). Fourth, when the play reaches a statedelay with an open window in
dimensionp ∈ {1, . . . , |P|}, the strategyλ2 prescribes thatP2 will loop for longer and longer periods of time, thus
enforcing open windows of constantly growing length. As a consequence, any consistent outcome is such that the
bounded window objective is not satisfied, which proves our point and further concludes our proof. ⊓⊔
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Notice that Theorem 5 implies thatP1 may need to use a non-primitive recursive window size to win amulti-
dimension bounded window mean-payoff game, whereas a pseudo-polynomial bound exists in the one-player case
(see Corollary 1). The decidability of the bounded window mean-payoff problem remains open.

4.4 On direct objectives

Through this paper, we have studied the prefix-independent versions of the objectives defined in Sec. 4.1. In this
section, we briefly argue that similar complexity results are obtained for thedirect variants (Table 2), by slight mod-
ifications of the presented proofs. Notice that memory requirements however change, as it is now sufficient to force
one sufficiently long (for the fixed problem) or never closing(for the bounded problem) window to make an outcome
losing.

one-dimension k-dimension
complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

direct fixed
P-c.

PSPACE-h.

exponential
polynomial window mem. req. EXP-easy

direct fixed
P(|S|,V, lmax)

≤ linear(|S| · lmax) EXP-c.
arbitrary window

direct bounded
NP∩coNP mem-less linear NPR-h. - -

window problem

Table 2: Complexities memory requirements for the direct objectives. Differences with the prefix-independent objec-
tives are in bold.

One-dimension direct fixed window problem. The polynomial algorithm in the size of the game and the sizeof
the window is given by Lemma 4. For polynomial windows, we obtain P-hardness using the proof of Lemma 7 and
window sizelmax= 2· |S|, as ifP1 can win the reachability game, he has a strategy to do it in at most|S| steps. Lemma 6
extends to direct objectives, and provides linear upper bounds on memory with the same arguments. In particular, the
provided examples of games require memory for both players when the direct fixed window objective is considered.

One-dimension direct bounded window problem. We obtain a NP∩coNP algorithm for the direct bounded problem
by simplifyingBoundedProblem (Lemma 10) as follows:BoundedProblem(G) = S\UnbOpenWindow(G). Indeed,
as the objective is no longer prefix-independent, it is sufficient forP2 to force one window that never closes to make
the play losing. Hence, the attractor of the setS\ L in algorithmBoundedProblem cannot be declared winning for
P1. While memoryless strategies still suffice forP1 (applying the arguments of Lemma 10), winning strategies for
P2 do not need infinite memory anymore, but at most linear memory. Indeed, a winning strategy ofP2 is the one
described in the proof of Lemma 10, but without taking roundsinto account (i.e., the play stays forever in round one).
To illustrate that memoryless strategies still do not suffice forP2, consider a variation of Fig. 5, with the initial state
beings2. Clearly,P2 must first take the cycle tos1 then loop forever ons2 to ensure a never closing window. Corollary
1 extends in the direct case and gives the same bound on the window size. Finally, the reduction of mean-payoff games
developed in Lemma 14 carries over to the direct bounded window objective, as the game with shifted weights is such
that the mean-payoff is strictly positive. In which case, the supremum total-payoff is infinite and Lemma 2 applies,
implying the result.

Multi-dimension direct fixed window problem . The following results extend to the direct case.

– EXPTIME algorithm. Lemma 15 presents a reduction from fixed window games to exponentially larger co-Büchi
games. It is easy to obtain a similar reduction from direct fixed window games by considering a safety objective
for P1 (i.e., reachability for the set of bad states forP2). This also implies an exponential-time algorithm.

– EXPTIME-hardness of the arbitrary window problem for weights{−1,0,1} and arbitrary dimensions. The reduc-
tion of the membership problem for polynomial space alternating Turing machines immediately yields the result
for the direct objective. Indeed, the strategies proposed in the proof stay winning for this objective. Note that ac-
tually the strategy ofP2 may be simpler, as he may cycle forever onsrestart after branching to punish an unfaithful
symbol disclosure by keeping a window indefinitely open.
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– EXPTIME-hardness of the arbitrary window problem for two dimensions and arbitrary weights. The reduction
from countdown games established in Lemma 17 extends straightforwardly to direct objectives, andP2 can use a
simpler winning strategy consisting in looping forever in its zero cycle.

– PSPACE-hardness of the polynomial window problem. The reduction of generalized reachablity games also holds
without modification for the direct fixed polynomial window objective.

– Exponential memory bounds. Exponential upper bounds follow from the modified Lemma 15,using safety games.
Lower bounds witnessed by Lemma 19 are also verified in the presented game as well as from the reduction of
generalized reachablity games.

Multi-dimension direct bounded window problem. Non-primitive recursive hardness (Theorem 5) extends to the
direct objective with a simpler construction. Indeed, it issufficient to consider the game using only the first(|P|+1)
dimensions, and consisting of only one gadget, with the branching out of the gadget now going to an absorbing state
with a self-loop of weight1p→0 such that whenP1 decides to branch, all windows get closed eventually, except in the
dimensionp of his choice, for which the window is only closed ifP2 cheats and stays open forever otherwise.

5 Conclusion

The strong relation between mean-payoff and total-payoff breaks in multi-weighted games as the total-payoff threshold
problem becomes undecidable. Window objectives provide conservative approximations with timing guarantees. Some
variants prove to be more computationally tractable than the corresponding classical objectives.

References

1. W. Ackermann. Zum hilbertschen aufbau der reellen zahlen. Mathematische Annalen, 99(1):118–133, 1928.
2. L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms for mean-payoff games.Formal Methods in

System Design, 38(2):97–118, 2011.
3. A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Resource interfaces. InProc. of EMSOFT, LNCS 2855, pages

117–133. Springer, 2003.
4. A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.
5. K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Generalized mean-payoff and energy games. InProc. of FSTTCS,

LIPIcs 8, pages 505–516. Schloss Dagstuhl - LZI, 2010.
6. K. Chatterjee, L. Doyen, M. Randour, and J.F. Raskin. Looking at mean-payoff and total-payoff through windows. InProc. of

ATVA, LNCS. Springer, 2013.
7. K. Chatterjee and M. Henzinger. AnO(n2) time algorithm for alternating büchi games. InProc. of SODA, pages 1386–1399.
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