
Noname manuscript No.
(will be inserted by the editor)

Composition of Password-based Protocols

Céline Chevalier · Stéphanie Delaune · Steve

Kremer · Mark D. Ryan

Received: date / Accepted: date

Abstract Formal and symbolic techniques are extremely useful for modelling and
analysing security protocols. They have helped to improve our understanding of
such protocols, allowed us to discover flaws, and they also provide support for
protocol design. However, such analyses usually consider that the protocol is ex-
ecuted in isolation or assume a bounded number of protocol sessions. Hence, no
security guarantee is provided when the protocol is executed in a more complex
environment.

In this paper, we study whether password protocols can be safely composed,
even when a same password is reused. More precisely, we present a transformation
which maps a password protocol that is secure for a single protocol session (a de-
cidable problem) to a protocol that is secure for an unbounded number of sessions.
Our result provides an effective strategy to design secure password protocols: (i)
design a protocol intended to be secure for one protocol session; (ii) apply our
transformation and obtain a protocol which is secure for an unbounded number

This work has been partially supported by the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no

258865, project ProSecure and the ANR project JCJC VIP no 11-JS02-006, EPSRC Leader-
ship Fellowship Analysing Security and Privacy Properties and project Trust Domains - A
Framework for Modelling and Designing E-Service Infrastructures for Controlled Sharing of
Information.

Céline Chevalier
LSV, CNRS & INRIA project Secsi & ENS de Cachan, France
E-mail: celine.chevalier@lsv.ens-cachan.fr

Séphanie Delaune
LSV, CNRS & INRIA project Secsi & ENS de Cachan, France
E-mail: delaune@lsv.ens-cachan.fr

Steve Kremer
LORIA, CNRS & INRIA project Cassis, Nancy, France
E-mail: kremer@inria.fr

Mark D. Ryan
School of Computer Science, University of Birmingham, UK
E-mail: M.D.Ryan@cs.bham.ac.uk

of sessions. Our technique also applies to compose different password protocols
allowing us to obtain both inter-protocol and inter-session composition.

1 Introduction

Security protocols are small programs that aim at securing communications over
a public network like the Internet. Considering their increasing ubiquity, a high
level of assurance is needed in the correctness of such protocols. Developments
in formal methods have produced considerable success in analysing security pro-
tocols. Automated tools such as Avispa [9] and ProVerif [15] are now capable of
analysing large protocols involving several or even an unbounded number of ses-
sions. However, these analyses usually consider that the protocol is executed in
isolation, ignoring other protocols that may be executed in parallel.

The assumption that another parallel protocol cannot interfere with the pro-
tocol under investigation is valid if the two protocols do not share any secret data
(such as cryptographic keys or passwords). This comes from the fact that in mod-
els like the applied pi calculus, security properties, even though they are shown
in isolation, in fact hold in the presence of an arbitrary (public) environment.
This is similar to universal composition (UC) [20] in computational models. These
arbitrary environments are public, in the sense that they do not have access to
the secrets of the protocol under analysis. This is of course necessary as otherwise
a completely arbitrary environment could simply output all secret cryptographic
key material and trivially break the protocol’s security.

While the absence of shared keys between different protocols is obviously de-
sirable, it is not always possible or realistic. For example, password-based protocols

are those in which a user picks a password which forms one of the secrets used
in the protocol. It is unrealistic to assume that users never share the same pass-
words between different applications. In this paper, we consider the situation in
which secret data may be shared between protocols, and we particularly focus on
password-based protocols. We investigate under what conditions we can guarantee
that such protocols will not interfere with each other. Under certain conditions,
we may have that

if P1 and P2 are secure then P1 | P2 is secure.

For example, in the context of cryptographic pi calculi (e.g. spi calculus [3], applied
pi calculus [2]), “is secure” is often formalised as observational equivalence to some
specification. We have that P1 ≈ S1 and P2 ≈ S2 imply P1 | P2 ≈ S1 | S2, where S1
and S2 are specifications, and therefore the security of the composition follows from
the security of each protocol. Here, the composition of security relies on two facts.
First, as mentioned, security means observational equivalence to a specification;
the attacker is an arbitrary context, and Pi ≈ Si means P1 and S1 are equivalent in
any environment. Second, by forming the composition P1 | P2 we have made the
assumption that P1 and P2 do not share any secret.

Now suppose that P1 and P2 do share a secret w. To prove that their security
composes, one would like to show that

if νw.P1 and νw.P2 are secure then νw.(P1 | P2) is secure.

2

Note in particular that νw.(P1 | P2) is different from (νw.P1) | (νw.P2) because
the latter refers to two different secrets, since the two ν have different scopes. In
contrast with the previously mentioned composition result, this one does not hold
in general.

Password-based cryptographic protocols are a prominent means to achieve au-
thentication or to establish authenticated, shared session keys, e.g. EKE [14],
SPEKE [32], the KOY protocol [33], or J-PAKE [30]. The advantage of such
schemes is that they do not rely on a key infrastructure but only on a shared pass-
word, which is often human chosen or at least human memorable. The J-PAKE
protocol has for instance been used to secure Firefox Sync, a browser synchro-
nization tool which allows to synchronize data such as preferences and bookmarks
among different computers [31]. The Trusted Platform Module (TPM) [38] also
relies on passwords, called authdata, for authentication. However, such passwords
are generally weak and may be subject to dictionary attacks (also called guessing
attacks). In an online dictionary attack an adversary tries to execute the protocol
for each possible password. While online attacks are difficult to avoid they can be
made impracticable by limiting the number of password trials or adding a time-out
of few seconds after a wrong password. In an offline guessing attack an adversary
interacts with one or more sessions in a first phase. In a second, offline phase the
attacker uses the collected data to verify each potential password. In this paper
we concentrate on offline guessing attacks.

Several attempts have been made, based on the initial work of Lowe [34], to
characterize guessing attacks [22,24,28]. In [23], Corin et al. proposed an elegant
definition of resistance to passive guessing attacks, based on static equivalence in
the applied pi calculus. A similar definition has also been used by Baudet [12] who
uses constraint solving techniques to decide resistance against guessing attacks
for an active attacker and a bounded number of sessions. Recent versions of the
ProVerif tool also aim at proving resistance against guessing attacks for an active
attacker and an unbounded number of sessions (at the price of being incomplete
and not guaranteeing termination) [16]. Moreover, Abadi et al. further increase the
confidence in this definition by showing its computational soundness for a given
equational theory in the case of a passive attacker [1].

Our contributions. In this paper, we study whether resistance against guessing
attacks composes when the same password is used for different protocols. Protocols
are modelled in a cryptographic process calculus inspired by the applied pi calculus.
We use the definition introduced by Corin et al. (see [23]). This allows us to provide
results for protocols involving a variety of cryptographic primitives represented by
means of an arbitrary equational theory. First we show that in the case of a passive
attacker, resistance against guessing attacks composes (Section 5).

In the case of an active attacker we prove that as expected, resistance against
guessing attacks does compose when no secrets are shared. However, resistance
against active guessing attacks does not compose in general when the same pass-
word is shared between different protocols. In this paper we propose a simple
protocol transformation which ensures that a same password can safely be shared
between different protocols. More precisely, our results can be summarized as fol-
lows. We use a safe transformation which replaces a weak password w by h(t, w)
where t is some tag and h a hash function. Then, we show how to use this tagging

3

technique to compose different protocols. Consider n password protocols such that
each protocol resists separately against guessing attacks on w. When we instanti-
ate the tag t to a unique protocol identifier pid, one for each of the n protocols,
we show that the parallel composition of these tagged protocols resists against
guessing attacks on w, where w is the password shared by each of these protocols.
Next we show how to dynamically establish a session identifier sid. Instantiating
the tag t by this session identifier allows us to compose different sessions of a
same protocol. Hence it is sufficient to prove resistance against guessing attacks
on a single session of a protocol to conclude that the transformed protocol resists
against guessing attacks for an unbounded number of sessions. These techniques
can also be combined into a tag which consists of both the protocol and session
identifier obtaining both inter-protocol and inter-session composition.

One may note that resistance against guessing attack is generally not the main
goal of a protocol, which may be authentication or key exchange. Therefore we
additionally show that secrecy and authentication properties are also preserved
when composing transformed protocols.

Related work. The problem of secure composition has been approached by several
authors. Datta et al. provide a general strategy [27] whereas our composition re-
sult identifies a specific class of protocols that can be composed. In [29,25], some
criteria are given to ensure that parallel composition is safe. Andova et al. provide
conditions to allow a broader class of composition operations [6].

However, none of these works deal with composing resistance against guessing
attacks. They consider secrecy in term of deducibility or authentication proper-
ties. To the best of our knowledge only Malladi et al. [35] have studied composition
w.r.t. guessing attacks. They point out vulnerabilities that arise when the same
password is used for different applications and develop a method to derive con-
ditions that a protocol has to follow in order to be resistant against guessing
attacks. However, applying their methods to particular protocols is not always
straightforward. Moreover, their work relies on the definition of guessing attack
due to Lowe [34] which relies on a particular set of cryptographic primitives. Our
results are general and independent of the underlying equational theory.

In computational models, Boyko et al. [19] presented a security model for
password-based key-exchange based on simulation proofs, ensuring security in case
of composition. A more generic solution was proposed by Canetti et al. [21] who
propose a protocol based on KOY, which is secure in the UC model [20]. This
work has been extended to active adversaries [5], group key exchange [4] and to
define distributed public-key cryptography from passwords in e.g. [18]. A main
difference between works in the UC model and our work (besides the obvious dif-
ferences between symbolic and computational models) is that in the UC model
designers generally apply an “ad-hoc recipe” (often using “magical” session iden-
tifiers given by the framework) and show that one session of a protocol fulfills the
given requirements. The UC theorem then ensures composition, i.e., composition
follows from the strong security definition which has to be proven. In our work
we make explicit the construction of session identifiers in our transformation and
prove that a generic protocol transformation can be used to achieve composition.
Note, however, that despite this difference, both approaches share many essential
ideas.

4

Finally, we may note that tagging is a well known technique. We have already
mentioned its use to achieve some forms of composition [7,26]. Other forms of
tagging were used to ensure termination of a verification procedure [17], safely
bound the length of messages [8] or obtain decidability for the verification of some
classes of protocols [37].

5

— PART I: Models —

In this part, we introduce the model that will be used throughout the paper.
After some preliminaries (see Section 2), we describe the model of protocols in
Section 3. In Section 4, we define the security properties for which we will study
composition in Part II.

2 Preliminaries

2.1 Messages

A protocol consists of some agents communicating on a network. The messages sent
by the agents are formed from data that the agents hold, as well as cryptographic
keys and messages that the agent has previously received. We assume an infinite
set of names N , for representing keys, data values, nonces, and names of agents,
and we assume a signature Σ, i.e. a finite set of function symbols such as senc

and sdec, each with an arity. Messages are abstracted by terms, and cryptographic
operations are represented by function symbols. Given a signature Σ and an infinite
set of variables X , we denote by T (Σ) (resp. T (Σ,X)) the set of terms over Σ ∪N
(resp. Σ ∪ N ∪ X). The former is called the set of ground terms over Σ, while
the latter is simply called the set of terms over Σ. We write fn(M) (resp. fv(M))
for the set of names (resp. variables) that occur in the term M . A substitution σ

is a mapping from a finite subset of X called its domain and written dom(σ)
to T (Σ,X). Substitutions are extended to endomorphisms of T (Σ,X) as usual.
We use a postfix notation for their application. Similarly, we allow replacement
of names: the term M{N/n} is the term obtained from M after replacing any
occurrence of the name n by the term N .

As in the applied pi calculus [2], we use equational theories for modelling the al-
gebraic properties of the cryptographic primitives. An equational theory is defined
by a finite set E of equations U = V with U, V ∈ T (Σ,X) and U, V without names.
We define =E to be the smallest equivalence relation on terms, that contains E

and that is closed under application of contexts and substitutions of terms for
variables. Since the equations in E do not contain any names, we have that =E is
also closed by substitutions of terms for names.

Example 1 Consider the signature Σenc = {sdec, senc, adec, aenc, pk, 〈 〉, proj1, proj2, f}.
The symbols sdec, senc, adec, aenc, and 〈 〉 are functional symbols of arity 2 that
represent respectively the symmetric and asymmetric decryption and encryption
as well as pairing functions whereas pk, proj1, proj2, and f are functional symbols
of arity 1 that represent public key and projection functions on respectively the
first and the second component of a pair. The function symbol f represents any
operation, e.g. a hash function. A typical example of an equational theory useful
for cryptographic protocols is Eenc, defined by the following equations:

sdec(senc(x, y), y) = x adec(aenc(x, pk(y)), y) = x

senc(sdec(x, y), y) = x proji(〈x1, x2〉) = xi (i ∈ {1, 2})

Let M = senc(f(sdec(senc(n,w), w)), w) and M ′ = senc(f(n), w). In this theory,
we have that the terms M and M ′ are equal modulo Eenc, written M =Eenc

M ′,
while obviously the syntactic equality M = M ′ does not hold.

6

2.2 Assembling Terms into Frames

At some moment, while engaging in one or more sessions of one or more protocols,
an attacker may have observed a sequence of messages M1, . . . ,M`. We want to
represent this knowledge of the attacker. It is not enough for us to say that the
attacker knows the set of terms {M1, . . . ,M`}, since he also knows the order that
he observed them in. Furthermore, we should distinguish those names that the
attacker knows from those that were freshly generated by others and which remain
secret from the attacker; both kinds of names may appear in the terms. Therefore,
we use the concept of frame from the applied pi calculus [2] to represent the
knowledge of the attacker.

Definition 1 (frame) A frame φ = νñ.σ consists of a finite set ñ ⊆ N of re-

stricted names (those that the attacker does not know), and a substitution σ of the
form {M1/x1 , . . . ,

M`/x`} where: x1, . . . , x` are distinct variables, and M1, . . . ,M`

are ground terms.

The names ñ are bound and can be renamed. We denote by =α the α-renaming
relation on frames. The domain of the frame φ, written dom(φ), is defined as
{x1, . . . , x`}.

Example 2 We use the equational theory Eenc presented in Example 1. The frame
below represents the sequence of messages that are sent on the network during an
honest execution of the EKE protocol [14].

φEKE = νw, k, r, na, nb.

{senc(pk(k),w)/x1 ,
senc(aenc(r,pk(k)),w) /x2 ,

senc(na,r)/x3 ,
senc(〈na,nb〉,r) /x4 ,

senc(nb,r) /x5}

A description of the protocol will be given in Example 8.

2.3 Deduction

Given a frame φ that represents the information available to an attacker, we may
ask whether a given ground term M may be deduced from φ. Given an equational
theory E on Σ, this relation is written φ `E M and is formally defined below.

Definition 2 (deduction) Let M be a ground term and νñ.σ be a frame. We
have that νñ.σ `E M if and only if there exists a term N ∈ T (Σ,X) such that
fn(N) ∩ ñ = ∅ and Nσ =E M . Such a term N is a recipe of the term M .

Intuitively, the deducible messages are the messages of φ and the names that
are not protected in φ, closed by equality in E and closed by application of function
symbols. When νñ.σ `E M , any occurrence of names from ñ in M is bound by νñ.
So νñ.σ `E M could be formally written νñ.(σ `E M).

Example 3 Consider the theory Eenc and the frame φ = νk, s1.{senc(〈s1,s2〉,k)/x1 ,
k/x2}.

We have that φ `Eenc
k, φ `Eenc

s1 and φ `Eenc
s2. Indeed x2, proj1(sdec(x1, x2)) and

s2 are recipes of the terms k, s1 and s2 respectively.

7

2.4 Static Equivalence

The frames we have introduced are a bit too fine-grained as representations of the
attacker’s knowledge. For example, νk.{senc(s0,k)/x} and νk.{senc(s1,k)/x} represent
a situation in which the encryption of the public name s0 (resp. s1) by a randomly-
chosen key has been observed. Since the attacker cannot detect the difference
between these situations, the frames should be considered equivalent. To formalise
this, we note that if two recipes M,N on the frame φ produce the same term, we
say they are equal in the frame, and write (M =E N)φ. If two frames have identical
distinguishing power, then we say that they are statically equivalent. Formally:

Definition 3 (static equivalence [2]) We say that two terms M and N are equal

in the frame φ, and write (M =E N)φ, if there exists ñ and a substitution σ such
that φ =α νñ.σ, Mσ =E Nσ, and ñ ∩ (fn(M) ∪ fn(N)) = ∅. We say that two
frames φ1 and φ2 are statically equivalent, φ1 ≈E φ2, when:

– dom(φ1) = dom(φ2), and
– for all terms M,N we have that (M =E N)φ1 if and only if (M =E N)φ2.

Note that by definition of ≈, we have that φ1 ≈ φ2 when φ1 =α φ2 and we have
also that νn.φ ≈ φ when n does not occur in φ.

Example 4 Consider again the equational theory Eenc provided in Example 1 and
the frames:

φ = νk.{senc(s0,k)/x1 ,
k/x2}, and φ′ = νk.{senc(s1,k)/x1 ,

k/x2}.

Intuitively, s0 and s1 could be the two possible (public) values of a vote. We
have (sdec(x1, x2) =Eenc

s0)φ whereas (sdec(x1, x2) 6=Eenc
s0)φ′. Therefore we have

that φ 6≈ φ′. However, we have that

νk.{senc(s0,k)/x1} ≈ νk.{
senc(s1,k)/x1}.

The following lemma is a consequence of some lemmas stated in [2] and will
be useful later on to establish our composition result.

Lemma 1 Let φ1 = νñ1.σ1 and φ2 = νñ2.σ2 be two frames such that φ1 ≈ φ2.

1. νn.φ1 ≈ νn.φ2 when n 6∈ ñ1 ∪ ñ2,

2. φ1{s/n} ≈ φ2{s/n} when n 6∈ ñ1 ∪ ñ2 and s is a fresh name.

3 Protocols

We now define our cryptographic process calculus for describing protocols. This
calculus is inspired by the applied pi calculus [2] but we prefer a simplified version
which is sufficient for the purpose of this paper. In particular we only consider one
channel, which is public (i.e. under the control of the attacker). Moreover, we only
consider closed processes: all variables appearing in terms are under the scope of an
input. Finally, we only consider finite processes, i.e. processes without replication.
As we will argue in Section 8 this is not a restriction and our composition results
carry over to an unbounded number of sessions.

8

3.1 Protocol Language

The grammar for processes is given below. One has plain processes P,Q,R and ex-

tended processes A,B,C. Plain processes built up in a similar way to processes in
the pi calculus except that messages can contain terms rather than just names.
Furthermore, we enrich plain processes with events. Events are function symbols
ev, ev1, . . . with a given arity which do not appear in Σ. They are used to anno-

tate processes and are useful when formalizing some security properties such as
authentication. Plain processes are formed from the grammar

P,Q,R := plain processes
0 null process
P | Q parallel composition
in(x).P message input
out(M).P message output
if M = N then P else Q conditional
ev(M̃).P event

such that a variable x appears in a term only if the term is in the scope of an
input in(x). The null process 0 does nothing; P | Q is the parallel composition
of P and Q. The conditional if M = N then P else Q is standard, but M = N

represents equality modulo the underlying equational theory E. We omit else Q

when Q is 0. The process in(x).P is ready to input on the public channel, then to
run P with the actual message instead of x, while out(M).P is ready to output M ,
then to run P . Again, we omit P when P is 0. Given a set of names ñ = {n1, . . . , np},
we also write νñ.A instead of νn1. . . . νnp.A.

Further, we extend processes with active substitutions and restrictions:

A,B,C := P
∣∣ A | B ∣∣ νn.A ∣∣ {M/x}

where M is a ground term. As usual, names and variables have scopes, which are
delimited by restrictions and by inputs. We write fv(A), bv(A), fn(A), bn(A) for
the sets of free and bound variables (resp. names). Moreover, we require processes
to be name and variable distinct, meaning that bn(A)∩ fn(A) = ∅, bv(A)∩ fv(A) = ∅,
and also that any name and variable is bound at most once in A. Note that the
only free variables are introduced by active substitutions (the x in {M/x}). Lastly,
in an extended process, we require that there is at most one substitution for each
variable. An instance of an extended process is a process obtained by a bijective
renaming of its bound names and variables. We observe that given processes A
and B, there always exist instances A′ and B′ of A, respectively B, such that the
process A′ | B′ will respect the disjointness conditions on names and variables.

We also extend replacements of names {M/n} from terms to processes when
the names fn(M) ∪ {n} are not bound by the process. An evaluation context is an
extended process with a hole instead of an extended process. Extended processes
built up from the null process, active substitutions using parallel composition and
restriction are called extended frames (extending the notion of frame introduced in

9

Section 2.21). Given an extended process A we denote by φ(A) the extended frame
obtained by replacing any embedded plain processes in it with 0.

Example 5 Consider the following process:

A = νs, k1.(out(a) | {senc(s,k1)/x} | νk2.out(senc(s, k2))).

We have that φ(A) = νs, k1.(0 | {senc(s,k1)/x} | νk2.0).

3.2 Semantics

The semantics of our calculus is defined by two relations: structural equivalence,

denoted ≡, and reduction, denoted
`−→.

Structural equivalence. We consider a basic structural equivalence, i.e. the smallest
equivalence relation closed by application of evaluation contexts and such that

Par-0 A | 0 ≡ A

Par-C A | B ≡ B | A
Par-A (A | B) | C ≡ A | (B | C)

New-Par A | νn.B ≡ νn.(A | B) n 6∈ fn(A)
New-C νn1.νn2.A ≡ νn2.νn1.A

Using structural equivalence, every extended process A can be rewritten to
consist of a substitution and a plain process with some restricted names, i.e.

A ≡ νñ.({M1/x1} | . . . | {
Mk/xk} | P).

In particular, using structural equivalence, any frame can be rewritten as νñ.σ
matching the notion of frame introduced in Section 2.2. Since we require our
processes to be name and variable distinct, and extended processes have at most
one active substitution for each variable, α-renaming is not needed to rewrite
extended frame into frame.

Note that static equivalence on frames coincides with [2] (even though our
process calculus is different). We note that unlike in the original applied pi calculus,
active substitutions cannot “interact” with the extended processes. As we will
see in the following active substitutions record the outputs of a process to the
environment. The notion of frames will be particularly useful to define resistance
against guessing attacks.

Example 6 Note that in Example 5, we have that φ(A) ≡ νs, k1, k2.{senc(s,k1)/x}.

We have the following useful lemma which comes from [2].

Lemma 2 Let φ1 = νñ1.σ1 and φ2 = νñ2.σ2 be two frames. Let s 6∈ ñ1 ∪ ñ2.

1. νs.νñ1.(σ1 | {s/x}) ≈ νs.νñ2.(σ2 | {s/x}) if and only if φ1 ≈ φ2;

2. Let φ be another frame such that φ1 | φ and φ2 | φ are frames. If φ1 ≈ φ2, then

φ1 | φ ≈ φ2 | φ.

1 More precisely, the notion of frame introduced in Definition 1 requires the restricted names
to be written at the beginning of the frame, whereas this is not the case in an extended frame.
But we show in Section 3.2 that using structural equivalence, any frame can be rewritten with
all the restricted names at the beginning.

10

Operational semantics. We now define the semantics of our calculus. The labelled

semantics defines a relation A
`−→ A′ where ` is a label of one of the following forms:

– a label in(M), where M is a ground term such that φ(A) `E M . This corre-
sponds to an input of M ;

– a label out(M), where M is a ground term, which corresponds to an output of
M ;

– a label ev(M̃), where M̃ is a sequence of ground terms. This label is used to
memorize that a specific event has been executed;

– a label τ corresponding to a silent action.

Labelled operational semantics (
`−→) is the smallest relation between extended

processes which is closed under structural equivalence (≡) and such that

In in(x).P
in(M)−−−−→ P{M/x}

Out out(M).P
out(M)−−−−−→ P | {M/x} where x is a fresh variable

Then if M = N then P else Q
τ−→ P where M =E N

Else if M = N then P else Q
τ−→ Q where M 6=E N

Event ev(M̃).P
ev(M̃)−−−−→ P

Context
A

`−→ B

C[A]
`−→ C[B]

where C is an evaluation context,
and if ` = in(M) then φ(C[A]) `E M

These rules use standard ideas known from pi calculus derivatives. Note that the
in(M) label has as parameter the closed term being input, unlike in the ap-
plied pi calculus where the input term may contain variables. The side condi-
tion on Context ensures that the environment can deduce the input message M
even though the context may restrict some names in M . The output of a mes-
sage M adds an active substitution. Note that an output M may contain re-
stricted names without revealing these names. Further we note that events do not
influence the execution of processes and are merely annotations used to record
that a process reached a given point. As explained previously, some of the design
choices of the semantics differ slightly from the applied pi calculus. Our choices
allow us to consider a very simple structural equivalence and avoid unnecessary
complications in the proofs of our main results. We denote by → the relation{ `−→ | ` ∈ {in(M), out(M), ev(M̃), τ}, M, M̃ ground terms

}
and by →∗ its reflexive

and transitive closure.

Example 7 We illustrate our syntax and semantics with the well-known handshake
protocol.

A → B : senc(n,w)
B → A : senc(f(n), w)

The goal of this protocol is to authenticate B from A’s point of view, provided
that they share an initial secret w. This is done by a simple challenge-response

11

transaction: A sends a random number (a nonce) encrypted with the shared se-
cret key w. Then, B decrypts this message, applies a given function (for instance
f(n) = n+ 1) to it, and sends the result back, also encrypted with w. Finally, the
agent A checks the validity of the result by decrypting the message and checking
the decryption against f(n). In our calculus, we model the protocol as νw.(A | B)
where

– A = νn.out(senc(n,w)). in(x). if sdec(x,w) = f(n) then P
– B = in(y). out(senc(f(sdec(y, w)), w)).

where P models an application that is executed when B has been successfully
authenticated. The derivation described below represents a normal execution of
the protocol. For simplicity of this example we suppose that x 6∈ fv(P).

νw.(A | B)
out(senc(n,w))−−−−−−−−−−→ νw.νn.(B | {senc(n,w)/x1} | in(x). if sdec(x,w) = f(n) thenP)
in(senc(n,w))−−−−−−−−−→ νw.νn.(out(M) | {senc(n,w)/x1} | in(x). if sdec(x,w) = f(n) thenP)
out(M)−−−−−→ νw.νn.({senc(n,w)/x1} | {M/x2} | in(x). if sdec(x,w) = f(n) thenP)

in(senc(f(n),w))−−−−−−−−−−−→ νw.νn.({senc(n,w)/x1} | {M/x2} | if sdec(senc(f(n), w), w) = f(n) thenP)
τ−−−→ νw.νn.({senc(n,w)/x1} | {M/x2} | P)

where M = senc(f(sdec(senc(n,w), w)), w) =Eenc
senc(f(n), w).

3.3 Password-Based Protocols

In the remaining, we will focus our attention on password-based protocols.

Definition 4 (`-party password protocol specification) An `-party password

protocol specification P is a process such that:

P = νw.(νm̃1.P1 | . . . | νm̃`.P`)

where each Pi is a closed plain processes. The processes νm̃i.Pi are called the roles
of P.

Example 8 The EKE protocol [14] is a 2-party password protocol that can be
informally described by the following 5 steps.

A→ B : senc(pk(k), w) (EKE.1)
B→ A senc(aenc(r, pk(k)), w) (EKE.2)
A→ B senc(na, r) (EKE.3)
B→ A senc(〈na, nb〉, r) (EKE.4)
A→ B senc(nb, r) (EKE.5)

In the first step (EKE.1) A generates a new private key k and sends the corre-
sponding public key pk(k) to B, encrypted (using symmetric encryption) with the
shared password w. Then, B generates a fresh session key r, which he encrypts (us-
ing asymmetric encryption) with the previously received public key pk(k). Finally,
he encrypts the resulting ciphertext with the password w and sends the result to A

12

(EKE.2). The last three steps (EKE.3-5) perform a handshake to avoid replay at-
tacks. One may note that this is a password-only protocol. A new private and
public key are used for each session and the only shared secret between different
sessions is the password w.

A formal description of this protocol in our calculus is given below. We use the
equational theory Eenc presented in Example 1 to model this protocol.

A = νk, na. evbegin(w, na, pk(k)). B = νr, nb.

out(senc(pk(k), w)). in(y1).
in(x1). out(senc(aenc(r, sdec(y1, w)), w)).
let ra = adec(sdec(x1, w), k). in(y2).
out(senc(na, ra)) out(senc(〈sdec(y2, r), nb〉, r)).
in(x2). in(y3)
if proj1(sdec(x2, ra)) = na then if sdec(y3, r) = nb then
out(sdec(proj2(sdec(x2, ra)), ra)).0 evend(w, sdec(y2, r), sdec(y1, w)).0

We use the construction let x = M to enhance readability. The semantics of this
construction is to simply replace x by M in the remaining of the process. The
process also includes two events which we will explain below when discussing
correspondence properties. An honest execution of this protocol in the presence of
a passive attacker yields the frame νw.φEKE where:

φEKE = νk, r, na, nb.

{senc(pk(k),w)/x1 ,
senc(aenc(r,pk(k)),w) /x2 ,

senc(na,r) /x3 ,
senc(〈na,nb〉,r) /x4 ,

senc(nb,r) /x5}.

4 Security Properties

In this section, we define the security properties for which we will study composi-
tion in Part II. In particular, we consider secrecy (as a reachability property) and
correspondence properties that allow one to express different forms of authentica-
tion among them aliveness, injective and non-injective agreements. In Section 4.3,
we review resistance against guessing attacks, a security property that is particu-
larly relevant when studying password based protocols.

4.1 Secrecy

In formal models secrecy of a term t is usually modelled as the attacker’s inability
to deduce the term t.

Definition 5 (secrecy) An extended process A preserves secrecy of a closed term t,
written A 6`E t, if for every extended process B such that A →∗ B we have that
φ(B) 6` t.

13

4.2 Correspondence Properties

Properties such as authentication are classically modeled as correspondance prop-

erties.

Φ,Φ1 . . . := correspondance properties
ev(x1, . . . , xk)⇒ ev′(x1, . . . , xk) simple correspondance
ev(x1, . . . , xk)⇒inj ev′(x1, . . . , xk) injective correspondance

Intuitively, a correspondence property ev(x1, . . . , xk)⇒ ev′(x1, . . . , xk) holds if
whenever a process executes an event ev(u1, . . . , uk) then it must have executed the
event ev′(u1, . . . , uk) before. With this simple grammar, we cover various form of
authentication among them aliveness, weak agreement, injective and non-injective
agreements.

Definition 6 (simple correspondence property) A simple correspondence prop-

erty ev(x1, . . . , xk) ⇒ ev′(x1, . . . , xk) holds on an extended process A if for every
derivation

A
`1−→ A1

`2−→ . . .
`n−−→ An

we have that for every 1 ≤ i ≤ n and for every substitution σ if `i =E ev(x1, . . . , xk)σ
then there exists j < i such that `j =E ev′(x1, . . . , xk)σ.

We also consider injective correspondence properties needed to model stronger
flavors of authentication, such as injective agreement.

Definition 7 (injective correspondence property) An injective correspondence

property ev(x1, . . . , xk)⇒inj ev′(x1, . . . , xk) holds on an extended process A if for every
derivation

A
`1−→ A1

`2−→ . . .
`n−−→ An

we have that for every 1 ≤ i ≤ n and for every substitution σ,

#{j | ev(x1σ, . . . , xkσ) = `j with j ≤ i} ≤ #{j | ev′(x1σ, . . . , xkσ) = `j with j ≤ i}.

Example 9 Considering again the EKE protocol described in Example 8 we can
model injective agreement using the following correspondance property:

evend(x, y, z)⇒ evbegin(x, y, z).

This roughly means that the EKE protocol guarantees agreement on the pass-
word w, the nonce na, and the public key pk(k) if whenever an agent executing
the role B completes a run of the protocol, apparently with another honest agent
executing the role A, then the role A has previously been executed, and the two
agents that are involved in this session share the same password w and agree on
the data na, and pk(k) that have been established during the execution of this
session.

14

4.3 Guessing Attacks

The idea behind the definition is the following. Suppose the frame φ represents
the information gained by the attacker by eavesdropping one or more sessions and
let w be the password. Then, we can represent resistance against guessing attacks
by checking whether the attacker can distinguish a situation in which he guesses
the correct password w and a situation in which he guesses an incorrect one, say w′.
We model these two situations by adding {w/x} (resp. {w

′
/x}) to the frame. We

use static equivalence to capture the notion of indistinguishability. This definition
is due to Baudet [12], inspired from the one by Corin et al. [23]. In our definition,
we allow multiple shared secrets, and write w̃ for a sequence of such secrets.

Definition 8 (frame resistant to guessing attacks) Let φ ≡ νw̃.φ′ be a frame.
We say that the frame φ is resistant to guessing attacks against w̃ if

νw̃.(φ′ | {w̃/x̃}) ≈ νw̃′.νw̃.(φ′ | {w̃
′
/x̃})

where w̃′ is a sequence of fresh names, x̃ a sequence of variables with x̃ ∩ dom(φ) = ∅.

Note that this definition is general w.r.t. to the equational theory and the
number of guessable data items. Now, we can define what it means for a protocol
to be resistant against guessing attacks.

Definition 9 (process resistant to guessing attacks) Let A be a process and w̃ ⊆
bn(A). We say that A is resistant to guessing attacks against w̃ if, for every pro-
cess B such that A →∗ B, we have that the frame φ(B) is resistant to guessing
attacks against w̃.

Example 10 Consider the handshake protocol described in Example 7. An interest-
ing problem arises if the shared key w is a weak secret, i.e. vulnerable to brute-force
off-line testing. In such a case, the protocol has a guessing attack against w. Indeed,
we have that

νw.(A | B)→∗ D with φ(D) = νw.νn.({senc(n,w)/x1} | {
M/x2})

where M = senc(f(sdec(senc(n,w), w)), w) =Eenc
senc(f(n), w). The frame φ(D) is

not resistant to guessing attacks against w. The test f(sdec(x1, x))
?
= sdec(x2, x)

allows us to distinguish the two associated frames:

– νw, n.({senc(n,w)/x1} | {M/x2} | {w/x}), and

– νw′, w, n.({senc(n,w)/x1} | {M/x2} | {w
′
/x}).

Example 11 Consider the EKE password protocol described in Example 8. An ex-
ecution of this protocol in the presence of a passive attacker yields the frame
νw.φEKE where

φEKE = νk, r, na, nb.

{senc(pk(k),w)/x1 ,
senc(aenc(r,pk(k)),w) /x2 ,

senc(na,r) /x3 ,
senc(〈na,nb〉,r) /x4 ,

senc(nb,r) /x5}

We have that νw.(φEKE | {w/x}) ≈ νw,w′.(φEKE | {w
′
/x}). We have verified this

static equivalence using the YAPA tool [11]. So, this allows us to conlude that

15

the EKE protocol is resistant to guessing attacks against w for one session of the
protocol and in presence of a passive attacker. This result has also been shown
by Corin et al. [23] with a slight difference in the modelling of the protocol. Actu-
ally, using an automatic tool such as ProVerif [15], it is possible to show that this
protocol is resistant to guessing attacks against w. This is in contrast with some
results presented in [36] where it is shown that many variants of EKE are vulner-
able to active guessing attacks. However, those attacks rely on number-theoretic
properties of the asymmetric encryption scheme that is used (e.g. RSA), and they
are out of scope of the modelling we propose here.

16

— PART II: Composition Results —

It is well-known that composition works when processes do not share any secret,
the so-called disjoint case. This is formally stated in the proposition below whose
proof is given in Appendix A.

Proposition 1 Let A1, . . . , Ak be k extended processes such that A
def
= A1 | . . . | Ak is

also an extended process, and wi ∈ bn(Ai) for each i ∈ {1, . . . , k}.

1. Let t be a ground term that occurs as a subterm in Ai for some i ∈ {1, . . . , k}. If Ai
preserves secrecy of t, then A preserves secrecy of t.

2. Let Φ = ev(x̃) ⇒(inj) ev
′(x̃) be a correspondence property (injective or not). If Φ

holds on each Ai, then Φ holds on A.

3. If each Ai is resistant to guessing attack against wi, then A is resistant to guessing

attack against w1, . . . , wk.

A first idea to establish a composition result is to see under which conditions
we can go back to the disjoint case. In the following sections (Sections 6 and 7),
we will see that this is indeed possible provided that processes are tagged and
only share some passwords. In Section 5, we will establish a result that will allow
us to compose frames, and to derive an interesting result in presence of a passive
attacker.

5 Composing Frames

In this section, we will review the definition of resistance against guessing attacks
for a frame. We first show the equivalence of three definitions of resistance against
guessing attacks: the first definition is due to Baudet [12] and the second one is due
to Corin et al. [23]. The last definition is given in a composable way and establishes
our composition result (see Corollary 1).

Proposition 2 Let φ be a frame such that φ ≡ νw̃.φ′. The three following statements

are equivalent:

1. φ is resistant to guessing attacks against w̃ (according to Definition 8),

2. φ′ ≈ νw̃.φ′,
3. φ′ ≈ φ′{w̃

′
/w̃} where w̃′ is a sequence of fresh names.

Proof Let φ be a frame such that φ ≡ νw̃.φ′. We first establish that the two first
statements are equivalent. Indeed, we have that:

φ′ ≈ νw̃.φ′

⇔ φ′ ≈ νw̃′.φ′{w̃
′
/w̃} by α-renaming

⇔ νw̃.(φ′ | {w̃/x̃}) ≈ νw̃.νw̃′.(φ′{w̃
′
/w̃} | {w̃/x̃}) by Lemma 2 (item 1.)

⇔ νw̃.(φ′ | {w̃/x̃}) ≈ νw̃′.νw̃.(φ′ | {w̃
′
/x̃}) by α-renaming

17

Now, we show that 3⇒ 2. We have the following implications.

φ′ ≈ φ′{w̃
′
/w̃}

⇒ νw̃.φ′ ≈ νw̃.φ′{w̃
′
/w̃} by Lemma 1 (item 1.)

⇒ νw̃.φ′ ≈ φ′{w̃
′
/w̃} since w̃ does not occur in φ′{w̃

′
/w̃}

⇒ νw̃.φ′ ≈ φ′ since φ′ ≈ φ′{w̃
′
/w̃} by hypothesis

Finally, we prove that 2⇒ 3.

φ′ ≈ νw̃.φ′

⇒ φ′ ≈ νw̃′.φ′{w̃
′
/w̃} by α-renaming

⇒ φ′{w̃
′
/w̃} ≈ νw̃′.φ′{w̃

′
/w̃} by Lemma 1 (item 2.)

⇒ φ′{w̃
′
/w̃} ≈ νw̃.φ′ by α-renaming

⇒ φ′{w̃
′
/w̃} ≈ φ′ since φ′ ≈ νw̃.φ′ by hypothesis

This concludes the proof. ut

Now, by relying on Proposition 2 (item 3.), it is easy to show that resistance
to guessing attack against w̃ for two frames that share only the names w̃ is a
composable notion. This is formally stated in the corollary below:

Corollary 1 Let φ1 ≡ νw̃.φ′1 and φ2 ≡ νw̃.φ′2 be two frames such that νw̃.(φ′1 | φ′2)
is also a frame (this can be achieved by using α-renaming).

If φ1 and φ2 are resistant to guessing attacks against w̃ then νw̃.(φ′1 | φ′2) is also

resistant to guessing attacks against w̃.

Proof By relying on Proposition 2 (item 3.), we have that φ′1 ≈ φ′1{w̃
′
/w̃} and also

that φ′2 ≈ φ′2{w̃
′
/w̃}. Now, thanks to Lemma 2 (item 2.), we have that

– φ′1 | φ′2 ≈ φ′1{w̃
′
/w̃} | φ′2, and

– φ′1{w̃
′
/w̃} | φ′2 ≈ φ′1{w̃

′
/w̃} | φ′2{w̃

′
/w̃}.

This allows us to conclude that φ′1 | φ′2 ≈ (φ′1 | φ′2){w̃
′
/w̃} which means that the

frame νw̃.(φ′1 | φ′2) is resistant to guessing attacks against w̃. ut

Note that a similar result does not hold for deducibility (see Definition 2): even
if w is neither deducible from φ1 nor from φ2, it can be deducible from φ1 | φ2.
Such an example is given below.

Example 12 Consider again the equational theory Eenc. Consider the two following
frames: φ1 = {senc(w,senc(w,w))/x1} and φ2 = {senc(w,w)/x2}. We have that νw.φi 6`E
w for i = 1, 2 whereas νw.({senc(w,senc(w,w))/x1} | {senc(w,w)/x2}) `E w. Indeed, the
term sdec(x1, x2) is a recipe of the term w.

In the case of password-only protocols, i.e., protocols that only share a password
between different sessions and do not have any other long-term shared secrets we
have the following direct consequence. Considering a passive attacker who does not
interact with the protocol during its execution, we can prove resistance against
guessing attacks for an unbounded number of parallel sessions by proving only
resistance against guessing attacks for a single session.

An example of a password-only protocol is the well-known EKE protocol [14]. It
directly follows from our previous result that the protocol is secure for any number
of sessions as the only secret shared between different sessions is the password w.
An analysis of one session of this protocol has also been done in [23] (with a slight
difference in the modeling).

18

6 Composing Different Protocols

In the active case, contrary to the passive case, resistance against guessing attacks
does not compose: even if two protocols separately resist against guessing attacks
on w, their parallel composition under the shared password w may be insecure.

Example 13 Consider the processes defined in Example 8 where the occurrence of
0 in B has been replaced by out(w). Let A′ and B′ be the two resulting processes.
The process νw.(A′ | B′) models a variant of the EKE protocol where B′ outputs
the password w if the authentication of A′ succeeds. We have that νw.A′ and νw.B′

resist against guessing attacks on w. We have verified these statements by using
the ProVerif tool [16]. However, the process νw.(A′ | B′) trivially leaks w. More
generally any secure password only authentication protocol can be modified in this
way to illustrate that resistance against guessing attacks does not compose in the
active case.

The previous example may not be entirely convincing, since there is no envi-
ronment in which either of the separate processes νw.A′ and νw.B′ is executable.
We do not give a formal definition of what it means for a process to be executable.
Therefore we present a second example in which each of the constituent processes
admits a complete execution by interacting with the environment. However, the
example requires a somewhat contrived equational theory.

Example 14 Consider the following processes A1 and A2:

A1 = νn1.out(f1(w, n1)).in(x).out(f3(x, n1))
A2 = νn2.in(y).out(f2(y, w, n2))

and the equational theory induced by the equation f3(f2(f1(x, y), x, z), y) = x. We
indeed have that w resists against guessing attacks in νw.A1 and in νw.A2; we
have verified this using the ProVerif tool [15]. However, the name w is subject to
a guessing attack in νw.(A1 | A2). Indeed, we have that

νw.(A1 | A2) →∗ νw, n1, n2.({f1(w,n1)/x1} | {f2(f1(w,n1),w,n2)/x2} | {M/x3})

where M =E w. The obtained frame νw.φ′ is not resistant to guessing attack
against w. We indeed have that νw.φ′ ` w, and hence φ′ 6≈ φ′{w

′
/w}. The see this,

consider for instance the test x3
?
= w.

This example shows that there is no hope to obtain a general composition
result that holds for an arbitrary equational theory. Thus, to reach our goal, we
need to consider a restricted class of protocols: the class of well-tagged protocols.

6.1 Well-Tagged Protocols

Intuitively, a protocol is well-tagged w.r.t. a secret w if all the occurrences of w are
of the form h(c, w). We require that h is a hash function (i.e., has no equations in
the equational theory), and c is a name, which we call the tag. The idea is that if
each protocol is tagged with a different name (e.g. the name of the protocol) then
the protocols compose safely. Note that a protocol can be very easily transformed
into a well-tagged protocol (see Section 6.2). In the remainder, we will consider an
arbitrary equational theory E, provided there is no equation for h.

19

Definition 10 (well-tagged) Let M be a term and w be a name. We say that M
is c-tagged w.r.t. w if there exists M ′ such that M ′{h(c,w)/w} =E M .

A term is said well-tagged w.r.t. w if it is c-tagged w.r.t. w for some name c. An
extended process A is c-tagged if any term occurring in it is c-tagged. An extended
process is well-tagged if it is c-tagged for some name c.

Other ways of tagging a protocol exist in the literature. For example, in [25]
encryptions are tagged to ensure that they cannot be used to attack other instances
of the protocol. That particular method would not work here; on the contrary, that
kind of tagging is likely to add guessing attacks.

Example 15 Let A = νw, s.out(senc(s, w)). We have that A is resistant to guessing
attacks against w. However, the protocol, which is well-tagged according to the
definition given in [25], is not. Indeed,

A′ = νw, s.out(senc(〈c, s〉, w))

is not resistant to guessing attack against w. The tag c which is publicly known
can be used to mount such an attack.

Another tagging method we considered is to replace w by 〈c, w〉 (instead of h(c, w)),
which has the advantage of being computationally cheaper. This transformation
does not work, although the only counterexamples we have are rather contrived.
For example, this transformation does not preserve resistance against guessing
attacks as soon as the equational theory allows one to test whether a given mes-
sage is a pair. In particular this is possible in the theory Eenc by testing whether
〈proj1(x), proj2(x)〉 =Eenc

x.

Example 16 Consider the equational theory Eenc and the following process:

A = νw, k.out(senc(w, k)).in(x). if proj1(dec(x, k)) = c then out(w).

The process A is resistant to guessing attacks against w since the last instruction
can never been executed. However, the protocol obtained by replacing w by 〈c, w〉
is clearly not.

Note that we can built a similar example without using c in the specification
of A. We can simply compare the first component of two ciphertexts issued from the
protocols. This should lead to an equality (i.e. a test) which does not necessarily
exist in the original protocol.

6.2 Transformation to Obtain Well-Tagged Protocols

In the previous section, we introduced the notion of well-tagged protocols, a nec-
essary condition to ensure composition. Unfortunately, most of the existing proto-
cols are not well-tagged. In this section, we give a simple, syntactic transformation
which allows us to transform any protocol into a well-tagged one. Let νw.A be a
process resistant to guessing attacks against w, the transformed process is defined
as νw.(A{h(c,w)/w}): any occurrence of the password w in A is replaced by h(c, w).
In this section, we show that this transformation preserves the security properties
introduced in Section 4. More precisely, we have that:

20

Theorem 1 Let c be a name and A ≡ νw.A′ be a process such that c 6∈ bn(A).

1. Let t be a ground term that occurs as a subterm in A. If A preserves secrecy of t,

then νw.(A′{h(c,w)/w}) preserves secrecy of t{h(c,w)/w}.
2. Let Φ = ev(x̃) ⇒(inj) ev

′(x̃) be a correspondence property (injective or not). If Φ

holds on A, then Φ holds on νw.(A′{h(c,w)/w}).

3. If A is resistant to guessing attacks against w, then νw.(A′{h(c,w)/w}) is also

resistant to guessing attacks against w.

Theorem 1 is proved by contradiction in two main steps. Omitted proofs are
detailed in Appendix B. The first step relies on Proposition 3, in which we show
how to map an execution of a well-tagged protocol to an execution of the original
(not well-tagged) protocol. We maintain a strong connection between the two
executions.

Proposition 3 Let A be a process with c, w 6∈ bn(A) and A′{h(c,w)/w} =E A for some A′.

If νw.A
`−→ B, then B ≡ νw.B and there exists a process B′ and a label `′ such that

B′{h(c,w)/w} =E B, `′{h(c,w)/w} =E `, and νw.A′
`′−→ νw.B′.

Finally, in a second step, we have to show that the same type of attacks can
be mounted on the resulting trace. This relies either on Lemma 3, Lemma 4 or
Lemma 5 depending on the security property under study. Actually, Lemma 3 and
Lemma 4 are also useful to deal with the cases of an input and a conditional in
the proof of Proposition 3.

Regarding secrecy preservation, we prove the following lemma:

Lemma 3 Let φ be a frame such that c, w 6∈ bn(φ) and φ′{h(c,w)/w} =E φ for some φ′.
If νw.φ `E M then there exists M ′ such that M ′{h(c,w)/w} =E M and νw.φ′ `E M ′.

Regarding correspondence properties, we establish the following result:

Lemma 4 Let M , N , M ′ and N ′ be four terms such that M =E M
′{h(c,w)/w} and

N =E N
′{h(c,w)/w}. Then, we have that

M =E N if, and only if, M ′ =E N
′

Regarding resistance against guessing attacks, we show that static equivalence
is preserved by the transformation {h(c,w)/w}. This is crucial to ensure that the
transformation does not introduce guessing attack.

Lemma 5 Let φ1 and φ2 be two frames such that φ1 ≈ φ2. Let w, c be such that

w, c 6∈ bn(φ1) ∪ bn(φ2). We have that

φ1{h(c,w)/w} ≈ φ2{h(c,w)/w}.

Now, we are able to prove Theorem 1.

Proof Assume that νw.(A′{h(c,w)/w}) admits an attack. This means that there
exists a process B, and some labels `1, . . . , `n such that

νw.(A′{h(c,w)/w})
`1−→ . . .

`n−−→ B

21

and depending on the security property under study, we have that:

1. (secrecy) φ(B) `E t{h(c,w)/w}; or
2. (non-injective correspondence property) there exist j0 and a substitution σ such

that `j0 =E ev(x̃σ) and `j 6=E ev
′(x̃σ) for any j ≤ j0 (the case of an injective

correspondence property can be done in a similar way); or
3. (guessing attack) the frame φ(B) is not resistant to guessing attacks against w.

By applying Proposition 3, we easily obtained that B ≡ νw.B for some pro-
cess B and there exists B′ and some labels `′1, . . . , `

′
n such that B′{h(c,w)/w} =E B,

`′1{h(c,w)/w} =E `1, . . . , `
′
n{h(c,w)/w} =E `n and νw.A′

`′1−→ . . .
`′n−−→ νw.B′. To con-

clude, it remains to show that this trace admits an attack.

1. (secrecy) We have to show that νw.φ(B′) ` t. We have that c, w 6∈ bn(φ(B)),
φ(B′){h(c,w)/w} =E φ(B), and φ(B) = νw.φ(B) `E t{h(c,w)/w}. Thanks to
Lemma 3, we deduce that there exist t′ such that t′{h(c,w)/w} =E t{h(c,w)/w}
and νw.φ(B′) `E t′. Now, using Lemma 4, we easily conclude that t =E t

′, and
thus νw.φ(B′) `E t. This means that A does not preserve secrecy of t.

2. (non-injective correspondence property) We have to show that there exist j′0 and
a substitution σ′ with domain x̃ such that `′j′0

=E ev(x̃σ
′) and `′j 6=E ev

′(x̃σ′) for

any j ≤ j′0. Let j′0 = j0 and σ′ be a substitution such that x̃σ = x̃σ′{h(c,w)/w}.
Such a substitution exists since ev(x̃σ) =E `j0 =E `′j0{

h(c,w)/w}. We have

that `j0 =E ev(x̃σ), and thus `′j0{
h(c,w)/w} =E ev(x̃σ′){h(c,w)/w}. Thanks to

Lemma 4, we easily deduce that `′j0 = `′j′0
= ev(x̃σ′). In the same way, we

can show that `′j 6=E ev
′(x̃σ′) for any j ≤ j′0. This allows us to conclude. For

injective correspondence properties, the proof can be done in a similar way.
3. (guessing attack) We have to show that φ(B′) is not resistant to guessing attack

against w, i.e. φ(B′) 6≈ φ(B′){w
′
/w}. Assume that φ(B′) ≈ φ(B′){w

′
/w}, thanks

to Lemma 5, we easily obtain that
– φ(B) =E φ(B′){h(c,w)/w} ≈ (φ(B′){w

′
/w}){h(c,w)/w} = φ(B′){w

′
/w}, and

– φ(B′) = φ(B′){h(c,w
′)/w′} ≈ (φ(B′){w

′
/w}){h(c,w

′)/w′} =E φ(B){w
′
/w}.

Since φ(B′) ≈ φ(B′){w
′
/w}, we obtain φ(B) ≈ φ(B){w

′
/w} which contradicts

the fact that φ(B) is not resistant to guessing attacks against w. ut

6.3 Composition Theorem

We show that protocols that are separately secure can be safely composed provided
that they use different tags. The following theorem formalizes the intuition that
replacing the shared password w with a hash of the password and a tag, i.e. h(ti, w),
is similar to using different passwords which implies composition. Note that the
theorem below is stated considering ground terms as tags (and not only names).
This is not really needed to compose different protocols but this generalization
will be useful in Section 7 to compose sessions coming from the same protocols.

Theorem 2 Let t1, . . . , tk be distinct ground terms modulo E, and νw.A1, . . . , νw.Ak

be k extended processes such that A
def
= νw.(A1{h(t1,w)/w} | . . . | Ak{h(tk,w)/w}) is

also an extended process (this can be achieved using α-renaming). Moreover, for each

1 ≤ i ≤ k, we assume that φ(A) `E ti.

22

1. Let t be a ground term that occurs as a subterm in Ai for some i ∈ {1, . . . , k}. If

νw.Ai preserves secrecy of t, then A preserves secrecy of t{h(ti,w)/w}.
2. Let Φ = ev(x̃) ⇒(inj) ev(x̃) be a correspondence property (injective or not). If Φ

holds on each νw.Ai, then Φ holds on A.

3. If each νw.Ai is resistant to guessing attacks against w, then the process A is also

resistant to guessing attacks against w.

To prove this theorem, we proceed in two steps as for Theorem 1. We first
show in Proposition 4 how to map an execution of

A
def
= νw.(A1{h(t1,w)/w} | . . . | Ak{h(tk,w)/w}) (same password)

to an execution of

νw1.(A1{h(c1,w1)/w}) | . . . | νwk.(Ak{h(ck,wk)/w}) (different passwords)

by maintaining a strong connection between these two derivations. Intuitively, as
each Ai is ti-tagged and ti are distinct ground terms modulo E, we can simply
replace h(ti, w) by h(ci, wi) in any execution. We denote by δwi,w the replacement
{w/w1} . . . {w/wk}, by δwi,h(ci,wi) the replacement {h(c1,w1)/w1} . . . {h(ck,wk)/wk}
and by δci,ti the replacement {t1/c1} . . . {tk/ck}.

Proposition 4 Let t1, . . . , tk be distinct ground terms modulo E and c1, . . . , ck, w1, . . . , wk
be distinct fresh names. Let νñ.A be an extended process such that bn(A) = ∅, w 6∈
fn(A), and A =E A

′δwi,h(ci,wi) for some A′ such that c1, . . . , ck 6∈ fn(A′). Moreover,

we assume that w,w1, . . . , wk, c1, . . . , ck 6∈ ñ.

Let B be such that νw.νñ.(Aδci,tiδwi,w)
`−→ B. Moreover, when ` = in(M̃) we

assume that w1, . . . , wk, c1, . . . , ck 6∈ fn(M̃). Then there exist extended processes B,

B′, and labels `0, `′ such that:

– B ≡ νw.νñ.(Bδci,tiδwi,w) with bn(B) = ∅ and w 6∈ fn(B), ` = `0δci,tiδwi,w, and

– B =E B
′δwi,h(ci,wi) with c1, . . . , ck 6∈ fn(B′), `0 =E `

′δwi,h(ci,wi), and

– νw1 . . . νwk.νñ.A
`0−→ νw1 . . . νwk.νñ.B.

Then, we show in a second step that the same type of attacks can be mounted
on the resulting trace. As for Theorem 1, this relies on three lemmas, Lemma 6, 7
and 8. As before, Lemmas 6 and 7 are also useful to deal with the cases of an in-
put and a conditional in the proof of Proposition 4. This is a bit technical because
mapping w1, . . . , wk on the same password can introduce additional equalities be-
tween terms. Intuitively, the results hold because the frames are well-tagged, and
different passwords are tagged with distinct terms.

Regarding secrecy preservation, we show that if a frame, obtained by execut-
ing k protocols sharing a same password, allows one to deduce a term M , then
the frame obtained by the corresponding execution of the protocols with different
passwords also allows one to deduce a similar term M . This lemma is also useful
to deal with the case of an input in Proposition 4.

23

Lemma 6 Let t1, . . . , tk be distinct ground terms modulo E and c1, . . . , ck, w1, . . . , wk
be distinct fresh names. Let φ = νñ.σ, φ̃ = νñ.σ̃ and φ′ = νñ.σ′ be three frames

such that w 6∈ fn(σ), and w,w1, . . . , wk, c1, . . . , ck 6∈ ñ. Moreover, we assume that

σδci,tiδwi,w = σ̃, σ =E σ′δwi,h(ci,wi), and c1, . . . , ck 6∈ fn(σ′). If νw.φ̃ `E M̃ and

{w1, . . . , wk, c1, . . . , ck} ∩ fn(M̃) = ∅ for some ground term M̃ then there exist ground

terms M,M ′ such that c1, . . . , ck 6∈ fn(M ′), w 6∈ fn(M), Mδci,tiδwi,w = M̃ , M =E

M ′δwi,h(ci,wi), and νw1. . . . νwk.φ `E M .

Regarding correspondence properties, we have to show that if a trace obtained
by executing k protocols sharing a same password, allows one to falsify the cor-
respondence property Φ, then the trace obtained by the corresponding execution
of the protocols with different passwords also allows one to falsify this correspon-
dence property in a similar way. For this, we establish the following result which
is also useful to deal with the case of conditionals in Proposition 4.

Lemma 7 Let t1, . . . , tk be distinct ground terms modulo E and c1, . . . , ck, w1, . . . , wk
be distinct fresh names. Let M , N , M̃ and Ñ be four terms such that

– M̃ = Mδci,tiδwi,w and Ñ = Nδci,tiδwi,w with w 6∈ fn(M) ∪ fn(N);

– M =E M ′δwi,h(ci,wi) and N =E N ′δwi,h(ci,wi) for some terms M ′ and N ′ such

that c1, . . . , ck 6∈ fn(M ′) ∪ fn(N ′).

Then, we have that M =E N if and only if M̃ =E Ñ .

Regarding resistance against guessing attacks, we show that if a frame, ob-
tained by executing k protocols sharing a same password, is vulnerable to guessing
attacks then the frame obtained by the corresponding execution of the protocols
with different passwords is also vulnerable to guessing attacks.

Lemma 8 Let t1, . . . , tk be distinct ground terms modulo E. Let c1, . . . , ck, w1, . . . , wk
be distinct fresh names, and φ = νñ.σ be a frame such that c1, . . . , ck, w1, . . . , wk 6∈ ñ,

and σ =E σ0δwi,h(ci,wi) for some substitution σ0. Let w be a fresh name, and ψ =
νñ.(σδci,tiδwi,w). For each 1 ≤ i ≤ k, we also assume that νw.ψ `E ti.

If νw̃.φ is resistant to guessing attacks against w̃ = {w1, . . . , wk}, then νw.ψ is

resistant to guessing attacks against w.

Now, we can prove Theorem 2.

Proof We prove our composition result by contradiction. Assume that the process

A
def
= νw.(A1{h(t1,w)/w} | . . . | Ak{h(tk,w)/w}) admits an attack. First, we show that

the process

A0
def
= νw1.(A1{h(c1,w1)/w}) | . . . | νwk.(Ak{h(ck,wk)/w}) (different passwords)

also admits an attack. Then, Proposition 1 will allow us to derive the existence
of an attack on νwi0 .Ai0{

h(ci0 ,wi0)/wi0
} for some i0 ∈ {1, . . . , n}. Lastly, we will

conclude to the existence of an attack on νwi0 .Ai0 relying on Theorem 1. Below,
we instantiate the sketch described above depending on the security property under
study.

24

By definition of an attack, we have that there exists a trace

A = A0
def
= νw.(A1{h(t1,w)/w} | . . . | Ak{h(tk,w)/w})

`1−→ . . .
`n−−→ An

such that:

1. (secrecy) φ(An) `E t (where t is a subterm of Ai0{
h(ti0 ,w)/w} for some i0 ∈

{1, . . . , k}); or
2. (non-injective correspondence property) there exists j0 and a substitution σ such

that `j0 =E ev(x̃σ) and `j 6=E ev(x̃σ) for any j ≤ j0 (the case of an injective
correspondence property can be done in a similar way); or

3. (guessing attack) the frame φ(An) is not resistant to guessing attacks against w.

We assume w.l.o.g. that the names w1, . . . , wk and c1, . . . , ck, which do not
occur in A0, are not used along the derivation. By definition of a process, we have
that Ai ≡ νñi.A0

i for some sequence ñi and some process A0
i with bn(A0

i) = ∅. We
denote by ñ the sequence ñ1, . . . , ñk.

By iterating Proposition 4 on A ≡ νw.νñ.(A0
1{h(t1,w)/w} | . . . | A0

k{
h(tk,w)/w}),

we have that there exist two extended processes An, A′n and two sequences of
labels `01, . . . , `

0
n and `′1, . . . , `

′
n such that:

– An ≡ νw.νñ.(Anδci,tiδwi,w) with bn(An) = ∅, w 6∈ fn(An), and `j = `0j δci,tiδwi,w

for any j ∈ {1, . . . , n};
– An =E A

′
nδwi,h(ci,wi) with c1, . . . , ck 6∈ fn(A′n), and `0j =E `

′
jδwi,h(ci,wi) for any

j ∈ {1, . . . , n}, and

– A0
`01−→ . . .

`0n−−→ νw1.νwk.νñ.An.

Now, we show that the trace A0
`01−→ . . .

`0n−−→ νw1.νwk.νñ.An also admits
an attack and we conclude. We distinguish three cases depending on the security
property under study.

1. (secrecy) We know that t = t{h(ti0 ,w)/w} for some t that occurs as a subterm
of Ai0 . First, we show that νw1.νwk.νñ.φ(An) `E t{h(ci0 ,wi0)/w}. We have
that φ(An) `E t. Thanks to Lemma 6, we deduce that there exists t0 and t′

such that νw1 . . . νwk.νñ.φ(An) `E t0, t0 =E t
′δwi,h(ci,wi), and t = t0δci,tiδwi,w.

Hence we have that t0 =E t{h(ci0 ,wi0)/w}. Then, applying Proposition 1, we
deduce that νwi0 , νñi0 .(A

0
i0{

h(ci0 ,wi0)/w}) does not preserve secrecy of t0. Using

α-renaming, we deduce that νw.νñi0 .A
0
i0{

h(ci0 ,w)/w} does not preserve secrecy

of t0{w/wi0
} = t{h(ci0 ,w)/w}. Lastly, relying on Theorem 1, we conclude that

νw.νñi0 .A
0
i0 ≡ νw.Ai0 does not preserve secrecy of t. This allows us to conclude.

2. (non-injective correspondence property) First, we have to show that there ex-
ist j′0 and a substitution σ′ with domain x̃ such that `0j′0

=E ev(x̃σ
′) and `j 6=E

ev′(x̃σ′) for any j ≤ j′0. Let j′0 = j0 and σ′ be a substitution such that xσ =
(xσ′)δci,tiδwi,w. Such a substitution exists since ev(x̃σ) =E `j0 =E `

0
j0δci,tiδwi,w.

We have that `j0 =E ev(x̃σ), and thus `0j0δci,tiδwi,w =E ev(x̃σ′)δci,tiδwi,w.

Thanks to Lemma 7, we easily deduce that `0j0 = `0j′0
= ev(x̃σ′). In the same

way, we can show that `0j 6=E ev
′(x̃′σ′) for any j ≤ j′0. Then, applying Propo-

sition 1, we deduce that the correspondence property Φ does not hold on
νwi0 , νñi0 .(A

0
i0{

h(ci0 ,wi0)/w}). Using α-renaming, we deduce that Φ does not

hold on νw.νñi0 .A
0
i0{

h(ci0 ,w)/w}. Lastly, relying on Theorem 1, we conclude

25

that the correspondence property Φ does not hold on νw.νñi0 .A
0
i0 ≡ νw.Ai0 .

This allows us to conclude. For injective correspondence properties, the proof
can be done in a similar way.

3. (guessing attack) First, we have to show that νw1, . . . , wk.νñ.φ(An) is not re-
sistant to guessing attacks against w1, . . . , wk. Actually, this is a direct conse-
quence of Lemma 8. Then, applying Proposition 1, we deduce that there exists
i0 ∈ {1, . . . , k} such that νwi0 , νñi0 .(A

0
i0{

h(ci0 ,wi0)/w}) is not resistant to guess-
ing attack against wi0 . Relying on Theorem 1, we conclude that νw.νñi0 .A

0
i0 ≡

νw.Ai0 is not resistant to guessing attack against w. ut

7 Composing Different Sessions

Again, there is no hope to be able to compose different sessions without introducing
new attacks. However, such a composition result holds for a class of protocol. We
now define a protocol transformation which establishes a dynamic tag that will
guarantee composition (see Section 7.1). Then, we will establish our composition
result (see Section 7.2).

7.1 Our Transformation

To establish such a tag that serves as a session identifier all participants generate
a fresh nonce, that is sent to all other participants. This is similar to the estab-
lishment of session identifiers proposed by Barak et al. [10]. The sequence of these
nonces is then used to tag the password. Note that an active attacker may interfere
with this initialization phase and may intercept and replace some of the nonces.
However, since each participant generates a fresh nonce, these tags are indeed
distinct for each session. This transformation is formally defined as follows.

Definition 11 (transformation P) Let P = νw.(νm̃1.P1 | . . . | νm̃`.P`) be a
password protocol specification. Let n1, . . . , n` be fresh names and {xji | 1 ≤ i, j ≤
`} be a set of fresh variables. We define the protocol specification P as follows:

P = νw.(νm̃1, n1.P1 | . . . | νm̃`, n`.P`)

where:

– Pi = in(x1i). . . . in(xi−1
i).out(ni).in(xi+1

i) . . . in(x`i).Pi{
h(tagi,w)/w}; and

– tagi = 〈x1i , 〈. . . 〈x
i−1
i , 〈ni, 〈xi+1

i , 〈. . . 〈x`−1
i , x`i〉 . . .〉〉〉〉 . . .〉〉.

Example 17 We now illustrate our transformation on the EKE protocol that we in-
troduced in Example 8. The informal description of the transformed EKE protocol
is as follows.

A→ B : n1 (PRE.1)
B→ A : n2 (PRE.2)
A→ B : senc(pk(k), h(〈n1, n2〉, w)) (EKE’.1)
B→ A senc(aenc(r, pk(k)), h(〈n1, n2〉, w)) (EKE’.2)
A→ B senc(na, r) (EKE’.3)
B→ A senc(〈na, nb〉, r) (EKE’.4)
A→ B senc(nb, r) (EKE’.5)

26

The first two messages (PRE.1) and (PRE.2) describe the preamble that estab-
lishes the tag 〈n1, n2〉 used in the following messages. The formal description in
our calculus of the transformed protocol is as follows.

A = νk, na, n1.out(n1). in(x21)
evbegin(h(〈n1, x21〉, w), na, pk(k)).
out(senc(pk(k), h(〈n1, x21〉, w))).
in(x1).
let ra = adec(sdec(x1, h(〈n1, x21〉, w)), k).
out(senc(na, ra))
in(x2).
if proj1(sdec(x2, ra)) = na then
out(sdec(proj2(sdec(x2, ra)), ra)).0

B = νr, nb, n2. in(x12). out(n2)
in(y1).
out(senc(aenc(r, sdec(y1, h(〈x12, n2〉, w))), h(〈x12, n2〉, w))).
in(y2).
out(senc(〈sdec(y2, r), nb〉, r)).
in(y3)
if sdec(y3, r) = nb then
evend(h(〈x12, n2〉, w), sdec(y2, r), sdec(y1, h(〈x12, n2〉, w))).0

7.2 Composition Results

We can now state our composition results for sessions of a same protocol.

Theorem 3 Let P = νw.(νm̃1.P1 | . . . | νm̃`.P`) be a password protocol specification

and P ′ be such that P = νw.P ′, and P ′1, . . .P ′p be p instances of P ′.

1. Let t be a ground term that occurs as a subterm in P ′i for some i ∈ {1, . . . , p}. If

νw.P ′i preserves secrecy of t, then we have that νw.(P ′1 | . . . | P ′p) preserves secrecy

of t{h(ti,w)/w}.
2. Let Φ = ev(x̃) ⇒(inj) ev(x̃) be a correspondence property (injective or not). If Φ

holds on P, then Φ holds on νw.(P ′1 | . . . | P ′p).

3. If P is resistant to guessing attacks against w, then we have that νw.(P ′1 | . . . | P ′p)
is resistant to guessing attacks against w.

Proof (sketch) We here give an overview of the proof. A more detailed proof is
given in Appendix C.

Assume, by contradiction, that P = νw.(P ′1 | . . . | P ′p) admits an attack on
either of the three security properties. Hence there exists an attack derivation
P →∗ Q for some process Q such that the security property, either secrecy, a
correspondence property or resistance to guessing attacks, fails. We are going to
show that this attack also applies to P contradicting the hypothesis.

27

Step 1. We will first regroup the different roles of the protocol instances according
to their tag. Thanks to our transformation, we know that each role involved in P

has to execute its preamble, i.e., the preliminary nonce exchange of our trans-
formation, at the end of which it computes a tag. Let t1, . . . , tk be the distinct
tags that are computed during this derivation. Then, we group together roles (i.e.

closed plain processes) that computed the same tag in order to retrieve a situation
that is similar to when we use static tags. We note that the tags are constructed
such that each group contains at most one instance of each role of P. Our aim is
to show that an attack already exists on one of these groups, and so the attack is
not due to composition. However, one difficulty comes from the fact that once the
preambles have been executed, the tags that have been computed by the different
roles may share some names in addition to w.

Step 2. The aim of this step is to show that an attack on a transformed protocol
also exists on a protocol that is tagged with constants (instead of the constructed
tag) and different passwords (instead of the same password).

The fact that some names are shared between the processes we would like to
separate in order to retrieve the disjoint case significantly complicates the situa-
tion. Indeed, if composition still works, it is due to the fact that names shared
among differently tagged processes only occur at particular positions. To get rid
of shared names, we show that we can mimic a derivation by another derivation
where tags t1, . . . , tk are replaced by constants c1, . . . , ck and different password
are used (w1, . . . , wk instead of w).

Using Proposition 4 we can map an execution of

P ≡ νn1 . . . νnkνw.(A1δci,tiδwi,w | · · · | Akδci,tiδwi,w) (same password)

to an execution of

νn1νw1.A1 | · · · | νnkνwk.Ak (different password)

by maintaining a strong connection between these two derivations where the pro-
cess Ajδci,tiδwi,w contains the roles in P that computed the tag tj in the attack
derivation. Exactly as in the proof of Theorem 2, using Lemmas 6, 7 and 8 we
show that the derivation with constant tags and different passwords also admits
an attack.

Note that, except for w, a name that is shared between the processes Ajδci,tiδwi,w

and Aj′δci,tiδwi,w (j 6= j′) necessarily occurs in a tag position in one of the pro-
cesses. Now that tags have been replaced by some constants, and the password w

has been replaced by different passwords according to the tag, the processes Aj
and Aj′ do not share any name anymore.

Step 3. Applying Proposition 1, we conclude that there is a guessing attack on
νni.νwi.Ai for some i ∈ {1, . . . , k}. Then, it remains to show that the attack also
works on the original protocol, i.e. the non-tagged version of the protocol. This is
a direct application of Theorem 1. This leads us to a contradiction since we have
assumed that P does not admit an attack.

28

8 Discussion

One may note that all our composition results hold for an unbounded number of
sessions (even though our protocol language does not include replication). This is
because our proofs proceed by contradiction and the fact that any attack only uses
only a finite number of sessions. Indeed, for instance, suppose that two protocols
are separately resistant against guessing attacks for an unbounded number of ses-
sions and that their parallel composition allows a guessing attack. As any attack
only requires a finite number of sessions, by Theorem 2, we have that one of the
protocols admits an attack leading to a contradiction. The same reasoning can be
done for the other security properties and also when we compose several sessions
of the same protocol.

We also note that it is possible to combine the two ways of tagging that we
proposed. Applying successively Theorems 2 and 3 we obtain that a tag of the
form h(〈n1, . . . , n`〉, h(c, w)) allows to safely compose different sessions of a same
protocol, and also sessions of other protocols. It would also be easy to adapt the
proofs to directly show that a simpler tag of the form h(〈c, 〈n1, . . . , n`〉〉, w) could
be used.

Finally, we note that our composition result yields a simple design methodol-
ogy. It is sufficient to design a protocol which is secure for a single session. After
applying the above protocol transformation we conclude that the transformed
protocol is secure for an arbitrary number of sessions. As deciding resistance to
guessing attacks is decidable for a bounded number of sessions (for a large class
of equational theories) [12] our result can also be seen as a new decidability result
for an unbounded number of sessions on a class of tagged protocols.

9 Conclusion

In this paper, we examined whether resistance to offline guessing attacks “com-
poses” when the same password is used in two different protocols. More precisely,
when each of two protocols resists offline guessing attacks by itself and the same
password is used in each of them, we study whether the combination also resists.
In the case of a passive attacker, the answer is yes. In the case of an active attacker,
the answer is no in general. We propose a means to transform the protocol so that
we can obtain the secure composition.

The transformation we propose works whether the composition is of two differ-
ent protocols, or two sessions of the same protocol. Moreover, the transformation
preserves other desirable trace-based properties that the protocols are intended to
guarantee, such as authentication and secrecy.

An alternative direction of research would be to investigate whether there are
conditions on the equational theory and a suitable condition of executability that
would make the composition result hold without tagging for the active case. In
particular we do not have an individually-executable counterexample for the com-
mon equational theory Eenc given in Example 1. It would also be interesting to
consider the case where additional long term keys are shared. Broader directions
for future research include composition of other security properties, such as ob-
servational equivalence for processes that share secrets, and different composition
operators, e.g. sequential composition.

29

Acknowledgments. Our paper benefited from comments and discussions with Véronique
Cortier, Cédric Fournet and Bogdan Warinschi.

References

1. M. Abadi, M. Baudet, and B. Warinschi. Guessing attacks and the computational sound-
ness of static equivalence. In L. Aceto and A. Ingólfsdóttir, editors, Proc. 9th Interna-
tional Conference on Foundations of Software Science and Computation Structures (FoS-
SaCS’06), volume 3921 of Lecture Notes in Computer Science, pages 398–412. Springer,
Mar. 2006.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
H. R. Nielson, editor, Proc. 28th Symposium on Principles of Programming Languages
(POPL’01), pages 104–115. ACM Press, 2001.

3. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In
Proc. 4th Conference on Computer and Communications Security (CCS’97), pages 36–47.
ACM Press, 1997.

4. M. Abdalla, C. Chevalier, L. Granboulan, and D. Pointcheval. UC-secure group key ex-
change with password-based authentication in the standard model. In Proc. The Cryp-
tographers’ Track at the RSA Conference (CT-RSA’11), volume 6558 of Lecture Notes in
Computer Science, pages 142–160. Springer, 2011.

5. M. Abdalla, C. Chevalier, and D. Pointcheval. Smooth projective hashing for conditionally
extractable commitments. In Advances in Cryptology – CRYPTO’09, volume 5677 of
Lecture Notes in Computer Science, pages 671–689. Springer, 2009.

6. S. Andova, C. J. F. Cremers, K. Gjøsteen, S. Mauw, S. F. Mjølsnes, and S. Radomirovic.
A framework for compositional verification of security protocols. Inf. Comput., 206(2-
4):425–459, 2008.

7. M. Arapinis, S. Delaune, and S. Kremer. From one session to many: Dynamic tags for
security protocols. In Proc. 15th International Conference on Logic for Programming, Ar-
tificial Intelligence, and Reasoning (LPAR’08), volume 5330 of Lecture Notes in Artificial
Intelligence, pages 128–142. Springer, 2008.

8. M. Arapinis and M. Duflot. Bounding messages for free in security protocols. In Proc.
27th Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FST&TCS’07), volume 4855 of Lecture Notes in Computer Science, pages 376–387.
Springer, 2007.

9. A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.
Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb,
M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The Avispa tool
for the automated validation of internet security protocols and applications. In Proc.
17th International Conference on Computer Aided Verification (CAV’05), volume 3576
of Lecture Notes in Computer Science, pages 281–285, 2005.

10. B. Barak, Y. Lindell, and T. Rabin. Protocol initialization for the framework of universal
composability. Cryptology ePrint Archive, Report 2004/006, 2004. http://eprint.iacr.
org/.

11. M. Baudet. YAPA. http://www.lsv.ens-cachan.fr/~baudet/yapa/.
12. M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proc. 12th

ACM Conference on Computer and Communications Security (CCS’05), pages 16–25.
ACM Press, Nov. 2005.

13. M. Baudet. Sécurité des protocoles cryptographiques : aspects logiques et calculatoires.
Thèse de doctorat, Laboratoire Spécification et Vérification, ENS Cachan, France, Jan.
2007.

14. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In Proc. Symposium on Security and Privacy (SP’92), pages
72–84. IEEE Comp. Soc., 1992.

15. B. Blanchet. An Efficient Cryptographic Protocol Verifier based on Prolog Rules. In Proc.
14th Computer Security Foundations Workshop (CSFW’01), pages 82–96. IEEE Comp.
Soc., June 2001.

16. B. Blanchet. Automatic Proof of Strong Secrecy for Security Protocols. In Proc. Sympo-
sium on Security and Privacy (SP’04), pages 86–100. IEEE Comp. Soc., May 2004.

30

17. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces
termination. In Proc. Foundations of Software Science and Computation Structures (FoS-
SaCS’03), volume 2620 of Lecture Notes in Computer Science, pages 136–152. Springer,
2003.

18. X. Boyen, C. Chevalier, G. Fuchsbauer, and D. Pointcheval. Strong cryptography from
weak secrets: Building efficient PKE and IBE from distributed passwords in bilinear
groups. In Progress in Cryptology – AFRICACRYPT’10, volume 6055 of Lecture Notes
in Computer Science, pages 297–315. Springer, 2010.

19. V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated key
exchange using Diffie-Hellman. In Advances in Cryptology – EUROCRYPT’00, volume
1807 of Lecture Notes in Computer Science, pages 156–171. Springer, 2000.

20. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proc. 42nd Annual Symposium on Foundations of Computer Science (FOCS’01), pages
136–145. IEEE Comp. Soc., 2001.

21. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally composable
password-based key exchange. In Advances in Cryptology – EUROCRYPT’05, volume
3494 of Lecture Notes in Computer Science, pages 404–421. Springer, 2005.

22. E. Cohen. Proving cryptographic protocols safe from guessing attacks. In Proc. Founda-
tions of Computer Security (FCS’02), 2002.

23. R. Corin, J. Doumen, and S. Etalle. Analysing password protocol security against off-line
dictionary attacks. ENTCS, 121:47–63, 2005.

24. R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? Here is a new tool that
finds some new guessing attacks. In Proc. of the Workshop on Issues in the Theory of
Security (WITS’03), 2003.

25. V. Cortier, J. Delaitre, and S. Delaune. Safely composing security protocols. In V. Arvind
and S. Prasad, editors, Proc. 27th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’07), Lecture Notes in Computer Science.
Springer, Dec. 2007.

26. V. Cortier and S. Delaune. Safely composing security protocols. Formal Methods in
System Design, 34(1):1–36, Feb. 2009.

27. A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A derivation system and compositional
logic for security protocols. Journal of Computer Security, 13(3):423–482, 2005.

28. S. Delaune and F. Jacquemard. Decision procedures for the security of protocols with
probabilistic encryption against offline dictionary attacks. Journal of Automated Reason-
ing, 36(1-2):85–124, Jan. 2006.

29. J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption. In
Proc. 13th Computer Security Foundations Workshop (CSFW’00), pages 24–34. IEEE
Comp. Soc., 2000.

30. F. Hao and P. Y. A. Ryan. Password authenticated key exchange by juggling. In Proc. 16th
International Security Protocols Workshop, volume 6615 of Lecture Notes in Computer
Science, pages 159–171. Springer, 2008.

31. F. Hao and P. Y. A. Ryan. How to sync with alice. In 19th International Security Protocols
Workshop, volume 7114 of Lecture Notes in Computer Science, pages 170–178. Springer,
2011.

32. D. Jablon. Strong password-only authenticated key exchange. Computer Communication
Review, 26(5):5–26, 1996.

33. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using
human-memorable passwords. In Advances in Cryptology – EUROCRYPT’01, volume
2045 of Lecture Notes in Computer Science, pages 475–494. Springer, 2001.

34. G. Lowe. Analysing protocols subject to guessing attacks. Journal of Computer Security,
12(1):83–98, 2004.

35. S. Malladi, J. Alves-Foss, and S. Malladi. What are multi-protocol guessing attacks and
how to prevent them. In Proc. 11th International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 2002), pages 77–82. IEEE Comp.
Soc., 2002.

36. S. Patel. Number theoretic attacks on secure password schemes. In Proc. IEEE Symposium
on Security and Privacy (S&P’97), pages 236–247. IEEE Computer Society, 1997.

37. R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols. Jour-
nal of Computer Security, 13(1):135–165, 2005.

38. Trusted Computing Group. TPM Specification version 1.2. Parts 1–3, revision 103. http:
//www.trustedcomputinggroup.org/resources/tpm_main_specification, 2007.

31

A Disjoint case

To establish this proposition, we first prove some lemmas about deduction and static equiva-
lence.

Lemma 9 Let φ ≡ νñ.σ be a frame, t be a ground term that is not deducible from φ, M be a
ground term deducible from φ, y be a variable not in dom(φ), and m be a name not in bn(φ).
Then, we have that t is neither deducible from νm.φ, nor from νñ.(σ | {M/y}).

Proof We prove the two points separately.

We have that t is not deducible from the frame νm.φ. We prove this result by contradiction.
Assume that it is not the case. This means that there exists U such that fn(U) ∩ ñ = ∅,
m 6∈ fn(U), and Uσ =E t. We easily deduce that U is also a recipe for t w.r.t. the frame φ,
contradiction.

We have that t is not deducible from the frame νñ.(σ | {M/y}). Let ζ be a recipe of M ,
i.e. a term such that fn(ζ) ∩ ñ = ∅, w 6∈ fn(ζ), and ζσ =E M . We now prove the result by
contradiction. Assume that t is deducible from the frame νñ.(σ | {M/y}). This means that
there exists U such that fn(U) ∩ ñ = ∅, and U(σ | {M/y}) =E t. Let U ′ = U{ζ/y}. We have
that fn(U ′) ∩ ñ = ∅, and U ′σ = (U{ζ/y})σ =E (U{M/y})σ = U(σ | {M/y}) =E t. Thus, t is
deducible from νñ.σ using the recipe U ′, contradiction. ut

Lemma 10 Let φ ≡ νw.νñ.σ be a frame resistant to guessing attacks against w, M be a
ground term deducible from φ, y be a variable not in dom(φ), and m be a name not in bn(φ).
Then we have that the frames νm.φ and νw.νñ.(σ | {M/y}) are resistant to guessing attacks
against w.

Proof We prove the two points separately.

The frame νm.φ is resistant to guessing attacks against w. We prove this result by contradic-
tion. Assume that it is not the case. This means that

νw.νm.νñ.(σ | {w/x}) 6≈ νw′.νw.νm.νñ.(σ | {w
′
/x})

where w′ is a fresh name, and x a variable that does not occur in dom(σ). By definition of ≈,
this means that there exist M and N such that (fn(M) ∪ fn(N)) ∩ ñ = ∅, and w,w′,m 6∈
fn(M) ∪ fn(N) with (M{w/x} =E N{w/x})σ and (M{w′

/x} 6=E N{w
′
/x})σ (or conversely).

Actually, the same test (M,N) can be used to show that φ is not resistant to guessing attacks
against w.

The frame νw.νñ.(σ | {M/y}) is resistant to guessing attacks against w. Let ζ be a recipe
of M , i.e. a term such that fn(ζ)∩ ñ = ∅, w 6∈ fn(ζ), fv(ζ) ⊆ dom(σ), and ζσ =E M . Moreover,
we assume that w′ 6∈ fn(ζ). By hypothesis, we have that νw.νñ.(σ | {w/x}) ≈ νw′.νw.νñ.(σ |
{w′

/x}) where w′ is a fresh name and x a variable that does not occur in dom(σ). Our goal is
to show that:

νw.νñ.(σ | {M/y} | {w/x}) ≈ νw′.νw.νñ.(σ | {M/y} | {w
′
/x}).

Let U, V be two terms such that (fn(U) ∪ fn(V)) ∩ ñ = ∅, w,w′ 6∈ (fn(U) ∪ fn(V)), and
(U =E V)(σ | {M/y} | {w/x}). Let U ′ = U{ζ/y} and V ′ = V {ζ/y}. First, we have that
(fn(U ′) ∪ fn(V ′)) ∩ ñ = ∅ and w,w′ 6∈ (fn(U ′) ∪ fn(V ′)). Moreover, we have that:

– U(σ | {M/y} | {w/x}) =E U
′(σ | {w/x}), and

– V (σ | {M/y} | {w/x}) =E V
′(σ | {w/x}).

Thanks to our hypothesis, we deduce that (U ′ =E V
′)(σ | {w′

/x}) and (U{ζ/y} =E V {ζ/y})(σ |
{w′

/x}), i.e. (U =E V)(σ | {M/y} | {w
′
/x}. The other direction can be shown in a similar

way. ut

32

Proposition 1 Let A1, . . . , Ak be k extended processes such that A
def
= A1 | . . . | Ak is

also an extended process, and wi ∈ bn(Ai) for each i ∈ {1, . . . , k}.

1. Let t be a ground term that occurs as a subterm in Ai for some i ∈ {1, . . . , k}. If Ai
preserves secrecy of t, then A preserves secrecy of t.

2. Let Φ = ev(x̃) ⇒(inj) ev
′(x̃) be a correspondence property (injective or not). If Φ

holds on each Ai, then Φ holds on A.

3. If each Ai is resistant to guessing attack against wi, then A is resistant to guessing

attack against w1, . . . , wk.

Proof We prove this composition result by contradiction. Assume that the process A admits
an attack. Let Ai ≡ νwi.νñi.Pi for each ∈ {1, . . . , k}, w̃ = w1, . . . , wk, and ñ = ñ1, . . . ñk. By
definition of an attack, we have that there exists a trace:

A
def
= A1 | . . . | Ak

`1−→ B1 . . .
`n−−→ Bn

with Bn = νw̃.νñ.(P ′1 | σ1 | . . . | P ′k | σk). Intuitively, the active substitutions in σi comes
from Ai and P ′i is the remaining part of Pi. In addition, depending on the security property
under study, we have that:

1. (secrecy) We know that φ(Bn) `E t for some t that occurs as a subterm of Ai0 with
i0 ∈ {1, . . . , k}. Actually, since A→∗ Bn, we have also that Ai0 →∗ νwi0 .νñi0 .(P ′i0 | σi0).

Moreover, by hypothesis, we know that νwi0 .νñi0 .σi0 6`E t. Relying on Lemma 9, we
deduce that t is not deducible from νw̃.νñ.(σ1 | . . . | σk), i.e. φ(Bn) 6`E t, contradiction.

2. (correspondence property) there exists j0 and a substitution σ such that `j0 =E ev(x̃σ)
and `j 6=E ev

′(x̃σ) for any j ≤ j0. Let i0 ∈ {1, . . . , k} be such that the action `j0 has been
performed by Ai0 . Actually, since A →∗ Bn through the labels `1, . . . , `n, we have also
that Ai0 →∗ νwi0 .νñi0 .(P ′i0 | σi0) using the labels `j1 , . . . , `jp a subword of `1, . . . , `n
(i.e. the sequence `1, . . . , `n can be obtained from `j1 , . . . , `jp by inserting some element
in it). Moreover, we have that `j0 occurs in `j1 , . . . , `jp . From this, it is now quite easy to
see that Φ does not hold on Ai, contradiction.
We consider now the case of an injective correspondance property. We know that there
exist j0 and σ such that:

#{j | ev(x1σ, . . . , xkσ) = `j with j ≤ j0} > #{j | ev′(x1σ, . . . , xkσ) = `j with j ≤ j0}.

In particular, this means that there exists i0 ∈ {1, . . . , k} such that:

#{j | ev(x1σ, . . . , xkσ) = `j with j ≤ j0 and `j is an action performed by Ai0}
> #{j | ev′(x1σ, . . . , xkσ) = `j with j ≤ j0 and `j is an action performed by Ai0}.

As before, we have that Ai0 →∗ νwi0 .νñi0 .(P ′i0 | σi0) using the labels `j1 , . . . , `jp (these

labels correspond to the actions that are performed by Ai0 in the sequence `1, . . . , `n).
Using the relation given above, it is quite easy to see that Φ does not hold on Ai0 . This
allows us to conclude.

3. (guessing attack) the frame φ(Bn) is not resistant to guessing attacks against w̃. Actually,
since A→∗ Bn, we have also that Ai →∗ νwi.νñi.(P ′i | σi) for each i ∈ {1, . . . , k}. More-
over, by hypothesis, we know that νwi.νñi.σi is resistant to guessing attacks against wi.
Relying on Lemma 10, we obtain the following equivalences:

νw1.νñ.(σ1 | . . . | σk) ≈ νñ.(σ1 | . . . | σk)
νw2.νñ.(σ1 | . . . | σk) ≈ νñ.(σ1 | . . . | σk)

...
νwk.νñ.(σ1 | . . . | σk) ≈ νñ.(σ1 | . . . | σk)

33

Applying Lemma 1 (item 1), we deduce that:

νw1.νñ.(σ1 | . . . | σk) ≈ νñ.(σ1 | . . . | σk)
νw1.νw2.νñ.(σ1 | . . . | σk) ≈ νw1.νñ.(σ1 | . . . | σk)

...
νw1.νwk.νñ.(σ1 | . . . | σk) ≈ νw1.νwk−1.νñ.(σ1 | . . . | σk)

By transitivity of ≈, we deduce that νw̃.νñ.(σ1 | . . . | σk) ≈ νñ.(σ1 | . . . | σk). This
means that φ(Bn) is not resistant to guessing attacks against w̃, contradiction. ut

B Transformation

The goal of this section is to prove Theorem 1.

B.1 Proof of Lemma 5

Before to prove Lemma 5, we introduce the following cutting function.

Definition 12 Given a frame φ, a term U = h(U1, U2) and a name a, the cutting function cut
w.r.t. φ,U and a is defined recursively as cutφ(u) = u when u is a name or a variable and:

cutφ(f(T1, . . . , Tk)) =

{
a if f = h, k = 2, (U1 =E T1)φ and (U2 =E T2)φ
f(cutφ(T1), . . . , cutφ(Tk)) otherwise

When dom(φ) = ∅, we denote it at cut0. In this case, the function cut0 is a replacement
modulo E as defined in [13]. Hence, we have the following lemma.

Lemma 11 Let U = h(U1, U2) be a term and a be a name. We have that:

M =E N ⇒ cut0(M) =E cut0(N) for any term M and N .

Lemma 12 Let φ =α νñ.σ be a frame. Let w,w and c be three names such that w, c 6∈ ñ and
w is a fresh name. Let cut be the cutting function w.r.t. φ{h(c,w)/w}, h(c, w), w and cut0 be
the cutting function w.r.t. h(c, w) and w. Let M be a term such that fn(M)∩ ñ = ∅. We have
that

cut0(M(σ{h(c,w)/w})) = cut(M)σ.

Proof We prove this result by structural induction on M . If M is a name or a variable such
that M 6∈ dom(φ), we have that

cut0(M(σ{h(c,w)/w})) = cut(M)σ = M.

Now, assume that M is a variable, say x, such that x ∈ dom(φ). Let T = xσ. Note that w
does not occur in T since w is fresh w.r.t. σ. Hence, we have that2:

cut0(M(σ{h(c,w)/w})) = cut0(T{h(c,w)/w}) = T = xσ = cut(M)σ.

Now, we deal with the induction step: M = f(M1, . . . ,Mk). We distinguish two cases:

1. f = h, k = 2, (M1 =E c)(φ{h(c,w)/w}) and (M2 =E w)(φ{h(c,w)/w}). In such a case,

we have that cut(M)σ = w. Moreover, we have also that M1σ{h(c,w)/w} =E c and

M2σ{h(c,w)/w} =E w. Hence, we have that

cut0(M(σ{h(c,w)/w})) = cut0(h(M1(σ{h(c,w)/w}),M2(σ{h(c,w)/w}))) = w.

2 The second step can be easily shown by structural induction on T .

34

2. Otherwise, we have that cut(f(M1, . . . ,Mk)) = f(cut(M1), . . . , cut(Mk)). Hence, we have

that cut0(M(σ{h(c,w)/w})) = f(cut0(M1(σ{h(c,w)/w})), . . . , cut0(Mk(σ{h(c,w)/w}))). In-

deed, otherwise we will have that f = h, (M1 =E c)(φ{h(c,w)/w}) and also that (M2 =E

w)(φ{h(c,w)/w}). This situation corresponds to our first case. Hence, we have that

cut0(M(σ{h(c,w)/w}))
= f(cut0(M1(σ{h(c,w)/w})), . . . , cut0(Mk(σ{h(c,w)/w})))
= f(cut(M1)σ, . . . , cut(Mk)σ) by induction hypothesis

= f(cut(M1), . . . , cut(Mk))σ

= cut(M)σ

This allows us to conclude the proof. ut

Lemma 5 Let φ1 and φ2 be two frames such that φ1 ≈ φ2. Let w, c be such that

w, c 6∈ bn(φ1) ∪ bn(φ2). We have that

φ1{h(c,w)/w} ≈ φ2{h(c,w)/w}.

Proof We will show that φ1{h(c,w)/w} ≈ φ2{h(c,w)/w} for some fresh names w. This will allow

us to conclude that φ1{h(c,w/w} ≈ φ2{h(c,w)/w} by simply renaming w with w. For this we

have to show that for all terms M and N , we have that: (M =E N)φ1{h(c,w)/w} ⇒ (M =E

N)φ2{h(c,w)/w} (and conversely). Actually, the 2nd implication can be proved in a similar
way, so we will focuss on the first one.

Actually, it is sufficient to establish this result for all terms M andN such that w 6∈ fn(M)∪
fn(N) since w does not occur in φ1{h(c,w)/w} and φ2{h(c,w)/w}. Let σ1 and σ2 be two substi-
tutions such that φ1 =α νñ1.σ1 and φ2 =α νñ2.σ2 for some sequences of names ñ1 and ñ2 such
that (fn(M)∪ fn(N))∩ (ñ1 ∪ ñ2) = ∅. Moreover, we can assume that w,w, c 6∈ ñ1 ∪ ñ2. Hence,

we have that φ1{h(c,w)/w} =α νñ1.σ1{h(c,w)/w}, and φ2{h(c,w)/w} =α νñ2.σ2{h(c,w)/w}.

Let cut be the cutting function w.r.t. φ1{h(c,w)/w}, h(c, w) and w, and cut0 be the cutting
function w.r.t. h(c, w) and w. We show by induction on max(|M |, |N |)3 that

1. (cut(M)σ2){h(c,w)/w} =E M(σ2{h(c,w)/w}), and
2. (M =E N)(φ1{h(c,w)/w})⇒ (M =E N)(φ2{h(c,w)/w}).

Base case: max(|M |, |N |) = 1

1. If M is a name (note that M 6= w) or a variable such that M 6∈ dom(φ2), we have that

(cut(M)σ2){h(c,w)/w} = M and M(σ2{h(c,w)/w}) = M . If M is a variable, say x, such
that x ∈ dom(φ2), then we have that

(cut(M)σ2){h(c,w)/w} = (xσ2){h(c,w)/w} = x(σ2{h(c,w)/w}) = M(σ2{h(c,w)/w}).

2. The second point can be proved as follows:

(M =E N)(φ1{h(c,w)/w})
⇒ M(σ1{h(c,w)/w}) =E N(σ1{h(c,w)/w})
⇒ cut0(M(σ1{h(c,w)/w})) =E cut0(N(σ1{h(c,w)/w})) by Lemma 11

⇒ cut(M)σ1 =E cut(N)σ1 by Lemma 12

⇒ (cut(M) =E cut(N))φ1
⇒ (cut(M) =E cut(N))φ2 since φ1 ≈ φ2
⇒ cut(M)σ2 =E cut(N)σ2

⇒ (cut(M)σ2){h(c,w)/w} =E (cut(N)σ2){h(c,w)/w}

3 The size |M | of a term M is defined by |u| = 1 when u is a name or a variable and

|f(M1, . . . ,Mk)| = 1 +
∑k
i=1 |Mi|.

35

The last step comes from the fact that =E is closed by substitutions of terms for names.
Since, |M | = |N | = 1, we can apply our previous result to obtain that:

(cut(M)σ2){h(c,w)/w} =E M(σ2{h(c,w)/w}), (cut(N)σ2){h(c,w)/w} =E N(σ2{h(c,w)/w}).
We have that M(σ2{h(c,w)/w}) =E N(σ2{h(c,w)/w}), thus (M =E N)(φ2{h(c,w)/w}).

Induction step: max(|M |, |N |) ≥ 2. We assume w.l.o.g. that |M | ≥ |N |, soM = f(M1, . . . ,Mk).

1. To establish the first point, we distinguish two cases:
– f = h, k = 2, (M1 =E c)(φ1{h(c,w)/w}) and (M2 =E w)(φ1{h(c,w)/w}). In such a case,

we have that cut(M) = w, thus (cut(M)σ2){h(c,w)/w} = h(c, w). Since |M1| + |c| <
|M |+ |N | and |M2|+ |w| < |M |+ |N |, we have that

(M1 =E c)(φ2{h(c,w)/w}) and (M2 =E w)(φ2{h(c,w)/w})

Hence, we have that

M(σ2{h(c,w)/w}) = h(M1(σ2{h(c,w)/w}),M2(σ2{h(c,w)/w})) =E h(c, w)

– Otherwise, we have that cut(M) = f(cut(M1), . . . , cut(Mk)). Thus,

(cut(M)σ2){h(c,w)/w}
= (f(cut(M1), . . . , cut(Mk))σ2){h(c,w)/w}
= f((cut(M1)σ2){h(c,w)/w}, . . . , (cut(Mk)σ2){h(c,w)/w})
=E f(M1(σ2{h(c,w)/w}), . . . ,Mk(σ2{h(c,w)/w})) by induction hypothesis

= f(M1, . . . ,Mk)(σ2{h(c,w)/w})
= M(σ2{h(c,w)/w})

2. To prove the second point, it is easy to establish (as in the base case) that

(M =E N)(φ1{h(c,w)/w})⇒ (cut(M)σ2){h(c,w)/w} =E (cut(N)σ2){h(c,w)/w}

Thanks to our previous result, we have that (cut(M)σ2){h(c,w)/w} =E M(σ2{h(c,w)/w}),
and (cut(N)σ2){h(c,w)/w} =E N(σ2{h(c,w)/w}). We conclude that M(σ2{h(c,w)/w}) =E

N(σ2{h(c,w)/w}), and thus (M =E N)(φ2{h(c,w)/w}).
This allows us to conclude the proof. ut

B.2 Proof of Proposition 3

The two following lemmas will be useful to deal with the cases of an input (Lemma 3) and a
conditional (Lemma 4) in the proof of Proposition 3.

Lemma 3 Let φ be a frame such that c, w 6∈ bn(φ) and φ′{h(c,w)/w} =E φ for some φ′.
If νw.φ `E M then there exists M ′ such that M ′{h(c,w)/w} =E M and νw.φ′ `E M ′.

Proof Let φ = νñ.σ and φ′ = νñ.σ′ for some sequence of names ñ and some substitutions σ
and σ′. We have that σ′{h(c,w)/w} =E σ. Let M be such that νw.φ `E M , i.e. there exists ζ
such that fn(ζ) ∩ (ñ ∪ {w}) = ∅ and ζσ =E M . Let M ′ = ζσ′. We have that νw.φ′ `E M ′ and

also that M ′{h(c,w)/w} = (ζσ′){h(c,w)/w} = ζ(σ′{h(c,w)/w}) =E ζσ =E M. ut

Lemma 4 Let M , N , M ′ and N ′ be four terms such that M =E M
′{h(c,w)/w} and

N =E N
′{h(c,w)/w}. Then, we have that

M =E N if, and only if, M ′ =E N
′

36

Proof As =E is closed by substitutions of terms for names M ′ =E N
′ implies M =E N . Now,

let M and N be two terms such that M =E N . We have that M ′{h(c,w)/w} =E N
′{h(c,w)/w}.

Thus, according to Lemma 11, we have that

cut0(M ′{h(c,w)/w}) =E cut0(N ′{h(c,w)/w})

where cut0 represents the cutting function w.r.t. h(c, w) and w. Now, it is easy to establish,

by structural induction on M ′ that cut0(M ′{h(c,w)/w}) = M ′. This allows us to conclude. ut

We will prove Proposition 3 by induction on the prooftree witnessing the derivation. First,
we establish a similar result for ≡.

Lemma 13 Let A be a process such that w 6∈ bn(A) and A′{h(c,w)/w} =E A for some A′.
Suppose that A ≡ B for some process B. Then w 6∈ bn(B) and there exists a process B′ such

that B′{h(c,w)/w} =E B and A′ ≡ B′.

Proof We prove this result by induction on the proof tree showing that A ≡ B. All the base
cases are easy to prove. The only interesting inductive case is the case of an application of an
evaluation context. Suppose that the proof tree showing that A ≡ B ends with an instance of
such a rule, i.e.

A1 ≡ B1

C[A1] ≡ C[B1]

where A = C[A1] and B = C[B1]. By hypothesis, we know that there exists A′ such that

A′{h(c,w)/w} =E C[A1]. Hence we have that A′ = C′[A′1] where C′{h(c,w)/w} =E C and

A′1{h(c,w)/w} =E A1 for some evaluation context C′ and some process A′1. Hence we can
apply our induction hypothesis and we obtain that w 6∈ bn(B1) and there exists B′1 such that

B′1{h(c,w)/w} =E B1, and A′1 ≡ B′1. We have that w 6∈ bn(C[B1]). Let B′ = C′[B′1]. We have

that (C′[B′1]){h(c,w)/w} =E C[B1] = B and A′ ≡ B′. ut

Now, we can prove the following proposition.

Proposition 3 Let A be a process with c, w 6∈ bn(A) and A′{h(c,w)/w} =E A for some A′.

If νw.A
`−→ B, then B ≡ νw.B and there exists a process B′ and a label `′ such that

B′{h(c,w)/w} =E B, `′{h(c,w)/w} =E `, and νw.A′
`′−→ νw.B′.

Proof We have that νw.A
`−→ B and it is easy to see that w ∈ bn(B). According to our calculus,

we can always by using structural equivalence move a restriction in front of the process, thus

we have that B ≡ νw.B for some process B. It is easy to see that A
`−→ B and when ` = in(M),

we have that νw.φ(A) `E M . As νw.φ(A) `E M , by Lemma 3, we have that νw.φ(A′) `E M ′
for some M ′ such that M ′{h(c,w)/w} =E M . This allows us to ensure that, in the case of an
input, the side condition corresponding to an application of evaluation context is satisfied.
Now, we show that there exists B′ and `′ such that B′{h(c,w)/w} =E B, `′{h(c,w)/w} =E `,

and A′ → B′ by induction on the proof tree showing that A
`−→ B. This will allows us to

conclude that νw.A′
`′−→ νw.B′.

Base cases.

– In. In such a case, A = in(x).P , B = P{M/x}. We have that A′ = in(x).P ′ and

P ′{h(c,w)/w} =E P . Let B′ = P ′{M′
/x} and `′ = in(M ′). We have that `′{h(c,w)/w} =E `,

B′{h(c,w)/w} = (P ′{M′
/x}){h(c,w)/w} =E P{M/x} = B, and A′

`′−→ B′.
– Out. We suppose that A = out(M).P and B = P | {M/x}. We have that A′ = out(M ′).P ′

where P ′{h(c,w)/w} =E P and M ′{h(c,w)/w} =E M . Let B′ = P ′ | {M′
/x} and `′ =

out(M ′). We have `′{h(c,w)/w} =E `, B
′{h(c,w)/w} = (P ′ | {M′

/x}){h(c,w)/w} =E B, and

A′
`′−→ B′.

37

– Event. We suppose that A = ev(M̃).P and B = P . We have that A′ = ev(M̃ ′).P ′ where

P ′{h(c,w)/w} =E P and M̃ ′{h(c,w)/w} =E M . Let B′ = P ′ and `′ = ev(M̃ ′). We have

`′{h(c,w)/w} =E `, B
′{h(c,w)/w} = P ′{h(c,w)/w} =E B, and A′

`′−→ B′.
– Then. We suppose that A = “if M1 = M2 then P else Q” and B = P . By definition

of =E we have that A′ = “if M ′1 = M ′2 then P ′ else Q′” where P ′{h(c,w)/w} =E P ,

Q′{h(c,w)/w} =E Q and M ′i{h(c,w)/w} =E Mi (i = 1, 2). Let B′ = P ′ and `′ = τ .
As M1 =E M2, by Lemma 4 we have that M ′1 =E M ′2. Hence, we indeed have that

`′{h(c,w)/w} =E `, B
′{h(c,w)/w} = P ′{h(c,w)/w} =E P = B, and A′ → B′.

– Else. This case is similar to the previous one.

Inductive cases. The inductive case corresponding to an application of structural equivalence
directly follows from Lemma 13. Hence, it remains to show the case of an application of an

evaluation context. Suppose that the proof A
`−→ B finishes by an application of the following

rule

A1
`−→ B1

C[A1]
`−→ C[B1]

where A = C[A1] and B = C[B1]. By hypothesis, we know that there exists A′ such that

A′{h(c,w)/w} =E A. By definition of =E we have that A′ = C′[A′1] where C′{h(c,w)/w} =E C

and A′1{h(c,w)/w} =E A1 for some evaluation context C′ and some process A′1. Hence we can

apply our induction hypothesis to obtain that there exist B′1 and `′ such that `′{h(c,w)/w} =E `,

B′1{h(c,w)/w} =E B1, and A′1
`′−→ B′1. Let B′ = C′[B′1]. We have that B′{h(c,w)/w} =

(C′[B′1]){h(c,w)/w} =E B, and A′
`′−→ B′. This last result is obtained by application of the

evaluation context C′ on A′1
`′−→ B′1. ut

C Composition

In this section we will use the following notations. Given terms t1, . . . , tk and distinct names
c1, . . . , ck, w1, . . . , wk, and w that do not occur in t1, . . . , tk, we denote by δwi,w the replace-
ment {w/w1} . . . {w/wk}, by δci,ti the replacement {t1/c1} . . . {tk/ck}, and by δwi,h(ci,wi)

the

replacement {h(c1,w1)/w1} . . . {h(ck,wk)/wk}

C.1 Proof of Lemma 8

Before proving Lemma 8, we introduce the following splitting functions.

Definition 13 Let ψ = νñ.σ be a frame such that w 6∈ ñ. Let t1, . . . , tk be distinct ground
terms modulo E. Let c1, . . . , ck, w1, . . . , wk be distinct fresh names.

Splitting function. Let M be a term such that fn(M) ∩ ñ = ∅. The splitting function splitψ
w.r.t. ψ, w, c1, . . . , ck, w1, . . . , wk, t1, . . . , tk is defined recursively as splitψ(M) = M when M
is a name or a variable and splitψ(f(M1, . . . ,M`)) is equal to:

– h(ci, wi) if f = h, ` = 2, M1σ =E ti and M2σ =E w with 1 ≤ i ≤ k;
– f(splitψ(M1), . . . , splitψ(M`)) otherwise.

Ground splitting function. Let M be a term. The ground splitting function split0 w.r.t. w,

c1, . . . , ck, w1, . . . , wk, t1, . . . , tk is defined recursively as split0(M) = M when M is a name or
a variable and split0(f(M1, . . . ,M`)) is equal to:

– h(ci, wi) if f = h, ` = 2, M1 =E ti and M2 =E w with 1 ≤ i ≤ k;
– f(split0(M1), . . . , split0(M`)) otherwise.

As soon as t1, . . . , tk are distinct terms modulo E, the function split0 is a replacement
modulo E as defined in [13]. Hence, we have the following lemma.

38

Lemma 14 Let split0 be a ground splitting function as defined in Definition 13. Let M and N
be two terms. We have that:

M =E N ⇒ split0(M) =E split0(N)

Lemma 15 Let t1, . . . , tk be distinct ground terms modulo E and c1, . . . , ck, w1, . . . , wk be
distinct fresh names, i.e., not occurring in fn(t1, . . . , tk). Let φ = νñ.σ be a frame such
that c1, . . . , ck, w1, . . . , wk, w 6∈ ñ, w 6∈ fn(σ), and σ =E σ0δwi,h(ci,wi)

for some substitu-
tion σ0. Let splitψ (resp. split0) be the splitting function (resp. ground splitting function)
w.r.t. ψ = νñ.(σδci,tiδwi,w), w, c1, . . . , ck, w1, . . . , wk, t1, . . . , tk. Let M be a term such that
fn(M) ∩ ñ = ∅. We have that:

split0(M(σδci,tiδwi,w)) =E splitψ(M)σ.

Proof We prove this result by structural induction on M . If M is a name or a variable such that
M 6∈ dom(ψ) = dom(σ), the result trivially holds. Now, assume that M is a variable, say x,

such that x ∈ dom(ψ) and let T = xσ. We have that T =E T
′{h(c1,w1)/w1} . . . {h(ck,wk)/wk}

for some T ′, and w does not occur in T . Hence, we have that:

split0(xψ) = split0(x(σδci,tiδwi,w))
=E split0(Tδci,tiδwi,w)
=E T
= splitψ(x)σ

Now, we can deal with the induction step, i.e. M = f(M1, . . . ,M`). We distinguish two
cases:

1. f = h, ` = 2, M1(σδci,tiδwi,w) =E ti0 , and M2(σδci,tiδwi,w) =E w with 1 ≤ i0 ≤ k. In
such a case, we have that splitψ(M) = h(ci0 , wi0), and

M(σδci,tiδwi,w) = h(M1(σδci,tiδwi,w),M2(σδci,tiδwi,w)) =E h(ti0 , w)

Hence, we have that

split0(M(σδci,tiδwi,w)) =E split0(h(ti0 , w))
=E h(ci0 , wi0)
= splitψ(M)σ

2. Otherwise, we have that splitψ(f(M1, . . . ,M`)) = f(splitψ(M1), . . . , splitψ(M`)), and thus
we have also that:

split0(M(σδci,tiδwi,w)) = f(split0(M1(σδci,tiδwi,w)), . . . , split0(M1(σδci,tiδwi,w))).

Hence, relying on our induction hypothesis, we have that:

split0(M(σδci,tiδwi,w)) =E f(splitψ(M1)σ, . . . , splitψ(M`)σ)
= splitψ(M)σ

This allows us to conclude.

Lemma 8 Let t1, . . . , tk be distinct ground terms modulo E. Let c1, . . . , ck, w1, . . . , wk
be distinct fresh names, and φ = νñ.σ be a frame such that c1, . . . , ck, w1, . . . , wk 6∈ ñ,

and σ =E σ0δwi,h(ci,wi) for some substitution σ0. Let w be a fresh name, and ψ =
νñ.(σδci,tiδwi,w). For each 1 ≤ i ≤ k, we also assume that νw.ψ `E ti.

If νw̃.φ is resistant to guessing attacks against w̃ = {w1, . . . , wk}, then νw.ψ is

resistant to guessing attacks against w.

Proof To prove this, we have to establish that ψ ≈ ψ{w′
/w} where w′ is a fresh name. Hence,

we have to show that for all terms M and N such that fn(M,N) ∩ ñ = ∅, we have that:

39

1. (M =E N)ψ ⇒ (M =E N)(ψ{w′
/w}); and

2. (M =E N)(ψ{w′
/w})⇒ (M =E N)ψ4.

Actually, it is sufficient to establish this result for all terms M and N such that c1, . . . , ck,
w1, . . . , wk do not occur in M and N . This comes from the fact that these names do not occur

in ψ and ψ{w′
/w}. Moreover, we can assume w.l.o.g. that ñ ∩ (fn(M) ∪ fn(N)) = ∅. Lastly,

we will consider the first item (the other one can be proved in a similar way) and thus we can
assume that w′ 6∈ (fn(M) ∪ fn(N)).

Let splitψ (resp. split0) be the splitting function (resp. ground splitting function) w.r.t.

ψ = νñ.(σδci,tiδwi,w), w, c1, . . . , ck, w1, . . . , wk, t1, . . . , tk. Let w′1, . . . , w
′
k be distinct fresh

names (we assume w.l.o.g. that they do not occur in M and N). We denote by #wM the
number of occurrences of w in M , and by #M the size of M5. We denote by |M | the measure
(#wM,#M) and we use the lexicographic ordering. We show by induction on max(|M |, |N |)
that:

1. [splitψ(M)(σδwi,w
′
i
)]δwi,wδci,t′i

δw′
i,w

′ =E M(σδci,t′i
δwi,w′)

2. (M =E N)ψ ⇒ (M =E N)(ψ{w′
/w})

where

– δwi,w
′
i

= {w′
1/w1} . . . {w

′
k/wk};

– t′i = ti{w
′
/w} for 1 ≤ i ≤ k, and δci,t′i

= {t′1/c1} . . . {t
′
k/ck};

– δwi,w′ = {w′
/w1} . . . {w

′
/wk}; and

– δw′
i,w

′ = {w′
/w′

1
} . . . {w′

/w′
k
}.

Base case: max(|M |, |N |) ≤ (1, 1). This means that M (resp. N) do not contain any occurrence
of w, or M (resp. N) is equal to w.

1. In both cases, we have that splitψ(M) = M . This comes from the fact that w is not
deducible from νw.ψ since all the occurrences of w are under an h. Hence, we have that:

[splitψ(M)(σδwi,w
′
i
)]δwi,wδci,t′i

δw′
i,w

′

=E M(σδwi,w
′
i
δci,t′i

δw′
i,w

′) since wi, ci, w
′
i 6∈ fn(M)

=E M(σδci,t′i
δwi,w′) since w′i 6∈ fn(σ)

2. The second point can be proved as follows:

(M =E N)ψ
⇒ M(σδci,tiδwi,w) =E N(σδci,tiδwi,w) by def. of ψ
⇒ split0(M(σδci,tiδwi,w)) =E split0(N(σδci,tiδwi,w)) Lemma 14
⇒ splitψ(M)σ =E splitψ(N)σ Lemma 15
⇒ (splitψ(M) =E splitψ(N))φ

since (fn(splitψ(N)) ∪ fn(splitψ(M))) ∩ ñ = ∅
⇒ (splitψ(M) =E splitψ(N))(φδwi,w

′
i
) since φ ≈ φδwi,w

′
i

⇒ splitψ(M)(σδwi,w
′
i
) =E splitψ(N)(σδwi,w

′
i
)

⇒ splitψ(M)(σδwi,w
′
i
)δwi,wδci,t′i

δw′
i,w

′

=E splitψ(N)(σδwi,w
′
i
)δwi,wδci,t′i

δw′
i,w

′

⇒ M(σδci,t′i
δwi,w′) =E N(σδci,t′i

δwi,w′) item 1 (base case)

⇒ (M =E N)(ψ{w′
/w})

Induction step: max(|M |, |N |) ≥ (1, 2). We assume w.l.o.g. that |M | ≥ |N |, thus M =
f(M1, . . . ,M`). As for each 1 ≤ i ≤ k we have that νw.ψ ` ti there exist ζi such that
fn(ζi) ∩ ({c1, . . . , ck, w1, . . . , wk, w} ∪ ñ) = ∅ and ζi(σδci,tiδwi,w) =E ti.

1. To establish the first point, we distinguish two cases.

4 The notation Mψ simply means Mσ where σ is the substitution involved in the frame, i.e.
ψ = νñ.σ.

5 The size #M of a term M is defined by #M = 1 when M is a name or a variable and

#f(M1, . . . ,M`) = 1 +
∑`
i=1 #Mi.

40

– f = h, ` = 2, (M1 =E ζi0)ψ, and (M2 =E w)ψ for some i0 ∈ {1, . . . , k}. Applying our in-

duction hypothesis, we deduce that (M1 =E ζi0)(ψ{w′
/w}) and (M2 =E w)(ψ{w′

/w}).
Note that #wζi0 = 0 and #wM2 ≥ 1 (it is not possible to deduce w without using
it explicitly). Hence, we can indeed apply our induction hypothesis in order to deduce
that:

[splitψ(M)(σδwi,w
′
i
)]δwi,wδci,t′i

δw′
i,w

′ =E h(ci0 , wi0)δwi,wδci,t′i
δw′

i,w
′

=E h(t′i0 , w)

=E h(M1(σδci,t′i
δwi,w′),M2(σδci,t′i

δwi,w′))

=E M(σδci,t′i
δwi,w′)

– Otherwise, splitψ(M) = f(splitψ(M1), . . . , splitψ(M`)), and thus we have that:

[splitψ(M)(σδwi,w
′
i
)]δwi,wδci,t′i

δw′
i,w

′

=E [f(splitψ(M1), . . . , splitψ(M`))(σδwi,w
′
i
)]δwi,wδci,t′i

δw′
i,w

′

=E f(splitψ(M1)(σδwi,w
′
i
)δwi,wδci,t′i

δw′
i,w

′ , . . . , splitψ(M`)(σδwi,w
′
i
)δwi,wδci,t′i

δw′
i,w

′)

=E f(M1(σδci,t′i
δwi,w′), . . . ,M`(σδci,t′i

δwi,w′))

=E f(M1, . . . ,M`)(σδci,t′i
δwi,w′)

=E M(σδci,t′i
δwi,w′)

2. This point can be proved as in the base case.

The second implication, (M =E N)(ψ{w′
/w})⇒ (M =E N)ψ can be proved in a similar way.

This allows us to conclude the proof. ut

C.2 Proof of Proposition 4

Lemma 6 Let t1, . . . , tk be distinct ground terms modulo E and c1, . . . , ck, w1, . . . , wk
be distinct fresh names. Let φ = νñ.σ, φ̃ = νñ.σ̃ and φ′ = νñ.σ′ be three frames

such that w 6∈ fn(σ), and w,w1, . . . , wk, c1, . . . , ck 6∈ ñ. Moreover, we assume that

σδci,tiδwi,w = σ̃, σ =E σ′δwi,h(ci,wi), and c1, . . . , ck 6∈ fn(σ′). If νw.φ̃ `E M̃ and

{w1, . . . , wk, c1, . . . , ck} ∩ fn(M̃) = ∅ for some ground term M̃ then there exist ground

terms M,M ′ such that c1, . . . , ck 6∈ fn(M ′), w 6∈ fn(M), Mδci,tiδwi,w = M̃ , M =E

M ′δwi,h(ci,wi), and νw1. . . . νwk.φ `E M .

Proof Let M̃ be a ground term such that νw.φ̃ `E M̃ and {w1, . . . , wk, c1, . . . , ck}∩fn(M̃) = ∅.
Thus, there exists a term ζ such that fn(ζ) ∩ (ñ ∪ {w,w1, . . . , wk, c1, . . . , ck}) = ∅, fv(ζ) ⊆
dom(σ̃), and ζσ̃ =E M̃ . Let M ′ = ζσ′ and M = split0(ζσ̃) where split0 is the ground splitting
function w.r.t. w, c1, . . . , ck, w1, . . . , wk, t1, . . . , tk. We have that c1, . . . , ck 6∈ fn(M ′), and

w 6∈ fn(M). By hypothesis, we have that ζσ̃ =E M̃ . Thus, thanks to Lemma 14, we have that

M = split0(ζσ̃) =E split0(M̃). Now, thanks to Lemma 15, we deduce that splitφ̃(ζ)σ =E M

where splitφ̃ is the splitting function w.r.t. φ̃, w, c1, . . . , ck, w1, . . . , wk, t1, . . . , tk. Actually,

since σ̃ = σδci,tiδwi,w and σ =E σ′δwi,h(ci,wi)
, we have that w only appears under h and

hence is not deducible from νw.φ̃. This allows us to show that splitφ̃(ζ) = ζ. Hence, we have

that ζσ =E M . Lastly, we have that

– M =E ζσ =E (ζσ′)δwi,h(ci,wi)
= M ′δwi,h(ci,wi)

, and

– Mδci,tiδwi,w =E [(ζσ′)δwi,h(ci,wi)
]δci,tiδwi,w = (ζσ)δci,tiδwi,w = ζσ̃.

This allows us to conclude the proof. ut

41

Lemma 7 Let t1, . . . , tk be distinct ground terms modulo E and c1, . . . , ck, w1, . . . , wk
be distinct fresh names. Let M , N , M̃ and Ñ be four terms such that

– M̃ = Mδci,tiδwi,w and Ñ = Nδci,tiδwi,w with w 6∈ fn(M) ∪ fn(N);

– M =E M ′δwi,h(ci,wi) and N =E N ′δwi,h(ci,wi) for some terms M ′ and N ′ such

that c1, . . . , ck 6∈ fn(M ′) ∪ fn(N ′).

Then, we have that M =E N if and only if M̃ =E Ñ .

Proof As =E is closed under substitution of terms for names M =E N implies M̃ =E Ñ . Now,
let M and N be two terms such that M̃ =E Ñ where M̃ = Mδci,tiδwi,w and Ñ = Nδci,tiδwi,w.
Thus, according to Lemma 14, we have that

split0(Mδci,tiδwi,w) =E split0(Nδci,tiδwi,w)

where split0 represents the splitting function w.r.t. w, c1, . . . , ck, w1, . . . , wk, t1, . . . , tk. Now,
it is easy to establish, by structural induction on M and N and by relying on the fact that
M =E M

′δwi,h(ci,wi)
for some term M ′, and N =E N

′δwi,h(ci,wi)
for some term N ′, that:

split0(Mδci,tiδwi,w) =E M and split0(Nδci,tiδwi,w) =E N .

This allows us to conclude.

We will prove Proposition 4 by induction on the prooftree witnessing the derivation. First,
we establish a similar result for ≡.

Lemma 16 Let t1, . . . , tk be distinct ground terms modulo E and c1, . . . , ck, w1, . . . , wk be
distinct fresh names. Let A be an extended process such that bn(A) = ∅, w 6∈ fn(A), and

A =E A
′δwi,h(ci,wi)

for some A′ such that c1, . . . , ck 6∈ fn(A′). Suppose that Aδci,tiδwi,w ≡ B
for some process B. Then there exist some processes B and B′ such that

– B = Bδci,tiδwi,w with w 6∈ fn(B), and
– B =E B

′δwi,h(ci,wi)
with c1, . . . , ck 6∈ fn(B′), and

– A ≡ B.

Proof Let A = Aδci,tiδwi,w. We prove this result by induction on the proof tree showing that

A ≡ B. All the base cases that we have to check, i.e. Par-0, Par-C and Par-A, are easy to
prove. The only interesting inductive case is the case of an application of an evaluation context.
Suppose that the proof tree showing that A ≡ B ends with an instance of such a rule, i.e.

A1 ≡ B1

C[A1] ≡ C[B1]

where A = C[A1] and B = C[B1]. Note that the evaluation context will not contain any

ν operator since otherwise bn(A) 6= ∅. As A = Aδci,tiδwi,w we have that there exist A1,

C such that A1δci,tiδwi,w = A1 and Cδci,tiδwi,w = C. Moreover there exists A′ such that
C[A1] = A =E A

′δwi,h(ci,wi)
. Hence there also exist C′, A′1 such that C =E C

′δwi,h(ci,wi)
and

A1 =E A
′
1δwi,h(ci,wi)

. We can therefore apply our induction hypothesis and we obtain that

there exist processes B1, B′1 such that

– B1 = B1δci,tiδwi,w;
– B1 =E B

′
1δwi,h(ci,wi)

;
– A1 ≡ B1.

Let B = C[B1] and B′ = C′[B′1]. We indeed have that

– B = C[B1] = (Cδci,tiδwi,w)[B1δci,tiδwi,w] = Bδci,tiδwi,w

– B = C[B1] =E C
′[B′1]δwi,h(ci,wi)

= B′δwi,h(ci,wi)
.

This allows us to conclude the proof. ut

42

Now, we can prove the following proposition.

Proposition 4 Let t1, . . . , tk be distinct ground terms modulo E and c1, . . . , ck, w1, . . . , wk
be distinct fresh names. Let νñ.A be an extended process such that bn(A) = ∅, w 6∈
fn(A), and A =E A

′δwi,h(ci,wi) for some A′ such that c1, . . . , ck 6∈ fn(A′). Moreover,

we assume that w,w1, . . . , wk, c1, . . . , ck 6∈ ñ.

Let B be such that νw.νñ.(Aδci,tiδwi,w)
`−→ B. Moreover, when ` = in(M̃) we

assume that w1, . . . , wk, c1, . . . , ck 6∈ fn(M̃). Then there exist extended processes B,

B′, and labels `0, `′ such that:

– B ≡ νw.νñ.(Bδci,tiδwi,w) with bn(B) = ∅ and w 6∈ fn(B), ` = `0δci,tiδwi,w, and

– B =E B
′δwi,h(ci,wi) with c1, . . . , ck 6∈ fn(B′), `0 =E `

′δwi,h(ci,wi), and

– νw1 . . . νwk.νñ.A
`0−→ νw1 . . . νwk.νñ.B.

Proof We have νw.νñ.(Aδci,tiδwi,w)
`−→ B. It is easy to see that w ∈ bn(B) and ñ ⊆ bn(B).

Indeed, according to our calculus, we can always by using structural equivalence move a re-
striction in front of the process. Thus we have that B ≡ νw.νñ.B̃ for some process B̃ such
that bn(B̃) = ∅. Let ` be the label involved in νw.νñ.(Aδci,tiδwi,w)→ B. It is easy to see that

Aδci,tiδwi,w
`−→ B̃ and when ` = in(M̃), we have that νw.νñ(φ(A)δci,tiδwi,w) `E M̃ . More-

over, by hypothesis, we have that w1, . . . , wk, c1, . . . , ck 6∈ fn(M̃). By Lemma 6, we deduce that

νw1. . . . νwk.νñ.φ(A) `E M for some M such that Mδci,tiδwi,w = M̃ and we also know that
there exists M ′ such that M =E M

′δwi,h(ci,wi)
. This allows us, in particular, to ensure that, in

the case of an input, the side condition corresponding to an application of evaluation context

is satisfied. Now, we show by induction on the proof tree showing that Aδci,tiδwi,w
`−→ B̃ that

there exist processes B,B′, and labels `0, `′ such that

– B̃ = Bδci,tiδwi,w with w 6∈ fn(B), and ` = `0δci,tiδwi,w;
– B =E B

′δwi,h(ci,wi)
with c1, . . . , ck 6∈ fn(B′), and `0 =E `

′δwi,h(ci,wi)
;

– A→ B

This will allows us to conclude that νw1 . . . νwk.νñ.A → νw1 . . . νwk.νñ.B. Note that since
bn(B̃) = ∅, we have also that bn(B) = ∅.

Base cases.

– In. In such a case, we have Aδci,tiδwi,w = in(x).P̃ and B̃ = P̃{M̃/x} for some process P̃

and some term M̃ . From this, we deduce that A = in(x).P for some process P such that

Pδci,tiδwi,w = P̃ . We have also that A = in(x).P =E A
′δwi,h(ci,wi)

.

Thus, there exists P ′ with c1, . . . , ck 6∈ fn(P ′) such that P =E P
′δwi,h(ci,wi)

. Moreover,

we have already seen that there exists M and M ′ such that
– Mδci,tiδwi,w = M̃ , and
– M =E M

′δwi,h(ci,wi)
.

Let B = P{M/x}, B′ = P ′{M′
/x}, `0 = in(M), and `′ = in(M ′). It is easy to check that

the three conditions hold.
– Out. In such a case, we have Aδci,tiδwi,w = out(M̃).P̃ and B̃ = P̃ | {M̃/x} for some

process P̃ and some term M̃ . From this, we deduce that A = out(M).P for some term M

and some process P such that Mδci,tiδwi,w = M̃ , and Pδci,tiδwi,w = P̃ . We have also
that A = out(M).P =E A

′δwi,h(ci,wi)
.

Thus, there exist M ′ and P ′ such that M =E M ′δwi,h(ci,wi)
and P =E P ′δwi,h(ci,wi)

.

Moreover, we have that c1, . . . , ck 6∈ fn(M ′) ∪ fn(P ′). Let B = P | {M/x}, B′ = P ′ |
{M′

/x}, `0 = out(M), and `′ = out(M ′). It is easy to check that the three conditions
hold.

– Event. In such a case, we have Aδci,tiδwi,w = ev(M̃).P̃ and B̃ = P̃ | {M̃/x} for some

process P̃ and some terms M̃ . From this, we deduce that A = ev(M).P for some terms M

and some process P such that Mδci,tiδwi,w = M̃ , and Pδci,tiδwi,w = P̃ . We have also
that A = ev(M).P =E A

′δwi,h(ci,wi)
.

43

Thus, there exist M ′ and P ′ such that M =E M ′δwi,h(ci,wi)
and P =E P ′δwi,h(ci,wi)

.

Moreover, we have that c1, . . . , ck 6∈ fn(M ′) ∪ fn(P ′). Let B = P , B′ = P ′, `0 = ev(M),
and `′ = ev(M ′). It is easy to check that the three conditions hold.

– Then. In such a case, we have Aδci,tiδwi,w = if M̃1 = M̃2 then P̃ else Q̃ for some terms

M̃1 and M̃2 and some processes P̃ and Q̃ such that M̃1 =E M̃2 and B̃ = P̃ . From this, we
deduce that A = if M1 = M2 then P else Q for some terms M1,M2 and some processes
P,Q such that Miδci,tiδwi,w = M̃i (i = 1, 2), Pδci,tiδwi,w = P̃ , and Qδci,tiδwi,w = Q̃.
We have also that A = if M1 = M2 then P else Q =E A

′δwi,h(ci,wi)
.

Thus, there exist M ′1, M ′2, P ′ and Q′ such that:
– Mi =E M

′
iδwi,h(ci,wi)

(i = 1, 2),

– P =E P
′δwi,h(ci,wi)

, and

– Q =E Q
′δwi,h(ci,wi)

.

Moreover, we have that c1, . . . , ck 6∈ fn(M ′1) ∪ fn(M ′2) ∪ fn(P ′) ∪ fn(Q′). Let B = P ,
B′ = P ′, and `0 = ` = τ . It is easy to see that the two first conditions hold. For the last
one, we have to show that M1 =E M2. This can be easily done thanks to Lemma 7.

– Else. This case is similar to the previous one.

Inductive cases. The inductive case corresponding to application of structural equivalence
directly follows from Lemma 16. It remains to show the case of an application of an evaluation

context. In such a case, we have Aδci,tiδwi,w
`−→ B̃ finishes by an application of the following

rule

Ã1
`−→ B̃1

C̃[Ã1]
`−→ C̃[B̃1]

where Aδci,tiδwi,w = C̃[Ã1] and B̃ = C̃[B̃1]. From this, we deduce that A = C[A1] for some

context C and some process A1 such that Cδci,tiδwi,w = C̃ and A1δci,tiδwi,w = Ã1. We have
A = C[A1] =E A

′δwi,h(ci,wi)
. Thus, there exist C′ and A′1 such that C =E C

′δwi,h(ci,wi)
, and

A1 =E A
′
1δwi,h(ci,wi)

. Hence we can apply our induction hypothesis to obtain that there exist

B′1, B1, `0, and `′ such that

– B̃1 ≡ B1δci,tiδwi,w with w 6∈ fn(B1), and ` = `0δci,tiδwi,w;
– B1 =E B

′
1δwi,h(ci,wi)

with c1, . . . , ck 6∈ fn(B′1), and `0 =E `
′δwi,h(ci,wi)

;
– A1 → B1.

Let B = C[B1] and B′ = C′[B′1]. The three conditions hold and this allows us to conclude the
proof. ut

C.3 Proof of Theorem 3

Theorem 3 Let P = νw.(νm̃1.P1 | . . . | νm̃`.P`) be a password protocol specification

and P ′ be such that P = νw.P ′, and P ′1, . . .P ′p be p instances of P ′.

1. Let t be a ground term that occurs as a subterm in P ′i for some i ∈ {1, . . . , p}. If

νw.P ′i preserves secrecy of t, then we have that νw.(P ′1 | . . . | P ′p) preserves secrecy

of t{h(ti,w)/w}.
2. Let Φ = ev(x̃) ⇒(inj) ev(x̃) be a correspondence property (injective or not). If Φ

holds on P, then Φ holds on νw.(P ′1 | . . . | P ′p).

3. If P is resistant to guessing attacks against w, then we have that νw.(P ′1 | . . . | P ′p)
is resistant to guessing attacks against w.

Proof We suppose w.l.o.g. that P ′i = νm̃i,1νni,1.Pi,1 | . . . | νm̃i,`νni,`.Pi,` where

Pi,j = in(x1i,j). . . . in(xj−1
i,j).out(ni,j).in(xj+1

i,j). . . . in(x`i,j).P
′
i,j

for some P ′i,j (1 ≤ i ≤ p, 1 ≤ j ≤ `).

44

By contradiction, suppose that P = νw.(P ′1 | . . . | P ′p) admits an attack. Throughout the
proof we refer to an attack as being either an attack on secrecy, on a correspondence property
or a guessing attack. Hence there exists Q such that P →∗ Q is the derivation exhibiting
this attack. We assume w.l.o.g. that the derivation is maximal, i.e. there is no Q′ such that
Q→ Q′. This allows us to ensure that all the preambles have been executed. We are going to
show that there exists an attack on P contradicting the hypothesis.

Step 1. We will first regroup the different roles of the protocol instances according to their
tag. For this we need to identify the tag ti,j that is computed by Pi,j during the attack

derivation. We have that P
`1−→ P1

`2−→ · · ·Pq−1
`q−→ Pq = Q and for each xki,j such that j 6= k

there exists r such that Pr ≡ C[in(xki,j).P
′]

in(Mk
i,j)−−−−−−→ C[P ′{M

k
i,j /xki,j

}] ≡ Pr+1. Moreover, for

each i, j such that 1 ≤ i ≤ p, 1 ≤ j ≤ ` there exists yi,j ∈ dom(φ(Q)) such that yi,jφ(Q) = ni,j .

Let Mj
i,j = ni,j . We define ti,j = 〈M1

i,j , 〈. . . 〈M
`−1
i,j ,M`

i,j〉〉〉. We note that φ(Q) ` ti,j for all

i, j such that 1 ≤ i ≤ p, 1 ≤ j ≤ `. Intuitively, ti,j is the tag which has been computed by
process Pi,j in the attack derivation.

Next we regroup the roles in P according to the tag they used. Let tag1, . . . , tagk be the
different terms (modulo E) that occur in {ti,j |1 ≤ i ≤ ` and 1 ≤ j ≤ p}. By definition, the
terms tag1, . . . , tagk are distinct modulo E. We group the different processes of P according
to the value of the tag in the derivation, i.e., we define

Ar = νm̃r.
∣∣
i,j s.t. ti,j=tagr

Pi,j where m̃r = (∪i,j s.t. ti,j=tagr m̃i,j , ni,j)

We have that P ≡ νw.(A1 | . . . | Ak) and we let m̃ stand for the sequence νm̃1 . . . νm̃k.

Step 2. The aim of this step is to show that an attack on a transformed protocol also exists
on a protocol that is tagged with constants (instead of the constructed tag) and different
passwords (instead of the same password).

We first instantiate the tag of each role Pi,j by the tag that has been computed in the

attack derivation. Define the process P 0 obtained from P by replacing each occurrence of a

non-instantiated tag 〈x1i,j , 〈. . . ni,j . . . 〈x
`−1
i,j , x

`
i,j〉〉〉 in Ar by the ground term tagr. It is easy

to see that P 0 →∗ Q. Moreover, by construction each Ai is of the form Aiδci,tagiδwi,w with

Ai = A′iδw,h(ci,wi)
for some Ai, A

′
i and c1, . . . ck, w1, . . . wk which do not occur in P 0. As

w1, . . . wk, c1, . . . ck do not occur in P 0 we assume w.l.o.g. that they do not occur in any label
among this derivation.

Let Pn = Q and P0 = (νw1.A1 | . . . | νwk.Ak). By iterating Proposition 4 we have that
there exist two extended processes Pn, P ′n and two sequences of labels `01, . . . , `

0
n and `′1, . . . , `

′
n

such that:

– Pn ≡ νw.νm̃.(Pnδci,tiδwi,w) with bn(Pn) = ∅, w 6∈ fn(Pn), and `j = `0jδci,tiδwi,w for

any j ∈ {1, . . . , n};
– Pn =E P ′nδwi,h(ci,wi)

with c1, . . . , ck 6∈ fn(P ′n), and `0j =E `′jδwi,h(ci,wi)
for any j ∈

{1, . . . , n}, and

– P0
`01−→ . . .

`0n−−→ νw1.νwk.νm̃.Pn.

Exactly as in the proof of Theorem 2, using Lemmas 6, 7 and 8 we show that the derivation

P0
`01−→ . . .

`0n−−→ νw1.νwk.νm̃.Pn also admits an attack.

Step 3. In the final step we are going to show that the attack already existed on an instance
of P contradicting the hypothesis.

By Proposition 1, we have for some r that νwr.νm̃r.Ar admits an attack. We have that
Ar =

∣∣
i,j s.t. ti,j=tagr

Qi,j and the Qi,js are of the form

Qi,j = in(x1i,j). . . . in(xj−1
i,j).out(ni,j).in(xj+1

i,j). . . . in(x`i,j).Q
′
i,j

45

for some Q′i,j such that x1i,j , . . . , x
j−1
i,j , ni,j , x

i+1
i,j , x

`
i,j do not occur in Q′i,j . Hence, we also have

that νwr.νm̃r.(
∣∣
i,j s.t. ti,j=tagr

Q′i,j) admits an attack. Let m̃′r = m̃r r {ni,j | ti,j = tagr}.

We observe that νm̃′r.(
∣∣
i,j s.t. ti,j=tagr

Q′i,j) ≡ R{h(cr,wr)/wr} for some process R such that

νwr.R is an instance of νw.(νm̃i1 .Pi1 | . . . | νm̃iq .Piq) and {Pi1 , . . . , Piq} ⊆ {P1, . . . P`}
(multiset inclusion). Note that this holds because in the transformed protocol each of the roles
generates a new nonce, and hence each of the Qi,js can be associated to at most one of the
role of P (two instances of the same role would necessarily generate different tags).

Thanks to Theorem 1 we have that there exists an attack on R which implies that there
exists an attack on an instance of P yielding a contradiction. ut

46

