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Abstract

The theory of graph games is the foundation for modeling and synthesizing reactive processes. In the
synthesis of stochastic processes, we use 21

2 -player games where some transitions of the game graph are
controlled by two adversarial players, the System and the Environment, and the other transitions are
determined probabilistically. We consider 21

2 -player games where the objective of the System is the con-
junction of a qualitative objective (specified as a parity condition) and a quantitative objective (specified
as a mean-payoff condition). We establish that the problem of deciding whether the System can ensure
that the probability to satisfy the mean-payoff parity objective is at least a given threshold is in NP∩ coNP,
matching the best known bound in the special case of 2-player games (where all transitions are determin-
istic) with only parity objectives, or with only mean-payoff objectives. We present an algorithm running
in time O(d · n2d ·MeanGame) to compute the set of almost-sure winning states from which the objective
can be ensured with probability 1, where n is the number of states of the game, d the number of priorities
of the parity objective, and MeanGame is the complexity to compute the set of almost-sure winning states
in 21

2 -player mean-payoff games. Our results are useful in the synthesis of stochastic reactive systems
with both functional requirement (given as a qualitative objective) and performance requirement (given
as a quantitative objective).

Keywords: Perfect-information games; Stochastic games; Parity and mean-payoff objectives; Almost-
sure winning.
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1 Introduction

Perfect-information stochastic games. A perfect-information stochastic graph game [18] is played on a
finite directed graph with three kinds of states: player-Max, player-Min, and probabilistic states. At
player-Max states, player Max chooses a successor state; at player-Min states, player Min (the adversary
of player Max) chooses a successor state; and at probabilistic states, a successor state is chosen according
to a fixed probability distribution. The result of playing the game forever is an infinite path through
the graph. If there are no probabilistic states, we refer to the game as a 2-player graph game; otherwise,
as a 21

2 -player graph game. There has been a long history of using 2-player graph games for modeling
and synthesizing reactive processes [8, 25, 28]: a reactive system and its environment represent the two
players, whose states and transitions are specified by the states and edges of a game graph. Consequently,
21
2 -player graph games provide the theoretical foundation for modeling and synthesizing processes that

are both reactive and stochastic [19, 27]. They subsume both 2-player games which have no probabilistic
states, and Markov decision processes (MDPs) which have no player-Min states.

Qualitative and quantitative objectives. In the analysis of reactive systems, the problem may specify a goal
as a set of desired paths (such as ω-regular specifications), or as a quantitative optimization objective for
a payoff function on the paths. In verification and synthesis of reactive systems all commonly used prop-
erties are expressed as ω-regular objectives, and parity objectives are a canonical way to express ω-regular
objectives [29]. In a parity objective, an integer priority is assigned to every state, and a path satisfies the
objective for player Max if the maximum priority visited infinitely often is even. The most classical exam-
ple of quantitative objective is the mean-payoff objective [19, 26], where a reward is associated with every
state and the payoff of a path is the long-run average of the rewards of the path. While traditionally the
verification and the synthesis problems were considered with qualitative objectives, recently combinations
of qualitative and quantitative objectives have received a lot of attention. Qualitative objectives such
as ω-regular objectives specify the functional requirements of reactive systems, whereas the quantitative
objectives specify resource consumption requirements (such as for embedded systems or power-limited
systems). Combining quantitative and qualitative objectives is crucial in the design of reactive systems
with both resource constraints and functional requirements [10, 16, 5, 3]. For example, mean-payoff
parity objectives are relevant in synthesis of optimal performance lock-synchronization for concurrent
programs [9], where one player is the synchronizer, the opponent is the environment, and the random-
ization arises due to the randomized scheduler; the performance objective is specified as mean-payoff
condition and the functional requirement (e.g., data-race freedom or liveness) as an ω-regular objective.
Mean-payoff parity objectives have also been used in other applications such as to define permissivity
for parity games [6]. Thus 21

2 -player mean-payoff parity games provide the theoretical foundation for
analysis of stochastic reactive systems with functional as well as performance requirements.

Algorithmic questions in 21
2 -player games. The study of 21

2 -player games has a wealth of algorithmic
problems. For example, given a 21

2 -player game with reachability objective (where the goal is to reach a
target set of states), whether the player Max can ensure the objective with probability at least 1

2 (called
the value-strategy problem) is in NP∩ coNP [18]. This is one of the rare combinatorial problems that
belongs to NP∩ coNP, but is not known to be solvable in polynomial time. It is a major and long-standing
open question whether the problem can be solved in polynomial time. Moreover, 2-player games with
mean-payoff (resp. parity) objectives lie in NP∩ coNP (even in UP∩ coUP) [23, 31, 22], and again no
polynomial time algorithm is known. Both 2-player parity games and 2-player mean-payoff games admit
a polynomial reduction to the value-strategy problem of 21

2 -player reachability games. The value-strategy
problem for 21

2 -player mean-payoff (resp. parity) games also lie in NP∩ coNP: the key property to show
that the problem is in NP∩ coNP for mean-payoff (resp. parity) games is to show that it is sufficient
to consider positional strategies (that are independent of the past history and depends only on the
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current state), see [24] for mean-payoff and [17] for parity objectives. In this work we consider 21
2 -player

games with conjunction of mean-payoff and parity objectives for player Max. The study of 21
2 -player

games with conjunction of mean-payoff and parity objectives poses new algorithmic challenges as infinite-
memory strategies are required. The key challenge is to obtain succinct (polynomial) witness for the
infinite-memory strategies and their characterization to obtain complexity results matching the simpler
classes of games where positional strategies suffice. Besides the complexity result, our characterization
of strategies will also allow us to obtain algorithms to solve 21

2 -player mean-payoff parity games.

Contributions. The details of our contribution is as follows:

1. We first present polynomial witness for infinite-memory strategies required by player Max, and a
polynomial-time verification procedure for the witness, thereby establishing that the value-strategy
problem (of whether player Max can ensure that the probability to satisfy the objective is at least
a given threshold) is in NP. The fact that player Max requires infinite-memory strategies follows
from the special case of 2-player mean-payoff parity games [16].

2. We show that positional strategies are sufficient for player Min; and it follows that the value-
strategy problem is also in coNP. Our NP∩ coNP bound for the problem matches the special cases
of 2-player parity and 2-player mean-payoff games.

3. We present an algorithm for the computation of the almost-sure winning set (the set of states where
the objective can be ensured with probability 1 by player Max) for 21

2 -player mean-payoff parity
games in time O(d · n2d ·MeanGame), where n is the number of states of the game graph, d the
number of priorities of the parity objective, and MeanGame denotes the complexity to compute the
almost-sure winning set in 21

2 -player mean-payoff games.

In summary, we present results that establish computational, strategy, and algorithmic complexity of
solving 21

2 -player mean-payoff parity games.

Related works. The problem of 2-player mean-payoff parity games was first studied in [16]. The NP∩ coNP
complexity bound was established in [12], and an improved algorithm for the problem was given in [6].
The algorithmic analysis of 21

2 -player mean-payoff games was considered in [4]. The polynomial time
complexity for MDPs with mean-payoff parity objectives was established in [13] and the polynomial time
complexity for MDPs with positive average parity objectives was shown in [21]. The generalization to
21
2 -player games with mean-payoff parity objectives gives rise to many delicate issues, such as dealing at

the same time with infinite-memory strategies, stochastic transitions, as well as the opponent.

2 Definitions

In this section we present definitions of game graphs, objectives, and the basic decision problems.

Probability distributions. For a finite set S, we denote by ∆(S) the set of all probability distributions
over S, i.e., the set of functions p : S → [0, 1] such that

∑

s∈S p(s) = 1. For a set U ⊆ S we use the
following notation: p(U) =

∑

s∈U p(s).

Stochastic games. A perfect-information stochastic game graph (for brevity, stochastic game) is a tuple
G = (S, (SMax, SMin), A, δ), where S is a finite set of states, (SMax, SMin) is a partition of S such that SMax

is the set of states controlled by player Max and SMin is the set of states controlled by player Min, A is
a finite set of actions, and δ : S × A → ∆(S) is a probabilistic transition function. Stochastic games
are also known as 21

2 -player games where probabilistic states are explicitly present. In our model, the
probabilistic states can be embedded in the probabilistic transition function. A Markov decision process
(MDP) is the special case of a stochastic game where either SMax = ∅, or SMin = ∅. Typically in this
paper, we obtain MDPs from stochastic games after fixing the action choices of one of the players.
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For complexity issues, we assume that the probabilities in stochastic games are rational numbers
whose numerator and denominator are encoded in binary. We denote by |δ| the size of the encoding of
the probabilistic transition function δ.

Subgames and traps. Given a stochastic game G, a set U ⊆ S of states induces a subgame if for
all s ∈ U , there exists an action as ∈ A such that δ(s, as)(U) = 1; the induced subgame is G[U ] =
(U, (U ∩ SMax, U ∩ SMin), A, δ

′) where, for all states s ∈ U and action a ∈ A, we have δ′(s, a) = δ(s, a)
if δ(s, a)(U) = 1, and δ′(s, a) = δ(s, as) otherwise. We take this definition of subgame to keep the same
alphabet of actions in every state. The subgame G[U ] is a trap for player Min in the original game G if
for all s ∈ U ∩ SMin and for all a ∈ A we have δ(s, a)(U) = 1. A trap for player Max is defined similarly.

Plays and strategies. A play ρ = s0s1 · · · ∈ Sω is an infinite sequence of states such that for all i ≥ 0
there exists a ∈ A such that δ(si, a)(si+1) > 0. A strategy for Max is a recipe to describe what is the
next action to play; formally, it is a function σ : S∗SMax → A. A positional strategy is independent of
the past and depends only on the current state. We view it as a function σ : SMax → A.

A strategy σ uses finite memory if there exists an equivalence relation ∼ on Sω of finite index, such
that σ(ρ1) = σ(ρ2) for all plays ρ1, ρ2 such that ρ1 ∼ ρ2. We define strategies, positional strategies, and
finite-memory strategies analogously for Min.

Probability measures. Given a finite prefix ρ ∈ S∗ of a play, denote by |ρ| the length of ρ and by
Cone(ρ) the set of plays with prefix ρ. If ρ ∈ S+ is nonempty, we denote by Last(ρ) the last state of ρ.
Given a pair of strategies (σ, τ) for Max and Min, and an initial state s, we first define the probability
measure on cones inductively as follows: for all s′ ∈ S, let

P
σ,τ
s (Cone(s′)) =

{

1 if s′ = s

0 if s′ 6= s

and for all ρ ∈ S+, let

P
σ,τ
s (Cone(ρ · s′)) =

{

P
σ,τ
s (Cone(ρ)) · δ(Last(ρ), σ(ρ))(s′) if Last(ρ) ∈ SMax

P
σ,τ
s (Cone(ρ)) · δ(Last(ρ), τ(ρ))(s′) if Last(ρ) ∈ SMin

By Caratheodary’s extension theorem, there is a unique extension of this probability measure to Sω

which is also denoted as Pσ,τ
s (·) [2].

Mean-payoff parity objectives. An objective is a measurable set ϕ ⊆ Sω of plays. Let rwd : S×S → Q

be a reward function defined on edges and χ : S → N be a priority function defined on states. Given a
set of states U ⊆ S and a priority d ∈ N, we denote by U(d) the set {s ∈ U | χ(s) = d} of states with

priority d. The mean-payoff objective Mean =
{

s0s1 · · · ∈ Sω | lim supn→∞
1
n
·
∑n−1

i=0 rwd(si, si+1) ≥ 0
}

requires that the long-run average of rewards be non-negative. The parity objective Par = {s0s1 · · · ∈
Sω | lim supn→∞ χ(sn) is even} requires that the maximal priority visited infinitely often be even. The
mean-payoff parity objective Mean∩Par is the conjunction of a mean-payoff objective Mean and a parity
objective Par.

Almost-sure and positive winning. We say that player Max wins almost-surely (resp., positively)
from an initial state s for an objective ϕ if there exists a strategy σ for Max such that for every strategy τ

of player Min we have P
σ,τ
s (ϕ) = 1 (resp., Pσ,τ

s (ϕ) > 0). The state s is called almost-sure (resp., positive)
winning for Max. In the sequel, we say that a game G is almost-sure (resp., positive) winning, if every
state in G is almost-sure (resp., positive) winning for Max. We use analogous definitions for player Min.
Note that almost-sure winning for Max is the dual of positive winning for Min.

Value-strategy problem and reduction to almost-sure winning. Given a threshold λ, the value-
strategy problem for an objective asks whether there exists a strategy for player Max to ensure against
all strategies of player Min that the objective is satisfied with probability at least λ. A strategy for player
Max is optimal if it ensures the maximal value λ (for stochastic mean-payoff parity games, optimal
strategies are guaranteed to exist [20]). In this paper we focus on the almost-sure winning problem,
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which is to decide whether there exists an almost-sure winning strategy for player Max for a mean-payoff
parity objective, that is the value-strategy problem for λ = 1. While for player Max infinite-memory
strategies are necessary [16], we will show that for player Min positional strategies are sufficient, and that
the almost-sure winning problem is in NP∩ coNP.

Remark 1. It follows from the results of [15, Lemma 7] and [20, Theorem 4.1] that since mean-payoff
parity objectives are tail objectives (independent of finite prefixes), the memory requirement for optimal
strategies of both players is the same as for almost-sure winning strategies, and if the almost-sure winning
problem is in NP∩ coNP, then the value-strategy problem is also in NP∩ coNP. Thus from our results it
will follow that the value-strategy problem is in NP∩ coNP for 21

2 -player mean-payoff parity games.

Positive attractors. Given a stochastic game G, let U ⊆ S induce a subgame G[U ] with probabilistic
transition function δ : U × A → ∆(U). For T ⊆ U , let fT : 2U → 2U be the operator such that for all
Z ⊆ U ,

fT (Z) = T ∪{s ∈ SMax ∩ U | ∃a ∈ A : δ(s, a)(Z) > 0}
∪ {s ∈ SMin ∩ U | ∀a ∈ A : δ(s, a)(Z) > 0} .

Then AttrMax(T,G[U ]) is the least fixed point of fT , called the positive attractor for Max to T in G[U ].
It can be computed as the limit of the iteration (f i

T (∅))i∈N. There exists a positional strategy for Max

(referred to as positive-attractor strategy) to ensure that from all states in AttrMax(T,G[U ]), the set T is
reached within |U | steps with positive probability. We define AttrMin(T,G[U ]) as the positive attractor
for Min in an analogous way. An important property of positive attractors is that if X is a positive
attractor for Max in G[U ], then G[U \ X] is a subgame and it is a trap for Max. Analogous statement
holds for Min.

3 Characterization of the Almost-sure Winning Set

In this section we present the key lemmas that enable an inductive characterization of certificates and
a polynomial-time verification procedure for the existence of almost-sure winning strategies, showing that
the almost-sure winning problem is in NP for stochastic games with mean-payoff parity objectives.

It follows from the results of [16] that finite-memory strategies are not sufficient for Max and infinite-
memory strategies are required for almost-sure winning. We present polynomial witness and polynomial-
time verification procedure for the infinite-memory almost-sure winning strategies. The polynomial
witness consists of a trap U for player Min that defines a subgame where all states are almost-sure
winning for player Max, together with a certificate defined as an inductive decomposition of the subgame
induced by U constructed according to the parity of the largest priority d in U . If d is even we refer to
the certificate as an even certificate, if d is odd as an odd certificate.

Intuitive description. To present the intuition of the (inductive) certificates, we informally explain some
key properties in establishing that all states in a (sub)game are almost-sure winning forMax. In figures, we
denote states of player Max by circles, and states of player Min by square boxes. Probability distributions
over states are emphasized by a diamond. We omit actions and assume that every outgoing edge from
player-Max and player-Min states corresponds to a different action. Let G be a (sub)game with state
space S where all states are almost-sure winning. Then, we describe a certificate according to the parity
of the largest priority d in G as follows.

1. If d is even (see Example 1 and Figure 1), let X = AttrMax(S(d),G) and Y = S \ X. An even
certificate for G ensures that (1) in G all states are almost-sure winning for the objective Mean;
and (2) in G[Y ] all states are almost-sure winning for Max for the objective Mean∩Par (using a
certificate defined recursively in the subgame G[Y ], which has at least one less priority as there is
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G priority 2priority 0

priority 1

Y

X

q1 q2 q3 q4

q5 q6 q7 q8

1

0

1/2

1/2
−1

−1−2

0

1

−10

2

−1

0

1

−1

1/2

1/2
−1

Figure 1. Stochastic game G with largest priority even. An even certificate for G consists of a
positional strategy for player Max that is almost-sure winning from every state in G for only the
mean-payoff objective, and a certificate for the subgame G[Y ] where Y = S \ AttrMax(S(d),G) (note
that G[Y ] has less priorities than G).

no priority-d state in Y ). In other words, the even certificate consists of (i) a positional positive
attractor strategy in X for the target S(d); (ii) a positional almost-sure winning strategy in G
for the mean-payoff objective; and (iii) a certificate for G[Y ]. We establish that the above two
conditions ensure that in G all states are almost-sure winning for Max for the objective Mean∩Par.
An almost-sure winning strategy for Max is as follows: if the current state is in the subgame G[Y ],
then player Max ignores the history of the play up to the last state that was not in Y , and uses
an almost-sure winning strategy in G[Y ] (such a strategy exists in G[Y ] by the certificate). If
the opponent decides to visit the positive attractor X, then player Max switches to a (positional)
positive-attractor strategy for at most |S| steps. Then, either after |S| steps or before (e.g., if a
state with priority d is reached), player Max switches to an almost-sure winning strategy for Mean

and plays it for a long finite time (that increases over the play). After that, the play might be in Y

or in X, and player Max restarts from scratch the same process of playing. Intuitively, if the play
keeps visiting X, then with probability 1 the positive-attractor strategy ensures infinitely many
visits to a state with priority d (thus the parity condition is satisfied), and the almost-sure winning
strategy for Mean played for increasing number of steps ensures that the mean-payoff objective is
satisfied. On the other hand, if the play eventually stays in G[Y ] forever, then the almost-sure
winning strategy in G[Y ] ensures the mean-payoff parity objective is satisfied with probability 1
(since the objective is independent of finite prefixes).

Example 1. Consider the stochastic game G in Figure 1 where the largest priority is 2. All states
are almost-sure winning for the Mean objective, and a positional strategy for player Max is as
follows: for state q1 choose the edge labeled reward 1; and for state q4 choose the edge to q3. The
positive attractor for Max to the largest priority is X = {q4, q7, q8}. In the subgame induced by
Y = {q1, q2, q3, q5, q6} there is one less priority, and player Min can decide to leave the subgame in
states q3 and q6. An (odd) certificate defined in the subgame G[Y ] witnesses that all states in G[Y ]
are almost-sure winning for the mean-payoff parity objective. Thus the even certificate consists of
the positional strategy for Mean, the positive-attractor strategy, and a certificate for G[Y ].

2. If d is odd (see Example 2 and Figure 2), an odd certificate is a layer-decomposition of the state space
of G into non-empty sets R1, . . . , Rk and Z1, . . . , Zk defined recursively as follows: (1) R1 ⊆ S \S(d)
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G priority 1priority 0

R1 Z1

R2 Z2

R3 Z3

q1 q2

q3 q4 q5

q6 q7 q8

0

1/2

1/2

1

1

−2

1
0 2

−2
1/2

1/2

1
2

−1

0

0

1

Figure 2. Stochastic game G with largest priority odd. An odd certificate for G is a layer-decomposition
of G that consists of a set R1 that is a trap for player Min and does not contain the largest priority of
G, together with a certificate for G[R1], and a layer-decomposition of the subgame G[U \ Z1] where
Z1 = AttrMax(R1,G).

is a trap for player Min in G that contains no priority-d state, and such that all states in R1 are
almost-sure winning for Max for the objective Mean∩Par (using a certificate defined recursively
in the subgame G[R1], which has at least one less priority since priority d does not occur in R1),
(2) Z1 = AttrMax(R1,G) is the positive attractor for player Max to R1 in G, and (3) the sets R2

and Z2 are defined analogously in the subgame G[S \ Z1], and the sets R3 and Z3 in the subgame
G[S \Z2] where Z2 = AttrMax(R2,G[S \Z1]), and so on to obtain the layer-decomposition of G. Such
a decomposition must cover the state space, and thus the sets Z1, . . . , Zk form a partition of S (and
k ≤ |S|). An almost-sure winning strategy for player Max is as follows: if the current state is in a
subgame Ri, then player Max ignores the history of the play up to the last state that was not in
Ri, and uses an almost-sure winning strategy (that exists in Ri by the certificate). If the current
state is in Zi \Ri, then player Max uses the positive-attractor strategy defined in Zi. We show that
almost-surely, one of the sets Ri is never left from some point on, and then the almost-sure winning
strategy in G[Ri] ensures that the mean-payoff parity objective is satisfied with probability 1 (since
the objective is independent of finite prefixes).

Example 2. Consider the stochastic game G in Figure 2 where the largest priority is 1. A layer-
decomposition is shown where R1 = {q1} is a trap of almost-sure winning states for Max, and
Z1 = {q1, q2} is the positive attractor to R1. In the subgame G[S \ Z1], there is no edge from q4
to q2, and it follows that the states in R2 = {q3, q4} form a trap of almost-sure winning states
in this subgame, and the positive attractor to R2 is Z2 = R2 ∪ {q5}. The last layer consists of
R3 = {q6, q7} and Z3 = R3 ∪ {q8}. As this layer-decomposition covers the state space of G, it gives
an odd certificate for player Max.

Given the basic intuitions, we now present the formal proofs. We start with a basic lemma, and then
we consider the two cases when the largest priority is even or odd.
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Lemma 1. Let G be a stochastic mean-payoff game with state space S where all states are almost-sure
winning for the mean-payoff objective Mean. Then there exists a positional strategy σ for player Max

such that against all strategies τ for Min, for all s ∈ S and for all ǫ > 0, there exists kǫ such that for all

k ≥ kǫ we have P
σ,τ
s

({

s0s1 . . . ∈ Sω |
∑k−1

i=0
1
k
· rwd(si, si+1) ≥ −ǫ

})

≥ 1− ǫ.

Proof. The result follows from the following statement. We show that there exists a positional strategy
σ for player Max such that against all strategies τ for Min, for all s ∈ S and for all ǫ > 0:

P
σ,τ
s

({

s0s1 . . . ∈ Sω | lim infk→∞
∑k−1

i=0
1
k
· rwd(si, si+1) ≥ 0

})

= P
σ,τ
s

(

lim infk→∞

{

s0s1 . . . ∈ Sω |
∑k−1

i=0
1
k
· rwd(si, si+1) ≥ −ǫ

})

= lim infk→∞ P
σ,τ
s

({

s0s1 . . . ∈ Sω |
∑k−1

i=0
1
k
· rwd(si, si+1) ≥ −ǫ

})

= 1.

To prove this, consider a positional almost-sure winning strategy σ for player Max for the mean-payoff
objective. Let

Φ0 =
{

s0s1 . . . ∈ Sω | lim infk→∞

∑k−1
i=0

1
k
· rwd(si, si+1) ≥ 0

}

;

Φk,ǫ =
{

s0s1 . . . ∈ Sω |
∑k−1

i=0
1
k
· rwd(si, si+1) ≥ −ǫ

}

.

Assume towards contradiction that there exists a strategy τ for player Min such that P
σ,τ
s (Φ0) < 1.

Since σ is positional, once σ is fixed we have an MDP for player Min and in MDPs with mean-payoff
objectives positional strategies suffice. Hence we can consider that there exists positional τ such that
P
σ,τ
s (Φ0) < 1. Given σ and τ are positional strategies, once they are fixed we have a Markov chain,

where the set of paths where liminf average coincide with limsup average has probability 1 [19]. It

follows that P
σ,τ
s

({

s0s1 . . . ∈ Sω | lim supk→∞

∑k−1
i=0

1
k
· rwd(si, si+1) ≥ 0

})

< 1, contradicting that σ is

an almost-sure winning strategy. This shows that for all strategies τ we have P
σ,τ
s (Φ0) = 1. Note that

for every ǫ > 0 we have Φ0 ⊆ lim infk→∞Φk,ǫ and hence we have P
σ,τ
s (lim infk→∞Φk,ǫ) = 1. By Fatou’s

lemma [2] we know that for an event sequence Eℓ we have that lim infℓ→∞ P(Eℓ) ≥ P(lim infℓ→∞ Eℓ); and
hence it follows that lim infk→∞ P

σ,τ
s (Φk,ǫ) = 1.

Lemma 2. Let G be a stochastic mean-payoff parity game with state space S and such that the largest
priority d in G is even. Let X = AttrMax(S(d),G) and Y = S \X. All states in G are almost-sure winning
for player Max with the mean-payoff parity objective Mean∩Par if and only if:

1. all states in G are almost-sure winning for the mean-payoff objective Mean for Max, and

2. all states in G[Y ] are almost-sure winning for the mean-payoff parity objective Mean∩Par for Max.

Proof. Let G satisfy the conditions of the lemma. We first show that all states in G are almost-sure winning
for Max for the objective Mean∩Par. Let σSub be an almost-sure winning strategy for Mean∩Par in the
subgame G[Y ] induced by Y , let σAttr be a positional positive-attractor strategy to S(d) in G, and let
σMean be an almost-sure winning strategy for Mean in G. Let W = maxs,s′∈S |rwd(s, s

′)| be the largest
absolute reward and for every j > 0, let ǫj = 1

j
and let Kj = max

{

kǫj , j
2 ·W

}

where kǫj is defined in
Lemma 1.

The strategy σ that Max uses is played in rounds numbered 1, 2, · · · , and at round i, the strategy σ is
defined as follows:

Phase 1: (Mean-payoff phase). Let j be the length of the current play prefix until the end of phase 3 of
round i− 1; then play according to the positional strategy σMean for Kj steps. Switch to Phase 2.
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Phase 2: (Subgame phase). While the current play ρ is in Y , let ρ′ be the suffix of ρ obtained by
ignoring the prefix of ρ up to the end of Phase 1 of the current round. Play σSub(ρ

′). If the play
leaves Y (and thus reaches X), then switch to Phase 3.

Phase 3: (Attractor phase). Play σAttr for at most |S| steps, or until a state with priority d is reached,
or the positive attractor X is left. Switch to Phase 1 in round i+ 1.

Formally, define the function Upd : S+ → {Sub,Attr,MeanPh}×N that maps play prefixes ρ to a pair
Upd(ρ) = (m, c) where m is the current phase, and c is the number of steps already spent in phase m.
The definition is inductive. For a play ρ = s where s ∈ S, define

Upd(s) =

{

(Attr, 0) if s ∈ X

(Sub, 0) if s 6∈ X

Assume that Upd(ρ) = (m, c) is defined for a play prefix ρ (note that |ρ| − c is the position in ρ of the
last switch to current mode m), and for all s ∈ S define:

Upd(ρ · s) =



































































(Attr, c+ 1) if m = Attr∧ s ∈ X ∧ c < |S| ∧ χ(s) 6= d

(MeanPh, 0) if m = Attr∧ (s 6∈ X ∨ c = |S| ∨ χ(s) = d)

(MeanPh, c+ 1) if m = MeanPh ∧ c < K|ρ|−c

(Attr, 0) if m = MeanPh ∧ c = K|ρ|−c ∧ s ∈ X

or m = Sub∧ s ∈ X

(Sub, 0) if m = MeanPh ∧ c = K|ρ|−c ∧ s 6∈ X

(Sub, c+ 1) if m = Sub∧ s 6∈ X

We are now ready to define the strategy that Max plays in G.

σ(s0 · · · sj) =



















σSub(sj−c · · · sj) if Upd(s0 · · · sj) = (Sub, c)

σAttr(sj) if Upd(s0 · · · sj) = (Attr, ·)

σMean(sj) if Upd(s0 · · · sj) = (MeanPh, ·).

We show that σ is almost-sure winning for the Mean∩Par objective. Consider the following events A
and B:

A = {s0s1 · · · | ∃J ≥ 0 · ∀j ≥ J : Upd(s0 · · · sj) = (Sub, ·)} ,

B = {s0s1 · · · | ∃
∞j ≥ 0 : Upd(s0 · · · sj) = (Attr, 0)} .

Intuitively, A denotes that from some point on the play remains only in the subgame Y , and B denotes
that the set X (positive attractor to priority d) is visited infinitely often. Let τ be a strategy for Min,
then any play consistent with (σ, τ) belongs to A ∪B and since A ∩B = ∅ we have

Pσ,τ
s (A ∪B) = Pσ,τ

s (A) + Pσ,τ
s (B) = 1.

We now consider two cases to establish that σ is almost-sure winning.
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1. (Under event A). Observe that both parity and mean-payoff objectives are independent of finite
prefixes, and if a play belongs to A, then the finite prefix of the play after which the play only visits
states in Y does not change the mean-payoff nor the parity objective. Since σSub is almost-sure
winning in the subgame induced by Y , it follows that for all s ∈ S and all strategies τ of player
Min in G we have P

σ,τ
s (Mean∩Par | A) = 1 (if Pσ,τ

s (A) 6= 0).

2. (Under event B). We now reason under the event B and show that both the parity and the mean-
payoff objectives are satisfied almost-surely. We first show that the parity objective is satisfied
almost-surely. Consider an arbitrary strategy τ for player Min in G and a state s ∈ S.

Parity objective almost-surely. Given the event B, the strategy is in attractor mode infinitely often.
Given the strategy is in the attractor mode (Attr, 0), the probability to reach a priority-d state
within the next |S| steps after the attractor mode starts is at least x = (pmin)

|S| > 0, where pmin is
the minimum positive transition probability (i.e., pmin = min {δ(s, a)(t) > 0 | s, t ∈ S, a ∈ A}). It
follows that if the strategy is switching k times to the attractor mode (Attr, 0), then the probability
not to visit the priority-d set is at most (1 − x)k. The event B ensures that the strategy is in the
attractor mode infinitely often, and thus the probability that given the event B after some point
a priority d state is not visited at all is limk→∞(1 − x)k = 0. Hence given event B, the best even
priority d is visited infinitely often almost-surely, ensuring that the parity objective is satisfied, that
is for all s ∈ S and all strategies τ of player Min in G we have P

σ,τ
s (Par | B) = 1 (if Pσ,τ

s (B) 6= 0).

In other words, given that the positive attractor to a set T is visited infinitely often, it follows
that the set T is visited infinitely often with probability 1, and we refer to this property as the
almost-sure positive attractor property.

Mean-payoff objective almost-surely. We now prove that the mean-payoff objective is almost-surely
satisfied. Given the event B, the strategy σ is in the mean-payoff phase infinitely often. Consider
the finite prefixes of play ρ = s0 · · · sj+1 consistent with (σ, τ) that are in the mean-payoff phase
for the first time in the current round.

Then by the definition of the strategy σ, every play prefix ρ′ = ρ ·sj+1 · · · sj+i consistent with (σ, τ)
that extends ρ, for all 0 < i ≤ Kj , is in the mean-payoff phase (i.e., Upd(ρ

′) = (MeanPh, ·)). The
sum of the rewards for all prefixes of length j is at least −j ·W and then applying Lemma 1 we
have

Pσ,τ
s











s0s1 · · · |
1

j +Kj

·

j+Kj
∑

i=0

rwd(si, si+1) ≥ −
ǫj ·Kj + j ·W

j +Kj







| Cone(ρ)



 ≥ 1− ǫj

Observe that by the choice of Kj (that Kj ≥ j2 ·W ) and ǫj =
1
j
we have −

ǫj·Kj+j·W
j+Kj

≥ −
ǫj ·Kj

Kj
−

j·W
j2·W

≥ −2
j
. Consider the function f that given a number ℓ returns the maximum number j such

that j +Kj ≤ ℓ. Note that f is a non-decreasing function and as ℓ tends to ∞, also f(ℓ) tends to
∞. Given the event B, there are infinitely many prefixes ρ consistent with (σ, τ) that are in the
mean-payoff phase for the first time in the current round. Hence we have

lim sup
ℓ→∞

Pσ,τ
s

({

s0s1 · · · |
1

ℓ
·

ℓ
∑

i=0

rwd(si, si+1) ≥ −
2

f(ℓ)

}

| B

)

≥ lim sup
ℓ→∞

1−
1

f(ℓ)
= 1.

By Fatou’s lemma [2] we know that for an event sequence Eℓ we have that lim supℓ→∞ P(Eℓ) ≤
P(lim supℓ→∞ Eℓ). Hence an application of the Fatou’s lemma gives us that

Pσ,τ
s

(

lim sup
ℓ→∞

{

s0s1 · · · |
1

ℓ
·

ℓ
∑

i=0

rwd(si, si+1) ≥ −
2

f(ℓ)

}

| B

)

= 1.
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Let ϕℓ =
{

s0s1 · · · |
1
ℓ
·
∑ℓ

i=0 rwd(si, si+1) ≥ −
2

f(ℓ)

}

and ϕ = lim supℓ→∞ ϕℓ. Consider a play ρ =

s0s1 · · · ∈ ϕ. Fix ǫ > 0, and consider ℓ0 such that 2
f(ℓ0)

≤ ǫ. Since ρ ∈ ϕ, there exists infinitely

many ℓ ≥ ℓ0 such that ρ ∈ ϕℓ, and hence for infinitely many ℓ we have 1
ℓ
·
∑ℓ−1

i=1 rwd(si, si+1) ≥ −ǫ.

Hence lim supℓ→∞
1
ℓ
·
∑ℓ−1

i=1 rwd(si, si+1) ≥ −ǫ. Since this holds for all ǫ > 0, it follows that

lim supℓ→∞
1
ℓ
·
∑ℓ−1

i=1 rwd(si, si+1) ≥ 0. In other words, we have ϕ ⊆ Mean and hence for all s ∈ S

and all strategies τ of player Min in G we have P
σ,τ
s (Mean | B) = 1 (if Pσ,τ

s (B) 6= 0).

Thus given either event A or B, the mean-payoff parity objective is satisfied almost-surely. Note that
if one of the event has probability 0, then the other has probability 1. It follows that the mean-payoff
parity objective is satisfied almost-surely. This concludes one direction of the proof that if the conditions
of the lemma are satisfied, then almost-sure winning for Mean∩Par is ensured with probability 1.

We now prove the converse. Consider a game G such that all states in its state space S are almost-
sure winning for the objective Mean∩Par for player Max. First, observe that since Mean∩Par ⊆ Mean,
almost-sure winning forMean∩Par implies almost-sure winning forMean. This implies the first condition.
Second, observe that Y is a trap for player Max. If player Max does not have an almost-sure winning
strategy for a non-empty set Z ⊆ Y in the subgame G[Y ], then player Max does not have an almost-sure
winning strategy from Z in G, which contradicts that all states in G are almost-sure winning. This
establishes the second condition of the lemma and completes the proof.

We now present a characterization of the certificate for almost-sure winning when the largest priority
is odd.

Lemma 3. Let G be a stochastic mean-payoff parity game with state space S, and such that the largest
priority d in G is odd. All states in G are almost-sure winning for the objective Mean∩Par if and only
if there exists a partition {Zi}1≤i≤k of S and non-empty sets Ri, Ui for i = 1, . . . , k, and Uk+1 such that
U1 = S and for all 1 ≤ i ≤ k:

• Ri ⊆ Ui \ Ui(d) is a trap for Min in G[Ui], and all states in Ri are almost-sure winning for the
objective Mean∩Par in G[Ui],

• Zi = AttrMax(Ri,G[Ui]),

• Ui+1 = Ui \ Zi.

Proof. First, consider a stochastic game G and sets Zi, Ri, Ui as defined in the statement of the lemma.
Note that the sets {Zi}1≤i≤k are indeed non-overlapping, and since they form a partition of S, we have
Uk+1 = ∅.

Consider the following informal description of a strategy σ for Max: given the current play prefix ρ,
(a) if Last(ρ) ∈ Ri for some 1 ≤ i ≤ k, then consider the suffix ρ′ of ρ obtained by ignoring the prefix
of ρ up to the last state that is not in Ri, and play σi(ρ

′) where σi is an almost-sure winning strategy
for objective Mean∩Par in Ri; (b) otherwise, we have Last(ρ) ∈ Zi for some 1 ≤ i ≤ k, and we play
according to the positive-attractor strategy in Zi. We show that this strategy σ is almost-sure winning
for the objective Mean∩Par from every state in G.

For i = 1, . . . , k, let

Ai = {s0s1 · · · ∈ Sω | ∃J ≥ 0 · ∀j ≥ J : sj ∈ Ri}

be the event that from some point on the play remains in the set Ri. Under event Ai, since the strategy
of player Max plays in Ri according to an almost-sure winning strategy for Mean∩Par, and since both
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parity and mean-payoff objectives are independent of finite prefixes, it follows that for all s ∈ S, and all
strategies τ of player Min in G we have P

σ,τ
s (Mean∩Par | Ai) = 1 (if Pσ,τ

s (Ai) 6= 0).
Now, we show that the strategy σ of player Max is almost-sure winning for the event

⋃

1≤i≤k Ai, that
is with probability 1 the play will remain forever in some Ri. Intuitively, this is because if a play visits
infinitely often the positive attractor of R1 (namely, Z1), then the set R1 is reached with probability 1
and never left since it is a trap in G; on the other hand, if a play eventually remains outside Z1, then from
some point on the play remains always in the subgame G[U2] (recall that U2 = S \Z1) and then visiting
Z2 infinitely often implies reaching and staying forever in R2 with probability 1. Repeating this argument
k times shows that in all cases, the play has to remain forever in some Ri with probability 1. Formally,
fix an arbitrary state s ∈ S, and a strategy τ of player Min in G, and we show that Pσ,τ

s (
⋃

1≤i≤k Ai) = 1.
Let B1 = {s0s1 · · · ∈ Sω | ∃∞j ≥ 0 : sj ∈ Z1} and for i = 2, . . . , k, let

Bi = {s0s1 · · · ∈ Sω | ∃∞j ≥ 0 : sj ∈ Zi} \
⋃

l<i

Bl

be the event that Zi is visited infinitely often, and the states in Z1 ∪ · · · ∪ Zi−1 are visited only finitely
often. Under event B1, by the almost-sure positive attractor property presented in the proof of Lemma 2,
the set R1 is reached with probability 1 since the positive attractor Z1 of R1 is visited infinitely often.
Moreover, once the play is in R1, it remains there forever (by definition of the strategy σ, and because
R1 is a trap for the player Min in G). Thus, we have P

σ,τ
s (A1 | B1) = 1 (if P

σ,τ
s (B1) 6= 0). By a

similar argument for i = 2, . . . , k, under event Bi the play eventually remains in the subgame G[Ui] since
Ui = S \

⋃

l<i Zl, and it follows that P
σ,τ
s (Ai | Bi) = 1 (if Pσ,τ

s (Bi) 6= 0). Finally, since {Zi}1≤i≤k is a
partition of S we have P

σ,τ
s (
⋃

i Bi) = 1, and thus P
σ,τ
s (
⋃

1≤i≤k Ai) = P
σ,τ
s (
⋃

1≤i≤k Ai |
⋃

1≤i≤k Bi) = 1
which concludes the first part of the proof.

Second, we show that if all states are almost-sure winning in G for the objective Mean∩Par, then
all sets defined in the statement of the lemma can be constructed, and in particular the sets Zi form
a partition of the state space. First, let X = AttrMin(S(d),G) be the positive attractor to priority-d
states for player Min in G, and let Y = S \X. We show that the set R of almost-sure winning states
for objective Mean∩Par in the subgame G[Y ] for player Max is non-empty. Towards a contradiction,
assume that R = ∅. It follows that for all states s ∈ Y and all strategies σ for player Max, there exists
a strategy τ for Min such that P

σ,τ
s (Mean∩Par) < 1. Given s and σ, consider the strategy of Min that

plays like τ in G[Y ] (ignoring the play prefix up to the last state not in Y ), and plays the positive-
attractor strategy in X. Then, consider the events A = {s0s1 · · · ∈ Sω | ∃∞j ≥ 0 : sj ∈ X } and
B = {s0s1 · · · ∈ Sω | ∃J ≥ 0 · ∀j ≥ J : sj ∈ Y }. Under event A, by the almost-sure positive attractor
property (see the proof of Lemma 2) the odd priority d is visited infinitely often with probability 1 and
since d is the largest priority in G, the parity objective is violated. Under event B, since mean-payoff
parity objectives are prefix-independent, the strategy of player Min in the subgame G[Y ] ensures that with
positive probability the mean-payoff parity objective is violated. Clearly A∩B = ∅ and P

σ,τ
s (A∪B) = 1,

which implies that Pσ,τ
s (Mean∩Par) < 1. This is in contradiction with the assumption that all states in

G are almost-sure winning for Max, and thus shows that R 6= ∅.
Let R1 = R and Z1 = AttrMax(R1,G). If Z1 = S, then the result of the lemma follows (take k = 1).

Otherwise, we can use the same argument as above in the subgame G[S \ Z1] = G[U2], and construct
a non-empty set R2 ⊆ U2 satisfying the conditions of the lemma. Note that Z1 6= ∅ since R1 6= ∅ and
thus G[S \ Z1] has less states than G. It follows that repeating this construction at most k = |S| times
achieves the result.
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4 Algorithm

In this section we present an algorithm for the almost-sure winning problem. Let G be a stochastic
mean-payoff parity game with largest priority d. Algorithm 1 computes the set R of almost-sure winning
states forMax, by iterations that, from the state space S of G remove positive winning states of playerMin.
When a fixpoint is obtained, we show that it satisfies the characterization of Lemma 2 and Lemma 3,
hence it is the almost-sure winning set. Starting with R = S (line 1), the algorithm considers two cases:

(a) If d is even (see also Figure 3). First, compute the almost-sure wining region U for the Mean

objective (line 6) in G[R]. Compute the positive attractor X for player Max to the set of states
with priority d in U , and let Y be the complement (line 8). Recursively compute the almost-
sure winning region R′ in G[Y ] for the mean-payoff parity objective (line 9), and iterate (until
R′ = Y ) in the subgame induced by the complement U \ Z of the player-Min positive attractor
Z = AttrMin(Y \R

′,G[U ]) (i.e., removing some positive winning states for player Min).

(b) If d is odd (see also Figure 4). In each iteration of the main loop (line 14), the algorithm computes
a set of positive winning states for player Min as the positive attractor (for Min) to the set U

computed in the inner loop (lines 16-21). The inner loop computes in R′ the almost-sure winning
states of player Max in the subgame induced by the complement Y of player-Min positive attractor
to priority d, using a recursive call (line 19). The positive attractor for Max to R′ is removed
(line 21), and the next iteration starts (if R′ 6= ∅) with a strictly smaller state space U . The main
loop terminates when there is nothing to remove (U = ∅).

Correctness and termination. The correctness and termination of Algorithm 1 is established using an
argument by induction on the depth of the recursive calls, which are always invoked with games that
have at least one less priority than the current game. Empty games are solved as the base case (line 2).
First note that when the algorithm starts, R is a trap for player Min and thus it induces a subgame, and
this property is maintained throughout the algorithm.

• In case (a) (d is even), the set Y induces a subgame, and therefore if R′ = Y , then the conditions
of Lemma 2 are satisfied in G[U ] (namely, all states in G[U ] are almost-sure winning for Mean, and
all states in G[Y ] are almost-sure winning for Mean∩Par by induction hypothesis) and it follows
that R = U is the almost-sure winning set. Otherwise R′ ⊂ Y , and the complement Y \R′ and its
positive attractor Z for player-Min are positive winning for player Min. Thus all states in Z can
be removed and the assignment R← U \ Z yields a strictly smaller subgame than in the previous
iteration (and R is indeed a trap for player Min). Hence, there are at most |S| iterations to obtain
the almost-sure winning set in variable R.

• In case (b) (d is odd), we show that the set U computed by the inner loop (lines 16-21) contains
states that are positive winning player Min, and therefore its positive attractor (for Min) can be
removed from R (as done at line 22). The inner loop computes in R′, using a recursive call, the
set of almost-sure winning states of player Max in the subgame induced by the complement Y of
player-Min positive attractor to priority d (this step is correct by induction hypothesis). After
removing the positive attractor for Max to R′ (line 21), we get a strictly smaller state space U , thus
the inner loop terminates after at most k ≤ |S| iterations. Now if R′ = ∅, then in the subgame G[Y ]
all states are positive winning for player Min. It follows that against all strategies of player Max

in G[U ] = G[X ∪ Y ], player Min would play according to the positive-attractor strategy in X, and
according to their positive-winning strategy in Y (ignoring the finite prefix up to the last state not
in Y ). Analogous arguments as in the proof of Lemma 3 show that this ensures the mean-payoff
parity objective is violated with positive probability (actually with probability 1) and thus the
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states in U are even almost-sure winning for player Min. Therefore, the positive attractor for Min

to U can be removed from R before we iterate (line 22). Note that the condition U 6= ∅ ensures
that the variable R has strictly less states in the next iteration, and thus the outer loop terminates
after at most |S| iterations. Finally when U = ∅, the value of the set-variables R′, Z, U computed
in the k iterations of the inner loop satisfy the conditions of Lemma 3 (in particular the sets Z

form a partition of R since U = ∅). It follows that R is the almost-sure winning set.

The complexity of Algorithm 1 is exponential in the number of priorities in the game, like the basic
algorithm for parity games [30]. The key differences to the basic algorithm for parity games are as follows:
(i) in our algorithm there is an extra nested loop when the maximum priority is odd; and (ii) in addition
to the basic attractor computation for parity games we also need to compute the almost-sure winning
set for stochastic mean-payoff games.

Theorem 1. Given a stochastic mean-payoff parity game G with n states, probabilistic transition function
δ, priorities in {0, 1, . . . , d − 1}, and largest absolute reward W , Algorithm 1 computes the almost-sure
winning region of G in time O(d · n2d · MeanGame(n, |δ|,W )) where MeanGame(n, |δ|,W ) is the time
complexity of solving the almost-sure winning problem for stochastic games with only a mean-payoff
objective.

Proof. The correctness of Algorithm 1 follows from the key arguments given above. Denote by
T (n, d, |δ|,W ) the running time of Algorithm 1, where n, d, |δ|,W are as defined in the statement of
the lemma. Then, it is easy to check that T (n, 1, |δ|,W ) ∈ O(MeanGame(n, |δ|,W )).

If the largest priority in G is even, then as argued before, the loop (lines 5-12) is executed at most
n times, and each iteration requires to compute (1) the almost-sure winning region for a mean-payoff
game with n states, (2) attractors (computation time linear in the number of edges, hence in O(n2)),
and (3) the almost-sure winning region for a mean-payoff parity game with at most n states and d − 1
priorities. Therefore, we have

T (n, d, |δ|,W ) ∈ O(n · (MeanGame(n, |δ|,W ) + n2 + T (n, d− 1, |δ|,W ))).

If the largest priority in G is odd, then as argued before, the nested loops (lines 14-23 and lines 16-
21) are executed at most n times each (thus O(n2) iterations), and each iteration requires attractor
computation (in O(n2)) and a recursive call for solving a mean-payoff parity game with at most n states
and d− 1 priorities. Therefore, we have

T (n, d, |δ|,W ) ∈ O(n2 · (n2 + T (n, d− 1, |δ|,W ))).

It follows that in all cases,

T (n, d, |δ|,W ) ∈ O(A(n,W ) +B(n) · T (n, d− 1, |δ|,W )))

where A(n,W ) = n4 + n2 ·MeanGame(n, |δ|,W ) and B(n) = n2.
A simple calculation then shows that, for all k < d,

T (n, d, |δ|,W ) ∈ O(k ·A(n,W ) ·B(n)k−1 +B(n)k · T (n, d− k, |δ|,W )))

and therefore (using k = d− 1) we have T (n, d, |δ|,W ) ∈ O(d · n2d ·MeanGame(n, |δ|,W )).

Note that MeanGame(n, |δ|,W ) ∈ |A|n · Poly(n, |δ|,W ) by simply enumerating over all positional
strategies and then solving in polynomial time the resulting MDP obtained by fixing the positional
strategy.
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Figure 3. View of Algorithm 1 at line 11 (largest
priority even).
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U = R \ (Z1 ∪ Z2)

Figure 4. View of Algorithm 1 at line 21 (largest
priority odd).

Algorithm 1: SolveMeanPayoffParityGame

Input : A stochastic mean-payoff parity game G with state space S.

Output: The set of almost-sure winning states for Max in G (for objective Mean∩Par).

begin

1 R← S /* over-approx. of pl.-Max almost-sure winning states */

2 if R = ∅ then return ∅
3 Let d be the largest priority in G.
4 if d is even then

5 repeat

6 Let U be the almost-sure winning region for Max in G[R] for Mean

7 X ← AttrMax(U(d),G[U ])
8 Y ← U \X
9 R′ ← SolveMeanPayoffParityGame(G[Y ])

10 Z ← AttrMin(Y \R
′,G[U ])

11 R← U \ Z

until R′ = Y

12 return R

13 if d is odd then

14 repeat

15 U ← R /* over-approx. of pl.-Min pos. winning states */

16 repeat

17 X ← AttrMin(U(d),G[U ])
18 Y ← U \X
19 R′ ← SolveMeanPayoffParityGame(G[Y ])
20 Z ← AttrMax(R

′,G[U ])
21 U ← U \ Z

until R′ = ∅
22 R← R \ AttrMin(U,G)

until U = ∅
23 return R

end
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5 Computational Complexity

In this section we establish the NP∩ coNP complexity bound for the almost-sure winning problem.

5.1 The NP Membership

Although infinite-memory strategies are necessary for player Max to win mean-payoff parity games
almost surely [16], we show that the almost-sure winning problem can be solved in NP by guessing a
polynomial-size decomposition of the state space along with positional strategies that allow to construct
an almost-sure winning strategy, possibly with infinite memory.

Lemma 4. The almost-sure winning problem for stochastic mean-payoff parity games is in NP.

Proof. We present a nondeterministic polynomial-time algorithm to decide the almost-sure winning prob-
lem that, given a stochastic mean-payoff parity game G with n states, probabilistic transition function
δ, largest priority d, and largest absolute reward W , runs in time Tnd(n, d, |δ|,W ) ≤ (d + 1) · (n2 +
MeanMDP(n, |δ|,W )) where MeanMDP(n, |δ|,W ) is the time complexity of solving almost-sure winning
problem for MDPs with n states and largest absolute reward W , with only mean-payoff objectives. Since
MeanMDP(n, |δ|,W ) is bounded by a polynomial [7], the result follows.

The proof is by induction on the largest priority d in the game G. Given an initial states s, the
algorithm guesses a trap U for player Min such that s ∈ U (which can be done in time O(n2)), and
checks that all states in G[U ] are almost-sure winning for player Max. Note that since U is a trap for
player Min in G, we can use the characterizations of Lemma 2 and Lemma 3 in the subgame G[U ] (if all
states in G[U ] are almost-sure winning, then all states of U are almost-sure winning in G as well).

First, if d = 0 then the algorithm guesses a positional strategy for player Max in U , and checks
that it is almost-sure winning for the mean-payoff objective. It is known that positional strategies are
sufficient in stochastic mean-payoff games [7], and the verification procedure has to solve the almost-
sure winning problem for mean-payoff objective in MDPs, thus it runs in time Tnd(n, 0, |δ|,W ) ≤ n2 +
MeanMDP(n, |δ|,W ).

Second, consider that Tnd(n, d, |δ|,W ) ≤ (d+ 1) · (n2 +MeanMDP(n, |δ|,W )) for all stochastic games
with largest priority d and we show that the same relation holds for stochastic games with largest priority
d+ 1. We consider two cases:

• If the largest priority d+1 is even. According to Lemma 2, the algorithm can (a) guess a positional
strategy for player Max in G[U ], and check that it is almost-sure winning from all states in U

for the mean-payoff objective, and (b) compute the positive attractor X = AttrMax(U(d),G[U ])
for player Max to the states with priority d + 1, and check that all states in the subgame G[U \
X] are almost-sure winning for the mean-payoff parity objective in time at most (d + 1) · (n2 +
MeanMDP(n, |δ|,W )) by the induction hypothesis (since the largest priority in G[U \X] is at most
d).

It follows that the running time Tnd(n, d + 1, |δ|,W ) of the algorithm is at most
MeanMDP(n, |δ|,W )+n2+(d+1)·(n2+MeanMDP(n, |δ|,W )) = (d+2)·(n2+MeanMDP(n, |δ|,W )).

• If the largest priority d + 1 is odd. According to Lemma 3, the algorithm can guess k ≤ |U | sets
Ri (i = 1, . . . , k), and check that for the sets Ui and Zi defined by U1 = U , and for 1 ≤ i ≤ k by
Zi = AttrMax(Ri,G[Ui]), and Ui+1 = Ui \Zi, the sets Ri are traps for player Min in G[Ui], all states
in Ri are almost-sure winning for objective Mean∩Par in G[Ui], and the sets Zi form a partition of
U .
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Let ni = |Ri|. By the induction hypothesis, the running time Tnd(n, d+ 1, |δ|,W ) of the algorithm
is at most

k
∑

i=1

n2
i + Tnd(ni, d, |δ|,W ) ≤

(

k
∑

i=1

ni

)2

+ Tnd

(

k
∑

i=1

ni, d, |δ|,W

)

and since
∑k

i=1 ni ≤ n, we get Tnd(n, d + 1, |δ|,W ) ≤ n2 + (d + 1) · (n2 +MeanMDP(n, |δ|,W )) ≤
(d+ 2) · (n2 +MeanMDP(n, |δ|,W ))

Hence the announced result follows.

5.2 The coNP Membership

We show that positional strategies are sufficient for player Min to win positively in stochastic mean-
payoff parity games. Using the fact that Algorithm 1 maintains in variable R an over-approximation of
the almost-sure winning set for player Max, we construct a positional strategy for player Min from all
states that are removed from R by the algorithm.

Lemma 5. To win positively in stochastic mean-payoff parity games, positional strategies are sufficient
for player Min.

Proof. We proceed by induction on the number of priorities in the game. First, if the game contains
only one priority, then either the unique priority is even and in order to win player Min has to falsify the
mean-payoff objective with positive probability which can be done using a positional strategy [7], or the
unique priority is odd and player Min wins with an arbitrary positional strategy.

Second, assume by induction that positional strategies are sufficient for player Min to win positively in
all stochastic mean-payoff parity games with set of priorities in {0, 1, . . . , d−1}, and let G be a stochastic
mean-payoff parity game with priorities {0, 1, . . . , d}. Consider the execution of Algorithm 1 on G and
the computation of the almost-sure winning set R.

• If d is even, then if a state s is removed from R by Algorithm 1, then either: (i) s ∈ S \U (line 6),
and then there exists a positional strategy for Min from s to violate the mean-payoff objective with
positive probability [7]; (ii) s ∈ Y \ R′ (line 8 and line 9), and then since G[Y ] is a subgame with
priorities in {0, 1, . . . , d − 1}, by the induction hypothesis there exists a positive winning strategy
for player Min from all states in Y \R′; (iii) s ∈ AttrMin(Y \R

′,G[U ]) (line 10), and the positional
positive-attractor strategy for player Min ensures to reach Y \ R′ with positive probability, and
from there player Min is positive winning according to (ii).

• If d is odd, then the states removed from R by Algorithm 1 are in the positive attractor for
player Min to the set U computed by the inner loop (line 22). Hence it suffices to present a positive
winning strategy for player Min in U . Note that since U is obtained when R′ = ∅, it follows that
U = X ∪ Y where X is the positive attractor for player Min to the odd priority d, and Y = U \X
is the complement that contains no priority-d state (line 17 and 18). Moreover, all states in Y are
positive winning for player Min. In X, fix the positional positive-attractor strategy for player Min,
and in Y , by the induction hypothesis, there is a positional positive winning strategy for Min. By
analogous argument as in the proof of Lemma 3, this strategy of player Min violates the mean-payoff
parity objective with positive probability (in fact with probability 1).

Hence, the lemma follows.
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Note that positional strategies are also sufficient for player Min to win almost-surely in stochastic
mean-payoff parity games (i.e., to violate the mean-payoff parity objective with probability 1 regardless
of the strategy of player Max). This follows from Lemma 5 and the following general argument for tail
objectives with positional positive-winning strategies. First, we can construct the almost-sure winning
set of player Min as follows. Given the almost-sure winning set U for player Max in a game G, construct
its positive-attractor X = AttrMax(U,G). Clearly all states in X are positive winning for player Max,
and thus are not almost-sure winning for player Min. Iterate the same construction in the subgame
G[S \X] until the almost-sure winning set U is empty. At that point, the remaining subgame is a trap
for player Max in which all states are positive winning for player Min. As mean-payoff parity is a tail
objective, it follows that the states in the remaining subgame is the set of almost-sure winning states
for player Min, and a positional positive-winning strategy (that exists by Lemma 5) is also almost-sure
winning for player Min [11]. By Remark 1 it follows that positional optimal strategies exist for player Min.
We conclude with the following result.

Theorem 2. The following assertions hold: (1) Positional optimal strategies exist for player Min in
stochastic mean-payoff parity games (2) The almost-sure winning and the value-strategy problem for
stochastic mean-payoff parity games can be decided in NP∩ coNP.

Proof. We already established the first item. We now argue the second item for almost-sure winning, and
the result for the value-strategy problem follows from Remark 1. The NP bound follows from Lemma 4.
The coNP bound follows from the fact that player Min has positional positive winning strategies (by
Lemma 5), and after guessing a positional strategy for player Min, we obtain an MDP for which deciding
almost-sure winning for mean-payoff parity objectives can be done in polynomial time [13].

Remark 2. The complexity result of Theorem 2 matches the best known complexity for stochastic mean-
payoff games [24], stochastic parity games [17] (also see [1] for relationship of stochastic mean-payoff and
stochastic parity games), and (non-stochastic) mean-payoff parity games [14].

Concluding remarks. In this work we established the computational and strategy complexity of the
value-strategy problem for 21

2 -player mean-payoff parity games. In addition we presented an algorithm
for computing the almost-sure winning states which requires the computation of the almost-sure winning
states for 21

2 -player mean-payoff games. Improved algorithmic solutions for the computation of the
almost-sure winning states in 21

2 -player mean-payoff games is an interesting question. Our algorithm
for almost-sure winning and the general technique mentioned in Remark 1 for 21

2 -player games with
tail objectives provide an exponential-time algorithm for the value-strategy problem. Whether more
specialized algorithms (such as strategy-iteration algorithms) can be developed for the value-strategy
problem in 21

2 -player mean-payoff parity games is another interesting algorithmic question.
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