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Two-player games on graphs provide the theoretical framework for many important problems such
as reactive synthesis. While the traditional study of two-player zero-sum games has been extended to
multi-player games with several notions of equilibria, they are decidable only for perfect-information
games, whereas several applications require imperfect-information games.

In this paper we propose a new notion of equilibria, called doomsday equilibria, which is a
strategy profile such that all players satisfy their own objective, and if any coalition of players deviates
and violates even one of the players objective, then the objective of every player is violated.

We present algorithms and complexity results for deciding the existence of doomsday equilibria
for various classes of ω-regular objectives, both for imperfect-information games, and for perfect-
information games. We provide optimal complexity bounds for imperfect-information games, and in
most cases for perfect-information games.

1 Introduction

Two-player games on finite-state graphs with ω-regular objectives provide the framework to study many
important problems in computer science [22, 20, 9]. One key application area is synthesis of reactive
systems [2, 21, 19]. Traditionally, the reactive synthesis problem is reduced to two-player zero-sum
games, where vertices of the graph represent states of the system, edges represent transitions, one player
represents a component of the system to synthesize, and the other player represents the purely adversarial
coalition of all the other components. Since the coalition is adversarial, the game is zero-sum, i.e., the
objectives of the two players are complementary. Two-player zero-sum games have been studied in great
depth in literature [15, 9, 11].

Instead of considering all the other components as purely adversarial, a more realistic model is to
consider them as individual players each with their own objective, as in protocol synthesis where the
rational behavior of the agents is to first satisfy their own objective in the protocol before trying to be
adversarial to the other agents. Hence, inspired by recent applications in protocol synthesis, the model of
multi-player games on graphs has become an active area of research in graph games and reactive synthe-
sis [1, 10, 23]. In a multi-player setting, the games are not necessarily zero-sum (i.e., objectives are not
necessarily conflicting) and the classical notion of rational behavior is formalized as Nash equilibria [18].
Nash equilibria perfectly capture the notion of rational behavior in the absence of external criteria, i.e.,
the players are concerned only about their own payoff (internal criteria), and they are indifferent to the
payoff of the other players. In the setting of synthesis, the more appropriate notion is the adversarial
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Figure 1: A simple example in the domain of Fair Exchange Protocols

external criteria, where the players are as harmful as possible to the other players without sabotaging
with their own objectives. This has inspired the study of refinements of Nash equilibria, such as secure
equilibria [4] (that captures the adversarial external criteria), rational synthesis [10], and led to several
new logics where the non-zero-sum equilibria can be expressed [5, 8, 17, 24, 16]. The complexity of
Nash equilibria [23], secure equilibria [4], rational synthesis [10], and of the new logics has been studied
recently [5, 8, 17, 24].

Along with the theoretical study of refinements of equilibria, applications have also been developed
in the synthesis of protocols. In particular, the notion of secure equilibria has been useful in the synthe-
sis of mutual-exclusion protocol [4], and of fair-exchange protocols [13, 3] (a key protocol in the area
of security for exchange of digital signatures). One major drawback that all the notions of equilibria
suffer is that the basic decision questions related to them are decidable only in the setting of perfect-
information games (in a perfect-information games the players perfectly know the state and history of
the game, whereas in imperfect-information games each player has only a partial view of the state space
of the game), and in the setting of multi-player imperfect-information games they are undecidable [19].
However, the model of imperfect-information games is very natural because every component of a sys-
tem has private variables not accessible to other components, and recent works have demonstrated that
imperfect-information games are required in synthesis of fair-exchange protocols [12]. In this paper, we
provide the first decidable framework that can model them.

We propose a new notion of equilibria which we call doomsday-threatening equilibria (for short,
doomsday equilibria). Given n objectives ϕ1, . . . ,ϕn and n strategies Λ1, . . . ,Λn for each of the n players
respectively, the strategy profile Λ = (Λ1, . . . ,Λn) is a doomsday equilibrium if:
(a) all players satisfy their own objectives, that is outcome(Λ)∈ϕi for all 1≤ i≤ n (where outcome(Λ)

is the path obtained according to the strategies in the profile), and

(b) if any coalition of players deviates and violates even one of the players objective, then doomsday
follows (every player objective is violated), that is for all 1 ≤ i ≤ n, for all strategy profiles Λ′ =
(Λ′1, . . . ,Λ

′
n) such that Λ′i = Λi, if outcome(Λ′) 6∈ ϕi, then outcome(Λ′) 6∈ ϕ j for all 1≤ j ≤ n.

Note that in contrast to other notions of equilibria, doomsday equilibria consider deviation by an
arbitrary set of players, rather than individual players. Moreover, in case of two-player non-zero-sum
games they coincide with the secure equilibria [4] where objectives of both players are satisfied.
Example 1. Consider the two trees of Figure 1. They model the possible behaviors of two entities Alice
and Bob that have the objective of exchanging messages: mAB from Alice to Bob, and mBA from Bob
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to Alice. Assume for the sake of illustration that mAB models the transfer of property of a house from
Alice to Bob, while mBA models the payment of the price of the house from Bob to Alice.

Having that interpretation in mind, let us consider the left tree. On the one hand, Alice has as
primary objective (internal criterion) to reach either state 2 or state 4, states in which she has obtained
the money. She has a slight preference for 2 as in that case she received the money while not transferring
the property of her house to Bob, this corresponds to her adversarial external criterion. On the other
hand, Bob would like to reach either state 3 or 4 (similarly with a slight preference for 3). Also, it should
be clear that Alice would hate to reach 3 because she would have transferred the property of her house
to Bob but without being paid. Similarly, Bob would hate to reach 2. To summarize, Alice has the
following preference order on the final states of the protocol: 2 > 4 > 1 > 3, while for Bob the order is
3 > 4 > 1 > 2. Is there a doomsday-threatening equilibrium in this game ? For such an equilibrium to
exist, we must find a pair of strategies that please the two players for their primary objective (internal
criterion): reach {2,4} for Alice and reach {3,4} for Bob. Clearly, this is only possible if at the root
Alice plays ”send mAB”, as otherwise we would not reach {3,4} violating the primary objective of
Bob. But playing that action is not safe for Alice as Bob would then choose ”not send mBA” because
he slightly prefers 3 to 4. It can be shown that the only rational way of playing (taking into account
both internal and external criteria) is for Alice to play ”not send mAB” and for Bob to play ”not send
mBA”. This profile is in fact the only secure equilibrium of the game but this is not what we hope from
such a protocol.

The difficulty in this exchange of messages comes from the fact that Alice is starting the protocol
by sending her part and this exposes her. To obtain a better behaving protocol, one solution is to add
an extra stage after the exchanges of the two messages as shown in the right tree of Figure 1. In this
new protocol, Alice has the possibility to cancel the exchange of messages (in practice this would be
implemented by the intervention of a TTP1). For that new game, the preference orderings of the players
are as follows: for Alice it is 3 > 7 > 1 = 2 = 4 = 6 = 8 > 5, and for Bod it is 5 > 7 > 1 = 2 =
4 = 6 = 8 > 3. Now let us show that there is a doomsday equilibrium in this new game. In the first
round, Alice should play ”send mAB” as otherwise the internal objective of Bob would be violated,
then Bob should play ”send mBA”, and finally Alice should play “OK” to validate the exchange of
messages. This profile of strategies satisfies the first property of a doomsday equilibrium: both players
have reached their primary objective, and no player has an incentive to deviate. Indeed, if Alice deviates
then Bob would play ”not send mBA”, and we obtain a doomsday situation as both players have their
primary objectives violated. If Bob deviates by playing ”not send mBA”, then Alice would cancel the
protocol exchange which again produces a doomsday. So, no player has an incentive to deviate from
the equilibrium and the outcome of the protocol is the desired one: the two messages have been fairly
exchanged. So, we see that the threat of a doomsday brought by the action ”Cancel” has a beneficial
influence on the behavior of the two players. �

Example 2. Figure 2 gives two examples of games with safety and Büchi objectives respectively.
(Safety) Consider the 3-player game arena with perfect information of Figure 2(a) and safety objec-

tives. Unsafe states for each player are given by the respective nodes of the upper part. Assume that the
initial state is one of the safe states. This example models a situation where three countries are in peace
until one of the countries, say country i, decides to attack country j. This attack will then necessarily be
followed by a doomsday situation: country j has a strategy to punish all other countries. The doomsday
equilibrium in this example is to play safe for all players.

1TTP stands for Trusted Third Party.
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Figure 2: Examples of doomsday equilibria for Safety and Büchi objectives

(Büchi) Consider the 3-player game arena with perfect information of Figure 2(b) with Büchi objec-
tives for each player: Player i wants to visit infinitely often one of its “happy” states. The position of the
initial state does not matter. To make things more concrete, let us use this game to model a protocol where
3 players want to share in each round a piece of information made of three parts: for all i ∈ {1,2,3},
Player i knows information (i+1) mod 3 and (i+2) mod 3. Player i can send or not these informations
to the other players. This is modeled by the fact that Player i can decide to visit the happy states of the
other players, or move directly to s(i mod 3)+1. The objective of each player is to have an infinite number
of successful rounds where they get all information.

There are several doomsday equilibria. As a first one, let us consider the situation where for all
i ∈ {1,2,3}, if Player i is in state si, then he alternately moves to the happy states and to s(i mod 3)+1.
This defines an infinite play that visits all the states infinitely often. Whenever some player deviates from
this play, the other players retaliate by always choosing in the future to go to the next s-state instead of
visiting the happy states. Clearly, if all players follow their respective strategy, then all happy states are
visited infinitely often. Now consider the strategy of Player i against two strategies of the other players
that makes him lose. Clearly, the only way Player i loses is when the other two players eventually never
visit their happy states anymore, but then all the players lose.

As a second one, consider the strategies where Player 2 and Player 3 always take their loop but
Player 1 never takes his loop, and such that whenever the play deviates, Player 2 and 3 retialate by
never taking their loops. For the same reasons as before this strategy profile is a doomsday equilibrium.

Note that the first equilibrium requires one bit of memory for each player, to remember if they visit
their s state for the first or second time. In the second equilibrium, only Player 2 and 3 need a bit of
memory. An exhaustive analysis shows that there is no memoryless doosmday equilibrium. �

It should now be clear that multi-player games with doomsday equilibria provide a suitable frame-
work to model various problems in protocol synthesis. In addition to the definition of doomsday equilib-
ria, our main contributions are to present algorithms and complexity bounds for deciding the existence
of such equilibria for various classes of ω-regular objectives both in the perfect-information and in the
imperfect-information cases. Our technical contributions are summarized in Table 1. More specifically:

1. (Perfect-information games). We show that deciding the existence of doomsday equilibria in multi-
player perfect-information games is (i) PTIME-complete for reachability, Büchi, and coBüchi ob-
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objectives safety reachability Büchi co-Büchi parity
PSPACE

perfect information PSPACE-C PTIME-C PTIME-C PTIME-C NP-HARD

CONP-HARD

imperfect information EXPTIME-C EXPTIME-C EXPTIME-C EXPTIME-C EXPTIME-C

Table 1: Summary of the results

jectives; (ii) PSPACE-complete for safety objectives; and (iii) in PSPACE and both NP-hard and
coNP-hard for parity objectives.

2. (Imperfect-information games). We show that deciding the existence of doomsday equilibria in
multi-player imperfect-information games is EXPTIME-complete for reachability, safety, Büchi,
coBüchi, and parity objectives.

In a long version of this paper [6], we also prove that deciding the existence of a doomsday threatening
equilibrium in a game whose objectives are given as LTL formula is 2EXPTIME-complete, but we devise
a Safraless procedure [14] suitable to efficient implementation.

The area of multi-player games and various notions of equilibria is an active area of research, but
notions that lead to decidability in the imperfect-information setting and has applications in synthesis has
largely been an unexplored area. Our work is a step towards it.
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