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Abstract

Two-player games on graphs provide the theoretical framework for many important problems such as reactive
synthesis. While the traditional study of two-player zero-sum games has been extended to multi-player games
with several notions of equilibria, they are decidable only for perfect-information games, whereas several
applications require imperfect-information games.

In this paper we propose a new notion of equilibria, called doomsday equilibria, which is a strategy profile
such that all players satisfy their own objective, and if any coalition of players deviates and violates even
one of the players objective, then the objective of every player is violated.

We present algorithms and complexity results for deciding the existence of doomsday equilibria for various
classes of ω-regular objectives, both for imperfect-information games, and for perfect-information games.
We provide optimal complexity bounds for imperfect-information games, and in most cases for perfect-
information games.

1. Introduction

Two-player games on finite-state graphs with ω-regular objectives provide the framework to study many
important problems in computer science [37, 34, 15]. One key application area is synthesis of reactive
systems [7, 35, 33]. Traditionally, the reactive synthesis problem is reduced to two-player zero-sum games,
where vertices of the graph represent states of the system, edges represent transitions, one player represents
a component of the system to synthesize, and the other player represents the purely adversarial coalition
of all the other components. Since the coalition is adversarial, the game is zero-sum, i.e., the objectives of
the two players are complementary. Two-player zero-sum games have been studied in great depth in the
literature [27, 15, 22].

Instead of considering all the other components as purely adversarial, a more realistic model is to consider
them as individual players each with their own objective, as in protocol synthesis where the rational behavior
of the agents is to first satisfy their own objective in the protocol before trying to be adversarial to the other
agents. Hence, inspired by recent applications in protocol synthesis, the model of multi-player games on
graphs has become an active area of research in graph games and reactive synthesis [2, 21, 38]. In a multi-
player setting, the games are not necessarily zero-sum (i.e., objectives are not necessarily conflicting) and the
classical notion of rational behavior is formalized as Nash equilibria [30]. Nash equilibria perfectly capture
the notion of rational behavior in the absence of external criteria, i.e., the players are concerned only about
their own payoff (internal criteria), and they are indifferent to the payoff of the other players. In the setting
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Figure 1: A simple example in the domain of Fair Exchange Protocols

of synthesis, the more appropriate notion is the adversarial external criteria, where the players are as harmful
as possible to the other players without sabotaging with their own objectives. This has inspired the study
of refinements of Nash equilibria, such as secure equilibria (that captures the adversarial external criteria),
and rational synthesis, and led to several new logics where the non-zero-sum equilibria can be expressed.
The complexity of Nash equilibria [38], secure equilibria [11], rational synthesis [21], and of the new logics
has been studied recently [12, 14, 29, 39, 28].

Along with the theoretical study of refinements of equilibria, applications have also been developed in
the synthesis of protocols. In particular, the notion of secure equilibria has been useful in the synthesis of
mutual-exclusion protocol [11], and of fair-exchange protocols [25, 9] (a key protocol in the area of security
for exchange of digital signatures). One major drawback that all the notions of equilibria suffer is that
the basic decision questions related to them are decidable only in the setting of perfect-information games
(in a perfect-information games the players perfectly know the state and history of the game, whereas in
imperfect-information games each player has only a partial view of the state space of the game), and in
the setting of multi-player imperfect-information games they are undecidable [33]. However, the model of
imperfect-information games is very natural because every component of a system has private variables not
accessible to other components, and recent works have demonstrated that imperfect-information games are
required in synthesis of fair-exchange protocols [24]. In this paper, we provide the first decidable framework
that can model them.

We propose a new notion of equilibria that we call doomsday-threatening equilibria (for short, doomsday
equilibria). A doomsday equilibrium is a strategy profile such that all players satisfy their own objective,
and if any coalition of players deviates and violates even one of the players objective, then doomsday follows
(every player objective is violated). Note that in contrast to other notions of equilibria, doomsday equilibria
consider deviation by an arbitrary set of players, rather than individual players. Moreover, in case of two-
player non-zero-sum games they coincide with the secure equilibria [11] where objectives of both players are
satisfied.

Example 1. Let us consider the two trees of Fig. 1. They model the possible behaviors of two entities Alice
and Bob that have the objective of exchanging messages: mAB from Alice to Bob, and mBA from Bob to Alice.
Assume for the sake of illustration that mAB models the transfer of property of a house from Alice to Bob,
while mBA models the payment of the price of the house from Bob to Alice.

Having that interpretation in mind, let us consider the left tree. On the one hand, Alice has as primary
objective (internal criterion) to reach either state 2 or state 4, states in which she has obtained the money,
and she has a slight preference for 2 as in that case she received the money while not transferring the property
of her house to Bob, this corresponds to her adversarial external criterion. On the other hand, Bob would
like to reach either state 3 or 4 (with again a slight preference for 3). Also, it should be clear that Alice
would hate to reach 3 because she would have transferred the property of her house to Bob but without
being paid. Similarly, Bob would hate to reach 2. To summarize, Alice has the following preference order on
the final states of the protocol: 2 > 4 > 1 > 3, while for Bob the order is 3 > 4 > 1 > 2. Is there a doomsday
threatening equilibrium in this game ? For such an equilibrium to exist, we must find a pair of strategies
that please the two players for their primary objective (internal criterion): reach {2, 4} for Alice and reach
{3, 4} for Bob. Clearly, this is only possible if at the root Alice plays ”send mAB”, as otherwise we would
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objectives safety reachability Büchi co-Büchi parity LTL

PSpace
perfect info. PSpace-C PTime-C PTime-C PTime-C NP-Hard 2ExpTime-C

CoNP-Hard

imperfect info. ExpTime-C ExpTime-C ExpTime-C ExpTime-C ExpTime-C 2ExpTime-C

Table 1: Summary of the results.

not reach {1, 2} violating the primary objective of Bob. But playing that action is not safe for Alice as Bob
would then choose ”not send mBA” because he slightly prefers 3 to 4. It can be shown that the only rational
way of playing (taking into account both internal and external criteria) is for Alice to play ”not send mAB”
and for Bob to play ”not send mBA”. This way of playing is in fact the only secure equilibrium of the game
but this is not what we hope from such a protocol.

The difficulty in this exchange of messages comes from the fact that Alice is starting the protocol by
sending her part and this exposes her. To obtain a better behaving protocol, one solution is to add an
additional stage after the exchanges of the two messages as depicted in the right tree of Fig. 1. In this new
protocol, Alice has the possibility to cancel the exchange of messages (in practice this would be implemented
by the intervention of a TTP1). For that new game, the preference orderings of the players are as follows: for
Alice it is 3 > 7 > 1 = 2 = 4 = 6 = 8 > 5, and for Bob it is 5 > 7 > 1 = 2 = 4 = 6 = 8 > 3. Let us now show
that there is a doomsday equilibrium in this new game. In the first round, Alice should play ”send mAB”
as otherwise the internal objective of Bob would be violated, then Bob should play ”send mBA”, and finally
Alice should play “OK” to validate the exchange of messages. Clearly, this profile of strategies satisfies the
first property of a doomsday equilibrium: both players have reached their primary objective. Second, let us
show that no player has an incentive to deviate from that profile of strategies. First, if Alice deviates then
Bob would play ”not send mBA”, and we obtain a doomsday situation as both players have their primary
objectives violated. Second, if Bob deviates by playing ”not send mBA”, then Alice would cancel the protocol
exchange which again produces a doomsday situation. So, no player has an incentive to deviate from the
equilibrium and the outcome of the protocol is the desired one: the two messages have been fairly exchanged.
So, we see that the threat of a doomsday brought by the action ”Cancel” has a beneficial influence on the
behavior of the two players. �

It should now be clear that multi-player games with doomsday equilibria provide a suitable framework to
model various problems in protocol synthesis. In addition to the definition of doomsday equilibria, our main
contributions are to present algorithms and complexity bounds for deciding the existence of such equilibria
for various classes of ω-regular objectives both in the perfect-information and in the imperfect-information
cases. In all cases but one, we establish the exact complexity. Our technical contributions are summarized
in Table 1. More specifically:

1. (Perfect-information games). We show that deciding the existence of doomsday equilibria in multi-
player perfect-information games is (i) PTime-C for reachability, Büchi, and coBüchi objectives;
(ii) PSpace-C for safety objectives; (iii) in PSpace and both NP-Hard and coNP-Hard for parity
objectives; (iv) 2ExpTime-C for LTL objectives.

2. (Imperfect-information games). We show that deciding the existence of doomsday equilibria in multi-
player imperfect-information games is (i) ExpTime-C for reachability, safety, Büchi, coBüchi, and
parity objectives, and (ii) it remains 2ExpTime-C for LTL objectives.

The research area of multi-player games has been quite active recently, but so far notions of equilibria that
lead to decidability in the imperfect-information setting and have applications in synthesis have been largely
unexplored. Our work is a step in that direction.

1TTP stands for Trusted Third Party.
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2. Doomsday Equilibria for Perfect Information Games

In this section, we define game arena with perfect information, ω-regular objectives, and doomsday
equilibria. We also recall classical definitions from automata theory and temporal logic.

Automata over infinite words. Let A be a finite alphabet. An infinite word over A is an infinite sequence
w = a0a1 . . . an . . . where ai ∈ A for all i ≥ 0. We denote the set of infinite words over A by Aω and a subset
of Aω is called a language of infinite words. To define languages, we use finite automata. A finite automaton
is a tuple A = (Q, qinit, A, δ) where Q is a finite set of states, qinit is the initial state, A is a finite alphabet,
and δ : Q × A → 2Q is the transition relation. A is deterministic if for all q ∈ Q and a ∈ A, |δ(q, a)| ≤ 1,
and it is total if for all q ∈ Q and a ∈ A, |δ(q, a)| ≥ 1.

A run of A over a word w = a0a1 . . . an . . . is an infinite sequence of states r = q0q1 . . . qn such that (a)
q0 = qinit, (b) (qi, ai, qi+1) ∈ δ, for all i ≥ 0. We denote by inf(r) the set of states q that appear infinitely
often in r.

To define the language of A from the notion of run, we need to choose between the existential (nondeter-
ministic) or the universal interpretation of the transition relation, and to fix an acceptance condition. For
the existential interpretation, w is accepted by A if there exists at least one run on w that is accepting, and
for the universal interpretation, w is accepted by A if all runs on w are accepting. We use several notions of
acceptance:

• a Büchi condition is defined by a subset of accepting states F ⊆ Q, and a run r = q0q1 . . . qn . . . is
accepting if there are infinitely many positions i ≥ 0 such that qi ∈ F , i.e. Inf(r) ∩ F 6= ∅;

• a coBüchi condition is defined by a subset of accepting states F ⊆ Q, and a run r = q0q1 . . . qn . . . is
accepting if there are only finitely many positions i ≥ 0 such that qi ∈ F , i.e. Inf(r) ∩ F = ∅;

• a Rabin condition is defined by a set of pairs of subsets ofQ, i.e. Ω = {(F1, G1), (F2, G2), . . . , (Fm, Gm)},
and a run r is accepting if for all pair (F,G) ∈ Ω, if Inf(r) ∩ F = ∅ then Inf(r) ∩G = ∅;

• a Streett condition is defined by a set of pairs of subsets ofQ, i.e. Ω = {(F1, G1), (F2, G2), . . . , (Fm, Gm)},
and a run r is accepting if for all pair (F,G) ∈ Ω, if Inf(r) ∩ F 6= ∅ then Inf(r) ∩G 6= ∅. So this is the
dual of the Rabin condition;

• a Parity condition is defined by a function p : Q→ {0, 1, . . . , d} and a run r is accepting if the smallest
priority visited infinitely along r is even: parity(p) = {r ∈ Qω|min{p(q) | q ∈ inf(r)} is even}.

In this paper, we use nondeterministic Büchi automata, NBW for short, universal co-Büchi automata, UcoBW
for short, deterministic parity automata, DPW for short, and determinisitc Streett automata, DSW for short.
Note that for deterministic and total automata, the universal and existential interpretation coincide.

Game Arena. An n-player game arena G with perfect information is defined as a tuple (S,P, sinit,Σ,∆)
such that S is a nonempty finite set of states, P = {S1, S2, . . . , Sn} is a partition of S into n classes of states,
one for each player respectively, sinit ∈ S is the initial state, Σ is a finite set of actions, and ∆ : S × Σ→ S
is the transition function.

Plays in n-player game arena G are constructed as follows. They start in the initial state sinit, and then
an ω number of rounds are played: the player that owns the current state s chooses a letter σ ∈ Σ and
the game evolves to the position s′ = ∆(s, σ), then a new round starts from s′. So formally, a play in G
is an infinite sequence s0s1 . . . sn . . . such that (a) s0 = sinit and (b) for all i ≥ 0, there exists σ ∈ Σ such
that si+1 = ∆(si, σ). The set of plays in G is denoted by Plays(G), and the set of finite prefixes of plays by
PrefPlays(G). We denote by ρ, ρ1, ρi, . . . plays in G, by ρ(0..j) the prefix of the play ρ up to position j and by
ρ(j) the position j in the play ρ. We also use π, π1, π2, . . . to denote prefixes of plays. Let i ∈ {1, 2, . . . , n},
a prefix π belongs to Player i if last(π), the last state of π, belongs to Player i, i.e. last(π) ∈ Si. We denote
by PrefPlaysi(G) the set of prefixes of plays in G that belongs to Player i.

To interpret the truth value of LTL formulas over plays, we need the notion of a labeled game arena. An n-
player labeled game arena G with perfect information is a tuple (S,P, sinit,Σ,∆,P,L) where (S,P, sinit,Σ,∆)
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is a game arena, P is a set of atomic propositions, and L : S → 2P is a labelling function that assigns to each
state s ∈ S, the subset of atomic propositions L(s) that hold in s (the complement of this set is the set of
atomic propositions that do not hold in s). Given a play ρ = s0s1 . . . sn . . . , we write L(ρ) for the sequence
of corresponding labels, i.e. L(ρ) = L(s0)L(s1) . . .L(sn) . . . , and call L(ρ) a labelled play of G. The syntax
of LTL formulas over P is as follows:

φ ::= p | φ1 ∨ φ2 | ¬φ | φ1Uφ2

with the classical semantics, a formula φ evaluates to true on a labelled play L(ρ), noted L(ρ) |= φ, according
to the following rules:

• L(ρ) |= φ iff L(ρ), 0 |= φ, and for all i ≥ 0,

• L(ρ), i |= p iff p ∈ L(ρ(i))

• L(ρ), i |= φ1 ∨ φ2 iff L(ρ), i |= φ1 or L(ρ), i |= φ2

• L(ρ), i |= φ1Uφ2 iff there exists j ≥ i, L(ρ), j |= φ2, and for all k, i < k < j, L(ρ), k |= φ1

As usual, we use abbreviations: > ≡ φ ∨ ¬φ, ♦φ ≡ >Uφ, �φ ≡ ¬♦¬φ, and ©φ ≡ ⊥Uφ.

Strategies and strategy profiles. A strategy for Player i, for i ∈ {1, 2, . . . , n}, is a mapping λi :
PrefPlaysi(G) → Σ from prefixes of plays to actions. A strategy profile Λ = (λ1, λ2, . . . , λn) is a tuple of
strategies such that λi is a strategy of Player i. The strategy of Player i in Λ is denoted by Λi, and the tuple
of the remaining strategies (λ1, . . . , λi−1, λi+1, . . . , λn) by Λ−i. For a strategy λi of Player i, we define its
outcome as the set of plays that are consistent with λi: formally, outcomei(λi) is the set of ρ ∈ Plays(G) such
that for all j ≥ 0, if ρ(0..j) ∈ PrefPlaysi(G), then ρ(j + 1) = ∆(ρ(j), λi(ρ(0..j))). Similarly, we define the
outcome of a strategy profile Λ = (λ1, λ2, . . . , λn), as the unique play ρ ∈ Plays(G) such that for all positions
j, for all i ∈ {1, 2, . . . , n}, if ρ(j) ∈ PrefPlaysi(G) then ρ(j + 1) = ∆(ρ(j), λi(ρ(0..j))). Finally, given a state
s ∈ S of the game, we denote by Gs the game G whose initial state is replaced by s.

Winning objectives. A winning objective (or an objective for short) ϕi for Player i∈{1, 2, . . . , n} is a set
of infinite sequences of states, i.e. ϕi⊆Sω. A strategy λi is winning for Player i (against all other players)
w.r.t. an objective ϕi if outcomei(λi) ⊆ ϕi.

Given an infinite sequence of states ρ ∈ Sω, we denote by visit(ρ) the set of states that appear at least
once along ρ, i.e. visit(ρ) = {s ∈ S|∃i ≥ 0 · ρ(i) = s}, and inf(ρ) the set of states that appear infinitely often
along ρ, i.e. inf(ρ) = {s ∈ S|∀i ≥ 0 · ∃j ≥ i ·ρ(j) = s}. We consider the following types of winning objectives:

• a safety objective is defined by a subset of states T ⊆ S that has to be never left: safe(T ) = {ρ ∈ Sω |
visit(ρ) ⊆ T} = Tω;

• a reachability objective is defined by a subset of states T ⊆ S that has to be reached: reach(T ) = {ρ ∈
Sω | visit(ρ) ∩ T 6= ∅};

• a Büchi objective is defined by a subset of states T ⊆ S that has to be visited infinitely often: Büchi(T ) =
{ρ ∈ Sω | inf(ρ) ∩ T 6= ∅};

• a co-Büchi objective is defined by a subset of states T ⊆ S that has to be reached eventually and never
be left: coBüchi(T ) = {ρ ∈ Sω | inf(ρ) ⊆ T};

• let d ∈ N, a parity objective with d priorities is defined by a priority function p : S → {0, 1, . . . , d}
as the set of plays such that the smallest priority visited infinitely often is even: parity(p) = {ρ ∈
Sω|min{p(s) | s ∈ inf(ρ)} is even};

• an LTL objective is defined for a P-labelled game arena by an LTL formula φ over the set of atomic
propositions P, JφK = {ρ ∈ Sω|L(ρ) |= φ}.
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Figure 2: Examples of doomsday equilibria for Safety and Büchi objectives. We use circles, boxes and diamonds respectively,
to depict states of Player 1, Player 2, and Player 3 respectively.

Büchi, co-Büchi and parity objectives ϕ are called tail objectives because they satisfy the following closure
property: for all ρ ∈ Sω and all π ∈ S∗, ρ ∈ ϕ iff π · ρ ∈ ϕ.

Finally, given an objective ϕ ⊆ Sω and a subset P ⊆ {1, . . . , n}, we write 〈〈P 〉〉ϕ to denote the set of
states s from which the players from P can cooperate to enforce ϕ when they start playing in s. Formally,
〈〈P 〉〉ϕ is the set of states s such that there exists a set of strategies {λi | i ∈ P} in Gs, one for each player
in P , such that

⋂
i∈P outcomei(λi) ⊆ ϕ.

Doomsday Equilibria. A strategy profile Λ = (λ1, λ2, . . . , λn) is a doomsday-threatening equilibrium
(doomsday equilibrium or DE for short) if:

1. it is winning for all the players, i.e. outcome(Λ) ∈
⋂
i ϕi;

2. each player is able to retaliate in case of deviation: for all 1 ≤ i ≤ n, for all ρ ∈ outcomei(λi), if ρ 6∈ ϕi,
then ρ ∈

⋂j=n
j=1 ϕj (doomsday), where ϕj denotes the complement of ϕj in Sω.

In other words, when all players stick to their strategies then they all win, and if any arbitrary coalition of
players deviates and makes even just one other player lose then this player retaliates and ensures a doomsday,
i.e. all players lose.

Relation with Secure Equilibria. In two-player games, the doomsday equilibria coincide with the notion of
secure equilibrium [11] where both players satisfy their objectives. In secure equilibria, for all i ∈ {1, 2}, any
deviation of Player i that does not decrease her payoff does not decrease the payoff of Player 3−i either. In
other words, if a deviation of Player i decreases (strictly) the payoff of Player 3−i, i.e. ϕ3−i is not satisfied,
then it also decreases her own payoff, i.e. ϕi is not satisfied. A two-player secure equilibrium where both
players satisfy their objectives is therefore a doomsday equilibrium.

Example 2. Fig. 2 gives two examples of games with safety and Büchi objectives respectively. Actions are
in bijection with edges so they are not represented.

(Safety) Consider the 3-player game arena with perfect information of Fig. 2(a) and safety objectives.
Unsafe states for each player are given by the respective nodes of the upper part. Assume that the initial
state is one of the safe states. This example models a situation where three countries are in peace until one
of the countries, say country i, decides to attack country j. This attack will then necessarily be followed by
a doomsday situation: country j has a strategy to punish all other countries. The doomsday equilibrium in
this example is to play safe for all players.

(Büchi) Consider the 3-player game arena with perfect information of Fig. 2(b) with Büchi objectives for
each player: Player i wants to visit infinitely often one of its “happy” states. The position of the initial state
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does not matter. To make things more concrete, let us use this game to model a protocol where 3 players
want to share in each round a piece of information made of three parts: for all i ∈ {1, 2, 3}, Player i knows
information i mod 3 + 1 and i mod 3 + 2. Player i can send or not these pieces of information to the other
players. This is modeled by the fact that Player i can decide to visit the happy states of the other players, or
move directly to s(i mod 3)+1. The objective of each player is to have an infinite number of successful rounds
where they get all the information.

There are several doomsday equilibria. As a first one, let us consider the situation where for all i ∈
{1, 2, 3}, if Player i is in state si, first it visits the happy states, and when the play comes back in si, it moves
to s(i mod 3)+1. This defines an infinite play that visits all the states infinitely often. Whenever some player
deviates from this play, the other players retaliate by always choosing in the future to go to the next s state
instead of taking their respective loops. Clearly, if all players follow their respective strategies all happy
states are visited infinitely often. Now consider the strategy of Player i against two strategies of the other
players that makes him lose. Clearly, the only way Player i loses is when the two other players eventually
never take their states, but then all the players lose.

As a second one, consider the strategies where Player 2 and Player 3 always take their loops but Player
1 never takes his loop, and such that whenever the play deviates, Player 2 and 3 retialate by never taking
their loops. For the same reasons as before this strategy profile is a doomsday equilibrium.

Note that the first equilibrium requires one bit of memory for each player, to remember if they visit their
s state for the first or second times. In the second equilibrium, only Player 2 and 3 needs a bit of memory.
An exhaustive analysis shows that there is no memoryless doosmday equilibrium in this example. �

3. Complexity of DE for Perfect Information Games

In this section, we prove the following results:

Theorem 3. The problem of deciding the existence of a doomsday equilibrium in an n-player perfect infor-
mation game arena and n objectives (ϕi)1≤i≤n is:

• PTime-C if the objectives (ϕi)1≤i≤n are either all Büchi, all co-Büchi or all reachability objectives,
and hardness already holds for 2-player game arenas,

• NP-hard, coNP-hard and in PSPace if (ϕi)1≤i≤n are parity objectives, and hardness already holds
for 2-player game arenas,

• PSPace-C if (ϕi)1≤i≤n are safety objectives, and PTime-C for game arenas with a fixed number of
players,

• 2ExpTime-C if (ϕi)1≤i≤n are LTL objectives, and hardness already holds for 2-player game arenas.

The remainder of this section gives detailed proofs for those results. In the sequel, game arena with perfect
information are just called game arena.

3.1. Tail objectives

We first present a generic algorithm that works for any tail objective and then analyze its complexity for
the different cases. Then we establish the lower bounds. Let us consider the following algorithm:

• compute the retaliation region of each player: Ri = 〈〈i〉〉(ϕi ∪
⋂j=n
j=1 ϕj);

• check for the existence of a play within
⋂i=n
i=1 Ri that satisfies all the objectives ϕi.

The correctness of this generic procedure is formalized in the following lemma:

Lemma 4. Let G = (S,P, sinit,Σ,∆) be an n-player game arena with n tail objectives (ϕi)1≤i≤n. Let

Ri = 〈〈i〉〉(ϕi∪
⋂j=n
j=1 ϕj) be the retaliation region for Player i. There is a doomsday equilibrium in G iff there

exists an infinite play that (1) belongs to
⋂i=n
i=1 ϕi and (2) belongs to the set of states

⋂i=n
i=1 Ri.
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Proof. First, assume that there exists an infinite play ρ such that ρ ∈
⋂
i(ϕi ∩ Rωi ). From ρ, and the

retaliating strategies that exist in all states of Ri for each player, we show the existence of a DE Λ =
(λ1, λ2, . . . , λn). Player i plays strategy λi as follows: he plays according to the choices made in ρ as long as
all the other players do so, and as soon as the play deviates from ρ, Player i plays his retaliating strategy.
Note that if the turn never comes back to Player i then we know that the play always stays within Ri and
all outcomes satisfy ϕi ∪

⋂j=n
j=1 ϕj .

First, let us show that if Player j, for some j 6= i, deviates and the turn comes back to Player i in a state
s then s ∈ Ri. Assume that Player j deviates when he is in some s′ ∈ Sj . As before there was no deviation,
by definition of ρ, s′ belongs to Ri. But no matter what the adversaries are doing in a state that belongs to
Ri, the next state must be a state that belongs to Ri (there is only the possibility to leave Ri when Player i
plays). So, by induction on the length of the segment of play that separates s′ and s, we can conclude
that s belongs to Ri. From s, Player i plays a retaliating strategy and so all the outcomes from s are in
ϕi ∪

⋂j=n
j=1 ϕj , and since tail objectives are closed under complement, the prefix up to s is not important and

we get (from sinit) outcomei(λi) ⊆ ϕi∪
⋂j=n
j=1 ϕj . Therefore the second property of the definition of doomsday

equilibria is satisfied. Hence Λ is a DE.
Let us now consider the other direction. Assume that Λ is a DE. Then let us show that ρ = outcome(Λ)

satisfies properties (1) and (2). By definition of DE, we know that ρ is winning for all the players, so (1) is

satisfied. Again by definition of DE, outcome(Λi) ⊆ ϕi ∪
⋂j=n
j=1 ϕj . Let s be a state of ρ and π the prefix of

ρ up to s. For all outcomes ρ′ of Λi in Gs, we have πρ′ ∈ ϕi ∪
⋂j=n
j=1 ϕj , and since all ϕi are tail objectives,

and Boolean combinations of tail objectives are tail objectives, we get ρ′ ∈ ϕi ∪
⋂j=n
j=1 ϕj . Hence s ∈ Ri.

Since this property holds for all i, we get s ∈
⋂
iRi, and (2) is satisfied. �

Upper bounds. Accordingly, we obtain the following upper bounds:

Lemma 5. The problem of deciding the existence of a doomsday equilibrium in an n-player game arena can
be solved in PTime for Büchi and co-Büchi objectives, and in PSpace for parity objectives.

Proof. By Lemma 4, one first needs to compute the retaliation regions Ri for all i ∈ {1, . . . , n}. Once the
sets Ri have been computed, it is clear that the existence of a play winning for all players is decidable in
PTime for all the three types of objective. We detail the cost of computing Ri for each type of objectives:

• Büchi objectives. Assume that each Player i wants to visit a set of states Ti infinitely often. In this
case, Ri is the set of states s from which Player i has a strategy to enforce the objective (in LTL

syntax) �♦Ti ∨
∧j=n
j=1 ♦�Tj . This formula is equivalent to �♦Ti ∨ ♦�

∧j=n
j=1 Tj . This is equivalent

to a disjunction of a Büchi and a co-Büchi objective, which is thus equivalent to a Streett objective
with one Streett pair and can be solved in PTime, see e.g. [32].

• co-Büchi objectives. Assume that each Player i wants to eventually stay forever in a set of states Ti.
In this case, Ri is the set of states s from which Player i has a strategy to enforce the objective (in LTL

syntax) ♦�Ti ∨
∧j=n
j=1 �♦Tj . The second part of the formula, i.e.

∧j=n
j=1 �♦Tj is a generalized Büchi

objective. Using a standard construction, see e.g. Theorem 4.56 in [5], we can modify the game arena so
that the generalized Büchi objective is transformed into a classical Büchi objective. This construction
works as follows: it maintains a counter which counts modulo n and whose values determine the next
set Tj to visit, once this set is visited, the counter is incremented. Now, the associated Büchi objective
asks to visit infinitely often successive states in which the counter goes from value n to value 1. This
ensures that each set Tj , for 1 ≤ j ≤ n, is visited infinitely often as requested. So, the transformation
increases the size to the game arena by a factor of n and the objective that we get is, as in the previous
case, a disjunction of a Büchi and a co-Büchi objective, which is thus equivalent to a Streett objective
with one Streett pair and can be solved in PTime.

• For the parity case, the winning objectives for the retaliation sets can be encoded compactly as Muller
objectives defined by a propositional formula using one proposition per state. Then they can be solved
in PSpace using the algorithm of Emerson and Lei presented in [16].
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Lower bounds. Let us now establish the lower bounds. The hardness for Büchi and co-Büchi objectives
holds already for 2 players.

Lemma 6. The problem of deciding the existence of a doomsday equilibrium in a 2-player game arena is
PTime-hard both for Büchi and co-Büchi winning objectives.

Proof. We explain the result for Büchi objectives (the proof for co-Büchi objectives is similar). To establish
this result, we show how to reduce the problem of deciding the winner in a two-player zero-sum game with
a Büchi objective (for Player 1), a PTime-C problem [23], to the existence of a doomsday equilibrium in a
two-player game arena with Büchi objectives. Let G be the two-player game, S its set of states, and T the
set of states that Player 1 wants to visit infinitely often. We reduce the problem of deciding the existence
of such a strategy to the existence of a doomsday equilibrium in the same game arena, where the objective
of Player 1 is the original Büchi objective, i.e. Büchi(T ), and the objective of Player 2 is trivial: Büchi(S).
Clearly, as Player 2 will always satisfy his objective, Player 1 must have a winning strategy for Büchi(T ) if
a doomsday equilibrium exists (and vice versa) otherwise condition 2 would be violated. Indeed as Player 2
can never lose, Player 1 cannot retaliate and so he must have a winning strategy for his own objective, i.e.
for Büchi(T ). �

We now turn to the proof of lower bounds for parity objectives. We show below that we can reduce
zero-sum two-player games with a conjunction of parity objectives (known to be coNP-Hard [13]) to the
existence of a DE in a three-player game with parity objectives. Similarly, we can reduce the problem of
deciding the winner in a two-player zero-sum game with a disjunction of parity objectives (known to be
NP-Hard [13]) to the existence of a DE in a two-player game with parity objectives. The main idea in
the two cases is to construct a game arena where one of the players can retaliate iff Player 1 in the original
two-player zero-sum game has a winning strategy. The details of those reductions are given in the proofs of
the following lemmas.

s′init sinit s1 (s2, 3) s2

Bad1 Bad1,2,3

Modified Copy of G

σ ∈ Σ

deviate σ ∈ Σ σ ∈ Σ σ ∈ Σ

deviate

Σ′

deviate deviate

Σ′

(0, 0, 0) (1, p1 + 1, p2 + 1)

(1, 0, 0) (1, 1, 1)

Figure 3: Structure of the reduction from generalized parity game with a conjunction of two parity objectives to the existence
of a doomsday equilibrium with parity objectives.

Lemma 7 (coNP-Hardness). The problem of deciding the existence of a doomsday equilibrium in a 3-
player game arena with parity objectives is coNP-hard.

Proof. Let G = (S, {SA, SB}, sinit,Σ,∆) be a two-player game and a conjunction of two parity objectives
defined by the functions p1 and p2 that Player A wants to enforce, i.e. the objective of Player A is to ensure
an outcome that satisfies the two parity objectives, while the objective of Player B is to ensure an outcome
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that violates at least one of the two parity objectives. W.l.o.g., we assume that sinit ∈ SA and the turns of
A and B alternate.

From G, we construct a 3-player game arena G′ = (S′, {S′1, S′2, S′3}, s′init,Σ′,∆′) (depicted in Fig. 3), with:

• the set of states S′ = {s′init,Bad1,Bad1,2,3} ∪ SA ∪ SB ∪ (SA × {3}), this set is partitioned as follows:
S1 = SA ∪ {Bad1}, S2 = SB , S3 = (SA × {3}) ∪ {s′init,Bad1,2,3}.

• the initial state is s′init,

• the alphabet of actions is Σ′ = Σ ∪ {deviate},

• and the transitions of the game G′ are defined as follows:

– For the state s′init, for all σ ∈ Σ, ∆′(s′init, σ) = s′init, and ∆′(s′init, σ) = sinit; i.e., the play stays in
s′init, unless Player 3 plays deviate in which case the play goes to sinit that is the copy of the initial
state of the game arena G.

– For all states s ∈ SA, for all σ ∈ Σ, ∆′(s, σ) = ∆(s, σ), and ∆′(s, deviate) = Bad1, so the transition
function on the copy of G behaves from states owned by Player 1 as in the original game and it
sends the game to Bad1 if Player 1 plays the action deviate.

– For all states s ∈ SB , for all σ ∈ Σ, ∆′(s, σ) = (∆(s, σ), 3) and ∆′(s, deviate) = Bad1,2,3; i.e., if
Player 2 plays an action from the game G, the effect is to send the game to the Player 3 copy of
the same state as in the original game, if he deviates, the game reaches the sink state Bad1,2,3.

– For all states s ∈ SA×{3}, for all σ ∈ Σ, ∆′((s, 3), σ) = s and ∆′((s, 3), deviate) = Bad1,2,3. So, if
Player 3 plays an action σ ∈ Σ, he gives back the turn to Player 1, otherwise he sends the game
to Bad1,2,3.

– The states Bad1 and Bad1,2,3 are absorbing.

• The parity functions (p′i)i=1,2,3 for the three players are defined to satisfy the following condition:

– first, p′i(s
′
init) is even for all i = 1, 2, 3 (so if the game stays there for ever, all the players satisfy

their objectives).

– second, in Bad1 the parity functions return an even number for Player 2 and Player 3 but an odd
number for Player 1, this ensures that Player 1 should never play the action deviate when the
game is in the copy of G,

– third, in Bad1,2,3 the parity functions are odd for all the Players. So whenever Player 2 and 3
play deviate all players loose,

– finally, in the copy of G, the parity function is always odd for Player 1, and for all states q ∈
SA ∪ SB ∪ (SA ×{3}), p′2(q) = p1(s) + 1 and p′3(q) = p2(s) + 1, where s = q if q ∈ SA ∪ SB , and s
is such that q = (s, 3) if q ∈ SA × {3}.

This concludes the reduction.
Clearly, since Player A and B always alternate their moves, in the copy of G, any play will eventually

reach a state of Player 2 and a state of Player 3, so that they are always able to retaliate by playing the
action deviate.

A doomsday equilibrium exists in G′ iff Player 1 is also able to retaliate when the game enter the copy of
G. But clearly, it is possible if and only if he has a strategy to ensure parity(p′1) and parity(p′2), or equivalently
iff he has a strategy to ensure parity(p1) and parity(p2), iff Player A has a winning strategy in the game G
for the conjunction of parity objectives p1 and p2. �

Lemma 8 (NP-hardness). The problem of deciding the existence of a doomsday equilibrium in a 2-player
game arena with parity objectives is NP-Hard.
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s′init sinit s1

s2

Bad1

Bad1,2,3

Modified Copy of G

σ ∈ Σ

deviate

σ ∈ Σ

deviate

Σ′

deviate

Σ′

(0, 0)

(p1, p2 + 1)

(1, 0)

(1, 1)

Figure 4: Structure of the reduction from generalized parity game with a disjunction of two parity objectives to doomsday
equilibrium with parity objectives.

Proof. For this part, we need to show how to reduce the problem of deciding if Player A has a winning
strategy in a two-player zero-sum game whose objective is defined by the disjunction of two parity objectives.
The construction is based on the main ideas used in the coNP-hardness result given in the proof of
lemma 7. Let G = (S, sinit,Σ,∆) be a two-player game with a disjunction of two parity objectives defined
by the functions p1 and p2. The objective of Player A is to ensure an outcome that satisfies at least one of
the two parity objectives (while the objective of Player B is to ensure an outcome that violates both parity
objectives.)

From G, we construct a two-player game G′ with parity objectives (p′i)i=1,2 (see Fig. 4). The game arena
G′ contains a copy of G plus three states s′init (the initial state), Bad1 and Bad1,2. The alphabet of actions
is Σ ∪ {deviate}.

The partition of the state space is as follows: S1 = SA and S2 = SB ∪ {s′init} ∪ {Bad1,Bad1,2}. The
transitions are as follows: if Player 2 plays σ ∈ Σ in s′init then the game stays there, if he plays deviate then
the game enters the copy of G. There the transition function for σ ∈ Σ is defined as in G, and if Player 1
plays deviate then the game goes to Bad1, and if Player 2 plays deviate then the game goes to Bad1,2.

The parity functions (p′i)i=1,2 are defined as follows: p′1 returns an even number in s′init, is equal to p1 in
the copy of G, returns an odd number in Bad1 and Bad1,2. The function p′2 returns an even number in s′init,
is equal to p2 + 1 in the copy of G (so p′2 is the complement of p2), returns an even number in Bad1 and an
odd number in Bad1,2. This definition of p′1 and p′2 ensures that:

• the two players meet their parity objectives when the game always stays in s′init.

• when the game enters the copy of G, Player 2 can always retaliate by playing deviate, as the play then
reaches Bad1,2 and the outcome is bad for both player.

• when the game enters the copy of G, Player 1 can retaliate, i.e. enforces p′1 ∨ p′2, which is equivalent
to p1 ∨ p2, if and only if Player A has a winning strategy for the disjunction of the parity objectives in
the original game. Indeed, playing deviate is not an option for Player 1 in the copy of G, as then Bad1
is reached and Player 2 wins while Player 1 loses.

So we conclude that there is a DE equilibrium in G′ if and only if Player A has a winning strategy in the
original game for p1 ∨ p2. �

3.2. Reachability objectives

We now establish the complexity of deciding the existence of a doomsday equilibria in an n-player game
with reachability objectives. We first establish an important property for reachability objectives:
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Proposition 9. Let G = (S,P, sinit,Σ,∆) be a game arena, and (Ti)1≤i≤n be n subsets of S. Let Λ be
a doomsday equilibrium in G for the reachability objectives (Reach(Ti))1≤i≤n. Let s be the first state in
outcome(Λ) such that s ∈

⋃
i Ti. Then every player has a strategy from s, against all the other players, to

reach his target set.

Proof. Let Λ = (λ1, λ2, . . . , λn), and w.l.o.g. we can assume that s ∈ T1. If some player, say Player 2, has
no strategy from s to reach his target set T2, then necessarily s 6∈ T2 and by determinacy the other players
have a strategy from s to make Player 2 lose. This contradicts the fact that Λ is a doomsday equilibrium as
it means that λ2 is not a retaliating strategy. �

Lemma 10. The problem of deciding the existence of a doomsday equilibrium in an n-player game with
reachability objectives is in PTime.

Proof. The algorithm consists in:

• First, computing the sets Ri from which player i can retaliate, i.e. the set of states s from which Player i
has a strategy to force, against all other players, an outcome such that ♦Ti∨(

∧j=n
j=1 �Tj). This set can be

obtained by first computing the set of states 〈〈i〉〉♦Ti from which Player i can force Ti to be reached. It
is done in PTime by solving a classical two-player reachability game, see e.g. [23]. Then, one computes

the set of states where Player i has a strategy λi such that outcomei(λi) |= �((
⋂j=n
j=1 Tj) ∨ 〈〈i〉〉♦Ti),

that is to confine the plays in states that do not satisfy the reachability objectives of the adversaries
or from where Player i can force its own reachability objective. Again this can be done in PTime by
solving a classical two-player safety game.

• Second, checking the existence of some i ∈ {1, . . . , n} and some finite path π starting from sinit and

that stays within
⋂j=n
j=1 Rj before reaching a state s such that s ∈ Ti and s ∈

⋂j=n
j=1 〈〈j〉〉♦Tj .

Let us now prove the correctness of our algorithm. From its output, we can construct the strategy profile
Λ = (λ1, λ2, . . . , λn) where each λj (j = 1, . . . , n) is as follows: follow π up to the point where either another
player deviates and then play the retaliating strategy available in Rj , or to the point where some state s ∈ Ti
is visited, for some i 6= j, for the first time and then play according to a strategy (from s) that forces a visit
to Tj no matter how the other players are playing. Clearly, Λ witnesses a DE. Indeed, if s ∈ Ti is reached,
then all players have a strategy to reach their target set (including Player i since s ∈ Ti). By playing so
they will all eventually reach it. Before reaching s, if some of them deviates, the others have a strategy to
retaliate as π stays in

⋂j=n
j=1 Rj . The other direction follows from Proposition 9. �

Lemma 11. The problem of deciding the existence of a DE in a 2-player game with reachability objectives
is PTime-Hard.

Proof. The idea of the proof is similar to the one of Lemma 6. It is proved by a reduction from the And-Or
graph reachability problem [23]. From an instance of the And-Or graph reachability problem, we construct
a two-player game arena which is a copy of the And-Or graph. The first player owns the positions of the
protagonist in the And-Or graph (i.e., the Or positions) and the second player owns the positions of the
antagonist (i.e., the And positions). The objective of the first player coincides with the objective of the
protagonist in the And-Or graph reachability problem, while the objective of the second player is trivial: his
set of target states is the entire state space. So, clearly as the second player always wins for his objective,
the only way to have a doomsday equilibrium in the constructed game is to have a winning strategy for
the first player for his objective, which is equivalent to have a winning strategy for the protagonist in the
And-Or graph reachability problem. �

3.3. Safety Objectives

We establish the complexity of deciding the existence of a doomsday equilibrium in an n-player game
with perfect information and safety objectives.
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Lemma 12 (Easyness). The existence of a doomsday equilibrium in an n-player game with safety objec-
tives can be decided in PSpace, and in PTime for game arenas with a fixed number of players.

Proof. We start with the general case where the number of players is not fixed and is part of the input.
Let us consider an n-player game arena G = (S,P, sinit,Σ,∆) and n safety objectives safe(T1), . . . , safe(Tn)
for T1 ⊆ S, . . . , Tn ⊆ S. The algorithm is composed of the following two steps:

• First, for each Player i, compute the set of states s ∈ S in the game such that Player i can retaliate
whenever necessary, i.e. the set of states s from where there exists a strategy λi for Player i such that
outcomei(λi) satisfies ¬�Ti →

∧j=n
j=1 ¬�Tj , or equivalently ¬♦Ti ∨

∧j=n
j=1 ♦Tj . This can be done in

PSpace using a result by Alur et al. (Theorem 5.4 of [3]) on solving two-player games whose Player
1’s objective is defined by Boolean combinations of LTL formulas that use only ♦ and ∧. We denote
by Ri the set of states in G where Player i has a strategy to retaliate.

We note here that as Ri is the winning set for Player i for the objective ¬♦Ti ∨
∧j=n
j=1 ♦Tj then it is a

trap for the other players in the following precise sense: for all s ∈ Ri, either s ∈
⋂j=n
j=1 Tj or:

1. if s ∈ Ri ∩ Si then there exists σ ∈ Σ: ∆(s, σ) ∈ Ri, i.e. Player i can stay within his retaliating
region,

2. if s 6∈ Ri ∩ Si, then for all σ ∈ Σ: ∆(s, σ) ∈ Ri, i.e. the other players cannot escape from the
retaliating region Ri.

• Second, verify whether there exists an infinite path ρ in
⋂i=n
i=1 (safe(Ti) ∩Ri).

Now, let us establish the correctness of this algorithm. Assume that an infinite path ρ exists in
⋂i=n
i=1 (safe(Ti)∩

Ri). The strategies λi for each Player i are defined as follows: play the moves that are prescribed by ρ as
long as every other players do so, and as soon as the play deviates from ρ, play the retaliating strategy.

It is easy to see that the profile of strategies Λ = (λ1, λ2, . . . , λn) is a DE. Indeed, the states are all safe
for all players as long as they play their strategies. Moreover, assume that some player deviates from ρ, and
let s ∈ Sj , for some j, be the state of ρ where the first deviation occurs, i.e. Player j is the player who

deviates from ρ. Since the play ρ is within
⋂i=n
i=1 Ri, by the trap property defined above, we know that the

state that is reached after s is still in
⋂i=n
i=1,i6=j Ri and therefore the other players can retaliate.

Second, assume that Λ = (λ1, λ2, . . . , λn) is a DE in the n-player game G for the safety objectives
(safe(Ti))1≤i≤n. Let ρ = outcome(λ1, λ2, . . . , λn). By definition of doomsday equilibrium, we know that

all states appearing in ρ satisfy all the safety objectives, i.e. ρ |=
∧i=n
i=1 �Ti. Let us show that the play

also remains within
⋂i=n
i=1 Ri. Let s be a state of ρ, i ∈ {1, . . . , n}, and π the finite prefix of ρ up to s.

By definition of DE we have outcome(λi) |= �Ti ∨
∧j=n
j=1 ♦Tj . Therefore for all outcomes ρ′ of λi in Gs,

πρ′ |= �Ti ∨
∧j=n
j=1 ♦Tj . Moreover, π |=

∧j=n
j=1 �Tj since it is a prefix of ρ. Therefore ρ′ |= �Ti ∨

∧j=n
j=1 ♦Tj

and s ∈ Ri. Since it holds for all i ∈ {1, . . . , n}, we get s ∈
⋂i=n
i=1 Ri.

Let us now turn to the case where the number of players is fixed. Then clearly, in the construction above,
all the LTL formulas are of fixed size and so all the associated games can then be solved in polynomial time.
�

For the general case, we present a reduction from the problem of deciding the winner in a zero-sum two-
player game with a conjunction of k reachability objectives (aka generalized reachability games), which is a
PSpace-C problem [4]. The idea of the reduction is to construct a non-zero sum (k+ 1)-player game where
one of the players has a retaliating strategy iff there is a winning strategy in the generalized reachability
game. When the number of players is fixed, PTime-Hardness is proved by an easy reduction from the
And-Or graph reachability problem [23].

Lemma 13 (Hardness). The problem of deciding the existence of a doomsday equilibrium in an n-player
game with safety objectives is PSpace-Hard, and PTime-Hard when the number of players is fixed.
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deviate
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Figure 5: Structure of the reduction from multi-reachability game to doomsday equilibrium with safety objectives. Round
nodes denote Player 0’s states and rectangular nodes denote Player 1’s states.

Proof. We reduce the two-player multi-reachability problem to our problem, PSpace-Hardness follows.
Let G = (SG, {SGA , SGB}, sGinit,ΣG,∆G) be a two-player (Player A and Player B) game arena. Let T =
{T1, T2, . . . , Tk} be a family of subsets of SG supposed to be pairwise disjoint (w.l.o.g.). Also wlog we
assume that Ti ⊆ SGB for all i ∈ {1, . . . , k}. In a multi-reachability game, the objective of Player A is to visit
each T in T , while Player B tries to avoid at least one of the subsets in T . So, multi-reachability games are
two-player zero sum games where the winning plays for Player A are

{ρ = s0s1 . . . sn · · · ∈ Plays(G) | ∀i · 1 ≤ i ≤ k · ∃j ≥ 0 · sj ∈ Ti}.

It has been shown that the multi-reachability problem for two-player games is PSpace-C [4, 17].
From G = (SG, {SGA , SGB}, sGinit,ΣG,∆G) and T = {T1, T2, . . . , Tk} that define a multi-reachability game,

we construct a game arena G′ = (S, {S0, S1, . . . , Sk},
s0,Σ,∆) with k+ 1 players and a set of k+ 1 safety objectives Safe0, . . . ,Safek such that Player A wins the
multi-reachability objective defined by G and T iff there exists a doomsday equilibrium in G′ for the safety
objectives Safe0, . . . ,Safek.

The structure of the reduction is depicted in Fig. 5. The state space of G′ is composed of three parts:
an initial part on the left, a modified copy of G, and a part on the right. The set S of states is {s0, s1} ∪
SGA ∪ SGB ∪ {Bad}. This set of states is partitioned as follows: S0 = {s0} ∪ SGA ∪ {Bad}, S1 = SGB \

⋃i=k
i=2 Ti

and for all i, 2 ≤ i ≤ k, Si = Ti.
The sets of safety objectives are defined as follows: Safe0 = safe({s0, s1}), and for all i ∈ {1, 2, . . . , k},
Safei = safe(S \ ({Bad} ∪ Ti)). The alphabet of actions is Σ = ΣG ∪ {deviate}, and the transition function is
defined as follows:

• ∆(s0, σ) = s1, for all σ ∈ Σ,

• ∆(s1, σ) =

{
s0 if σ ∈ ΣG

sGinit if σ = deviate

• for all s ∈ SGA ∪ SGB :

– for all σ ∈ ΣG, ∆(s, σ) = ∆G(s, σ)

– for the letter deviate: for all states s ∈ SGA , ∆(s, deviate) = s, and for all s ∈ SGB , ∆(s, deviate) =
Bad
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• Bad is a sink state.

Now, let us justify this construction. First, assume that, in the two-player game arenaG = (SG, {SG1 , SG2 }, sGinit,ΣG,∆G)
with the multi-reachability objective given by T = {T1, T2, . . . , Tk}, Player A has a winning strategy. In that
case, we show that there exists a doomsday equilibrium in the game G′ for the safety objectives (Safei)0≤i≤k.
To establish the existence of a doomsday equilibrium, we consider the strategy profile Λ = (λ0, λ1, . . . , λk)
whose strategies respect the following conditions:

• If all the players follows the strategy profile Λ, the outcome of the game is (s0 · s1)ω, i.e. Player 1
avoids to play deviate in s1.

• Whenever player 1 plays deviate in s1, then the game enters the sub game of G′ corresponding to G,
and the game thus enters an unsafe state for Player 0 (as sinit is not part of Safe0). From there, Player 0
must retaliate by forcing a visit to each set in T = {T1, T2, . . . , Tk} to make sure that all the other
players lose. By hypothesis, in G, Player A has a winning strategy for the multi-reachability objective,
so we know that if the other players play letters that are in ΣG then all sets in T will eventually be
visited when Player 0 plays according to the winning strategy of Player A in G. On the other hand,
if the letter deviate is played then the game goes to the state Bad where all the safety objectives are
violated. So, we have established that Player 0 can retaliate if he plays as Player A in the copy of
G. Now, let us consider all the other players. According to the definition of the transition function,
Player i has the option to retaliate whenever he enters its unsafe set Ti by choosing the action deviate
and so force a visit to Bad. So, all other players have also the ability to retaliate whenever they enter
their unsafe region.

So, we have established that (λ0, λ1, . . . , λk) witnesses a doomsday equilibrium in G′.
Now, let us consider the other direction. Let (λ0, λ1, . . . , λk) be a profile of strategies which witnesses a

doomsday equilibrium for G′ and the safety objectives given by the subsets of plays (Safei)i=0,..,k. In that
case, if we consider a prefix of play that enters for the first time the state sinit, we know by definition of
doomsday equilibrium that Player 0 has a strategy to retaliate against any strategies of the adversaries. If
all the other players choose their letters in ΣG then it should be the case that the play visits all the sets
in T . So, this clearly means that Player A has a winning strategy in G for the multi-reachability objective
defined by T , this strategy simply follows the strategy λ0 in the copy of G. �

3.4. LTL objectives

In this section, we show that the problem of deciding the existence of a DE for LTL objectives is
2ExpTime-C. As a first solution, we define a reduction to parity objectives. For this reduction, we use DPW
automata constructed from LTL formulas, so we need to apply the Safra determinization construction [36]
or a variant. From this solution, we can bound the memory that is needed by the players to play a DE.
Using that bound on memory, we provide a second solution in the form of a Safraless procedure, in the spirit
of [26], that is based on a reduction to safety objectives as in [20, 19].

Recduction to parity objectives. Given a labelled n-player arena G = (S,P, sinit,Σ,∆,P,L) and LTL
objectives (ϕi)1≤i≤n over P, we construct another n-player arena G′ = (S′, s′init,Σ

′,∆′) with parity objectives
(ϕ′i)1≤i≤n such that there exists a DE in G if and only if there is one in G′. To construct G′, we first construct
a series of (total) deterministic parity automata from the LTL formulas (ϕi)1≤i≤n: Ai = (Qi, qiinit, 2

P, δi, pi) is
such that L(Ai) = JϕiK, i.e. Ai accepts exactly all the sequences of labels in which either player i wins. Then,
we define the game arena G′ = (S′, s′init,Σ

′,∆′) as the product of G with those automata. The elements of
G′ are as follows:

• the set of states S′ = S ×Q1 ×Q2 × . . . Qn, i.e. the set of states of G′ is the cartesian product of the
set of states of G and the state spaces of all the automata for the LTL objectives;

• the initial state is s′init = (sinit, q
1
init, q

2
init, . . . , q

n
init);
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• the set of actions of S′ is Σ′ = Σ, so it is unchanged;

• the transition relation ∆′ is defined as follows: for all (s, q1, q2, . . . , qn) ∈ S′, σ ∈ Σ,

∆′((s, q1, q2, . . . , qn), σ)

= (∆(s, σ), δ1(q1,L(s)), δ2(q2,L(s)), . . . , δn(qn,L(s)))

• the parity functions ϕ′i are as follows: for all states s′ = (s, q1, . . . , qn), ϕ′i(s
′) = pi(qi).

Clearly, a play in G′ is winning for ϕ′i iff its projection in G corresponds exactly to a play that is winning
for the LTL objective ϕi. As a direct consequence, we have that there is a correspondence between the DE
in G and G′.

Lemma 14. There exists a DE in the n-player labelled game arena G = (S, sinit, Σ,∆,P,L) with LTL
objectives (ϕi)1≤i≤n if and only if there exists a DE in the n-player arena G′ = (S′, s′init,Σ

′,∆′) with parity
objectives (ϕ′i)1≤i≤n.

This reduction from LTL objectives to parity objectives gives us a 2ExpTime procedure and it is worst-
case optimal.

Theorem 15. The problem of deciding the existence of a doomsday equilibrium in a labelled n-player game
arena is 2ExpTime-C for LTL objectives.

Proof. Lemma 14 justifies the correctness of the construction. We need to make precise the size of G′

and the number of colors that are used in the parity conditions in order to give precise upper bounds for
the complexity of our reduction. First, the size of all the automata constructed for the LTL formulas are
bounded doubly exponentially in the size of the LTL formulas (ϕi)1≤i≤n, and each of them uses a number of
colors for their parity condition which is bounded exponentially in the size of those formulas, those bounds
on the translation from LTL to deterministic parity automata can be found e.g. in [26]. Let BA be the size
of the largest automaton, and Bd be the largest number of colors. Clearly, from the construction of G′, its
state space is at most O(|S| ·BAn) and each of the parity objectives uses at most Bd colors.

In the proof of Lemma 5, we have shown that to search for a DE for parity objectives, we need to compute
the retaliation sets of each player. This can be done with the Emerson and Lei algorithm [16]. As the state
space is linear in the state space of the game arena, doubly exponential in the size of the LTL objectives,
and the parity conditions contains at most exponentially many colors in the size of the LTL formulas, then
we know that the overall complexity of computing these is bounded by a double exponential in the size of
the original problem. This gives the upper bound.

The lower bound is easily obtained by a reduction from the realizability problem for LTL, which is known
to be 2ExpTime-Hard [33]. The proof closely follows the proof idea of lemma 6 and lemma 11. �

Bounding the memory in strategies. We now refine the complexity analysis of Theorem 15, and give
a bound on the size of the memory of strategies that form a DE for LTL objectives. The following lemma
shows that there always exists DE with bounded memory for parity objectives.

Lemma 16. If there is a DE equilibrium in n-player arena G = (S,P, sinit,Σ,∆) with the parity objectives
(ϕi)1≤i≤n, then there is a profile (λ1, λ2, . . . , λn) where the memory used by each strategy λi is bounded
polynomially in the number of states in G, exponentially in the number of players, and exponentially in the
number of colors used in the parity conditions.

Proof. Parity objectives are tail objectives, so to compute a strategy profile that forms a DE, we can apply
the algorithm described in the proof of Lemma 5.

That algorithm first computes the set Ri for each player together with a strategy for retaliation. Then
the algorithm looks for a path that is winning for every players within the intersection of the sets Ri. If such
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path exists, then the DE equilibrium is composed of strategies that follow this winning path for ever, or up
to the point one of the player deviates, and in this case all the other players switch to their own retaliating
strategy. So the memory needed for each player is thus bounded by the size of the winning path plus the
size of the retaliating strategy. We now bound those two sizes.

For the size of the retaliation, we observe that the objective for player i is ϕi ∨
∧
j 6=i,1≤j≤n ϕj , which is a

Boolean combination of parity conditions. This Boolean combination can be rewritten as
∧
j 6=i,1≤j≤n(ϕi∨ϕj).

Now, each conjunct ϕi ∨ϕj can be seen as a Rabin objective with O(d) pairs (where d is the maximal color
index used in the two parity functions). This Rabin condition can be turned in to a Streett condition in a
game with O(m · 2d log d) states and O(d) pairs using the Index Appearance Record construction provided
in [36]. So, to compute the retaliating region, we need to solve a Streett game with O(m · 2d log d) states and
O(d) pairs. Optimal strategies in Streett games can be implemented using finite-memory, and the memory
size is bounded by O(d!), and those strategies can be constructed in time exponential in the number of pairs
and polynomial in the number of states in the game. So, it means that for our games, we obtain that the
region Ri can be computed in time polynomial in m (the state space of the arena) and exponential in d
(the largest color index used in the winning condition for each player in the original game). So the memory
needed for the retaliating strategy is O(m · 2d log d · d!).

Once we have computed, the retaliating regions, we search for a path in the intersection of all those
regions that pleases all the players in G. This can be done by considering the subgraph of the arena G
defined by

⋂
1≤i≤nRi. Looking for an infinite path which is winning for all players can be seen as looking

for a accepting run in a deterministic Streett automaton. Indeed, each parity condition φi can be translated
into a Streett condition with O(d) pairs and the union of those sets of pairs is equivalent to the conjunction
of the parity conditions. It is known that the non-emptiness of a Streett automaton with α states and β
pairs is witnessed by a lasso path uvω such that |u|+ |v| ≤ αβ2β! (see e.g. [31]).

So the overall memory requirement for each player i is bounded by the size of the retaliating strategy
which is O(m ·2d log d ·d!) and by the size of the outcome of the DE which is bounded by O(m · (n ·d)2(n ·d)!).

�

From the reduction to parity objectives given in the proof of Lemma 14 and the previous lemma, we
obtain the following corollary.

Corollary 17. If a labelled n-player arena G = (S,P, sinit,Σ,∆,P,L) with LTL objectives (ϕi)1≤i≤n over P
has a DE equilibrium then there exists a profile of strategies (λ1, λ2, . . . , λn) which is a DE and each strategy
λi can be encoded as a Moore machine of size which his at most linear in the size of G, doubly exponential
in the size of the largest formula in (ϕi)1≤i≤n, and exponential in the number of players n.

Safraless procedures - main ideas. Corollary 17 gives a bound on the memory size of strategies in a
DE for LTL objectives. We exploit this bound to define a procedure that avoids the construction of DPW,
and so avoids the use of the Safra determinization construction which is notoriously difficult to implement
efficiently [1]. Our Safraless procedure is based on universal co-Büchi automata as suggested in [26] and
leads to solving safety games as in [20, 18]. The idea underlying the safety game is as follows.

The central idea of Safraless methods, as first proposed in [26], is to exploit the fact that when a player
wins an ω-regular objective in a two-player game G, such as an LTL objective ϕ, then he has a finite-memory
winning strategy to enforce this objective2. The existence of a finite-memory winning strategy allows us to
strengthen the LTL objective into a simpler objective, here a safety objective as in [20, 18]. The justification
of this reduction follows the following line of arguments.

First, given an LTL objective ϕ, we can construct a universal co-Büchi automaton Aϕ that accepts all
the plays that satisfy ϕ, see e.g. [5]. This automaton has a size which is at most exponential in the size of
the LTL formula.

2For LTL objective, it is known that a memory which is doubly exponential in the size of the LTL formula and linear in the
size of the game structure suffices.
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Second, assume that λ is a finite-memory winning strategy for the objective ϕ. Assume that λ uses
a memory of size m, that Aϕ has MA states, and that the game G has MG states. Then if we take the
synchronised product of the strategy λ with the universal co-Büchi automaton Aϕ, and with the game
structure G, we obtain a graph with m ·MA ·MG states. As λ is winning for the objective defined by the
universal co-Büchi automaton Aϕ, we know that all reachable cycles of this graph are free of accepting states
in the automaton component (as on all runs of Aϕ only finitely many accepting states should be visited on
outcomes compatible with λ). But if no reachable cycles contain accepting states, the maximal number of
accepting states seen on a play compatible with λ is bounded by the size of the graph, that is by m ·MA ·MG.
So, λ ensures that the number of accepting states visited on a run that monitors a play compatible with λ
is bounded by m ·MA ·MG. As a consequence, we can replace the co-Büchi objective (i.e. visits a finite
number of times the accepting states) by a stronger safety objective which asks to visit accepting states at
most m ·MA ·MG times in Aϕ). The strategy λ is indeed enforcing this stronger objective.

Formal construction. As our procedure follows closely the previous works mentioned above, here we only
sketch the main ideas underlying the correctness and completeness arguments.

First, we need the following notation. Given a UcoBW B, remember that L(B) denotes its language.
Given a value K, we note LK(B) the language defined by B when it is interpreted as a UKcoBW, for which
an accepting runs is allowed to visit at most K times a Büchi state (instead of a finite number of time as in
the classical co-Büchi acceptance condition). Clearly we have that LK(B) ⊆ L(B).

Given a labelled n-player arena G = (S,P, sinit,Σ,∆,P,L) and LTL objectives (ϕi)1≤i≤n over P, the
algorithm follows the following steps:

1. We first construct the universal co-Büchi automata for each of the following formulas:

•
∧i=n
i=1 ϕi, and denote it by Ball;

• for all i, 1 ≤ i ≤ n, ϕi ∨
∧
j 6=i,1≤j≤n ¬ϕj , and denote it by Bri .

2. We fix a positive integer K

3. Each automaton Bri together with value K, defines a safety language and thus a safety game when used
as an observer for G. For each such safety game, we compute Λi which is the most general strategy3

for player i in G to enforce the safety language defined by Bri and K.

4. We check if there is a profile of strategies (λ1, λ2, . . . , λn) such that for all i, 1 ≤ i ≤ n, λi ∈ Λi, and

such that the outcome of (λ1, λ2, . . . , λn) in G is satisfying
∧i=n
i=1 ϕi, i.e. it is accepted by Ball, return

Yes if such profile exists and No otherwise.

Clearly, all the steps above avoid Safra’s determinization. We now show that positive answers of the
procedure are correct for any value of K, and negative answers are correct for sufficiently large values of K.

Theorem 18. When the Safraless procedure above returns Yes then there exists a DE for the labelled n-
player arena G = (S, sinit,Σ,∆,P,P) with LTL objectives (ϕi)1≤i≤n, and there exists a K which is at most
linear in the size of G, doubly exponential in the size of the LTL objectives, and exponential in the number
of players, such that if the procedure returns No for K, then there is no DE equilibrium in G for the LTL
objectives (ϕi)1≤i≤n.

Proof. Clearly, if the procedure returns Yes then there is a profile of strategies (λ1, λ2, . . . , λn) such that
all the players win their objective when this profile is played and furthermore every λi enforce the language
LK(Bri), and we know that LK(Bri) ⊆ L(Bri) = Jϕi

∧
j 6=i,1≤j≤n ¬ϕjK. So, (λ1, λ2, . . . , λn) is a DE equilibrium

for the LTL objectives (ϕi)1≤i≤n.
Now, if there exists a DE, by Corollary 17, we know that there exists a DE with a profile of strategies

(λ1, λ2, . . . , λn) where each λi has a memory size bounded linearly in the size of G, doubly exponentially in
the size of the LTL objectives, and exponentially in the number of players. Let B denotes that bound.

3In a safety game, the set of all winning strategies is define by the maximal subset of edges that are safe in the positions of
the protagonist. So the notion of most general strategy is well defined.
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Figure 6: Game arena with imperfect information and Büchi objectives. Only indistinguishable states of Player 1 (circle) are
depicted. Observations are symmetric for the other players.

The outcome of the profile (λ1, λ2, . . . , λn) satisfies the objective of each player and each strategy λi
enforces L(Bri) = Jϕi

∧
j 6=i,1≤j≤n ¬ϕjK, but as λi has memory size at most B, then for Ki = Bi · |G|, we

have that strategy λi also enforces LKi
(Bri). So, if we take K as the largest of those Ki and the procedure

returns No then we know that there is no DE in G for the LTL objectives (ϕi)1≤i≤n. �

4. Complexity of DE for Imperfect Information Games

In this section, we define n-player game arenas with imperfect information. We adapt to this context
the notions of observation, observation of a play, observation-based strategies, and we study the notion of
doomsday equilibria when players are restricted to play observation-based strategies.

Game arena with imperfect information. An n-player game arena with imperfect information is a
tuple G = (S,P, sinit,Σ,∆, (Oi)1≤i≤n) such that (S,P, sinit,Σ,∆) is a game arena (of perfect information)
and for all i, 1 ≤ i ≤ n, Oi ⊆ 2S is a partition of S. Each block in Oi is called an observation of Player i.
We assume that the players play in a predefined order4: for all i ∈ {1, . . . , n}, all q ∈ Si and all σ ∈ Σ,
∆(q, σ) ∈ S(i mod n)+1.

Observations. For all i ∈ {1, . . . , n}, we denote by Oi(s) ⊆ S the block in Oi that contains s, that is the
observation that Player i has when he is in state s. We say that two states s, s′ are indistinguishable for
Player i if Oi(s) = Oi(s

′). This defines an equivalence relation on states that we denote by ∼i. The notions
of plays and prefixes of plays are slight variations from the perfect information setting: a play in G is a
sequence ρ = s0, σ0, s1, σ1, · · · ∈ (S · Σ)ω such that s0 = sinit, and for all j ≥ 0, we have sj+1 = ∆(sj , σj). A
prefix of play is a sequence π = s0, σ0, s1, σ1, . . . , sk ∈ (S · Σ)∗ · S that can be extended into a play. As in
the perfect information setting, we use the notations Plays(G) and PrefPlays(G) to denote the set of plays
in G and its set of prefixes, and PrefPlaysi(G) for the set of prefixes that end in a state that belongs to
Player i. While actions are introduced explicitly in our notion of play and prefix of play, their visibility
is limited by the notion of observation. The observation of a play ρ = s0, σ0, s1, σ1, . . . by Player i is the

4This restriction is not necessary to obtain the results presented in this section (e.g. Theorem 23) but it makes some of our
notations lighter.
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infinite sequence written Obsi(ρ) ∈ (Oi × (Σ ∪ {τ}))ω such that for all j ≥ 0, Obsi(ρ)(j) = (Oi(sj), τ) if
sj 6∈ Si, and Obsi(ρ)(j) = (Oi(sj), σj) if sj ∈ Si. Thus, only actions played by Player i are visible along the
play, and the actions played by the other players are replaced by τ . The observation Obsi(π) of a prefix π is
defined similarly. Given an infinite sequence of observations η ∈ (Oi × (Σ ∪ {τ}))ω for Player i, we denote
by γi(η) the set of plays in G that are compatible with η, i.e. γi(η) = {ρ ∈ Plays(G) | Obsi(ρ) = η}. The
functions γi are extended to prefixes of sequences of observations naturally.

Observation-based strategies and doomsday equilibria. A strategy λi of Player i is observation-based
if for all prefixes of plays π1, π2 ∈ PrefPlaysi(G) such that Obsi(π1) = Obsi(π2), it holds that λi(π1) = λi(π2),
i.e. while playing with an observation-based strategy, Player i plays the same action after indistinguishable
prefixes. A strategy profile Λ is observation-based if each Λi is observation-based. Winning objectives,
strategy outcomes and winning strategies are defined as in the perfect information setting. We also define
the notion of outcome relative to a prefix of a play. Given an observation-based strategy λi for Player i, and
a prefix π = s0, σ0, . . . , sk ∈ PrefPlaysi(G), the strategy λπi is defined for all prefixes π′ ∈ PrefPlaysi(Gsk)
where Gsk is the game arena G with initial state sk, by λπi (π′) = λi(π · π′). The set of outcomes of the
strategy λi relative to π is defined by outcomei(π, λi) = π · outcomei(λ

π
i ).

The notion of doomsday equilibrium is defined as for games with perfect information but with the
additional requirements that only observation-based strategies can be used by the players. Given an n-
player game arena with imperfect information G and n winning objectives (ϕi)1≤i≤n (defined as in the
perfect information setting), we want to solve the problem of deciding the existence of an observation-based
strategy profile Λ which is a doomsday equilibrium in G for (ϕi)1≤i≤n.

Example 19. Fig. 6 depicts a variant of the example in the perfect information setting, with imperfect
information. In this example let us describe the situation for Player 1. It is symmetric for the other players.
Assume that when Player 2 or Player 3 send their information to Player 1 (modeled by a visit to his happy
states), Player 1 cannot distinguish which of Player 2 or 3 has sent the information, e.g. because of the usage
of a cryptographic primitive. Nevertheless, let us show that there exists doomsday equilibrium. Assume that
the three players agree on the following protocol: Player 1 and 2 send their information but not Player 3.

Let us show that this sequence witnesses a doomsday equilibrium and argue that this is the case for
Player 1. From the point of view of Player 1, if all players follow this profile of strategies then the outcome
is winning for Player 1. Now, let us consider two types of deviation. First, assume that Player 2 does not
send his information (i.e. does not visit the happy states). In that case Player 1 will observe the deviation
and can retaliate by not sending his own information. Therefore all the players are losing. Second, assume
that Player 2 does not send his information but Player 3 does. In this case it is easy to verify that Player
1 cannot observe the deviation and so according to his strategy will continue to send his information. This
is not problematic because all the plays that are compatible with Player 1’s observations are such that: (i)
they are winning for Player 1 (note that it would be also acceptable that all the sequence are either winning
for Player 1 or losing for all the other players), and (ii) Player 1 is always in position to retaliate along this
sequence of observations. In our solution below these two properties are central and will be called doomsday
compatible and good for retaliation. �

Generic Algorithm. We present a generic algorithm to test the existence of an observation-based dooms-
day equilibrium in a game of imperfect information. To present this solution, we need two additional notions:
sequences of observations which are doomsday compatible and prefixes which are good for retaliation. These
two notions are defined as follows. In a game arena G = (S,P, sinit,Σ,∆, (Oi)1≤i≤n) with imperfect infor-
mation and winning objectives (ϕi)1≤i≤n,

• a sequence of observations η ∈ (Oi × (Σ ∪ {τ}))ω is doomsday compatible (for Player i) if γi(η) ⊆
ϕi ∪

⋂j=n
j=1 ϕj , i.e. all plays that are compatible with η are either winning for Player i, or not winning

for any other player,

• a prefix κ ∈ (Oi × (Σ ∪ {τ}))∗ ·Oi of a sequence of observations is good for retaliation (for Player i) if
there exists an observation-based strategy λRi such that for all prefixes π ∈ γi(κ) compatible with κ,

outcome(π, λRi ) ⊆ ϕi ∪
⋂j=n
j=1 ϕj .
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The next lemma shows that the notions of sequences of observations that are doomsday compatible and
good for retaliation prefixes are important for studying the existence of doomsday equilibria for imperfect
information games.

Lemma 20. Let G be an n-player game arena with imperfect information and winning objectives ϕi, 1 ≤
i ≤ n. There exists a doomsday equilibrium in G if and only if there exists a play ρ in G such that:

(F1) ρ ∈
⋂i=n
i=1 ϕi, i.e. ρ is winning for all the players,

(F2) for all Player i, 1 ≤ i ≤ n, for all prefixes κ of Obsi(ρ), κ is good for retaliation for Player i,

(F3) for all Player i, 1 ≤ i ≤ n, Obsi(ρ) is doomsday compatible for Player i.

Proof. First, assume that conditions (F1), (F2) and (F3) hold and show that there exists a DE in G. We
construct a DE (λ1, . . . , λn) as follows. For each player i, the strategy λi plays according to the (observation
of the) path ρ in G, as long as the previous observations follow ρ. If an observation is unexpected for Player i
(i.e., differs from the sequence in ρ), then λi switches to an observation-based retaliating strategy λRi (we
will show that such a strategy exists as a consequence of (F2)). This is a well-defined profile and a DE
because: (1) all strategies are observation-based, and the outcome of the profile is the path ρ that satisfies
all objectives; (2) if no deviation from the observation of ρ is detected by Player i, then by condition (F3) we
know that if the outcome does not satisfy ϕi, then it does not satisfies ϕj , for all 1 ≤ j ≤ n, (3) if a deviation
from the observation of ρ is detected by Player i, then the sequence of observations of Player i so far can be
decomposed as κ = κ1(o1, σ1) . . . (om, σm) where (o1, σ1) is the first deviation of the observation of ρ, and
(om, σm) is the first time it is Player i’s turn to play after this deviation (so possibly m = 1). By condition
(F2), we know that κ1 is good for retaliation. Clearly, κ1(o1, σ1) . . . (o`, σ`) is retaliation compatible as well
for all ` ∈ {1, . . . ,m} since retaliation goodness is preserved by player j’s actions for all j. Therefore κ is
good for retaliation and by definition of retaliation goodness there exists an observation-based retaliation
strategy λRi for Player i which ensures that regardless of the strategies of the opponents in coalition, if the
outcome does not satisfy ϕi, then for all j ∈ {1, . . . , n}, it does not satisfy ϕj either.

Second, assume that there exists a DE (λ1, . . . , λn) in G, and show that (F1), (F2) and (F3) hold. Let
ρ be the outcome of the profile (λ1, . . . , λn). Then ρ satisfies (F1) by definition of DE. Let us show that it
also satisfies (F3). By contradiction, if obsi(ρ) is not doomsday compatible for Player i, then by definition,
there is a path ρ′ in Plays(G) that is compatible with the observations and actions of player i in ρ (i.e.,
obsi(ρ) = obsi(ρ

′)), but ρ′ does not satisfy ϕi, while it satisfies ϕj for some j 6= i. Then, given the strategy
λi from the profile, the other players in coalition can choose actions to construct the path ρ′ (since ρ and
ρ′ are observationally equivalent for player i, the observation-based strategy λi is going to play the same
actions as in ρ). This would show that the profile is not a DE, establishing a contradiction. Hence obsi(ρ)
is doomsday compatible for Player i for all i = 1, . . . , n and (F3) holds. Let us show that ρ also satisfies
(F2). Assume that this not true. Assume that κ is a prefix of obsi(ρ) such that κ is not good for retaliation
for Player i for some i. By definition it means that the other players can make a coalition and enforce an
outcome ρ′, from some prefix of play compatible with κ, that is winning for one of players of the coalition,
say Player j, j 6= i, and losing for Player i. This contradicts the fact that λi belongs to a DE. �

We present automata constructions to recognise sequences of observations that are doomsday compatible
and prefixes that are good for retaliation.

Lemma 21. Given an n-player game G with imperfect information and a set of reachability, safety, parity,
or LTL objectives (ϕi)1≤i≤n, we can construct for each Player i, a deterministic Streett automaton Di whose
language is exactly the set of sequences of observations η ∈ (Oi× (Σ∪ {τ}))ω that are doomsday compatible
for Player i, i.e.

L(Di) = {η ∈ (Oi × (Σ ∪ {τ}))ω | ∀ρ ∈ γi(η) · ρ ∈ ϕi ∪
⋂
j 6=i

ϕj}.

For each Di, the size of its set of states is bounded by O(2nk log k) and the number of Streett pairs is bounded
by O(nk2) where k is the number of states in G for reachability, safety and parity objectives. For LTL
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objectives, each Di is at most doubly exponential in the size of the LTL objectives, and exponential in the
size of the game arena and the number of players.

Proof. Let G = (S, (Si)1≤i≤n, sinit,Σ,∆, (Oi)1≤i≤n), and let us show the constructions for Player i, 1 ≤
i ≤ n. We treat the three types of winning conditions as follows.

We start with safety objectives. Assume that the safety objectives are defined implicitly by the following
tuple of sets of safe states: (T1, T2, . . . , Tn), i.e. ϕi = safe(Ti). First, we construct the automaton

A = (QA, qAinit, (Oi × (Σ ∪ {τ}), δA)

over the alphabet Oi × (Σ ∪ {τ}) as follows:

• QA = S, i.e. the states of A are the states of the game structure G,

• qAinit = sinit,

• (q, (o, σ), q′) ∈ δA if q ∈ o and there exists σ′ ∈ Σ such that ∆(q, σ′) = q′ and such that σ = τ if q 6∈ Si,
and σ = σ′ if q ∈ Si.

The acceptance condition of A is universal and expressed with LTL syntax:

A word w is accepted by A iff all runs ρ of A on w satisfy ρ |= �Ti ∨
∧
j 6=i ♦Tj .

Clearly, the language defined by A is exactly the set of sequences of observations η ∈ (Oi×(Σ∪{τ}))ω that are
doomsday compatible for Player i, this is because the automaton A checks (using universal nondeterminism)
that all plays that are compatible with a sequence of observations are doomsday compatible.

Let us show that we can construct a deterministic Streett automaton Di that accepts the language of A
and whose size is such that: (i) its number of states is at most O(2(nk log k)) and (ii) its number of Streett
pairs is at most O(nk). We obtain D with the following series of constructions:

• First, note that we can equivalently see A as the intersection of the languages of n − 1 universal
automata Aj with the acceptance condition �Ti ∨ ♦Tj , j 6= i, 1 ≤ j ≤ n.

• Each Aj can be modified so that a violation of Ti is made permanent and a visit to Tj is recorded.
For this, we use a state space which is equal to QA × {0, 1} × {0, 1}, the first bit records a visit to Ti
and the second a visit to Tj . We denote this automaton by A′j , and its acceptance condition is now

�♦(QA × {0, 1} × {0})→ �♦(QA × {0} × {0, 1}). Clearly, this is a universal Streett automaton with
a single Streett pair.

• A′j , which is a universal Streett automaton, can be complemented (by duality) by interpreting it as
a nondeterministic Rabin automaton (with one Rabin pair). This nondeterministic Rabin automaton
can be made deterministic using a Safra like procedure, and according to [8] we obtain a deterministic
Rabin automaton with O(2k log k) states and O(k) Rabin pairs. Let us call this automaton A′′j .

• Now, A′′j can be complemented by considering its Rabin pairs as Streett pairs (by dualization of the
acceptance condition): we obtain a deterministic Streett automaton with O(k) Streett pairs for each
Aj .

• Now, we need to take the intersection of the n− 1 deterministic automata A′′j (interpreted as Streett
automata). Using a classical synchronized product we obtain a single deterministic Streett automaton
Di of size with O(2nk log k) states and O(nk) Streett pairs. This finishes our proof for safety objectives.

Let us now consider reachability objectives. Therefore we now assume the states in T1, . . . , Tn to be
target states for each player respectively, i.e. ϕi = reach(Ti). The construction is in the same spirit as
the construction for safety. Let A = (QA, qAinit, Oi × (Σ ∪ {τ}), δA) be the automaton over (Oi × (Σ ∪ {τ})
constructed from G as for safety, with the following (universal) acceptance condition;

22



A word w is accepted by A iff all runs ρ of A on w satisfy ρ |= (
∨
j 6=i ♦Tj)→♦Ti.

Clearly, the language defined by A is exactly the set of sequences of observations η ∈ ((Σ∪ {τ})×Oi)ω that
are doomsday compatible for Player i (w.r.t. the reachability objectives). Let us show that we can construct
a deterministic Streett automaton Di that accepts the language of A and whose size is such that: (i) its
number of states is at most O(2(nk log k)) and (ii) its number of Streett pairs is at most O(nk). We obtain
Di with the following series of constructions:

• First, the acceptance condition can be rewritten as
∧
j 6=i(♦Tj → ♦Ti). Then clearly if Aj is a copy of

A with acceptance condition ♦Tj → ♦Ti then L(A) =
⋂
j 6=i L(Aj).

• For each Aj , we construct a universal Streett automaton with one Streett pair by memorizing the
visits to Ti and Tj and considering the acceptance condition �♦Tj → �♦Ti. So, we get a universal
automaton with a single Streett pair.

• Then we follow exactly the last three steps (3 to 5) of the construction for safety.

Let us now consider parity objectives. The construction is similar to the other cases. Specifically, we can
take as acceptance condition for A the universal condition

∧
j 6=i(parityi ∨ parityj), and treat each condition

parityi ∨ parityj separately. We dualize the acceptance condition of A, into the nondeterministic condition

parityi∧parityj . This acceptance condition can be equivalently expressed as a Streett condition with at most
O(k) Streett pairs. This automaton accepts exactly the set of observation sequences that are not doomsday
compatible for Player i against Player j. Now, using optimal procedure for determinization, we can obtain a
deterministic Rabin automaton, with O(k2) pairs that accepts the same language [31]. Now, by interpreting
the pairs of the acceptance condition as Streett pairs instead of Rabin pairs, we obtain a deterministic
Streett automaton Aj that accepts the set of observations sequences that are doomsday compatible for
Player i against Player j. Now, it suffices to take the product of the n − 1 deterministic Streett automata
Aj to obtain the desired automaton A, its size is at most O(2nk log k) with at most O(nk2) Streett pairs.

For LTL objectives, we can proceed as follows. As for the other types of objectives, we construct for
each player i from the arena G, a universal co-Büchi automaton on the alphabet (Oi × (Σ ∪ {τ})) with the
following (universal) acceptance condition;

A word w is accepted by A iff all runs ρ of A on w satisfy ρ |= ϕi ∨ ∧j 6=i,1≤j≤n¬ϕj .

Such an automaton has a state space exponential in the size of the LTL formulas and polynomial in the
size of the arena. Then, we can turn this universal co-Büchi into a deterministic Streett automaton in
exponential time, the state space of the resulting automaton is doubly exponential in the size of the LTL
formulas, exponential in the size of the arena, and its number of Streett pairs is exponential in the size of
the LTL formulas. �

Lemma 22. Given an n-player game arena G with imperfect information and a set of reachability, safety
or parity objectives (ϕi)1≤i≤n, for each Player i, we can construct a finite-state automaton Ci that accepts
exactly the prefixes of observation sequences that are good for retaliation for Player i.

Proof. Let us show how to construct this finite-state automaton for any Player i, 1 ≤ i ≤ n. Our
construction follows these steps:

• First, we construct fromG, according to lemma 21, a deterministic Streett automatonDi = (QDi , qDi

init, (Oi×
(Σ ∪ {τ}), δDi ,StDi) that accepts exactly the set of sequences of observations η ∈ (Oi × (Σ ∪ {τ}))ω
that are doomsday compatible for Player i.

• Second, we consider a turn-based game played on Di by two players, A and B, that move a token from
states to states along edges of Di as follows:

1. initially, the token is in some state q
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2. then in each round: B chooses an observation o ∈ Oi such that there exists (q, (o, σ), q′) ∈ δDi .
Then A chooses a transition (q, (o, σ), q′) ∈ δDi (which is completely determined by σ as Di is
deterministic), and the token is moved to q′ where a new round starts.

The objective of A is to enforce from state q an infinite sequence of states, so a run of Di that starts
in q, and which satisfies StDi the Streett condition of Di. For each q, this can be decided in time
polynomial in the number of states in Di and exponential in the number of Streett pairs in StDi ,
see [32] for an algorithm with the best known complexity. We denote by Win ⊆ QDi the set of states
q from which A can win the game above.

• Note that if (o1, σ1) . . . (om, σm) is the trace of a path from qinit in Di to a state q ∈ Win, then
clearly (o1, σ1) . . . (om−1, σm−1)on is good for retaliation. Indeed, the winning strategy of A in q is
an observation based retaliating strategy λRi for Player i in G. On the other hand, if a prefix of
observations reaches q 6∈ Win then by determinacy of Streett games, we know that B has a winning
strategy in q and this winning strategy is a strategy for the coalition (against Player i) in G to enforce
a play in which Player i does not win and at least one of the other players wins. So, from Di and
Win, we can construct a finite state automaton Ci which is obtained as a copy of Di with the following
acceptance condition: a prefix κ = (o0, σ0), (o1, σ1), . . . , (ok−1, σk−1), ok is accepted by Ci if there exists
a path q0q1 . . . qk in Ci such that q0 is the initial state of Ci and there exists a transition labeled (ok, σ)
from qk to a state of Win.

For reachability, safety and parity objectives, the overall complexity is exponential in the size of the game
arena. This is because the state space of the Streett game is exponential in the size of the arena and the
number of Streett pairs is polynomial in the size of the game arena.

For the LTL objectives, the overall complexity is doubly exponential in the size of the LTL formulas and
exponential in the size of the game arena: this is because the state space of the game is doubly exponential
in the size of the LTL formulas, exponential in the size of the game arena, and the number of Streett pairs
is exponential in the size of the LTL formulas. �

Theorem 23. The problem of deciding the existence of a doomsday equilibrium in an n-player game arena
with imperfect information and n objectives is ExpTime-C for objectives that are either all reachability, all
safety, all Büchi, all co-Büchi or all parity objectives, and is 2ExpTime-C for LTL objectives. Hardness
already holds for 2-player game arenas.

Proof. By Lemma 20, we know that we can decide the existence of a doomsday equilibrium by checking the
existence of a play ρ in G that respects the conditions (F1), (F2), and (F3). As we have shown in Lemma 22,
for all i ∈ {1, . . . , n}, that the set of good for retaliation prefixes for Player i is definable by a finite-state
automaton Ci, and the set of observation sequences that are doomsday compatible for Player i is definable
by a Streett automaton Di as we have shown in Lemma 21.

From the automata (Di)1≤i≤n and (Ci)1≤i≤n, we construct using a synchronized product a finite transi-
tion system T and check for the existence of a path in T that satisfy the winning objectives for each player in
G, the Streett acceptance conditions of the (Di)1≤i≤n, and whose all prefixes are accepted by the automata
(Ci)1≤i≤n. The size of T is exponential in G for safety, reachability and parity objectives, and doubly ex-
ponential in the size of the objectives for LTL, and the acceptance condition is a conjunction of Streett and
safety objectives. The existence of such a path can be established in polynomial time in the size of T , so
in exponential time in the size of G for safety, reachability and parity objectives, and doubly exponential in
the size of the objectives for LTL. The ExpTime-hardness for safety, reachability and parity objectives is a
consequence of the ExpTime-hardness of two-player games of imperfect information for all the considered
objectives [6, 10]. The 2ExpTime-hardness for LTL is a consequence of the 2ExpTime-hardness of the
realizability problem for LTL [33]. �
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5. Conclusion

We defined the notion of doomsday threatening equilibria both for perfect and imperfect information n
player games with omega-regular objectives. This notion generalizes to n player games the winning secure
equilibria [11]. Applications in the analysis of security protocols are envisioned and will be pursued as future
works.

We have settled the exact complexity in games of perfect information for almost all omega-regular objec-
tives with complexities ranging from PTime to 2ExpTime-C, the only small gap that remains is for parity
objectives where we have a PSpace algorithm and both NP and coNP-hardness. For LTL, we also provide
a Safraless solution [26] suitable to efficient implementation.

Surprisingly, the existence of doomsday threatening equilibria in n player games with imperfect in-
formation is decidable and more precisely ExpTime-C for safety, reachability and parity objectives, and
2ExpTime-C for LTL objectives.
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