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Abstract. Routing protocols aim at establishing a route between nodes
on a network. Secured versions of routing protocols have been proposed
in order to provide more guarantees on the resulting routes. Formal meth-
ods have proved their usefulness when analysing standard security proto-
cols such as confidentiality or authentication protocols. However, existing
results and tools do not apply to routing protocols. This is due in par-
ticular to the fact that all possible topologies (infinitely many) have to
be considered.
In this paper, we propose a simple reduction result: when looking for
attacks on properties such as the validity of the route, it is sufficient to
consider topologies with only four nodes, resulting in a number of just
five distinct topologies to consider. As an application, we analyse the
SRP applied to DSR and the SDMSR protocols using the ProVerif tool.

1 Introduction

Routing protocols aim at establishing a route between distant nodes on a net-
work. Attacking routing protocols is a first step towards mounting more sophis-
ticated attacks. For example, forcing a route to visit a malicious node allows an
attacker to monitor and listen to the traffic, possibly blocking some messages.
Therefore, secured versions of routing protocols have been proposed to provide
more guarantees on the resulting routes, but they are often still subject to at-
tacks. For example, the SRP protocol [26] is a generic construction for securing
protocols. However, applied to DSR [23], a standard routing protocol, it has been
shown to be flawed, allowing an attacker to modify the route, making the source
node to accept an invalid route [15]. This shows that the design of secure routing
protocols is difficult and error-prone.

In the context of standard security protocols such as confidentiality or au-
thentication protocols, formal methods have proved their usefulness for providing
security guarantees or detecting attacks. For example, a flaw has been discov-
ered (see [5]) in the Single-Sign-On protocol used e.g. by Google Apps. It has
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been shown that a malicious application could very easily access to any other
application (e.g. Gmail or Google Calendar) of their users. This flaw has been
found when analyzing the protocol using formal methods, abstracting messages
by a term algebra and using the AVISPA platform [6]. More generally, many
decision procedures (e.g. [27, 12]) have been proposed for automatically analyz-
ing the security of protocols. Tools like AVISPA, ProVerif [13], or Scyther [18]
have been developed and successfully applied to protocols, yielding discoveries
of attacks or security proofs.

However, these results and tools do not apply to routing protocols. One of
the main reasons is the fact that analysing routing protocols requires one to
consider a different attacker model. Indeed, in contrast to standard security
protocols where the attacker is assumed to control all the communications, an
attacker for routing protocols is localized, i.e. it can control only a finite number
of nodes (typically one or two). Since a node broadcasts its messages to all its
neighbours, it is very easy for a malicious node to listen to the communication
of its neighbours but it is not possible to listen beyond the neighbouring nodes.
Therefore, the existence of an attack strongly depends on the network topology,
that is, how nodes are connected and where malicious nodes are located.

Some dedicated techniques have been developed for formally analyzing rout-
ing protocols. For example, S. Nanz and C. Hankin [25] have proposed one of the
first formal models for routing protocols and have shown how to automatically
analyze a finite number of attack scenarios. For a general attacker, M. Arnaud
et al. [7] have proposed an NP decision procedure for a finite number of ses-
sions. Several case studies have also been conducted. For example, D. Benetti
et al. [10] have analyzed the ARAN and endairA protocols with the AVISPA
tool, considering a finite number of scenarios. G. Ács et al. [3] have developed
a framework for analyzing the distance vector routing protocols SAODV and
ARAN. However, these results are rather ad-hoc and no decision procedure has
been implemented.

Our contribution. Instead of proposing a new decision procedure, we propose in
this paper a simple reduction result: if there is an attack, then there is an attack
on a small network topology with only four nodes. More precisely, we show that
at most five distinct topologies (each with four nodes) need to be considered
when looking for an attack. We therefore reduce the number of topologies to
be considered from infinitely many to only five. Our reduction result holds for
properties such as route validity and for a very general class of routing protocols.
Indeed, we consider arbitrary cryptographic primitives (provided they can be
expressed as terms) and arbitrary protocol transitions. For example, our model
allows neighbourhood tests, recursive operations, and of course standard pattern-
matching, encompassing the models proposed in [25, 7, 8].

The proof of our reduction result consists in two main steps. First, we
show that if there is an attack, then the attack is preserved when adding all
but one edge to the network topology, yielding a quasi-complete graph. Sec-
ond, we show how to merge all the nodes having the same neighbourhood and
honesty/dishonesty status. It is then sufficient to observe that merging quasi-
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complete graphs results into only five distinct topologies, each of them containing
four nodes.

An interesting consequence of our reduction result is that it allows one to
reuse techniques and tools developed for standard security protocols. Indeed, it
is now possible to consider the five fixed topologies one by one and to analyse
the protocol in each of the five cases using existing tools, provided of course
that the protocol’s primitives are supported by the tool. As an application, we
analyse the SRP applied to DSR [23, 26] and the SDMSR [20] protocols using the
ProVerif tool, retrieving the existing attacks. Detailed proofs of our results can
be found in [17].

Related work. Our result follows the spirit of [16] where it is shown that only two
distinct identities need to be considered when studying confidentiality or authen-
tication properties. To our knowledge, the only approach proposing a reduction
result in the context of routing protocols is [4]. In this paper, the authors show
how to reduce the number of network topologies that need to be considered,
taking advantage of the symmetries. However, the total number of configura-
tions is still infinite in the general case or really large even when considering a
bounded number of nodes. For example, more than 30000 topologies need to be
considered when the number of nodes is bounded by six. In contrast, our result
reduces to only five topologies, even when considering attacks with arbitrarily
many nodes.

2 Messages and attacker capabilities

For modeling messages, we consider an arbitrary term algebra and deduction
system, which provides a lot of flexibility in terms on which cryptographic prim-
itives can be modeled.

2.1 Messages

Messages are represented by terms where cryptographic primitives such as en-
cryption, signature, and hash function, are represented by function symbols.
More precisely, we consider a signature (S, Σ) made of a set of sorts S and a set
of function symbols Σ together with arities of the form ar(f) = s1× . . .×sk → s
where f ∈ Σ, and s, s1, . . . , sk ∈ S. We consider an infinite set of variables X
and an infinite set of names N that typically represent nonces, session keys, or
agent names. We assume that names and variables are given with sorts.

Regarding the sort system, we consider a special sort agent that only contains
names and variables. These names represent the names of the agents, also called
the nodes of the network. We assume a special sort term that subsumes all
the other sorts and such that any term is of sort term. Terms are defined as
names, variables, and function symbols applied to other terms. Of course function
symbol application must respect sorts and arities. For A ⊆ X ∪ N , the set of
terms built from A by applying function symbols in Σ is denoted by T (Σ,A).
A term t is said to be a ground term if it does not contain any variable.
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Example 1. A typical signature for representing the primitives used in routing
protocols such as the SRP [26] protocol is the signature (SSRP, ΣSRP) defined
by SSRP = {agent, list, term} and ΣSRP = {hmac, 〈〉, ::,⊥, shk , req , rep}, with the
following arities:

– hmac : term× term→ term,
– 〈〉 : term× term→ term,
– shk : agent× agent→ term,

– :: : agent× list→ list,
– ⊥ : → list,
– req , rep : → term.

The symbol :: is the list constructor whereas ⊥ is a constant representing
an empty list. The constants req and rep are used to identify the request phase
and the reply phase. The term shk(A,B) (= shk(B,A)) represents a shared
key between A and B. The term hmac(m, k) represents the keyed hash message
authentication code computed over message m with key k while 〈〉 is a pairing
operator. We write 〈t1, t2, t3〉 for the term 〈t1, 〈t2, t3〉〉, and [t1; t2; t3] for t1 ::
(t2 :: (t3 :: ⊥)).

Substitutions are written σ = {x1 7→ t1, . . . , xn 7→ tn} with dom(σ) =
{x1, . . . , xn}, and img(σ) = {t1, . . . , tn}. We only consider well-sorted substi-
tutions, that is substitutions for which xi and ti have the same sort. The sub-
stitution σ is ground if the ti are ground. The application of a substitution σ to
a term t is written σ(t) or tσ. A most general unifier of two terms t and u is a
substitution denoted by mgu(t, u). We write mgu(t, u) = ] when t and u are not
unifiable.

2.2 Attacker capabilities

The ability of the attacker is modeled by a deduction relation `⊆ 2term × term.
The relation I ` v represents the fact that the term v is computable from the set
of terms I. Such a relation is defined through an inference system, i.e. a finite set

of rules of the form
u1 . . . un

u
where u, u1, . . . , un ∈ T (Σ,X ). The deduction

relation can be arbitrary in our model as long as the terms u, u1, . . . un do not
contain any names. An example of such a relation is provided below.

A term u is deducible from a set of terms I, denoted by I ` u, if there exists a
proof, i.e. a tree such that the root is labelled with u and the leaves are labelled
with v ∈ I and every intermediate node is an instance of one of the rules of the
inference system.

Example 2. We can associate to the term algebra (SSRP, ΣSRP) defined in Exam-
ple 1, the following inference system.

y1 y2

〈y1, y2〉
〈y1, y2〉

y1

〈y1, y2〉

y2

x z

x :: z

x :: z

x

x :: z

z

y1 y2

hmac(y1, y2)

The terms y1, y2 are variables of sort term, x is a variable of sort agent, whereas z
is a variable of sort list. This inference system reflects the ability for the attacker
to concatenate terms, to build lists, and to retrieve components of lists and pairs.
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The last inference rule models the fact that an attacker can also compute a MAC
when he knows the key (and the message to be MACed).

Let I = {S,D,A1, A2,⊥, 〈req , S,D, id , [S], hmac(〈req , S,D, id〉, shk(S,D))〉} and
m = 〈req , S,D, id, [A1;A2;S], hmac(〈req , S,D, id〉, shk(S,D))〉 where S, D, A1,
and A2 are names of sort agent. The term m typically represents a message that
the attacker would like to send over the network while I represents its knowledge
so far, typically having listened to the first step of the SRP protocol. Considering
the inference system described above, we have that I ` m.

2.3 Functions over terms

In order to be as general as possible, we consider protocols that perform any
operation on the terms they receive. We therefore consider functions over terms,
that is, functions of the form f : T (Σ,N )× . . .× T (Σ,N )→ T (Σ,N ).

These functions can of course model standard applications of cryptographic
operations. For example, the function (x, y, z) 7→ {〈x, y〉}z represent the function
that concatenates the terms x and y and then encrypts it with z. They can also
be used to model various operations on lists. For instance, we can define the
reverse function that takes as input a list [A1, . . . , An] and outputs the reversed
list [An, . . . , A1].

More interestingly, such functions encompass recursive operations and recur-
sive tests. Typical examples can be found in the context of routing protocols,
when nodes check for the validity of the route. For example, in the SMNDP pro-
tocol [20], a route from the source A0 to the destination An is represented by a
list lroute = [A1; . . . ;An]. This list is accepted by the source node A0 only if the
received message is of the form:

[J〈An, A0, lroute〉Ksk(A1); J〈An, A0, lroute〉Ksk(A2); . . . ; J〈An, A0, lroute〉Ksk(An)]

where J〈An, A0, lrouteKsk(Ai) is a signature performed by Ai. This test and many
others (e.g. [21, 15]) can be easily modelled using functions over terms. Clearly,
not all functions over terms are meaningful to model protocols. In particular,
some of them might not be executable. Actually, a precise definition of exe-
cutability is not relevant for our result: our result holds for non executable func-
tions as soon as they satisfy the properties stated in our Theorem 1.

3 Models for protocols

Several calculi have been proposed to model security protocols (e.g. [2, 1]). How-
ever, they are not well-adapted for routing protocols. For instance, in contrast to
standard security protocols, the attacker is localized to some nodes and cannot
control all the communications. The nodes, i.e. the processes, have to perform
some specific actions that can not be easily modeled in such calculi, like recursive
checks (checking a chain of signatures) or some sanity checks on the routes they
receive, such as neighbourhood properties.
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Actually, our calculus is inspired from CBS# [25] and generalize the calculus
given in [7] by allowing processes to perform any operation on the terms they
receive and considering an arbitrary signature for terms.

3.1 Syntax

The intended behavior of each node of the network can be modeled by a process
defined by the grammar given below. Our calculus is parametrized by a set P
of predicates and a set F of functions over terms, whose purpose is to represent
the computations performed by the agents. We assume that these functions are
total and deterministic. This means that a partial function will be modeled by
returning a special constant fail when it is needed.

Φ,Φ1, Φ2 := Formula
p(u1, . . . , un) literal with p ∈ P
Φ1 ∧ Φ2 conjunction

P,Q,R := Processes
0 null process
out(f(u1, . . . , un)).P emission
in(u).P reception
if Φ then P conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

where u, u1, . . . , un are terms that may contain variables, n is a name, f ∈ F , and Φ is
a formula.

Fig. 1. Syntax of processes

The process “in(u).P” expects a message m of the form u and then behaves
like Pσ where σ = mgu(m,u). The process “out(f(u1, . . . , un)).P” computes
the term u = f(u1, . . . , un), emits u, and then behaves like P . The purpose of
f(u1, . . . , un) is to model any operation f on the terms u1, . . . , un (the variables in
u1, . . . , un will be instantiated when the evaluation will take place). For instance,
such a function f can be used to reverse a list, or to apply some cryptographic
primitives on top of u1, . . . , un, or any combination of these operations. The
process “if Φ then P” behaves like P when Φ is true and stops otherwise.

We assume that the predicates p ∈ P are given together with their semantics
that may depend on the underlying graph G that models the topology of the
network. Such a graph G = (V,E) is given by a set of vertices V ⊆ {A | A ∈
N of sort agent} and a set of edges E ⊆ V × V . Since the purpose of this graph
is to model the communication network, we consider topologies where E is a
reflexive and symmetric relation. We consider two kinds of predicates: a set PI of
predicates whose semantics is independent of the graph, i.e. [[p(u1, . . . , uk)]]G =
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[[p(u1, . . . , uk)]]G′ for any graphs G and G′ and any ground terms u1, . . . , uk;
and a set PD of predicates whose semantics is dependent on the graph. The
semantics of a formula is then defined as expected. The purpose of PD is to
model neighbourhood checks that are typically performed in routing protocols.

Example 3. As an illustrative purpose, we consider the set PSRP = PI ∪ PD
where PI = {first, last} and PD = {check, checkl}. The purpose of the predicates
in PI is to model some sanity checks that are performed by the source when it
receives the path. The semantics of these predicates is independent of the graph
and is defined as follows:

– first(A, l) = true if and only if l is of sort list and its first element is A;
– last(A, l) = true if and only if l is of sort list and its last element is A.

The purpose of the predicates in PD is to model neighbourhood checks. Given
a graph G = (V,E), their semantics is defined as follows:

– check(A,B) checks for neighbourhood of two nodes, [[check(A,B)]]G = true
if and only if (A,B) ∈ E, with A,B of sort agent;

– checkl(C, l) checks for local neighbourhood of a node in a list, [[checkl(C, l)]]G =
true if and only if C is of sort agent, l is of sort list, and for any l′ subterm
of l, if l′ = A :: C :: l1, then (A,C) ∈ E; whereas if l′ = C :: B :: l1, then
(C,B) ∈ E.

We write fv(P ) for the set of free variables that occur in P , i.e. the set of vari-
ables that are not in the scope of an input. We consider ground processes, i.e. pro-
cesses P such that fv(P ) = ∅, and parametrized processes, denoted P (x1, . . . , xn)
where x1, . . . , xn are variables of sort agent, and such that fv(P ) ⊆ {x1, . . . , xn}.
A routing role is a parametrized process that do not contain any name of sort
agent. A routing protocol is then simply a set of routing roles.

3.2 Example: modeling the SRP protocol

We consider the secure routing protocol SRP applied on DSR introduced in [26],
assuming that each node already knows his neighbours (running e.g. some neigh-
bour discovery protocol). SRP is not a routing protocol by itself, it describes a
generic way for securing source-routing protocols. We model here its application
to the DSR protocol [23]. DSR is a protocol which is used when an agent S (the
source) wants to communicate with another agent D (the destination), which is
not his immediate neighbour. In an ad hoc network, messages can not be sent
directly to the destination, but have to travel along a path of nodes.

To discover a route to the destination, the source constructs a request packet
and broadcasts it to its neighbours. The request packet contains its name S,
the name of the destination D, an identifier of the request id , a list containing
the beginning of a route to D, and a hmac computed over the content of the
request with a key shk(S,D) shared by S and D. It then waits for an answer
containing a route to D with a hmac matching this route, and checks that it
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is a plausible route by checking for instance that his neighbour in the route is
indeed a neighbour of S in the network.

Consider the signature given in Example 1, the predicates PSRP introduced
in Example 3, and the set FSRP of functions over terms that only contains the
identity function (for sake of clarity, we omit it). Let id be a name, xS , xD be
variables of sort agent, and xL be a variable of sort list. The process executed
by the agent xS initiating the search of a route towards a node xD is:

Psrc(xS , xD) = new id .out(u1).in(u2).if ΦS then 0

where

u1 = 〈req , xS , xD, id , xS :: ⊥, hmac(〈req , xS , xD, id〉, shk(xS , xD))〉
u2 = 〈rep, xD, xS , id , xL, hmac(〈rep, xD, xS , id, xL〉, shk(xS , xD))〉
ΦS = checkl(xS , xL) ∧ first(xD, xL) ∧ last(xS , xL)

The names of the intermediate nodes are accumulated in the route request
packet. Intermediate nodes relay the request over the network, except if they
have already seen it. An intermediate node also checks that the received request
is locally correct by verifying whether the head of the list in the request is one of
its neighbours. Below, xV , xS , xD and xA are variables of sort agent whereas xr is
a variable of sort list and xid , xm are variables of sort term. The process executed
by an intermediary node xV when forwarding a request is as follows:

Prequest(xV ) = in(w1).if ΦV then out(w2).0

where

w1 = 〈req , xS , xD, xid , xA :: xr, xm〉
ΦV = check(xV , xA)
w2 = 〈req , xS , xD, xid , xV :: (xA :: xr), xm〉

When the request reaches the destination D, it checks that the request has a
correct hmac and that the first node in the route is one of his neighbours. Then,
the destination D constructs a route reply, in particular it computes a new hmac
over the route accumulated in the request packet with shk(xS , D), and sends the
answer back over the network.The process executed by the destination node xD
is the following:

Pdest(xD) = in(v1).if ΦD then out(v2).0

where:
v1 = 〈req , xS , xD, xid , xA :: xl, hmac(〈req , xS , xD, xid〉, shk(xS , xD))〉
ΦD = check(xD, xA)
v2 = 〈rep, xD, xS , xid , lroute , hmac(〈rep, xD, xS , xid , lroute〉, shk(xS , xD))〉
lroute = xD :: xA :: xl

Then, the reply travels along the route back to xS . The intermediary nodes
check that the route in the reply packet is locally correct (that is that the nodes
before and after them in the list are their neighbours) before forwarding it. The
process executed by an intermediary node xV when forwarding a reply is the
following:

Preply(xV ) = in(w′).if Φ′V then out(w′)

where w′ = 〈rep, xD, xS , xid , xr, xm〉, and Φ′V = checkl(xV , xr).
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Example 4. In our model, the routing protocol SRP is defined by the following
set of parametrized processes:

{Psrc(xS , xD); Prequest(xV ); Preply(xV ); Pdest(xD)}.

3.3 Configuration and topology

Each process is located at a specified node of the network. Unlike the classical
Dolev-Yao model [19], the intruder does not control the entire network but can
only interact with its neighbours. More specifically, we assume that the topology
of the network is represented by a tuple T = (G,M, S,D) where:

– G = (V,E) is an undirected graph with V ⊆ {A ∈ N | A of sort agent},
where an edge in the graph models the fact that two agents are neighbours.
We only consider graphs such that {(A,A) | A ∈ V } ⊆ E which means that
an agent can receive a message sent by himself;

– M is a set of nodes that are controlled by the attacker. These nodes are
called malicious whereas nodes not in M are called honest ;

– S and D are two honest nodes that represent respectively the source and the
destination for which we analyse the security of the routing protocol.

Note that our model is not restricted to a single malicious node. In particular,
our results apply to the case of several compromised nodes that communicate
(and therefore share their knowledge), using out-of-band resources or hidden
channels (e.g. running other instances of the routing protocols).

A configuration of the network is a pair (P; I) where:

– P is a multiset of expressions of the form bP cA that represents the (ground)
process P executed by the agent A ∈ V . We will write bP cA ∪ P instead of
{bP cA} ∪ P.

– I is a set of ground terms representing the messages seen by the malicious
nodes as well as their initial knowledge.

Example 5. Continuing our modeling of SRP, a typical initial configuration for
the SRP protocol is

K0 = (bPsrc(S,D)cS | bPdest(D)cD; I0)

where both the source node S and the destination node D wish to communicate.
A more realistic configuration would include intermediary nodes but this initial
configuration is already sufficient to present an attack. We assume that the
initial knowledge of the intruder is given by a possibly infinite set of terms I0
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(Comm)
(
{bin(uj).PjcAj | (A,Aj) ∈ E ∧ mgu(t, uj) 6= ]}∪

bout(f(t1, . . . , tn)).P cA ∪ P; I
)
→T

(
{bPjσjcAj} ∪ bP cA ∪ P; I′ )

where

{
σj = mgu(t, uj) where t is the result of applying f on t1, . . . , tn
I′ = I ∪ {t} if (A, I) ∈ E for some I ∈ M and I′ = I otherwise.

(In)
(
bin(u).P cA ∪ P; I

)
→T

(
bPσcA ∪ P; I

)
if (A, I) ∈ E with I ∈ M, I ` t, and σ = mgu(t, u)

(Then)
(
bif Φ then P cA ∪ P; I

)
→T

(
bP cA ∪ P; I

)
if [[Φ]]G = 1

(Par)
(
bP1 | P2cA ∪ P; I

)
→T

(
bP1cA ∪ bP2cA ∪ P; I

)
(Repl)

(
b!P cA ∪ P; I

)
→T

(
bP cA ∪ b!P cA ∪ P; I

)
(New)

(
bnew m.P cA ∪ P; I

)
→T

(
bP{m 7→ m′}cA ∪ P; I

)
where m′ is a fresh name

where T = (G,M, S,D) and G = (V,E).

Fig. 2. Transition system.

that typically contains the names of sort agent, the constants req , rep, and ⊥,
and the dishonest keys, i.e. those that belong to a malicious node.

A possible topology T0 = (G0,M0, S,D) is modeled by the graph G0 below,
where I is a malicious node, i.e. M0 = {I} while A1 and A2 are two extra
(honest) nodes.

S

A2

I

A1

D

3.4 Execution model

The communication system is formally defined by the rules of Figure 2. They
are parametrized by the underlying topology T .

The Comm rule allows nodes to communicate provided they are (directly)
connected in the underlying graph. We do not assume that messages are neces-
sarily delivered to the intended recipients. They may be lost. In particular, the
exchange message is added to the knowledge of the attacker as soon as the agent
emitting the message is a direct neighbour of a malicious node. This reflects the
fact that a malicious node can listen to the communications of its neighbours
since messages are typically broadcast to all neighbours. The In rule allows a
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malicious node to send any message it can deduce to one of its neighbours. The
other rules are standard.

The relation →∗T is the reflexive and transitive closure of →T .

Example 6. Continuing the example developed in Section 3.2, the following se-
quence of transitions is enabled from the initial configuration K0.

K0→∗T0
(
bin(u2).if ΦS then 0cS ∪ bPdest(D)cD; I0 ∪ {u1}

)
where

u1 = 〈req , S,D, id , S :: ⊥, hmac(〈req , S,D, id〉, shk(S,D))〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉, shk(S,D))〉
ΦS = checkl(S, xL) ∧ first(D,xL) ∧ last(S, xL)

During this transition, S broadcasts a request to find a route to D to its
neighbours. The intruder I is a neighbour of S in T0, so he learns the request
message. Assuming that the intruder knows the names of its neighbours, i.e.
A1, A2 ∈ I0, he can then build the following fake message request:

m = 〈req , S,D, id, [A1;A2;S], hmac(〈req , S,D, id〉, shk(S,D))〉
and send it to D. Indeed, we have that I0 ` m (see Example 2).

Since (A1, D) ∈ E, D accepts this message and the resulting configuration
of the transition is

(
bin(u2).if ΦS then 0cS ∪ bout(v2σ).0cD; I0 ∪ {u1}

)
where:

v2 = 〈rep, D, S, xid , D :: xA :: xl, hmac(〈rep, D, S, xid , D :: xA :: xl〉, shk(S,D))〉
σ = {xid 7→ id, xA 7→ A1, xl 7→ [A2;S]}.

3.5 Security properties

Routing protocols aim at establishing a valid route between two nodes S and D,
that is a route that represents an existing path from S to D in the graph rep-
resenting the network topology. However, it is well-known that the presence of
several colluding malicious nodes often yields straightforward attacks, the so-
called wormhole attacks (e.g. [22, 24]). Indeed, as soon as a malicious node is on
the way of the request, he can behave as if he was a neighbour of another mali-
cious node. This is a fact that our definition of security must tolerate, otherwise
we cannot hope that any routing protocol will satisfy it. This observation leads
to the following definition of admissible path.

Definition 1 (admissible path in T ). Let T = (G,M, S,D) be a topology
with G = (V,E). We say that a list l = [A1, . . . , An] of agent names is an
admissible path in T if for any i ∈ {1, . . . , i − 1}, (Ai, Ai+1) 6∈ E implies that
Ai ∈M and Ai+1 ∈M.

Another option could be to consider a weaker attacker model, assuming that
the attackers can not communicate using an out-of-band channel, and to consider
a stronger security property requiring the path to be a real path in G. In such
a setting, routing protocols are often vulnerable to hidden channel attacks (see
e.g. [14]). In our setting, this type of attack would not be considered as an attack,
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as it is an instantiation of the so-called wormhole attack that consists, for two
dishonest nodes, in making the network believe they are neighbors.

After having successfully executed a routing protocol, the source node typ-
ically stored the resulting received route. For the sake of simplicity, we assume
that processes representing instances of routing protocols contain a process (typ-
ically a session of the source node) that contains a special action of the form
out(end(l)). Checking whether a routing protocol ensures the validity of accepted
routes can be defined as a reachability property.

Definition 2 (attack on a configuration K in T ). Let T = (G,M, S,D)
be a topology and K be a configuration. We say that K admits an attack in T
if K→∗T (bout(end(l)).P cA ∪ P; I) for some A,P,P, I, and some term l that is
not an admissible path in T .

Example 7. For the SRP protocol, we recover the attack mentioned in [15] with
the topology given in Example 5, and from the initial configuration:

Kinit =
(
bP0(S,D)cS | bPdest(D)cD; I0

)
where P0(xS , xD) is Psrc(xS , xD) in which the null process 0 has been replaced
by out(end(xL)).0.
Indeed, we have that:

Kinit →∗T0 (bin(u2).if ΦS then P cS ∪ bout(m′).0cD; I)
→T0 (bin(u2).if ΦS then P cS ∪ b0cD; I ′)
→T0 (bout(end([D;A1;A2;S])).0cS ; I ′)

where:

m′ = 〈rep, D, S, id, [D;A1;A2;S], hmac(〈rep, D, S, id, [D;A1;A2;S]〉, shk(S,D))〉
I = I0 ∪ {u1} with u1 = 〈req , S,D, id , S :: ⊥, hmac(〈req , S,D, id〉, shk(S,D))〉
I ′ = I0 ∪ {u1} ∪ {m′}.

The list [D;A1;A2;S] is not an admissible path in T0. Indeed, (A1, A2) 6∈ E0

whereas A1 and A2 are both honest nodes, i.e. not in M.

4 Reduction results

Our main contribution is a reduction result that allows one to analyse the se-
curity of a routing protocol considering only some specific and small topologies
(typically the underlying graph will contain four nodes). Our reduction result is
established in two main steps.

1. We show that the existence of an attack is preserved when adding edges
to the graph, actually added all edges but one, yielding a quasi-complete
topology (see Section 4.1).

2. We show how we can merge almost all nodes together, yielding a graph with
only four nodes (see Section 4.2).
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We finally conclude in Section 4.3 exhibiting five particular network topologies
such that if there exists a network topology admitting an attack then there is an
attack on one of the five exhibited topologies. This reduction result drastically
reduces the search space (from infinitely many to only five network topologies).
As a consequence, it is possible to analyse routing protocols using existing tools,
e.g. the AVISPA platform [6] or the ProVerif tool [12], provided the protocols
perform only actions supported by the tool.

4.1 From an arbitrary topology to a quasi-complete one

The main idea of our reduction result consists of projecting agents/nodes to
the same node. However, we can only do that safely when the agents have the
same status (honest/dishonest) and the same neighbourhood. The purpose of
the first step (completing the graph) is to ensure that most of the nodes will
have the same neighbourhood. This will ensure us to obtain a small graph after
the merging step. Of course, we can not consider a complete graph since then
any route would be valid thus there would not be any attack. The most complete
topology on which an attack can be mounted is a quasi-complete topology.

Definition 3 (quasi-completion). Let T = (G,M, S,D) be a topology with
G = (V,E), and A,B be two nodes in V that are not both in M, and such
that (A,B) 6∈ E. The quasi-completion of T w.r.t. (A,B) is a topology T + =
(G+,M, S,D) such that G+ = (V,E+) with E+ = V × V r {(A,B); (B,A)}.

Example 8. The quasi-completion of the topology T0 = (G0,M0, S,D) (defined
in Example 5) w.r.t. (A1, A2) is the topology T +

0 = (G+
0 ,M0, S,D) described

below. The only missing edge is (A1, A2).

S

A2

I

A1

D

Note that the execution described in Example 7 is still an execution w.r.t.
the topology T +

0 and this execution leads to an attack. This result holds for any
protocol that uses completion-friendly predicates (see Proposition 1).

Definition 4 (completion-friendly). A predicate p is completion-friendly if
[[p(u1, . . . , uk)]]G = true implies [[p(u1, . . . , uk)]]G+ = true for any ground terms
u1, . . . , uk, and quasi-completion T + = (G+,M, S,D) of T = (G,M, S,D).

We say that a configuration (resp. a routing protocol) is completion-friendly
if PD (i.e. the predicates that are dependent of the graph) are completion-friendly.

Example 9. All the predicates that do not depend on the underlying graph
are completion-friendly. The predicates check and checkl (see Example 3) that
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are those used in our running example are completion-friendly whereas their
negation are not. This allows us to conclude that the routing protocol PSRP is
completion-friendly.

Proposition 1. Let T = (G,M, S,D) be a topology and K be a configuration
that is completion-friendly. If there is an attack on K in T , then there exists an
attack on K in T + where T + is a quasi-completion of T . Moreover, T + is a
quasi-completion of T w.r.t. a pair (A1, A2) such that A1 6∈ M or A2 6∈ M.

4.2 Reducing the size of the topology

Let T = (G,M, S,D) be a topology whereG = (V,E) with E a reflexive relation,
and ρ be a renaming on the agent names (not necessarily a bijective one). We
say that the renaming ρ

– preserves neighbourhood of T if ρ(A) = ρ(B) implies that

{A′ ∈ V | (A,A′) ∈ E} = {B′ ∈ V | (B,B′) ∈ E}
– preserves honesty of T if ρ(A) = ρ(B) implies that A,B ∈M or A,B 6∈ M.

Given a term u, we denote by uρ the term obtained by applying the renam-
ing ρ on u. This notation is extended to set of terms, configurations, graphs,
and topologies. In particular, given a graph G = (V,E), we denote Gρ the graph
(V ρ,E′) such that E′ = {(ρ(A), ρ(B)) | (A,B) ∈ E}.

Example 10. Going back to our running example, we may want to consider the
identity renaming on agent names. Such a renaming preserves neighbourhood
and honesty but it is not really interesting since it does not allow us to reduce the
size of the topology, i.e. the number of vertices in the graph. A more interesting
renaming that preserves neighbourhood and honesty of T +

0 is ρ defined as follows:

ρ(A1) = A1, ρ(A2) = A2, ρ(S) = ρ(D) = S, and ρ(I) = I

Note that ρ does not preserve neighbourhood of the topology T0 (thus the com-
pletion step is important). The topology T +

0 ρ is described below:

S

A2

I

A1

In order to safely merge nodes together, we need the predicates and the
functions to be stable over renaming of names of sort agent.
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T1 T2 T3

T4 T5

malicious node

honest node

source node

destination node

Fig. 3. Topologies T1, T2, T3, T4, and T5.

Definition 5 (projection-friendly). A predicate p is projection-friendly if
[[p(u1, . . . , uk)]]G = true implies [[p(u1ρ, . . . , ukρ)]]Gρ = true for any ground terms
u1, . . . , uk and any renaming ρ that preserves neighbourhood and honesty.

A function f over terms of arity k is projection-friendly if f(u1ρ, . . . , ukρ) =
f(u1, . . . , uk)ρ for any ground terms u1, . . . , uk and any renaming ρ that preserves
neighbourhood and honesty.

We say that a routing protocol (resp. a configuration) is projection-friendly
if the predicates in PI ∪ PD, and the functions in F are projection-friendly.

Example 11. The predicates check and checkl are projection-friendly since we
consider renaming that preserves neighbourhood. In our running example, the
set FSRP only contains the identity function. Clearly, this function is projection-
preserving. More generally, all examples of functions provided in Section 2.3 are
projection-friendly. Some predicates such as checking disequality constraints or
verifying whether an agent name occurs twice in a list are not projection-friendly.

Proposition 2. Let T be a topology, K0 be a configuration that is projection-
friendly, and ρ be a renaming that preserves neighbourhood and honesty of T . If
there is an attack on K0 in T , then there exists an attack on K ′0 in T ′ where K ′0
and T ′ are obtained by applying ρ on K0 and T .

4.3 Only five topologies are sufficient!

Relying on Proposition 1 and Proposition 2, we are now able to show that the
existence of an attack on a routing protocol that is completion-friendly and
projection-friendly can be reduced to the problem of deciding the existence of
an attack for the five topologies given in Figure 3.
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Our reduction result is even slightly stronger as we show that we can actually
also reduce the initial knowledge of the attackers, considering only the keys
associated to the four nodes appearing in the topologies defined in Figure 3.
Typical initial knowledges for the attacker are defined as the union of some public
information from any agent and private information from malicious agents. More
precisely, we assume that such a knowledge is given by a template I0, i.e. a set
of terms in T (Σ,N ∪ XV ∪ XM) where XV and XM are two disjoint sets of
variables of sort agent where XV represents all the nodes while XM represent
the malicious nodes. Moreover, we assume that the only subterms of sort agent
in I0 are the variables in XV and XM Then, given a set of nodes V and a
set of malicious nodes M, the knowledge Knowledge(I0, V,M) derived from the
template I0 is obtained by considering all possible substitutions that preserve
the honesty status:

Knowledge(I0, V,M) =

{
(tσV )σM

∣∣∣∣ t ∈ I0, dom(σV ) = XV , img(σV ) ⊆ V,
dom(σM) = XM, and img(σM) ⊆M

}
Example 12. For instance, this allows us to express that the attackers know all
the public keys, and all the private keys that belong to malicious nodes:

I0 = {xv, pk(xv), sk(xm), shk(xv, xm), shk(xm, xv)}
with xv ∈ XV , and xm ∈ XM.

Definition 6 (configuration valid for Prouting and P0 w.r.t. T and I0).
Let T = (G,M, S,D) be a topology where G = (V,E), and I0 be a template
representing the initial knowledge. A configuration K = (P, I) is valid for the
routing protocol Prouting and the routing role P0 w.r.t. T and I0 if

1. P = bP0(S,D)cS ]P ′ and for each bP ′cA1 ∈ P ′ there exists P (x1, . . . , xk) ∈
Prouting, and A2, . . . , Ak ∈ V such that P ′ = P (A1, . . . , Ak); and

2. the only process containing a special action of the form out(end(l)) is P0(S,D)
witnessing the storage of a route by the source node S;

3. I = Knowledge(I0, V,M).

The first condition says that we only consider configurations that are made
up using P0(S,D) and roles of the protocol, and the agent who executes the
process is located at the right place. Moreover, we check whether the security
property holds when the source and the destination are honest. Note that, we
consider the case where an honest source initiates a session with a malicious
nodes (Psrc(S, I)) can occur in the configuration). The second condition ensures
that the process witnessing the route is the process P0(S,D).

Definition 7 (attack on Prouting and P0 w.r.t. I0). We say that there is an
attack on the routing protocol Prouting and the routing role P0 w.r.t. the template
I0 if there exists a topology T = (G,M, S,D) and a configuration K that is valid
for Prouting and P0 w.r.t. T and I0 such that K admits an attack in T .

If there is an attack, then there is an attack on one of the five topologies
depicted in Figure 3.
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Theorem 1. Let Prouting be a routing protocol and P0 be a routing role that are
both completion-friendly and projection-friendly and I0 be a template.

There is an attack on Prouting and P0 w.r.t. I0 for some topology T if, and
only if, there is an attack on Prouting and P0 w.r.t. I0 for one of the topologies
depicted in Figure 3.

The proof of Theorem 1 follows from the successive applications of graph
completion (Proposition 1) and nodes projection (Proposition 2). Our result
holds for an unbounded number of sessions since we consider arbitrarily many
instances of the roles occurring in Prouting, and it encompasses many families of
routing protocols.

Corollary 1. Let Prouting be a routing protocol and P0 be a routing role that
are both built using functions over terms defined in Section 2.3 and predicates
defined in Example 3, and I0 be a template.

There is an attack on Prouting and P0 w.r.t. I0 for some topology T if, and
only if, there is an attack on Prouting and P0 w.r.t. I0 for one of the topologies
depicted in Figure 3.

Interestingly, a more careful analysis of the proof shows that our reduction
result strictly preserves the number of sessions: if there is an attack on an arbi-
trary topology with k sessions, then there is an attack with k sessions for one of
the topologies of Figure 3. Therefore our result holds for a bounded number of
sessions as well.

Example 13. Going back to our running example, the topology T0 on which an
attack has been found does not correspond to one of the topologies presented in
Figure 3. However, we can retrieve the attack by considering the topology T1.

I

A1

S

A2

The attack described in Example 7 is obtained
considering the template I0 = {xV } with xV ∈ XV
which corresponds to an attacker who knows the
names of all the agents. The topology T1 (see the
picture on the right) does not correspond exactly
to the topology T +

0 ρ, i.e. the one obtained after
completion and projection of T0. Indeed, the node
A1 is assumed to be malicious in the topology T1,
but not in T +

0 ρ . Note that the attack still exists in
presence of this additional malicious node.

We consider the configurationK ′init = (bP0(S, S)cS |
bPdest(S)cS ; I ′) where I ′0 = {A1;A2; I;S}. Since S is an honest node, this con-
figuration is a valid configuration w.r.t. T and I0. We have that:

K ′init →∗T1 (bin(u2).if ΦS then P cS ∪ bout(m′).0cS ; I)
→T1 (bin(u2).if ΦS then P cS ∪ b0cS ; I ′)
→T1 (bout(end([S;A1;A2;S])).0cS ; I ′)

where m′ = 〈rep, S, S, id, lroute , hmac(〈rep, S, S, id, lroute〉, shk(S, S))〉 and
lroute = [S;A1;A2;S]. The list [S;A1;A2;S] is not an admissible path in T1.
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5 Case studies using ProVerif

In this section, relying on our reduction result, we propose an analysis of the
SRP applied to DSR and the SDMSR protocols using the ProVerif tool [12].

5.1 Proverif

ProVerif constitutes a well-established automated protocol verifier based on Horn
clauses resolution that allows for the verification of several security properties.
The tool takes as input processes written in a syntax close to the one described
in Section 3. It does not consider arbitrary functions over terms as we did, but it
can handle many different cryptographic primitives, including shared and public
key cryptography (encryption and signatures), hash functions, lists, . . . . It can
handle an unbounded number of sessions of the protocol and an unbounded mes-
sage space. This is possible thanks to some well-chosen approximations, which
means that the tool can give false attacks. Actually, the tool may return three
kinds of answer: either an attack is found (and ProVerif gives the attack trace),
or no attack is found (but this does not mean that the protocol is secure), or
else the protocol is proved secure.

It is interesting to notice that for the five topologies we have characterized,
we can safely consider an attacker who listens all the communication channels.
Moreover, we can easily encode neighbourhood checks, or the property to be an
admissible path by defining predicates through Horn clauses. For instance, the
predicate check(A,B) can be defined by enumerating all the existing links in the
four-nodes topology under study.

5.2 Case studies

As an application, we consider two source routing protocols. The first one is the
protocol SRP applied on DSR that has been described in Section 3.2. We also
studied the multipath routing protocol SDMSR introduced in [11] whose aim is
to find several paths leading from the source S to the destination D.

We give below a brief description of the SDMSR protocol (a more detailed
description can be found in [17]). First, the source constructs a request packet
and broadcasts it to its neighbours.

〈req , S,D, id , S :: [], J〈req , S,D, id〉Ksk(S)〉.
This packet contains in particular the beginning of a route to D, and a

signature over the content of the request, computed with the private key sk(S).
The source then waits for a reply containing a route to D signed by one of his
neighbours, and checks that this route is plausible. The names of the intermediate
nodes are accumulated in the route request packet and the attached signature is
checked by each intermediate node. When the request reaches the destination D
via the node B, he performs some checks and constructs a route reply.

〈rep, D, xS , id , D, lroute , J〈rep, D, S, id , lroute〉Ksk(D)〉.
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In particular it computes a signature over the route lroute accumulated in
the request packet with its private key sk(D). It then sends the reply back
over the network. The reply travels along the route back to S, and the inter-
mediate nodes check that the signature in the reply packet is correct, and that
the route is plausible, before forwarding it. Each node V replaces the signa-
ture J〈rep, D, S, id , lroute〉Ksk(A) computed by its neighbour by its own signature
J〈rep, D, S, id , lroute〉Ksk(V ).

5.3 Results

We analyse these protocols considering the five different topologies that have
been described in Section 4.3 and for an unbounded number of sessions. We
analyse the configuration where each node of the topology plays an unbounded
number of sessions of each role (each node can act as a source, a destination, or
an intermediate node).

Note also that even if ProVerif is able to manipulate lists and predicates
defined through Horn clauses, those predicates are quite powerful and ProVerif
is not always able to handle them in a satisfactory way. Therefore, we did not
model the sanity check last(S, xL) that is normally performed by the source.
But this did not introduce any false attack: the attacks that are reported by the
ProVerif tool are still valid when considering this additional check.

SRP applied on DSR SDMSR
T1 attack found attack found
T2 attack found attack found
T3 no attack found no attack found
T4 no attack found no attack found
T5 no attack found no attack found

We retrieve the attack on the protocol SRP applied to DSR, mentioned in
Example 7. Actually, the SDMSR protocol is subject to the same kind of attack
than SRP applied to DSR (see [9]). The running time of ProVerif was less than a
few secondes for each topology. All the files for these experiments are available
at: http://www.lsv.ens-cachan.fr/˜delaune/RoutingProtocols.

6 Conclusion

When checking whether a routing protocol ensures that resulting routes are
valid even in the presence of malicious nodes, we have shown a simple reduction
result: there is an attack on an arbitrary topology if and only if there is an
attack on one of five particular topologies, each of them having only four nodes.
It is therefore possible to use standard verification tools for analysing routing
protocols, provided they make use of primitives supported by the tools.

Our execution model of protocols is very general, encompassing many fami-
lies of routing protocols, e.g. with recursive tests/operations and various kinds
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of neighbourhood checks. Our only restriction is the fact that tests should be
stable under projection of nodes names, typically disallowing test of difference.
Disequality tests are useful to discard a route that contains twice the same
node, or for checking disequality of session ids to avoid answering twice the
same request. Investigating how to extend our reduction result to some families
of difference tests is left for future work. Also, the five topologies we obtain may
seem unrealistic, for example because the source and the destination are neigh-
bours. It seems feasible to refine our reduction result adding some topological
constraints such as avoiding the source and the destination to be neighbours,
possibly considering a larger (but still finite) number of nodes. A limitation of
our work is the fact that it is limited to a single (crucial) property: the validity
of the resulting route. Our reduction result certainly works for other properties.
But understanding (and formalizing) which security properties are relevant for
routing protocols is a difficult question. Another extension would be to model
mobility during the execution of the protocol. This would allow us to consider
changes in the network topology and to analyze the security of route updates.
This requires to model an appropriate security property.
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