
Formal Security Proofs

Hubert Comon-Lundh and Stéphanie Delaune

Abstract.
The goal of the lecture is to present some aspects of formal security proofs of

protocols. This is a wide area, and there is another lecture (by B. Banchet) on related
topics. The idea is therefore to explain in depth one particular technique, that relies
on deducibility constraints. We rely mainly on two introductory documents [8,14].
Actually, the current notes are the beginning of [8].

Here is a roadmap:

1. We introduce the problem with examples and touch a little the question of the
validity of the security models (section 1).
We describe then a small process algebra, that will serve as a model for the
protocols, as well as a few security properties (section 2).

2. The core of the lecture is here: we introduce the attacker model, as a deduction
system, and show how to represent any execution in the hostile environment
as deducibility constraints. In short, a deducibility constraint is a sequence of
proofs, in which some parts are unknown (and formalized with variables) and
possibly re-used in other constraints. An instance of such a constraints yields
an attacker’s strategy.
We explain how to solve such constraints in a particular setting of a few cryp-
tographic primitives. This is more or less what is described in the first part of
[12] and is detailed in the section 3.

Though the lecture aims at being self-contained, it assumes some familiarity with
inference rules/ formal proofs (or SOS for programming languages) and terms/
substitutions/ unification. Similarly, a knowledge on concurrency is not required,
but will make easier the understanding of the model.

Keywords. Security, formal methods, models of concurrency, symbolic constraints,
protocols

1. An introductory example

We start with the well-known example of the so-called “Needham-Schroeder public-key
protocol” [23], that has been designed in 1978 and for which an attack was found in 1996
by G. Lowe [18], using formal methods.

1.1. An Informal Description

The protocol is a so-called “mutual authentication protocol”. Two parties A and B wish
to agree on some value, e.g. they wish to establish a shared secret that they will use later
for fast confidential communication. The parties A and B only use a public communica-
tion channel (for instance a postal service, Internet or a mobile phone). The transport of
the messages on such channels is insecure. Indeed, a malicious agent might intercept the

letter (resp. message) look at its content and possibly replace it with another message or
even simply destroy it.

In order to secure their communication, the agents use lockers (or encryption). We
consider here public-key encryption: the lockers can be reproduced and distributed, but
the key to open them is owned by a single person. Encrypting a message m with the
public key of A is written {m}pk(A) whereas concatenating two messages m1 and m2

is written 〈m1,m2〉. An informal description of the protocol in the so-called Alice-Bob
notation is given in Figure 1.

1. A→ B : {〈A,NA〉}pk(B)

2. B → A : {〈NA, NB〉}pk(A)

3. A→ B : {NB}pk(B)

Figure 1. Informal description of the Needham-Schroeder public key protocol

Description. First the agent A encrypts a nonce NA, i.e. a random number freshly
generated, and her identity with the public key of B and sends it on the public channel
(message 1). Only the agent B, who owes the corresponding private key can open this
message. Upon reception, he gets NA, generates his own nonce NB and sends back the
pair encrypted with the public key ofA (message 2). Only the agentA is able to open this
message. Furthermore, since only B was able to get NA, inserting NA in the plaintext
is a witness that it comes from the agent B. Finally, A, after decrypting, checks that the
first component isNA and retrieves the second componentNB . As an acknowledgement,
she sends back NB encrypted by the public key of B (message 3). When B receives
this message, he checks that the content is NB . If this succeeds, it is claimed that, if
the agents A and B are honest, then both parties agreed on the nonces NA and NB
(they share these values). Moreover, these values are secret: they are only known by the
agents A and B.

Attack. Actually, an attack was found in 1996 by G. Lowe [18] on the Needham-
Schroeder public-key protocol. The attack described in Figure 2 relies on the fact that
the protocol can be used by several parties. Moreover, we have to assume that an honest
agent A starts a session of the protocol with a dishonest agent D (message 1). Then D,
impersonating A, sends a message to B, starting another instance of the protocol (mes-
sage 1′). When B receives this message, supposedly coming from A, he answers (mes-
sages 2′ & 2). The agent A believes this reply comes from C, hence she continues the
protocol (message 3). Now, the dishonest agent D decrypts the ciphertext and learn the
nonce NB . Finally, D is able to send the expected reply to B (message 3′). At this stage,
two instances of the protocol have been completed with success. In the second instance
B believes that he is communicating with A: contrarily to what is expected, A and B do
not agree on NB . Moreover, NB is not a secret shared only between A and B.

Fixed version of the protocol. It has been proposed to fix the protocol by including the
respondent’s identity in the response (see Figure 3).

The attack described above cannot be mounted in the corrected version of the pro-
tocol. Actually, it is reported in [18] that the technique that permitted to find the Lowe
attack on the Needham-Schroeder public key protocol found no attack on this protocol.

1. A→ D : {〈A,NA〉}pk(D)

1′. D(A)→ B : {〈A,NA〉}pk(B)

2′. B → A : {〈NA, NB〉}pk(A)

2. B → A : {〈NA, NB〉}pk(A)

3. A→ D : {NB}pk(D)

3′. D(A)→ B : {NB}pk(B)

Figure 2. Attack on the Needham-Schroeder public key protocol

1. A→ B : {〈A,NA〉}pk(B)

2. B → A : {〈〈NA, NB〉, B〉}pk(A)

3. A→ B : {NB}pk(B)

Figure 3. Description of the Needham-Schroeder-Lowe protocol

1.2. A More Formal Analysis

The Alice-Bob notation is a semi-formal notation that specifies the conversation between
the agents. We have to make more precise the view of each agent. This amounts specify-
ing the concurrent programs that are executed by each party. One has also to be precise
when specifying how a message is processed by an agent. In particular, what parts of a
received message are checked by the agent? What are the actions performed by the agent
to compute the answer?

A classical way to model protocols is to use a process algebra. However, in order to
model the messages that are exchanged, we need a process algebra that allows processes
to send first-order terms build over a signature, names and variables. These terms model
messages that are exchanged during a protocol.

Example 1 Consider for example the signature Σ = {{_}_,pk(_), sk(_),dec, 〈_, _〉,
proj1, proj2} which contains three binary function symbols modelling asymmetric en-
cryption, decryption, and pairing, and four unary function symbols modelling projec-
tions, public key and private key. The signature is equipped with an equational theory
and we interpret equality up to this theory. For instance the theory

dec({x}pk(y), sk(y)) = x, proj1(〈x1, x2〉) = x1, and proj2(〈x1, x2〉) = x2.

models that decryption and encryption cancel out whenever suitable keys are used.
One can also retrieves the first (resp. second) component of a pair.

Processes P,Q,R, . . . are constructed as follows. The process new N.P restricts
the name N in P and can for instance be used to model that N is a fresh random
number. in(c, x).P models the input of a term on a channel c, which is then substi-
tuted for x in process P . out(c, t) outputs a term t on a channel c. The conditional
if M = N then P else Q behaves as P when M and N are equal modulo the equational
theory and behaves as Q otherwise.

The program (or process) that is executed by an agent, say a, who wants to initiate
a session of the Needham-Schroeder protocol with another agent b is as follows:

A(a, b) =̂ new Na. a generates a fresh message Na
out(c, {a,Na}pk(b)). the message is sent on the channel c
in(c, x). a is waiting for an input on c
letx0 = dec(x, sk(a)) in a tries to decrypt the message
if proj1(x0) = Na then a checks that

the first component is Na
letx1 = proj2(x0) in a retrieves the second component
out(c, {x1}pk(b)) a sends her answer on c

Note that we use variables for the unknown components of messages. These vari-
ables can be (a priori) replaced by any message, provided that the attacker can build it
and that it is accepted by the agent. In the program described above, if the decryption
fails or if the first component of the message received by a is not equal toNa, then a will
abort the protocol.

Similarly, we have to write the program that is executed by an agent, say b, who has
to answer to the messages sent by the initiator of the protocol. This program may look
like this:

B(a, b) =̂ in(c, y). b is waiting for an input on c
let (a, y0) = dec(y, sk(b)) in b tries to decrypt it and then

retrieves the second component
of the plaintext

new Nb. b generates a random number Nb
out(c, {y0, Nb}pk(a)). b sends a reply on the channel c
in(c, y′). b is waiting for an input on c
if dec(y′, sk(b)) = Nb then Ok. b tries to decrypt the message

and checks whether its content
is Nb or not

The (weak) secrecy property states for instance that, if a, b are honest (their secret
keys are unknown to the environment), then, when the process B(a, b) reaches the Ok
state, Nb is unknown to the environment. We will also see later how to formalise agree-
ment properties. The “environment knowledge” is actually a component of the descrip-
tion of the global state of the network. Basically, all messages that can be built from the
public data and the messages that have been sent are in the knowledge of the environ-
ment.

Any number of copies of A and B (with any parameter values) are running concur-
rently in a hostile environment. Such a hostile environment is modelled by any process
that may receive and emit on public channels. We also assume that such an environment
owes as many public/private key pairs as it wishes (compromised agents), an agent may
also generate new values when needed. The only restrictions on the environment is on
the way it may construct new messages: the encryption and decryption functions, as well

as public keys are assumed to be known from the environment. However no private key
(besides those that it generates) is known. We exhibit now a process that will yield the
attack, assuming that the agent d is a dishonest (or compromised) agent who leaked his
secret key:

P =̂ in(c, z1). d receives a message (from a)
let 〈a, z′1〉 = dec(z1, sk(d)) in d decrypts it
out(c, {〈a, z′1〉}pk(b)). d sends the plaintext encrypted

with pk(b)
in(c, z2).out(c, z2). d forwards to a the answer

he obtained from b
in(c, z3). d receives the answer from a
let z′3 = dec(z3, sk(d)) in d decrypts it and learn Nb
out(c, {z′3}pk(b)). d sends the expected message

{Nb}pk(b) to b.

The Needham-Schroeder-Lowe protocol has been proved secure in several formal
models close to the one we have sketched in this section [9,6].

1.3. Further Readings

A survey by Clark and Jacob [10] describes several authentication protocols and outlines
also the methods that have been used to analyse them. In addition, it provides a summary
of the ways in which protocols have been found to fail. The purpose of the SPORE web
page [1] is to continue on-line the seminal work of Clark and Jacob, updating their base
of security protocols.

As you have seen, some protocols (or some attacks) rely on some algebraic prop-
erties of cryptographic primitives. In [15], a list of some relevant algebraic properties
of cryptographic operators is given, and for each of them, some examples of protocols
or attacks using these properties are provided. The survey also gives an overview of the
existing methods in formal approaches for analysing cryptographic protocols.

1.4. Exercises

Exercice 1 (?)
Consider the following protocol:

A→ B : 〈A, {K}pk(B)〉
B → A : 〈B, {K}pk(A)〉

First, A generates a fresh key K and sends it encrypted with the public key of B.
Only B will be able to decrypt this message. In this way, B learns K and B also knows
that this message comes from A as indicated in the first part of the message he received.
Hence, B answers to A by sending again the key, this time encrypted with the public key
of A.

Show that an attacker can learn the key K generated by an honest agent A to another
honest agent B.

Exercice 2 (?)
The previous protocol is corrected as in the Needham-Schroeder protocol, i.e. we add the
identity of the agent inside each encryption.

A→ B : {〈A,K〉}pk(B)

B → A : {〈B,K〉}pk(A)

1. Check that the previous attack does not exist anymore. Do you think that the
secrecy property stated in Exercise 1 holds?

2. Two agents want to use this protocol to establish a session key. Show that there
is an attack.

Exercice 3 (??)
For double security, all messages in the previous protocol are encrypted twice:

A→ B : {〈A, {K}pk(B)〉}pk(B)

B → A : {〈B, {K}pk(A)〉}pk(A)

Show that the protocol then becomes insecure in the sense that an attacker can learn the
key K generated by an honest agent A to another honest agent B.

Exercice 4 (? ? ?)
We consider a variant of the Needham-Schroeder-Lowe protocol. This protocol is as
follows:

1. A→ B : {〈A,NA〉}pk(B)

2. B → A : {〈NA, 〈NB , B〉〉}pk(A)

3. A→ B : {NB}pk(B)

1. Check that the ’man-in-the-middle’ attack described in Figure 2 does not exist.
2. Show that there is an attack on the secrecy of the nonce Nb.

hint: type confusion
3. Do you think that this attack is realistic? Why?

1.5. An Attack on the Fixed Version of the Protocol

In this section, we show that we must be cautious with the use of formal methods, and in
particular with the assumptions on the implementation of the security primitives. The is-
sue, that is raised here is covered by the soundness results that show under which condi-
tion the formal model is fully abstract with respect to the computational one. Discussing
soundness results would be the subject of another lecture...

Up to now, the encryption is a black-box: nothing can be learnt on a plaintext from
a ciphertext and two ciphertexts are unrelated.

Consider however a simple El-Gamal encryption scheme. Roughly (we skip here
the group choice for instance), the encryption scheme is given by a cyclic group G of
order q and generator g; these parameters are public. Each agent a may choose randomly
a secret key sk(a) and publish the corresponding public key pk(a) = gsk(a). Given a
message m (assume for simplicity that it is an element gm

′
of the group), encrypting m

with the public key pk(a) consists in drawing a random number r and letting {m}pk(a) =

1. a→ d : {〈a,Na〉}pk(d)

1′. d(a)→ b : {〈a,Na〉}pk(b)

2′. b→ a : {〈〈Na, Nb〉, b〉}pk(a) = (gNa+2α×Nb+22α×b × pk(a)r, gr)

d intercepts this message, and computes
[gNa+2α×Nb+22α×b × pk(a)r]× g−22α×b × g22α×d = gNa+2α×Nb+22α×d × pk(a)r

2. d→ a : {〈〈Na, Nb〉, d〉}pk(a) = (gNa+2α×Nb+22α×d × pk(a)r, gr)
3. a→ d : {Nb}pk(d)

3′. d→ b : {Nb}pk(d)

Figure 4. Attack on the Needham-Schroeder-Lowe protocol with El-Gamal encryption.

(pk(a)r × gm′
, gr). Decrypting the message consists in raising gr to the power sk(a)

and dividing the first component of the pair by gr×sk(a). We have that:

[pk(a)r × gm
′
]/(gr)sk(a) = [(gsk(a))r × gm

′
]/(gr)sk(a) = gm

′
= m.

This means that this encryption scheme satisfies the equation dec({x}pk(y), sk(y)) =
x. However, as we will see, this encryption scheme also satisfies some other properties
that are not taken into account in our previous formal analysis.

Attack. Assume now that we are using such an encryption scheme in the Needham-
Schroeder-Lowe protocol and that pairing two group elementsm1 = gm

′
1 andm2 = gm

′
2

is performed in a naive way: 〈m1,m2〉 is mapped to gm
′
1+2|m

′
1|×m′

2 (i.e. concatenating
the binary representations of the messages m′1 and m′2). In such a case, an attack can be
mounted on the protocol (see Figure 4).

Actually, the attack starts as before. We assume that the honest agent a is start-
ing a session with a dishonest party d. Then d decrypts the message and re-encrypt
it with the public key of b. The honest party b replies sending the expected message
{〈〈Na, Nb〉, b〉}pk(a). The attacker intercepts this message. Note that the attacker can not
simply forward it to a since it does not have the expected form. The attacker intercepts
{〈〈Na, Nb〉, b〉}pk(a), i.e. (pk(a)r × gNa+2α×Nb+22α×b, gr) where α is the length of a
nonce. The attacker knows g, α, b, hence he can compute g−2

2α×b×g22α×d and multiply
the first component, yielding {〈〈Na, Nb〉, d〉}pk(a). Then the attack can go on as before:
a replies by sending {Nb}pk(d) and the attacker sends {Nb}pk(b) to b, impersonating a.

This example is however a toy example since pairing could be implemented in an-
other way. In [26] there is a real attack that is only based on weaknesses of the El Gamal
encryption scheme. In particular, the attack does not dependent on how pairing is imple-
mented.

This shows that the formal analysis only proves the security in a formal model, that
might not be faithful. Here, the formal analysis assumed a model in which it is not pos-
sible to forge a ciphertext from another ciphertext, without decrypting/encrypting. This

property is known as non-malleability, which is not satisfied by the El Gamal encryption
scheme.

2. A small process calculus

We now define our cryptographic process calculus for describing protocols. This calcu-
lus is inspired by the applied pi calculus [3] which is the calculus used by the PROVERIF
tool [9]. The applied pi calculus is a language for describing concurrent processes and
their interactions. It is an extension of the pi calculus [22] with cryptographic primitives.
It is designed for describing and analysing a variety of security protocols, such as au-
thentication protocols (e.g. [17]), key establishment protocols (e.g. [5]), e-voting proto-
cols (e.g. [16]), . . . These protocols try to achieve various security goals, such as secrecy,
authentication, privacy, . . .

In this chapter, we present a simplified version that is sufficient for our purpose and
we explain how to formalise security properties in such a calculus.

2.1. Preliminaries

The applied pi calculus is similar to the spi calculus [2]. The key difference between
the two formalisms concerns the way that cryptographic primitives are handled. The spi
calculus has a fixed set of primitives built-in (symmetric and public key encryption),
while the applied pi calculus allows one to define less usual primitives by means of an
equational theory. This flexibility is particularly useful to model the new protocols that
are emerging and which rely on new cryptographic primitives.

2.1.1. Messages

To describe processes, one starts with an infinite set of names N (which are used to
represent atomic data, such as keys, nonces, . . .), an infinite set of variables X , and a
signature F which consists of the function symbols which will be used to define terms.
Each function symbol has an associated integer, its arity. In the case of security proto-
cols, typical function symbols will include a binary function symbol senc for symmetric
encryption, which takes plaintext and a key and returns the corresponding ciphertext, and
a binary function symbol sdec for decryption, taking ciphertext and a key and returning
the plaintext. Variables are used to consider messages containing unknown (unspecified)
pieces.

Terms are defined as names, variables, and function symbols applied to other terms.
Terms and function symbols may be sorted, and in such a case, function symbol appli-
cation must respect sorts and arities. We denote by T (Σ) the set of terms built on the
symbols in Σ. We denote by fv(M) (resp. fn(M)) the set of variables (resp. names) that
occur in M . A term M that does not contain any variable is a ground term. The set of
positions of a term T is written pos(T) ⊆ N∗, and its set of subterms St(T). The subterm
of T at position p ∈ pos(T) is written T |p. The term obtained by replacing T |p with a
term U in T is denoted T [U]p.

We split the function symbols between private and public symbols, i.e. F =
Fpub] Fpriv. Private function symbols are used to model algorithms or data that are not
available to the attacker. Moreover, sometimes, we also split the function symbols into
constructors and destructors, i.e. F = D] C. Destructors are used to model the fact
that some operations fail. A typical destructor symbol could be the symbol sdec if we

want to model a decryption algorithm that fails when we try to decrypt a ciphertext with
a wrong key. A constructor term is a term in T (C ∪ N ∪ X).

By the means of a convergent term rewriting system R, we describe the equations
which hold on terms built from the signature. A term rewriting system (TRS) is a set
of rewrite rules l → r where l ∈ T (F ∪ X) and r ∈ T (F ∪ fv(l)). A term S ∈
T (F ∪N ∪X) rewrites to T byR, denoted S →R T , if there is l→ r inR, p ∈ pos(S)
and a substitution σ such that S|p = lσ and T = S[rσ]p. Moreover, we assume that
{xσ | x ∈ Dom(σ)} are constructor terms. We denote by→∗R the reflexive and transitive
closure of →R, and by =R the symmetric, reflexive and transitive closure of →R. A
TRSR is convergent if it is:

• terminating, i.e. there is no infinite chain T1 →R T2 →R . . .; and
• confluent, i.e. for all terms S, T such that S =R T , there exists U such that
S →∗R U and T →∗R U .

A term T is R-reduced if there is no term S such that T →R S. If T →∗R S and S
is R-reduced then S is a R-reduced form of T . When this reduced form is unique (in
particular if R is convergent), we write S = T↓R (or simply T↓ when R is clear from
the context). In the following, we will only consider convergent rewriting system. Hence,
we have that M =R N , if and only if, M↓ = N↓. A ground constructor term in normal
form is also called a message.

Example 2 In order to model the handshake protocol that we will present later on, we
introduce the signature:

Fsenc = {senc/2, sdec/2, f/1}

together with the term rewriting system Rsenc = {sdec(senc(x, y), y) → x}. We will
assume that Fsenc only contains constructor symbols. This represents a decryption algo-
rithm that always succeeds. If we decrypt the ciphertext senc(n, k) with a key k′ 6= k,
the decryption algorithm will return the message sdec(senc(n, k), k′).

Here, we have that sdec(senc(n′, sdec(n, n)), sdec(n, n)) =R n′. Indeed, we
have that sdec(senc(n′, sdec(n, n)), sdec(n, n)) rewrites in one step to n′ (with p = ε,
and σ = {x 7→ n′, y 7→ sdec(n, n)}).

Example 3 In order to model the Needham-Schroeder protocol, we will consider the
following signature:

Faenc = {〈_, _〉, proj1/1, proj2/1, aenc/2, pk(/)1, sk/1, adec/2}

together with the term rewriting systemRaenc:

proj1(〈x, y〉) → x proj2(〈x, y〉) → y adec(aenc(x,pk(y)), sk(y)) → x

This will allow us to model asymmetric encryption and pairing. We will assume that
proj1, proj2, and adec are destructors symbols. The only private non-constant sym-
bol is the symbol sk. Note that proj1(〈n, adec(n, n)〉) 6=R n. Indeed, the terms
proj1(〈n, adec(n, n)〉 and n are both irreducible and not syntactically equal.

2.1.2. Assembling Terms into Frames

At some moment, while engaging in one or more sessions of one or more protocols, an
attacker may have observed a sequence of messages M1, . . . ,M`, i.e. a set of ground
constructor terms in normal form. We want to represent this knowledge of the attacker. It
is not enough for us to say that the attacker knows the set of terms {M1, . . . ,M`} since
he also knows the order that he observed them in. Furthermore, we should distinguish
those names that the attacker knows from those that were freshly generated by others and
which remain secret from the attacker; both kinds of names may appear in the terms. We
use the concept of frame from the applied pi calculus [3] to represent the knowledge of
the attacker. A frame φ = new n.σ consists of a finite set n ⊆ N of restricted names
(those that the attacker does not know), and a substitution σ of the form:

{M1/x1 , . . . ,
M`/x`}.

The variables enable us to refer to each message Mi. We always assume that the
terms Mi are ground term in normal form that do not contain destructor symbols. The
names n are bound and can be renamed. We denote by =α the α-renaming relation on
frames. The domain of the frame φ, written Dom(φ), is defined as {x1, . . . , x`}.

2.1.3. Deduction

Given a frame φ that represents the information available to an attacker, we may ask
whether a given ground constructor termM may be deduced from φ. Given a convergent
rewriting systemR on F , this relation is written φ `R M and is formally defined below.

Definition 2.1 (Deduction) Let M be a ground term and φ = new n.σ be a frame. We
have that new n.σ `R M if, and only if, there exists a termN ∈ T (Fpub∪N ∪Dom(φ))
such that fn(N) ∩ n = ∅ and Nσ =R M . Such a term N is a recipe of the term M .

Intuitively, the deducible messages are the messages of φ and the names that are
not protected in φ, closed by rewriting with R and closed by application of public func-
tion symbols. When new n.σ `R M , any occurrence of names from n in M is bound
by new n. So new n.σ `R M could be formally written new n.(σ `R M).

Example 4 Consider the theoryRsenc given in Example 2 and the following frame:

φ = new k, s1.{senc(〈s1,s2〉,k)/x1 ,
k/x2}.

We have that φ `Rsenc k, φ `Rsenc s1 and φ `Rsenc s2. Indeed x2, proj1(sdec(x1, x2)) and
s2 are recipes of the terms k, s1 and s2 respectively.

The relation new n.σ `R M can be axiomatized by the following rules:

if ∃x ∈ dom(σ) such that xσ = M
new n.σ `R M

s ∈ N r n
new n.σ `R s

φ `R M1 . . . φ `R M`
f ∈ Fpub

φ `R f(M1, . . . ,M`)

φ `R M
M =R M ′

φ `R M ′

Since we only consider convergent rewriting systems, it is easy to prove that the two
definitions coincide.

2.1.4. Static Equivalence

The frames we have introduced are too fine-grained as representations of the attacker’s
knowledge. For example, νk.{senc(s0,k)/x} and νk.{senc(s1,k)/x} represent a situation in
which the encryption of the public name s0 (resp. s1) by a randomly-chosen key has been
observed. Since the attacker cannot detect the difference between these two situations,
the frames should be considered equivalent. To formalise this, we note that if two recipes
M,N on the frame φ produce the same constructor term, we say they are equal in the
frame, and write (M =R N)φ. Thus, the knowledge of the attacker can be thought of as
his ability to distinguish such recipes. If two frames have identical distinguishing power,
then we say that they are statically equivalent.

Definition 2.2 (static equivalence) We say that two termsM andN in T (Fpub∪N∪X)
are equal in the frame φ, and write (M =R N)φ, if there exists n and a substitution σ
such that φ =α νn.σ, n∩(fn(M)∪fn(N)) = ∅, andMσ↓ andNσ↓ are both constructor
terms that are equal, i.e. Mσ↓ = Nσ↓.

We say that two frames φ1 = n1.σ1 and φ2 = n2.σ2 are statically equivalent, and
write φ1 ∼R φ2, when:

• Dom(φ1) = Dom(φ2),
• for all term M ∈ T (Fpub ∪ N ∪ X) such that fn(M) ∩ (n1 ∪ n2) = ∅, we have

that: Mσ1↓ is constructor term ⇔ Mσ2↓ is a constructor term.
• for all termsM,N in T (Fpub∪N ∪X) we have that: (M =R N)φ1 ⇔ (M =R
N)φ2.

Note that by definition of ∼, we have that φ1 ∼ φ2 when φ1 =α φ2 and we have also
that new n.φ ∼ φ when n does not occur in φ.

Example 5 Consider the rewriting system Rsenc provided in Example 2. Consider the
frames φ = new k.{senc(s0,k)/x1

, k/x2
}, and φ′ = new k.{senc(s1,k)/x1

, k/x2
}. In-

tuitively, s0 and s1 could be the two possible (public) values of a vote. We have
(sdec(x1, x2) =Rsenc s0)φ whereas (sdec(x1, x2) 6=Rsenc s0)φ′. Therefore we have
that φ 6∼ φ′. However, we have that:

new k.{senc(s0,k)/x1
} ∼ new k.{senc(s1,k)/x1

}.

Example 6 Consider again the rewriting system Rsenc provided in Example 2. We have
that:

new k.{senc(0,k)/x} ∼ new k.{senc(1,k)/x}
{senc(0,k)/x, 〈0,k〉/y} 6∼ new k.{senc(1,k)/x, 〈0,k〉/y} (sdec(x, proj2(y))

?
= 0)

new a.{a/x} ∼ new b.{b/x}
new a.{a/x} 6∼ new b.{b/y} (different domains)

{a/x} 6∼ {b/x} (x
?
= a)

2.2. Protocols

We now described our cryptographic process calculus for describing protocols. For sake
of simplicity, we only consider public channels, i.e. under the control of the attacker.

2.2.1. Protocol Language

The grammar for processes is given below. One has plain processes P,Q,R and extended
processes A,B,C.

Plain processes. Plain processes are formed from the following grammar

P,Q,R =̂ plain processes
0 null process
P ‖ Q parallel composition
in(c,Mi).P message input
out(c,Mo).P message output
if M = N then P else Q conditional
new n.P restriction
!P replication

such that a variable x appears in a term only if the term is in the scope of an input
in(c,Mi) with x ∈ fv(Mi). The null process 0 does nothing; P ‖ Q is the parallel
composition of P and Q. The replication !P behaves as an infinite number of copies of
P running in parallel. The conditional construction if M = N then P elseQ is standard.
We omit else Q when Q is 0. The process in(c,Mi).P is ready to input on the public
channel c, then to run P where the variables ofMi are bound by the actual input message.
The term Mi is a constructor term with variables. out(c,Mo).P is ready to output Mo (it
may contains some destructors), then to run P . Again, we omit P when P is 0.

In this definition, we consider both pattern inputs and conditionals, which is redun-
dant in some situations: for any executable process, the patterns can be replaced with
conditionals. However, we keep both possibilities, in order to keep some flexibility in
writing down the protocols.

Example 7 We illustrate our syntax with the well-known handshake protocol that can be
informally described as follows:

A → B : senc(n,w)
B → A : senc(f(n), w)

We rely on the signature given in Example 2. The goal of this protocol is to authenticateB
from A’s point of view, provided that they share an initial secret w. This is done by a
simple challenge-response transaction: A sends a random number (a nonce) encrypted
with the shared secret key w. Then, B decrypts this message, applies a given function
(for instance f(n) = n + 1) to it, and sends the result back, also encrypted with w.
Finally, the agent A checks the validity of the result by decrypting the message and
checking the decryption against f(n). In our calculus, we can model the protocol as
new w.(PA ‖ PB) where

• PA(w) = new n. out(c, senc(n,w)). in(c, x). if sdec(x,w) = f(n) then P
• PB(w) = in(c, y). out(c, senc(f(sdec(y, w)), w)).

where P models an application that is executed when PB has been successfully authenti-
cated. Here, we use the formalism with explicit destructors but we could also used pattern
inputs.

Example 8 Coming back to the Needham-Schroeder public key protocol described in
Section 1 and considering the signature given in Example 3, we have:

PA(a, b) =̂ out(c, aenc(〈a,Na〉,pk(b))).
in(c, aenc(〈Na, x〉,pk(a)).
out(c, aenc(x,pk(b)))

PB(a, b) =̂ in(c, aenc(〈a, y〉,pk(b))).
out(c, aenc(〈y,Nb〉,pk(a)).
in(c, aenc(Nb,pk(b)))

Here, we have used pattern inputs. We could also have used the alternative for-
malism of explicit destructors. With pattern inputs, we do not need in general to used
destructors to describe the outputs.

Note that all the processes that can be written in this syntax (in particular the one
with pattern inputs) are not necessary meaningful. Some of them will not be executable.

Continuing with the Needham-Schroeder protocol, we may define several execution
scenarii:

Example 9 (Scenario 1) The following specifies a copy of the role of Alice, played by a,
with d and a copy of the role of Bob, played by b, with a, as well as the fact that d is
dishonest, hence his secret key is leaked.

P1 =̂ (new Na. PA(a, d)) ‖ (new Nb. PB(a, b)) ‖ out(c, sk(d))

Example 10 (Scenario 2) Assume that we wish a to execute the role of the initiator,
however with any other party, which is specified here by letting the environment give the
identity of such another party: the process first receives xb, that might be bound to any
value. The other role is specified in the same way.

P2 =̂ (new Na. in(c, xb). PA(a, xb)) ‖ (new Nb. in(c, xa). PB(xa, b)) ‖ out(c, sk(d))

Example 11 (Scenario 3) In Example 9 and Example 10, a was only able to engage the
protocol once (and bwas only able to engage once in a response). We may wish a (resp. b)
be able to execute any number of instances of the role of the initiator (resp. responder).

P3 =̂ !(new Na. in(c, xb). PA(a, xb)) ‖ !(newNb. in(c, xa). PB(xa, b)) ‖ out(c, sk(d))

Example 12 (Scenario 4) Finally, in general, the role of the initiator could be executed
by any agent, including b and the role of the responder could be executed by any number
of agents as well. We specify an unbounded number of parties, engaging in an unbounded
number of sessions by:

P4 =̂

{
!(new Na. in(c, xa). in(c, xb). PA(xa, xb)) ‖
!(new Nb. in(c, xa). in(c, xb). PB(xa, xb)) ‖ out(c, sk(d))

We can imagine other scenarios as well. Verifying security will only be relative to a
given scenario.

Extended Processes. Further, we extend processes with active substitutions and restric-
tions:

A,B,C := P
∣∣ A ‖ B ∣∣ new n.A

∣∣ {M/x}
where M is a ground constructor term in normal form. As usual, names and variables
have scopes, which are delimited by restrictions and by inputs. We write fv(A), bv(A),
fn(A), bn(A) for the sets of free and bound variables (resp. names). Moreover, we re-
quire processes to be name and variable distinct, meaning that bn(A) ∩ fn(A) = ∅,
bv(A) ∩ fv(A) = ∅, and also that any name and variable is bound at most once in A.
Note that the only free variables are introduced by active substitutions (the x in {M/x}).
Lastly, in an extended process, we require that there is at most one substitution for each
variable. An evaluation context is an extended process with a hole instead of an extended
process.

Extended processes built up from the null process, active substitutions using parallel
composition and restriction are called frames (extending the notion of frame introduced
in Section 2.1.2). Given an extended process A we denote by φ(A) the frame obtained
by replacing any embedded plain processes in it with 0.

Example 13 Consider the following process:

A = new s, k1.(out(c, a) ‖ {senc(s,k1)/x} ‖ new k2.out(c, senc(s, k2))).

We have that φ(A) = new s, k1.(0 ‖ {senc(s,k1)/x} ‖ new k2.0).

2.2.2. Operational Semantics

To formally define the operational semantics of our calculus, we have to introduce three
relations, namely structural equivalence, internal reduction, and labelled transition.

Structural Equivalence. Informally, two processes are structurally equivalent if they
model the same thing, even if the grammar permits different encodings. For example,
to describe a pair of processes PA and PB running in parallel, we have to write either
PA ‖ PB , or PB ‖ PA. These two processes are said to be structurally equivalent. More
formally, structural equivalence is the smallest equivalence relation closed by application
of evaluation contexts and such that:

PAR-0 A ‖ 0 ≡ A
PAR-C A ‖ B ≡ B ‖ A
PAR-A (A ‖ B) ‖ C ≡ A ‖ (B ‖ C)

NEW-PAR A ‖ new n.B ≡ new n.(A ‖ B) n 6∈ fn(A)
NEW-C new n1.new n2.A ≡ new n2.new n1.A

Note that the side condition of the rule NEW-PAR is always true on processes that are
name and variable distinct. Using structural equivalence, every extended process A can
be rewritten to consist of a substitution and a plain process with some restricted names,
i.e.

A ≡ new n.({M1/x1
} ‖ . . . ‖ {Mk/xk} ‖ P).

In particular, any frame can be rewritten as new n.σ matching the notion of frame in-
troduced in Section 2.1.2. We note that unlike in the original applied pi calculus, active
substitutions cannot “interact” with the extended processes. As we will see in the follow-
ing, active substitutions record the outputs of a process to the environment. The notion
of frames will be particularly useful to define equivalence based security properties such
as resistance against guessing attacks and privacy type properties.

Internal Reduction. A process can be executed without contact with its environment,
e.g. execution of conditionals, or internal communications between processes in parallel.
Formally, internal reduction is the smallest relation on processes closed under structural
equivalence and application of evaluation contexts such that:

REPL !P
τ−→ P ′ ‖ !P where P ′ is a fresh renaming of P

THEN if M = N then P else Q
τ−→ P where M↓ = N↓ and M↓ is a message

ELSE if M = N then P else Q
τ−→ Q where M↓ 6= N↓ and M↓, N↓ are messages

COMM out(c,M1).P1 ‖ in(c,M2).P2
τ−→ P1 ‖ P2θ where θ is such that

Dom(θ) = V(M2), M2θ↓ = M1↓, and M1↓ is a message.

We write→∗ for the reflexive and transitive closure of τ−→. Note that, in some situ-
ations, a process of the form if M = N then P else Q may block. This happens when
M↓ (resp. N↓) contains some destructors.

Labelled Transition. Communications are synchronous, but (as long as there is no pri-
vate channel) we can assume that they occur with the environment. We sketch here a
labelled transition semantics. The semantics given previously allow us to reason about
protocols with an adversary represented by a context. In order to prove that security prop-
erties hold for all adversaries, quantification over all contexts is typically required, which
can be difficult in practise. The labelled semantics aim to eliminate universal quantifica-
tion of the context. We have two main rules:

IN in(c, x).P
in(c,M)−−−−−→` P{M/x} where M is a message

OUT out(c,M).P
out(c,M↓)−−−−−−→` P ‖ {M↓/x} where x is a fresh variable and M↓ is a message

The labelled operational semantics is closed by structural equivalence and under
some evaluation contexts. Actually, we have that:

A ≡ A′ A′
α−→` B

′ B′ ≡ B

A
α−→` B

A
α−→` B

C[A]
α−→` C[B]

where C is an evaluation context, and in case of an input, i.e. α = in(c,M), we have that
φ(C[A]) `R M .

We write→` to denote τ−→ ∪ α−→` and→∗` to denote the reflexive and transitive closure
of→`.

Example 14 Going back to the handshake protocol described in Example 7, the deriva-
tion described below represents a normal execution of the protocol. For simplicity of this
example we suppose that x 6∈ fv(P).

new w.(PA(w) ‖ PB(w))
out(c,senc(n,w))−−−−−−−−−−→`

new w, n.(PB(w) ‖ {senc(n,w)/x1
} ‖ in(c, x). if sdec(x,w) = f(n) then P)

in(c,senc(n,w))−−−−−−−−−→`

new w, n.(out(c,M) ‖ {senc(n,w)/x1
} ‖ in(c, x). if sdec(x,w) = f(n) then P)

out(c,M↓)−−−−−−→`

new w, n.({senc(n,w)/x1
} ‖ {M↓/x2

} ‖ in(c, x). if sdec(x,w) = f(n) then P)
in(c,senc(f(n),w))−−−−−−−−−−−→`

new w, n.({senc(n,w)/x1
} ‖ {M↓/x2

} ‖ if sdec(senc(f(n), w), w) = f(n) then P)
τ−→
new w, n.({senc(n,w)/x1

} ‖ {M↓/x2
} ‖ P)

where M = senc(f(sdec(senc(n,w), w)), w)→Rsenc senc(f(n), w).

Example 15 Continuing Example 8 we develop some transitions from

P1 = (new Na. PA(a, d)) ‖ (new Nb. PB(a, b)) ‖ out(c, sk(d))

For convenience, the names Na and Nb are pushed out. We obtain another process
that is structurally equivalent.
Case 1: The process PA may move first, yielding

P1
out(c,aenc(〈a,Na〉,pk(d)))−−−−−−−−−−−−−−−→` new Na.new Nb. (

{aenc(〈a,Na〉,pk(d))/x1
}

‖ (in(c, aenc(〈Na, x〉,pk(a))). out(c, aenc(x,pk(b)))
‖ PB(a, b)
‖ out(c, sk(d)))

Case 2: The process PB may also move first, and the resulting process depends on an
input M1 such that new Na, Nb.(σ ` aenc(〈a,M1〉,pk(b))) where Dom(σ) = ∅.

P1
in(c,M1)−−−−−→`= new Na, new Nb. (PA(a, d)

‖ out(c, aenc(〈M1, Nb〉,pk(a))).in(c, aenc(Nb,pk(b)))
‖ out(c, sk(d)))

Case 3: The last process may also move first, yielding

P1
out(c,sk(d))−−−−−−−→` new Na, new Nb. ({sk(d)/x1} ‖ PA(a, d) ‖ PB(a, b))

From the resulting processes, there are again several possible transitions. We do not
continue here the full transition sequence, which is too large to be displayed.

In the above example, we see that the transition system might actually be infinite.
Indeed, the term M1 is an arbitrary message that satisfies some deducibility conditions.
Such deducibility conditions can be simplified (and decided). This will be the subject of
Chapter 3 on bounded process verification.

2.3. Security Properties

This section presents mainly through examples how to formalise definitions of the most
standard security properties. To prove that security properties hold for all adversaries,
quantification over all contexts is required. However, in order to consider realistic adver-
sary, we have to consider processes that are built using public function symbols only and
we have to ensure that these processes are executable.

In practise, it may be difficult to reason with the quantification over all contexts. The
labelled transition semantics aim to eliminate universal quantification of the context and
is easier to manipulate. In this section, we rely on this semantics. Since our small process
calculus does not allow us to model private channels, we do not have to consider the rule
COMM. The attacker controls the entire network and can eavesdrop, block, intercept, and
inject messages.

2.4. Secrecy

Intuitively, a protocol preserves the secrecy of some message M if an adversary can-
not obtain M by constructing it from the outputs of the protocol. We can formalise the
adversary as a process running in parallel with the protocol, that after constructing M
outputs it on a public channel. The adversary process does not have any of the secrets
of the protocol. As explained in introduction of this section, another possibility is to rely
on the labelled semantics and to simply ask that in any reachable extended process, M
can not be deduced from the frame. Below, you illustrate this property through several
examples based on the Needham-Schroeder protocol.

Example 16 (Scenario 1) Consider again the following process defined in Example 8 :

P1 = (new Na. PA(a, d)) ‖ (new Nb. PB(a, b)) ‖ out(c, sk(d)).

We typically wish to ensure the secrecy of the nonce Nb. For this, we have to show that,
for any extended process B such that P1 →∗` B, we have that φ(B) 6` Nb. Actually, this
secrecy property does not hold because of the attack described in Chapter 1. Note that,
in this scenario, it is not reasonable to require the secrecy of Na since Na is generated
by an honest agent for a dishonest one.

We may also want to express the secrecy of the nonce Na received by PB(a, b). This
means that we want that the value of y (this is the variable that represents the nonce Na
in the process PB(a, b) is not known by the attacker in any possible executions. For this,

we have to show that for each process B such that P1 →∗` B and in which the variable y
has been instantiated by some message M , we have that φ(B) 6`M .

Example 17 (Scenario 2) Consider now

P2 = (newNa. in(c, xb). PA(a, xb)) ‖ (newNb. in(c, xa). PB(xa, b)) ‖ out(c, sk(d))

In such a situation, neither Na nor Nb can be required to remain secret: this depends on
the inputs xa and xb. In this case, to express the secrecy of Nb, we can ask that for each
process B such that P1 →∗` B and in which the variable xa has been instantiated by an
honest agent (i.e. not d), we have that φ(B) 6` Nb.

To express secrecy of a nonce in the scope of a replication, we need extra material.
Consider the following scenario

P3 =!(new Na. in(c, xb). PA(a, xb)) ‖ !(new Nb. in(c, xa). PB(xa, b)) ‖ out(c, sk(d)).

Intuitively, we wish that, in any copy of the process, in which xb 6= d, then Na is se-
cret. Be careful that xb is actually a local variable of the process and should actually be
renamed in each copy. Similarly, Na and Nb are renamed in each instance.

There are again several ways of specifying the desired properties For instance, we
may split the processes in those for which xb is bound to a honest party and those in
which xb = d and then forget about the different copies in the specification. We may also
enrich the calculus with status events. These status events are also very useful to express
correspondence properties explained in the following section.

2.5. Correspondence Properties

Correspondence properties are used to capture relationships between events that can be
expressed in the form "if an event e has been executed then event e has been previously
executed." Moreover, these events may contain arguments. This will allows one to ex-
press agreement properties. To reason with correspondence properties, we have to anno-
tate processes with events. These events will mark the different control points reached
by the protocol.

We say that an extended process A has reached an event event(M1, . . . ,Mn) if, and
only if, there exist an evaluation context C, a plain process P and an extended process
B such that A ≡ C[event(M1, . . . ,Mn).P ‖ B].

Aliveness. This property is the weakest form of authentication in Lowe’s hierar-
chy [19].

A protocol satisfies aliveness if, whenever an honest agent completes a run of the
protocol, apparently with another honest agent B, then B has previously run the
protocol.

Note that B may not necessarily believe that he was running the protocol with A.
Also, the agent B may not have run the protocol recently. The aliveness of principal B
to initiator A can be specified in our formalism. First, we have to consider two status

events start and end. We insert them at the beginning and at the end of each role re-
spectively. For instance, in PA(a, d), we insert start(a) at the beginning and end(a, d) at
the end. This expresses the fact that the role is executed by a with d. We insert start(b)
and end(b, a) in PB(a, b). Now, the aliveness property from the point of view of b can be
specified as follows:

For any trace execution such that P1 →` A1 →` . . . →` An such that An has
reached end(M1,M2) with M1 6= d and M2 6= d, there exists i such that Ai has reached
start(M2). This corresponds to the fact that the property “if end(x, y) has been executed
then start(y) has been previously executed when x and y are both honest agents.” For
the Needham-Schroeder public key protocol (e.g. Scenario 1) the aliveness property is
satisfied.

Weak agreement. Weak agreement is slightly stronger than aliveness.

A protocol guarantees weak agreement if, whenever an honest agent completes a run
of the protocol, apparently with another honest agent B, then B has previously been
running the protocol, apparently with A.

The weak agreement property can also been expressed in our formalism. We have
again to add status events start and end in our specification. However, the predicate start
will have also two parameters: start(a, d) expresses the fact that a has started a session
with d. Now, the weak agreement property can be specified as follows:

For any trace execution such that P1 →` A1 →` . . . →` An such that An has
reached end(M1,M2) with M1 6= d and M2 6= d, there exists i such that Ai has reached
start(M2,M1). For the Needham-Schroeder public key protocol, it is well-known that
this property is not satisfied: b can complete a session apparently with a whereas a has
never started a session with b. The property is already falsified on Scenario 1.

We can also express some refinements of these properties by distinguishing the case
where an agent starts a session as an initiator or as a responder. Moreover, we can also
express the fact that the two agents agreed on some messageM , e.g. the value of a nonce
or a key. This allows us to express the non-injective agreement security property. There
are also stronger agreement properties, that would require the mapping from end to start
to be injective.

2.6. Guessing Attacks

Guessing attacks are a kind of dictionary attack in which the password is supposed to be
weak, i.e. part of a dictionary for which a brute force attack is feasible. A guessing attack
works in two phases. In a first phase the attacker eavesdrops and interacts with one or
several protocol sessions. In a second offline phase, the attacker tries each of the possible
passwords on the data collected during the first phase. To resist against a guessing attack,
the protocol must be designed such that the attacker cannot discover on the basis of the
data collected whether his current guess of the password is the actual password or not.

The idea behind the definition is the following. Suppose the frame φ represents the
information gained by the attacker by eavesdropping one or more sessions and let w

be the weak password. Then, we can represent resistance against guessing attacks by
checking whether the attacker can distinguish a situation in which he guesses the correct
password w and a situation in which he guesses an incorrect one, say w′. We model these
two situations by adding {w/x} (resp. {w′

/x}) to the frame. We use static equivalence to
capture the notion of indistinguishability. This definition is due to M. Baudet [7], inspired
from the one of [13]. In our definition, we allow multiple shared secrets, and write w for
a sequence of such secrets.

Definition 2.3 Let φ ≡ new w.φ′ be a frame. We say that the frame φ is resistant to
guessing attacks against w if

new w.(φ′ ‖ {w/x}) ∼ new w′.new w.(φ′ ‖ {w
′
/x})

where w′ is a sequence of fresh names and x a sequence of variables such that
x ∩ Dom(φ) = ∅.

Note that this definition is general w.r.t. to the equational theory and the number of
guessable data items. Now, we can define what it means for a protocol to be resistant
against guessing attacks.

Definition 2.4 LetA be a process and w ⊆ bn(A). We say thatA is resistant to guessing
attacks against w if, for every process B such that A →∗` B, we have that the frame
φ(B) is resistant to guessing attacks against w.

Example 18 Consider the handshake protocol described in Example 7. An interesting
problem arises if the shared key w is a weak secret, i.e. vulnerable to brute-force off-line
testing. In such a case, the protocol has a guessing attack against w. Indeed, we have
that

new w.(PA(w) ‖ PB(w))→∗` D

with φ(D) = new w.new n.({senc(n,w)/x1} ‖ {senc(f(n),w)/x2}). The frame φ(D) is not

resistant to guessing attacks against w. The test f(sdec(x1, x))
?
= sdec(x2, x) allows

us to distinguish the two associated frames:

• new w.new n.({senc(n,w)/x1} ‖ {senc(f(n),w)/x2} ‖ {w/x}), and
• new w′.new w.new n.({senc(n,w)/x1

} ‖ {senc(f(n),w)/x2
} ‖ {w′

/x}).

Hence, the process new w.(PA ‖ PB) is not resistant to guessing attacks against w.

2.7. Equivalence Properties

The notion of indistinguishability is a powerful concept which allows us to reason about
complex properties that cannot be expressed as secrecy or correspondence properties.
Intuitively, two processes are said to be equivalent if an observer has no way to tell them
apart. While static equivalence models indistinguishability of sequences of terms, it is
also possible to lift it to an observational equivalence, i.e. indistinguishability of pro-
cesses that interact with an arbitrary adversary. We define this observational equivalence
by the means of a labelled bisimulation. The processes may perform different computa-

tions, but they have to look the same to an external observer. This notion allows us to
define strong notions of secrecy and also privacy properties.

Before we formalise this notion of equivalence, we have to adapt the labelled seman-
tics provided in Section 2.2.2. Indeed, we will now assume that the attacker can observe
the interactions with the environment and we have to capture the fact that the attacker
performs the same experiment on both processes. Intuitively, we want that, for any ex-
periment s (sequence of labels) such that A s−→

∗
` A
′, there exists B′ such that B s−→

∗
` B
′

and φ(A′) ∼ φ(B′). However, our labels are too fine grained.

LetA = new n.out(c, n) andB = new n, k.out(c, senc(n, k)). The only transitions
that can be performed by A and B are as follows:

• A
out(c,n)−−−−−→` new n.{n/x}, and

• B
out(c,senc(n,k))−−−−−−−−−→` new n, k.{senc(n,k)/x}.

However, in reality an attacker has no way to distinguish these two processes since he
will not see any difference between a fresh nonce and an encryption (he does not know
the key). The same situation also occurs with the two processes A = new n.in(c, y)

and B = new n′.in(c, y). We have that A
in(c,n′)−−−−→ 0 and B can not mimic this step.

B is not allowed to use the name n′ since it is restricted. Our labels contains too much
information. We modify the IN and OUT rules as follows:

IN in(c, x).P
in(c,M)−−−−−→` P{M/x} where M is a message

OUT out(c,M).P
out(c,x)−−−−−→` P ‖ {M↓/x} where x is a fresh variable and M↓ is a message

The labelled operational semantics is closed by structural equivalence and under
some evaluation contexts. Actually, we have that:

A ≡ A′ A′
α−→` B

′ B′ ≡ B

A
α−→` B

A
α−→` B

C[A]
α′

−→` C[B]

where C is an evaluation context, and in case of an input, i.e. α = in(c,M), we have
that φ(C[A]) `R M and α′ = in(c,M ′) where M ′ is a recipe witnessing the fact that
φ(C[A]) `R M .

Moreover, we now consider that structural equivalence is closed under α-renaming.

Example 19 Going back to the handshake protocol described in Example 7, the deriva-
tion described below represents a normal execution of the protocol in the new labelled
semantics.

new w.(PA(w) ‖ PB(w))
out(c,x1)−−−−−→` new w, n.(PB(w) ‖ {senc(n,w)/x1} ‖ in(c, x). if sdec(x,w) = f(n) then P)
in(c,x1)−−−−−→` new w, n.(out(c,M) ‖ {senc(n,w)/x1} ‖ in(c, x). if sdec(x,w) = f(n) then P)

out(c,x2)−−−−−→` new w, n.({senc(n,w)/x1
} ‖ {M↓/x2

} ‖ in(c, x). if sdec(x,w) = f(n) then P)
in(c,x2)−−−−−→` new w, n.({senc(n,w)/x1

} ‖ {M↓/x2
} ‖ if sdec(senc(f(n), w), w) = f(n) then P)

τ−→ new w, n.({senc(n,w)/x1
} ‖ {M↓/x2

} ‖ P)

where M = senc(f(sdec(senc(n,w), w)), w)→Rsenc senc(f(n), w).

For every closed extended processA we define its set of traces, each trace consisting
in a sequence of visible actions (i.e. different from τ) together with the sequence of sent
messages:

trace(A) = {(s, φ(B)) | A s−→` B for some B}.

Note that, in the new versions of our labelled semantics, the sent messages are ex-
clusively stored in the frame and not in the sequence s (the outputs are made by “refer-
ence”).

Definition 2.5 (trace equivalence ≈t) Let A and B be two closed extended processes,
A vt B if for every (s, ϕ) ∈ trace(A), there exists (s′, ϕ′) ∈ trace(B) such that s = s′

and ϕ ∼ ϕ′. The extended processes A and B are trace equivalent, denoted by A ≈t B,
if A vt B and B vt A.

Example 20 Consider the equational theory described in Example 2.

new s, k.out(c, senc(s, k)).in(c, x). if x = s then out(c, a)
≈t new s, k.out(c, senc(s, k)).in(c, x)

new s.out(c, senc(s, k)).in(c, x). if x = s then out(c, a)
6≈t new s.out(c, senc(s, k)).in(c, x)

out(c, a).out(c, a) ≈t out(c, a) ‖ out(c, a)

out(c1, a).out(c2, a) 6≈t out(c1, a) ‖ out(c2, a)

out(c, a); out(c, b) 6≈t out(c, a) ‖ out(c, b)

Now, we develop an example to illustrate how this notion of equivalence can be used
to formalise anonymity.

Example 21 We consider a slightly simplified version of a protocol given in [4] designed
for transmitting a secret without revealing its identity to other participants. In this pro-
tocol, A is willing to engage in communication with B and wants to reveal its identity
to B. However, A does not want to compromise its privacy by revealing its identity or
the identity of B more broadly. The participants A and B proceed as follows:

A→ B : aenc(〈Na,pk(A)〉,pk(B))

B → A : aenc(〈Na, 〈Nb,pk(B)〉〉,pk(A))

FirstA sends toB a nonceNa and its public key encrypted with the public key ofB.
If the message is of the expected form then B sends to A the nonce Na, a freshly gen-
erated nonce Nb and its public key, all of this being encrypted with the public key of A.
Otherwise, B sends out a “decoy” message: aenc(Nb,pk(B)). This message should ba-
sically look likeB’s other message from the point of view of an outsider. This is important
since the protocol is supposed to protect the identity of the participants.

A session of role A played by agent a with b can be modelled by the following basic
process where M = dec(x, sk(a)).

A(a, b) =̂
out(c, aenc(〈Na,pk(a)〉,pk(b))).
in(c, x).
if 〈proj1(M), proj2(proj2(M))〉 = 〈Na,pk(b)〉 then 0

Similarly, a session of role B played by agent b with a can be modelled by the basic
process B(b, a) where N = dec(y, sk(b)).

B(b, a) =̂ in(c, y).
if proj2(N) = pk(a) then out(c, aenc(〈proj1(N), 〈Nb,pk(b)〉〉,pk(a)))

else out(c, aenc(Nb,pk(b))).

Intuitively, this protocol preserves anonymity if an attacker cannot distinguish
whether b is willing to talk to a (represented by the process B(b, a)) or willing to talk
to a′ (represented by the process B(b, a′)), provided a, a′ and b are honest participants.
For illustration purposes, we also consider the process B′(b, a) obtained from B(b, a)
by replacing the else branch by else 0. We will see that the “decoy” message plays a
crucial role to ensure privacy.

We can ask whether the two following processes Pex and P ′ex are in equivalence:

• Pex = new Na.new Nb.[A(a, b) ‖ B(b, a) ‖ K(a, a′, b)], and
• P ′ex = new Na.new Nb.[A(a′, b) ‖ B(b, a′) ‖ K(a, a′, b)].

where K(a, a′, b) = out(c,pk(a)).out(c,pk(a′)).out(c,pk(b)).
Actually, the ’decoy’ message is crucial to have this equivalence, and thus

anonymity. We have that Pex ≈t P ′ex whereas:

new Na, Nb.[A(a, b) ‖ B′(b, a) ‖ K(a, a′, b)]
6≈t new Na, Nb.[A(a′, b) ‖ B′(b, a′) ‖ K(a, a′, b)].

Another notion of equivalence that has been quite well-studied is the notion of ob-
servationally equivalent. However, proofs of observational equivalences are difficult be-
cause of the universal quantification over all contexts. In the context of the applied pi
calculus, it has been shown that observational equivalence coincides with labelled bisim-
ilarity [3]. This should also hold in the calculus presented here.

Definition 2.6 (labelled bisimilarity ≈`) Labeled bisimilarity is the largest symmetric
relationR on closed extended processes such that AR B implies

1. φ(A) ∼ φ(B),
2. if A τ−→ A′, then B →∗ B′ and A′ R B′ for some B′,
3. if A α−→` A

′ then B →∗ α−→`→∗ B′ and A′ R B′ for some B′.

It is easy to see that observational equivalence (or labelled bisimilarity) implies trace
equivalence while the converse is false in general (see Example 22).

Lemma 2.7 Let A and B be two extended processes: A ≈` B implies A ≈t B.

Example 22 For convenience we introduce for this example a non-deterministic choice
operator + and extend the internal reduction by the rule A + B → A and structural
equivalence by associativity and commutativity of +. Consider the two following pro-
cesses:

A = (out(c, a).out(c, b1)) + (out(c, a).out(c, b2))

B = out(c, a).(out(c, b1) + out(c, b2))

We have that A ≈t B whereas A 6≈` B. Intuitively, after B’s first move, B still
has the choice of emitting b1 or b2, while A, trying to follow B’s first move, is forced to
choose between two states from which she can only emit one of the two.

The notion of labelled bisimilarity is quite strong but is also used to express pri-
vacy type properties. It is more or less a matter of taste to define anonymity w.r.t. trace
equivalence or w.r.t. the stronger version with labelled bisimilarity.

2.8. Further Readings

The calculus presented in this chapter is very close to the applied pi calculus [3]. A
presentation of this calculus in a tutorial style is also available [25]. Another calculus that
is very close to the applied pi calculus and for which there exists a tutorial presentation
is the spi-calculus [2].

2.9. Exercises

Exercice 5 (?)
Consider the signature described in Example 2. Let

φ = new s, k1.{senc(s,〈k1,k2〉)/x1
, senc(k1,k2)/x2

}.

1. Is s deducible fom φ?
2. Could you enumerate the subterms of φ? Among these subterms, give those that

are deducible.
3. Give a term that is deducible from φ and that is not a subterm.

Exercice 6 (?)
Give a reasonable formalisation of the following protocol:

A→ B : 〈A, {K}pk(B)〉
B → A : 〈B, {K}pk(A)〉

First, A generates a fresh key K and sends it encrypted with the public key of B.
Only B will be able to decrypt this message. In this way, B learns K and B also knows
that this message comes from A as indicated in the first part of the message he received.
Hence, B answers to A by sending again the key, this time encrypted with the public key
of A.

Exercice 7 (?)
Consider the formalisation of the Needham-Schroeder protocol as described in Exam-
ple 8, and the following scenario (see Example 16).

(new Na. PA(a, d)) ‖ (new Nb. PB(a, b)) ‖ out(c, sk(d)).

Give the complete transition sequence that yields the attack on the secrecy of the nonce
Nb.

Exercice 8 (??)
Give a reasonable formalisation of the handshake protocol without using the conditional
(if then else). Give a trace that exists in the model presented in 7 and that does not
exist in this new formalisation.

3. Deducibility Constraints

In this chapter, we present the NP-complete decision procedure for a bounded number of
sessions by H. Comon-Lundh et al. [12]. In this setting (i.e. finite number of sessions),
deducibility constraint systems have become the standard model for verifying security
properties, with a special focus on secrecy. Starting with a paper by J. Millen and V.
Shmatikov [21], many results (e.g. [11,7]) have been obtained within this framework.

Here, we consider only symmetric/asymmetric encryptions, and pairing. We show
that any deducibility constraint system can be transformed in (possibly several) much
simpler deducibility constraint systems that are called solved forms, preserving all solu-
tions of the original system, and not only its satisfiability. In other words, the deducibility
constraint system represents in a symbolic way all the possible sequences of messages
that are produced, following the protocol rules, whatever are the intruder’s actions. This
set of symbolic traces is infinite in general. Solved forms are a simple (and finite) repre-
sentation of such traces. The procedure preserves all solutions. Hence, we can represent
for instance, all attacks on the secrecy and not only decide if there exists one. Moreover,
presenting the decision procedure using a small set of simplification rules yields more
flexibility for further extensions and modifications.

3.1. Intruder Deduction problem

3.1.1. Preliminaries

An inference rule is a rule of the form
u1 . . . un

u0
where u0, u1, . . . , un are terms

(with variables). An inference system is a set of inference rules.

Example 23 The following inference system IDY represents the deduction capabilities
of an attacker. We consider the signatureF = {senc, aenc, 〈_, _〉, sk} and the underlying
rewriting systemR is empty. There are several possible ways of defining the intruder ca-
pabilities, we choose here the “implicit destructors” formulation, in which the destruc-
tors do not appear. This leads to an inference system that is slightly different from the
one proposed in Section 2.1.3. For sake of simplicity, we make a confusion between the
identity of an agent and his public key.

x y
P

〈x, y〉

x y
PKE

aenc(x, y)

x y
SE

senc(x, y)

〈x, y〉
Left

x

〈x, y〉
Right

y

aenc(x, y) sk(y)
PKD

x

senc(x, y) y
SD

x

The rules P, SE, and PKE are composition rules whereas the rules Left, Right, SD,
and PKD are decomposition rules.

Definition 3.1 (proof) Let I be an inference system. A proof Π of T ` u in I is a tree
such that:

• every leaf of Π is labelled with a term v such that v ∈ T ,

• for every node labelled with v0 having n sons labelled with v1, . . . , vn , there is
an instance of an inference rule with conclusion v0 and hypotheses v1, . . . , vn.
We say that Π ends with this instance if the node is the root of Π,

• the root is labelled with u.

We denote by Hyp(Π) the set of labels of the leaves of a proof Π and Conc(Π) is
the label of the root of Π. Steps(Π) is the set of labels of all nodes of Π. The size of a
proof Π is the number of nodes in it. A proof Π of T ` u is minimal if it does not exist
any proof Π′ of T ` u having a size strictly smaller than the size of Π.

Example 24 Let φ = new a, b, s. {〈senc(s,〈a,b〉),a〉/x1 ,
senc(b,a)/x2}. We may ask

whether s is deducible from φ, i.e. does there exist a proof of

〈senc(s, 〈a, b〉), a〉, senc(b, a) ` s.

Such a proof is given below:

〈senc(s, 〈a, b〉), a〉

senc(s, 〈a, b〉)

〈senc(s, 〈a, b〉), a〉

a

senc(b, a)

〈senc(s, 〈a, b〉), a〉

a

b

〈a, b〉

s

The problem whether an intruder can gain certain information s from a set of knowl-
edge T , i.e. whether there is a proof of T ` s is called the intruder deduction problem.

Intruder deduction problem (for a fixed inference system I)

INPUT: a finite set of terms T , and a term s (the secret).
OUTPUT: Does there exist a proof of T ` s?

This definition is in-line with the concept of deduction introduced in Section 2.1.3.
Here, we do not explicitly rely on the concept of frame. Note that for deduction, the
ordering in which the messages have been sent is not relevant. Moreover, restriction on
names are not necessary. It is assumed that each name is restricted.

3.1.2. Decidability via Locality

To show that the intruder deduction problem is decidable (in PTIME) for an inference
system I, we use the notion of locality introduced by D. McAllester [20].

Definition 3.2 (locality) Let I be an inference system. The system I is local if whenever
T ` u in I, there exists a proof Π of T ` u such that Steps(Π) ⊆ St(T ∪ {u}).

Given an inference system I, to establish that the intruder deduction problem is
decidable, it is actually sufficient to prove that:

1. a locality result for the inference system I: checking the existence of a proof
of T ` u amounts to checking the existence of a local proof that only contains
subterms of u and T (there is a polynomial number of subterms),

2. a one-step-deducibility result to ensure that we can test (in PTIME) whether a
term is deducible in one step from a set of terms by using an instance of one of
the inference rules. This result trivially holds for the inference system presented
in Example 23.

Then, the existence of a local proof of T ` u can be checked in polynomial time by satu-
ration of T with terms deducible in one-step. Thanks to locality, the number of iteration
to obtain a saturated set is bounded by the number of terms that can be involved in a local
proof. This yields a PTIME algorithm.

Lemma 3.3 (locality) Let T be a set of terms and u be a term. A minimal proof Π of
T ` u only contains terms in St(T ∪ {u}), i.e. Steps(Π) ⊆ St(T ∪ {u}). Moreover, if
Π is reduced to a leaf or ends with a decomposition rule, then we have that Steps(Π) ⊆
St(T).

Proof: Let Π be a minimal proof of T ` u. We prove the result by induction on the size
of the proof Π.

Base case: In such a case, the proof Π is reduced to a leaf and we easily conclude.
Induction step: We have that:

Π =


Π1

u1 · · ·

Πn

un
R

u

We distinguish several cases depending on the last inference rule of Π.

• If R is a composition rule, then u1, . . . , un are subterms of u and we easily con-
clude by relying on our induction hypothesis.

• If R is a projection rule (say proj1), then u1 = 〈u, v〉 for some v. In such a case, by
minimality of Π, we know that Π1 does not end with a composition rule. Hence,
by relying on our induction hypothesis, we have that Steps(Π1) ⊆ St(T), and
thus u1 ∈ St(T). Moreover, we have that u ∈ St(u1), and thus u ∈ St(T). This
allows us to conclude that Steps(Π) ⊆ St(T).

The cases where Π ends with a decryption rule (symmetric and asymmetric) can be
done in a similar way. � �

Proposition 3.1 The intruder deduction problem is decidable in PTIME for IDY. Actu-
ally, this problem is PTIME complete.

The PTIME-hardness can be proved by a reduction from HORNSAT.

The concept of locality has been used to establish decidability of several inference
systems. For instance, we may want to model digital signature, exclusive or operator,
commutative encryption, . . .

3.2. Deducibility constraints

Assume processes without replication. Then the transition system is finite in depth but
might be infinitely branching, as we saw in Example 15. The idea then is to represent in
a simple symbolic way the set of terms that satisfy the required conditions. This is what
we formalise now.

Definition 3.4 A Deducibility constraint system is either ⊥ or a conjunction of de-
ducibility constraints of the form:

T1
?

` u1 ∧ . . . ∧ Tn
?

` un

in which T1, . . . , Tn are finite sets of terms, u1, . . . , un are terms. Moreover, we assume
that the constraints can be ordered in such a way that:

• monotonicity: ∅ 6= T1 ⊆ T2 · · · ⊆ Tn
• origination: for every i, we have that V(Ti) ⊆ V(u1, . . . , ui−1)

Intuitively, the sets Ti correspond to messages that have been sent on the network,
while u1, . . . , un are the messages that are expected by the processes, hence have to be
constructed by the environment. The first condition, called monotonicity reflects the fact
that the set of messages that have been sent on the network can only increase. In other
words, the ordering on the atomic deducibility constraints is a temporal ordering of ac-
tions. The second condition (called origination) reflects the properties of our processes:
variables that occur in a message sent on the network must appear before in messages
received from the network.

Definition 3.5 (Tx) Let C = T1
?

` u1 ∧ . . . ∧ Tn
?

` un be a deducibility constraint
system and x be a variable that occurs in C. Tx is the minimal set (w.r.t. inclusion) among

the sets T1, . . . , Tn such that T
?

` u ∈ C and x ∈ V(u).

Thanks to the monotonicity and the origination properties, for any x ∈ V(C), the set
Tx exists and is uniquely defined.

Such constraint systems may be enriched with equations/disequations between terms
or other constraints, that correspond to the conditions in the process calculus. We con-
sider (for now) only these simple constraints.

Definition 3.6 (solution) Let I be an inference system. A substitution σ is a solution of

a deducibility constraint system C = T1
?

` u1 ∧ . . . ∧ Tn
?

` un if there exists a proof of
Tiσ ` uiσ in I for every i ∈ {1, . . . , n}.

Example 25 Consider the constraints corresponding to one of the possible Needham-
Schroeder symbolic trace. We give explicitly the free names to the attacker and assume
that all names that are not explicitly given are (supposedly) secret:

C =̂

 a, b, d, sk(d), aenc(〈a,Na〉, d)
?

` aenc(〈a, x〉, b)

a, b, d, sk(d), aenc(〈a,Na〉, d), aenc(〈x,Nb〉, a)
?

` aenc(〈Na, y〉, a)

The failure of the secrecy of Nb (for this scenario) is given by the additional con-
straint:

a, b, d, sk(d), aenc(〈a,Na〉, d), aenc(〈x,Nb〉, a), aenc(y, d)
?

` Nb

A solution of C in IDY is σ = {x 7→ Na, y 7→ Nb}.

3.3. Decision Procedure

We describe here a non-deterministic simplification procedure. It can be simplified in
many respects, but we will see that the problem of deciding whether a constraint system
has at least one solution is NP-complete anyway (for the IDY inference system given in
Example 23). Many parts of this section, including the set of simplification rules, are
borrowed from [12].

3.3.1. Simplification Rules

We prove that any deducibility constraint system can be transformed into simpler ones,
called solved. Such simplified constraints are then used to decide the security properties.

R1 C ∧ T
?

` u C if T ∪ {x | (T ′
?

` x) ∈ C, T ′ (T}`u

R2 C ∧ T
?

` u σ Cσ ∧ Tσ
?

` uσ if t ∈ St(T), σ = mgu(t, u), t 6= u
t, u not variables

R3 C ∧ T
?

` u σ Cσ ∧ Tσ
?

` uσ if t1, t2 ∈ St(T), σ = mgu(t1, t2),
and t1 6= t2

R4 C ∧ T
?

` u ⊥ if V(T ∪ {u}) = ∅ and T 6` u

Rf C ∧ T
?

` f(u, v) C ∧ T
?

` u ∧ T
?

` v for f ∈ {〈 , 〉, senc, aenc}

Figure 5. Simplification rules.

All the rules are indexed by a substitution (when there is no index then the identity
substitution is assumed). We write C ∗σ C′ if there are constraint systems C1, . . . , Cn
such that C σ0 C1 σ1 . . . σn C′ and σ = σ0σ1 . . . σn. We denote by σ =
mgu(u, v) a most general unifier of u and v, such that V(vσ, uσ) ⊆ V(v, u).

A constraint system is called solved if it is different from ⊥ and if each of its con-

straints is of the form T
?

` x, where x is a variable. Note that the empty constraint sys-
tem is solved. Solved constraint systems are particularly simple since they always have
a solution. Indeed, let T1 be the smallest (w.r.t. inclusion) left-hand side of a constraint.
From the definition of a constraint system we have that T1 6= ∅ and has no variable. Then

the substitution τ defined by xτ = t1 where t1 ∈ T1 for every variable x, is a solution

since T ` xθ for any constraint T
?

` x of the solved constraint system.
Given a constraint system C, we say that Ti is a minimal unsolved left-hand side of C

if Ti is a left-hand side of C and for all T
?

` u ∈ C such that T (Ti, we have that u is a
variable.

Lemma 3.7 The simplification rules transform a deducibility constraint system into a
deducibility constraint system.

Theorem 3.8 Let C be an unsolved constraint system.

1. (Termination) There is no infinite chain C σ1
C1 . . . σn Cn.

2. (Correctness) If C ∗σ C′ for some constraint system C′ and some substitution σ
and if θ is a solution of C′ then σθ is a solution of C.

3. (Completeness) If θ is a solution of C, then there exist a solved constraint sys-
tem C′ and substitutions σ, θ′ such that θ = σθ′, C ∗σ C′ and θ′ is a solution
of C′.

Termination and correctness are quite easy to show. For termination, it is easy to
see that the number of variables is non-increasing. Furthermore, this number strictly de-
creases by the rules R2 and R3. Any other rule strictly reduces the total size of the right
hand sides of the constraint (here, the “size” is the number of symbols in the term). Com-
pleteness is more involved and its proof is detailed in Section 3.3.2. Getting a polynomial
bound on the length of simplification sequences requires to consider a particular strategy.

3.3.2. Completeness

First, we show that proofs considered in solutions of constraints can be narrowed to so-
called simple proofs. Let T1 ⊆ T2 ⊆ . . . ⊆ Tn . We say that a proof Π of Ti ` u is left
minimal if, whenever there is a proof of Tj ` u for some j < i, then Π is also a proof
of Tj ` u. In other words, the left-minimal proofs are those that can be performed in a
minimal Tj . We say that a proof is simple if all its subproofs are left minimal and there
is no repeated label on any branch. Note that a subproof of a simple proof is simple.

Lemma 3.9 Let T1 ⊆ T2 ⊆ . . . ⊆ Tn be a sequence of sets of terms and u be a term
such that Ti ` u. There exists a simple proof Π of Ti ` u.

Proof: Let i be a minimal index for which there is a proof of Ti ` u. Thanks to
Lemma 3.3, there is a local proof Π0 of Ti ` u. We prove the lemma by induction on the
size of Π0.

Base case: Π0 is reduced to a leaf. In such a case, Π0 is a simple proof.
Induction step: Consider the last rule in the proof of u:

Π0 =


Π1

u1
· · ·

Πn

un
R

u

For every j = 1, ..., n, we have that Πj is a proof of Ti ` uj . By induction hypothesis,
there are simple proofs Π′j of uj . If u appears as a node in some of these proofs, let Π be
the corresponding subproof and we get the desired result. Otherwise, let

Π =


Π′1

u1
· · ·

Π′n

un
R

u

The proof Π is a simple proof of u. � �

Lemma 3.10 Let C be an unsolved constraint system, θ be a solution of C and Ti
?

` ui be
a minimal unsolved constraint of C. Let u be a term. If there is a simple proof of Tiθ ` u
having the last rule an axiom or a decomposition then there is t ∈ St(Ti) rX such that
tθ = u.

Proof: Let Π be a simple proof of Tiθ ` u such that its last rule is an axiom or a
decomposition. Let j be the minimal indice such that Tjθ ` u. Note that j ≤ i and by
definition of a simple proof, we have that Π is also a simple proof of Tjθ ` u.

• The last rule is an axiom. Then u ∈ Tjθ. There is t ∈ Tj (thus t ∈ St(Tj)) such

that tθ = u. If t is a variable then Tt
?

` t is a constraint in C with Tt (Tj (see
the definition of a constraint system). Hence Ttθ ` tθ, that is Ttθ ` u, which
contradicts the minimality of j. Thus, as required, t is not a variable.

• The last rule is a decomposition. Suppose that it is a symmetric decryption. That
is, there is w such that Tjθ ` senc(u,w), and Tjθ ` w. By simplicity of the
proof, the last rule applied when obtaining senc(u,w) is an axiom or a decompo-
sition, otherwise the same node would appear twice. Then, applying the induction
hypothesis we have that there is t ∈ St(Tj) r X such that tθ = senc(u,w). It
follows that t = senc(t′, t′′) with t′θ = u. If t′ is a variable then Tt′θ ` t′θ. That
is Tt′θ ` u, which again contradicts the minimality of j. Hence t′ is not variable,
as required.

For the other decomposition rules the same reasoning holds. � �

Lemma 3.11 Let C = T0
?

` x0, . . . , Ti−1
?

` xi−1, Ti
?

` u, . . . be a constraint system
and σ be a solution of C such that

1. Ti does not contain two distinct subterms t1, t2 with t1σ = t2σ,
2. u is a non-variable subterm of Ti.

Then T ′i ` u, where T ′i = Ti ∪ {x | (T
?

` x) ∈ C, T (Ti}.

Proof: Let j be minimal such that Tjσ ` uσ. Thus j ≤ i and Tj ⊆ Ti. Consider a simple
proof Π of Tjσ ` uσ. We reason by induction on the depth of Π.

Base case: Π is reduced to a leaf. Then there is t ∈ Tj such that tσ = uσ. By hy-
pothesis 1, we deduce that t = u. Hence, we have that u ∈ Tj and thus T ′i ` u, as
required.

Induction step: We analyse the different cases, depending on the last rule R of Π:

• Case R is a composition rule. Assume for example that R = SE. In such a case,
we have that:

Π =


Π1

v1

Π2

v2

senc(v1, v2)

with uσ = senc(v1, v2). Since u is not a variable, u = senc(u1, u2), u1σ = v1,
and u2σ = v2. If u1 (resp. u2) is a variable then u1 (resp. u2) belongs to V(Ti)
since u ∈ St(Ti). Again, this implies u1 ∈ T ′i (resp. u2 ∈ T ′i). Otherwise,
u1 (resp. u2) is not a variable. Then, by induction hypothesis, T ′i ` u1 (resp.
T ′i ` u2). Hence in both cases we have that T ′i ` u1 and T ′i ` u2. This allows us
to conclude that T ′i ` u.

• Case R = SD. In such a case, there is w such that Tjσ ` senc(uσ,w), and
Tjσ ` w:

Π =


Π1

senc(uσ,w)

Π2

w

uσ

By simplicity, the last rule of the proof Π1 is a decomposition or an axiom. By
Lemma 3.10, there is t ∈ St(Tj) r X such that tσ = senc(uσ,w). Let t =
senc(t1, t2) with t1σ = uσ, and t2σ = w. By induction hypothesis, T ′i ` t. Since
t1σ = uσ, by hypothesis 1, we have that t1 = u.
Now, if t2 is a variable, and since t2 ∈ V(Ti), we have that Tt2 (Ti and thus
t2 ∈ T ′i . If t2 is not a variable, then, from Tjσ ` t2σ and by induction hypothesis,
T ′i ` t2. So, in any case, T ′i ` t2.
Hence, we have both that T ′i ` senc(u, t2) and T ′i ` t2, from which we conclude
that T ′i ` u, by symmetric decryption.

• Case R = PKD. In such a case, there is w such that Tjσ ` sk(w) and Tjσ `
aenc(uσ,w). As in the previous case, there is t ∈ St(Tj) r X such that tσ =
aenc(uσ,w). By induction hypothesis, T ′i ` t. Let t = aenc(t1, t2). As in the
previous case, we have that t1σ = uσ, and thus t1 = u (thanks to hypothesis 1).
The last rule in the proof of Tjσ ` sk(w) is a decomposition (no composition
rule can yield a term headed with sk(_)). Then, by Lemma 3.10 (Tj satisfies the
hypotheses of the lemma since Tj ⊆ Ti), there is a non-variable subterm w1 ∈
St(Tj) such that w1σ = sk(w). Let w1 = sk(w2). By induction hypothesis,
T ′j ` sk(w2). Moreover, sincew2σ = t2σ, by hypothesis 2, we have thatw2 = t2,
Finally, from T ′i ` aenc(u,w2) and T ′i ` sk(w2), we conclude that T ′i ` u.

The proof is similar for the other decomposition rules. � �

Proposition 3.2 (Completeness for one step) If C is an unsolved deducibility constraint
system and σ is a solution of C, then there is a deducibility constraint system C′, a sub-
stitution τ , and a solution σ′ of C′ such that C τ C′ and σ = τσ′.

Proof: Let C be an unsolved constraint system and σ be a solution of C. We show that
there is a constraint system C′ and a solution σ′ of C′ such that C τ C′ and σ = τσ′.

Consider a minimal unsolved constraint Ti
?

` ui such that ui is not a variable. We
have that Tiσ ` uiσ. Consider a simple proof Π of Tiσ ` uiσ. We analyse the different
cases depending on the last rule of Π.

1. The last rule is a composition. Suppose that it is the pairing rule. That is, there
are w1, w2 such that Tiθ ` w1, Tiθ ` w2 and 〈w1, w2〉 = uiθ. Since ui is not
a variable there exists u′, u′′ such that ui = 〈u′, u′′〉. Hence we can apply the
simplification rule Rf in order to obtain C′. Since u′θ = w1 and u′′θ = w2, the
substitution θ is also a solution to C′. For the other composition rules the same
reasoning holds.

2. The last rule is an axiom or a decomposition. Applying Lemma 3.10 we obtain
that there is t ∈ St(Ti) r X such that tθ = uiθ. We can have the following two
possibilities:

(a) If t 6= ui then we apply the simplification rule R2.
(b) Otherwise, if t = ui, then ui ∈ St(Ti) and we already know that ui is not a

variable. We consider two cases:

i. There are two distinct terms t1, t2 ∈ St(T) such that t1θ = t2θ. Then we
apply the simplification rule R3.

ii. Otherwise, the simplification rule R1 can be applied (Lemma 3.11). �

�

3.3.3. Complexity

The termination stated in Theorem 3.8 does not provide with tight complexity bounds. In
fact, applying the simplification rules may lead to branches of exponential length in the
size of the constraint system [12]. Inspecting the completeness proof, there is still some
room for choosing a strategy to ensure that the length of each branch is polynomially
bounded in C (while keeping completeness). Note that correctness is independent of the
order of the rules application.

Moreover, for any suitable representation of terms, we have that |uσ, vσ| < |u, v|
where σ = mgu(u, v). Hence, if we use a DAG representation of terms, when C ∗σ C′,
we have that the size of C′ is polynomially bounded in the size of C. As a consequence,
the security problem is in co-NP and it is actually co-NP-complete [24]. The NP-hardness
can be established with a reduction from 3-SAT.

3.4. Further Readings

Many parts of this section are borrowed from [12]. Hence, more details can be found in
this paper. Another decision procedure based on constraint simplification rules has been

proposed by J. Millen and V. Shmatikov [21]. Many results (e.g. [11,7]) have been ob-
tained within this framework. In particular, this framework has been extended by several
authors to deal with algebraic properties of cryptographic primitives.

3.5. Exercises

Exercice 9 (?)
Consider the following inference system:

x y

〈x, y〉
〈x, y〉

x

〈x, y〉

y

x y

senc(x, y)

senc(x, y) y

x

Let T = {senc(s, 〈k1, k2〉), senc(k1, k3), k3, k2}.

1. Enumerate all the subterms of T .
2. The term s is deducible from T . Give a derivation witnessing this fact.
3. Among the subterms of T , give those that are deducible.
4. Give a term u that is not a subterm of T and such that T ` u.

Exercice 10 (? ? ?)
Consider the following inference system:

x y

〈x, y〉
〈x, y〉

x

〈x, y〉

y

x y

senc(x, y)

senc(x, y) y

x

In order to decide whether a term s is deducible from a set of terms T in the inference
system described above, we propose the following algorithm:

Algorithm:

1. Apply as much as possible the decryption and the projection rules. This leads to
a set of terms called analz(T).

2. Check whether s can be obtained by applying the encryption and the pairing
rules. The (infinite) set of terms obtained by applying the composition rules is
denoted synth(analz(T)).

If s ∈ synth(analz(T)) then the algorithm return yes. Otherwise, it returns no.

1. Show that this algorithm terminates.
2. Show that this algorithm is sound, i.e. if the algorithm returns yes then T ` s.
3. The algorithm is not complete, i.e. there exist T and s such that T ` s, and for

which the algorithm returns no. Find an example illustrating this fact.
4. Give an hypothesis on T that allows one to restore completeness.
5. Show that the algorithm is complete when this hypothesis is fulfilled.

Exercice 11 (?)
We consider the following inference system allowing us to model asymmetric encryp-
tion.

x y

aenc(x, y)

aenc(x,pk(z)) sk(z)

x

z

pk(z)

Is this inference system local, or not? If so, give a proof. If not, give a derivation
witnessing this fact.

Exercice 12 (??)
Consider the following inference system allowing us to model digital signature.

x sk(z)

sign(x, sk(z))

sign(x, sk(z)) vk(z)

x

z

vk(z)

1. This inference system is not local according to Definition 3.2. Give an example
witnessing this fact.

2. Show that the intruder deduction problem is decidable.
You can use the technique described in this chapter and extend the notion of
subterm to restore the locality property.

Exercice 13 (?)
We consider the signature and the inference system given in Example 23. Let T0 =

{a, b, c, sk(c), aenc(〈a, aenc(s, b)〉, b)} and C = {T0
?

` aenc(〈a, aenc(x1, b)〉, b)}.
What are the solutions of C?

Exercice 14 (??)
Consider the following protocol (defined informally):

A→ B : 〈aenc(k1,pk(b)), aenc(k2,pk(b))〉
B → A : senc(k1, k2)

Here k1 and k2 represent two keys that are freshly generated by A at the beginning of
each session.

1. Write formally the processes corresponding to an instance of the role A played
by two honest agents a,b and an instance of the role B with the same two honest
agents

2. Give a deduction constraint system corresponding to the only relevant symbolic
trace for the processes of the previous question.

3. Apply the simplification rules to this constraint system and derive all possible
attacks on the secrecy of k1 (resp. k2) for this scenario.

Exercice 15 (?)
Give an example showing that the rule R3 is necessary for the completeness of the pro-
cedure. More precisely, this example has to show that Proposition 3.2 will be wrong
without this rule.

Exercice 16 (??)
We consider the following variant of the rule R3

R′3 : C ∧T
?

` u σ Cσ ∧Tσ
?

` uσ if t1, t2 ∈ St(T)rX , σ = mgu(t1, t2), and t1 6= t2

1. Show that R′3 is not sufficient to restore completeness, i.e. give an example wit-
nessing the fact that Proposition 3.2 is wrong if we use the rule R′3 instead of
R3.

2. Consider the set of simplification rules R1, R2, R′3, Rf . Show that this set of
rules is complete if we consider symmetric encryption/decryption and pair-
ing/projection (no asymmetric encryption).

Ackowledgements

Bruno Blanchet, Steve Kremer and David Pointcheval contributed to these notes and we
warmly thank them for their help.

References

[1] Spore, the security protocol open repository. //www.lsv.ens-cachan.fr/spore.
[2] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: the spi calculus. Information and

Computation, 148(1), 1999.
[3] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In Proc. 28th

Symposium on Principles of Programming Languages (POPL’01), pages 104–115. ACM Press, 2001.
[4] Martín Abadi and Cédric Fournet. Private authentication. Theoretical Computer Science, 322(3):427–

476, 2004.
[5] Martín Abadi, Bruno Blanchet, and Cédric Fournet. Just fast keying in the pi calculus. ACM Transactions

on Information and System Security (TISSEC), 10(3):1–59, 2007.
[6] Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Chevalier, Luca Compagna, Jorge Cuél-

lar, Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga Kouchnarenko, Jacopo Mantovani, Sebastian
Mödersheim, David von Oheimb, Michaël Rusinowitch, Judson Santiago, Mathieu Turuani, Luca Vi-
ganò, and Laurent Vigneron. The avispa tool for the automated validation of internet security protocols
and applications. In Computer Aided Verification, volume 3576 of Lecture Notes in Computer Science.
Springer, 2005.

[7] Mathieu Baudet. Deciding security of protocols against off-line guessing attacks. In Proc. 12th Confer-
ence on Computer and Communications Security, pages 16–25. ACM Press, 2005.

[8] B. Blanchet, H. Comon-Lundh, S. Delaune, C. Fournet, S. Kremer, and D. Pointcheval. Cryptographic
protocols: formal and computational proofs of security. Lecture Notes of the Parisian Master of Research
in Computer Science (MPRI), 2011. Available on the MPRI web pages.

[9] Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Computer Secu-
rity Foundations Workshop (CSFW’01), 2001.

[10] J. Clark and J. Jacob. A survey of authentication protocol literature. http://www.cs.york.ac.
uk/~jac/papers/drareviewps.ps, 1997.

[11] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity decision in
preence of exclusive or. In P. Kolaitis, editor, Eighteenth Annual IEEE Symposium on Logic in Computer
Science, Ottawa, Canada, June 2003. IEEE Computer Society.

[12] Hubert Comon-Lundh, Véronique Cortier, and Eugen Zlinescu. Deciding security properties of crypto-
graphic protocols. application to key cycles. Transaction on Computational Logic, 11(2), 2010.

[13] Ricardo Corin, Jeroen Doumen, and Sandro Etalle. Analysing password protocol security against off-
line dictionary attacks. ENTCS, 121:47–63, 2005.

[14] V. Cortier and S. Kremer, editors. Formal Models and Techniques for Analyzing Security Protocols. IOS
Press, 2011.

[15] Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security, 14(1):1–43, 2006.

[16] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, 17(4):435–487, July 2009.

[17] Cédric Fournet and Martín Abadi. Hiding names: Private authentication in the applied pi calculus.
In Proc. International Symposium on Software Security (ISSS’02), volume 2609 of Lecture Notes in
Computer Science, pages 317–338. Springer, 2003.

[18] Gavin Lowe. An attack on the needham-schroeder public-key authentication protocol. Information
Processing Letters, 56(3):131–133, 1996.

[19] Gavin Lowe. A hierarchy of authentication specification. In 10th Computer Security Foundations
Workshop (CSFW ’97), June 10-12, 1997, Rockport, Massachusetts, USA, pages 31–44. IEEE Computer
Society, 1997.

[20] David McAllester. Automatic recognition of tractability in inference relations. Journal of the ACM,
40(2), 1993.

[21] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol analysis. In
Proc. 8th ACM Conference on Computer and Communications Security, 2001.

[22] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i & ii. Inf. Comput.,
100(1):1–77, 1992.

[23] R. Needham and M. Schroeder. Using encryption for authentification in large networks of computers.
Communications of the ACM, 21(12):993–999, 1978.

[24] Michael Rusinowitch and Mathieu Turuani. Protocol insecurity with finite number of sessions is np-
complete. In Proc.14th IEEE Computer Security Foundations Workshop, Cape Breton, Nova Scotia,
June 2001.

[25] M. Ryan and B. Smyth. Applied pi calculus. In V. Cortier and S. Kremer, editors, Formal Models and
Techniques for Analyzing Security Protocols. IOS Press, To appear.

[26] Bogdan Warinschi. A computational analysis of the needham-schroeder protocol. In 16th Computer
security foundation workshop (CSFW), pages 248–262. IEEE, 2003.

