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Abstract. We consider Markov Decision Processes (MDPs) with mean-payoff
parity and energy parity objectives. In system design, the parity objective is used
to encodeω-regular specifications, while the mean-payoff and energy objectives
can be used to model quantitative resource constraints. Theenergy condition re-
quires that the resource level never drops below0, and the mean-payoff condi-
tion requires that the limit-average value of the resource consumption is within
a threshold. While these two (energy and mean-payoff) classical conditions are
equivalent for two-player games, we show that they differ for MDPs. We show
that the problem of deciding whether a state is almost-sure winning (i.e., winning
with probability 1) in energy parity MDPs is in NP∩ coNP, while for mean-
payoff parity MDPs, the problem is solvable in polynomial time.

1 Introduction

Markov decision processes (MDPs) are a standard model for systems that exhibit both
stochastic and nondeterministic behaviour. The nondeterminism represents the freedom
of choice of control actions, while the probabilities describe the uncertainty in the re-
sponse of the system to control actions. The control problemfor MDPs asks whether
there exists a strategy (or policy) to select control actions in order to achieve a given
goal with a certain probability. MDPs have been used in several areas such as planning,
probabilistic reactive programs, verification and synthesis of (concurrent) probabilistic
systems [12, 22, 1].

The control problem may specify a goal as a set of desired traces (such asω-regular
specifications), or as a quantitative optimization objective for a payoff function defined
on the traces of the MDP. Typically, discounted-payoff and mean-payoff functions have
been studied [15]. Recently, the energy objectives (corresponding to total-payoff func-
tions) have been considered in the design of resource-constrained embedded systems [3,
7, 20] such as power-limited systems, as well as in queueing processes, and gambling
models (see also [4] and references therein). The energy objective requires that the sum
of the rewards be always nonnegative along a trace. Energy objective can be expressed
in the setting of boundaryless one-counter MDPs [4]. In the case of MDPs, achieving
energy objective with probability1 is equivalent to achieving energy objective in the
stronger setting of a two-player game where the probabilistic choices are replaced by
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adversarial choice. This is because if a traceρ violates the energy condition in the game,
then a finite prefix ofρ would have a negative energy, and this finite prefix has positive
probability in the MDP. Note that in the case of two-player games, the energy objective
is equivalent to enforce nonnegative mean-payoff value [3,5].

In this paper, we consider MDPs equipped with the combination of a parity objective
(which is a canonical way to express theω-regular conditions [21]), and a quantitative
objective specified as either mean-payoff or energy condition. Special cases of the parity
objective include reachability and fairness objectives such as Büchi and coBüchi condi-
tions. Such combination of quantitative and qualitative objectives is crucial in the design
of reactive systems with both resource constraints and functional requirements [6, 11, 3,
2]. For example, Kucera and Straz̆ovský consider the combination of PCTL with mean-
payoff objectives for MDPs and present an EXPTIME algorithm[19]. In the case of
energy parity condition, it can also be viewed as a natural extension of boundaryless
one-counter MDPs with fairness conditions.

Consider the MDP in Fig. 1, with the objective to visit the Büchi stateq2 infinitely
often, while maintaining the energy level (i.e., the sum of the transition weights) non-
negative. A winning strategy fromq0 would loop20 times onq0 to accumulate en-
ergy and then it can afford to reach the probabilistic state from which the Büchi state
is reached with probability1/2 and cost20. If the Büchi state is not reached immedi-
ately, then the strategy needs to recharge10 units of energy and try again. This strategy
uses memory and it is also winning with probability1 for the nonnegative mean-payoff
Büchi objective. In general however, the energy and mean-payoff parity objectives do
not coincide (see later the example in Fig. 2). In particular, the memory requirement
for energy parity objective is finite (at most exponential) while it may be infinite for
mean-payoff parity.

We study the computational complexity of the problem of deciding if there exists a
strategy to achieve energy parity objective, or mean-payoff parity objective with proba-
bility 1 (i.e., almost-surely). We provide the following bounds forthese problems.

1. For energy parity MDPs, we show that the problem is in NP∩ coNP, and present
a pseudo-polynomial time algorithm. Since parity games polynomially reduce to
two-player energy games [18, 3, 5], and thus to energy MDPs, the problem for
almost-sure energy parity MDPs is at least as hard as solvingtwo-player parity
games.

2. For mean-payoff parity MDPs, we show that the problem is solvable in polynomial
time (and thus PTIME-complete).

We refer to [12, 16, 9] for importance of the computation of almost-sure winning set re-
lated to robust solutions (independence of precise transition probabilities) and the more
general quantitative problem. The computation of the almost-sure winning set in MDPs
typically relies either on the end-component analysis, or analysis of attractors and sub-
MDPs. Our results for mean-payoff parity objectives rely onthe end-component anal-
ysis, but in a more refined way than the standard analysis, to obtain a polynomial-time
algorithm. Our proof combines techniques for mean-payoff and parity objectives to pro-
duce infinite-memory strategy witnesses, which is necessary in general. We present an
algorithm that iterates successively over even priorities2i and computes almost-sure
winning end-components with the even priority2i as the best priority. The problem
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Fig. 1.An energy Büchi MDP. The player-1 states areq0, q2, and the probabilistic state isq1.

of positive mean-payoff objectives and parity objectives has been considered indepen-
dently in [17].

For energy parity MDPs the end-component based analysis towards polynomial-
time algorithm does not work since solving energy parity MDPs is at least as hard
as solving two-player parity games. Instead, for energy parity MDPs, we present a
quadratic reduction to two-player energy Büchi games which are in NP∩ coNP and
solvable in pseudo-polynomial time [7].

From our results, it follows that for energy parity MDPs, strategies with finite mem-
ory are sufficient (linear in the number of states times the value of the largest weight),
while infinite memory may be necessary for mean-payoff parity MDPs. The details of
the proofs can be found in [8], as well as the solution for disjunction of mean-payoff
parity and energy parity objectives. An interesting open question is to extend the results
of this paper from MDPs to two-player stochastic games.

2 Definitions

Probability distributions. A probability distributionover a finite setA is a function
κ : A → [0, 1] such that

∑
a∈A κ(a) = 1. Thesupportof κ is the setSupp(κ) = {a ∈

A | κ(a) > 0}. We denote byD(A) the set of probability distributions onA.

Markov Decision Processes.A Markov Decision Process(MDP) M = (Q, E, δ) con-
sists of a finite setQ of states partitioned intoplayer-1 statesQ1 andprobabilistic states
QP (i.e.,Q = Q1 ∪ QP andQ1 ∩ QP = ∅), a setE ⊆ Q × Q of edges such that for
all q ∈ Q, there exists (at least one)q′ ∈ Q such that(q, q′) ∈ E, and a probabilistic
transition functionδ : QP → D(Q) such that for allq ∈ QP andq′ ∈ Q, we have
(q, q′) ∈ E iff δ(q)(q′) > 0. We often writeδ(q, q′) for δ(q)(q′). For a stateq ∈ Q, we
denote byE(q) = {q′ ∈ Q | (q, q′) ∈ E} the set of possible successors ofq.

End-components and Markov chains.A setU ⊆ Q is δ-closedif for all q ∈ U ∩QP

we haveSupp(δ(q)) ⊆ U . The sub-MDP induced by aδ-closed setU is M ↾ U =
(U, E ∩ (U × U), δ). Note thatM ↾ U is an MDP if for allq ∈ U there existsq′ ∈ U

such that(q, q′) ∈ E. A Markov chainis a special case of MDP whereQ1 = ∅. A
closed recurrent setfor a Markov chain is aδ-closed setU ⊆ Q which is strongly
connected. End-components in MDPs play a role equivalent toclosed recurrent sets in
Markov chains. Given an MDPM = (Q, E, δ) with partition(Q1, QP ), a setU ⊆ Q
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of states is anend-componentif U is δ-closed and the sub-MDPM ↾ U is strongly
connected [12, 13]. We denote byE(M) the set of end-components of an MDPM .

Plays.An MDP can be viewed as the arena of a game played for infinitelymany rounds
from a stateq0 ∈ Q as follows. If the game is in a player-1 stateq, then player1 chooses
the successor state in the setE(q); otherwise the game is in a probabilistic stateq, and
the successor is chosen according to the probability distributionδ(q). This game results
in a play from q0, i.e., an infinite pathρ = q0q1 . . . such that(qi, qi+1) ∈ E for all
i ≥ 0. The prefix of lengthn of ρ is denoted byρ(n) = q0 . . . qn, the last state ofρ(n)
is Last(ρ(n)) = qn. We writeΩ for the set of all plays.

Strategies.A strategy(for player1) is a functionσ : Q∗Q1 → D(Q) such that for
all ρ ∈ Q∗, q ∈ Q1, andq′ ∈ Q, if σ(ρ · q)(q′) > 0, then (q, q′) ∈ E. We de-
note byΣ the set of all strategies. Anoutcomeof σ from q0 is a playq0q1 . . . where
qi+1 ∈ Supp(σ(q0 . . . qi)) for all i ≥ 0 such thatqi ∈ Q1. Strategies that do not use ran-
domization are called pure. A player-1 strategyσ is pure if for all ρ ∈ Q∗ andq ∈ Q1,
there is a stateq′ ∈ Q such thatσ(ρ · q)(q′) = 1.

Outcomes and measures.Once a starting stateq ∈ Q and a strategyσ ∈ Σ are fixed,
the outcome of the game is a random walkωσ

q for which the probabilities of everyevent
A ⊆ Ω, which is a measurable set of plays, are uniquely defined [22]. For a stateq ∈ Q

and an eventA ⊆ Ω, we denote byPσ
q (A) the probability that a play belongs toA if

the game starts from the stateq and player1 follows the strategyσ. For a measurable
functionf : Ω → R we denote byEσ

q [f ] theexpectationof the functionf under the
probability measurePσ

q (·).

Finite-memory strategies.A strategy usesfinite-memoryif it can be encoded by a
deterministic transducer〈Mem, m0, αu, αn〉 whereMem is a finite set (the memory of
the strategy),m0 ∈ Mem is the initial memory value,αu : Mem × Q → Mem is
an update function, andαn : Mem × Q1 → D(Q) is a next-move function. Thesize
of the strategy is the number|Mem| of memory values. If the game is in a player-1
stateq, andm is the current memory value, then the strategy chooses the next state
q′ according to the probability distributionαn(m, q), and the memory is updated to
αu(m, q). Formally, 〈Mem, m0, αu, αn〉 defines the strategyσ such thatσ(ρ · q) =
αn(α̂u(m0, ρ), q) for all ρ ∈ Q∗ and q ∈ Q1, whereα̂u extendsαu to sequences
of states as expected. A strategy ismemorylessif |Mem| = 1. For a finite-memory
strategyσ, letMσ be the Markov chain obtained as the product ofM with the transducer
definingσ, where(〈m, q〉, 〈m′, q′〉) is an edge inMσ if m′ = αu(m, q) and either
q ∈ Q1 andq′ ∈ Supp(αn(m, q)), or q ∈ QP and(q, q′) ∈ E.

Two-player games.A two-player gameis a graphG = (Q, E) with the same assump-
tions as for MDP, except that the partition ofQ is denoted(Q1, Q2) whereQ2 is the set
of player-2 states. The notions of play, strategies (in particular strategiesfor player2),
and outcome are analogous to the case of MDP [7].

Objectives. An objectivefor an MDP M (or gameG) is a setφ ⊆ Ω of infinite
paths. Letp : Q → N be apriority function andw : E → Z be aweight function
where positive numbers represent rewards. We denote byW the largest weight (in ab-
solute value) according tow. Theenergy levelof a prefixγ = q0q1 . . . qn of a play is
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EL(w, γ) =
∑n−1

i=0
w(qi, qi+1), and themean-payoff value3 of a playρ = q0q1 . . . is

MP(w, ρ) = lim infn→∞
1

n · EL(w, ρ(n)). In the sequel, when the weight functionw

is clear from the context we omit it and simply writeEL(γ) andMP(ρ). We denote by
Inf(ρ) the set of states that occur infinitely often inρ, and we consider the following
objectives:

– Parity objectives.The parity objectiveParity(p) = {ρ ∈ Ω | min{p(q) | q ∈
Inf(ρ)} is even} requires that the minimum priority visited infinitely oftenbe even.
The special cases ofBüchiandcoBüchiobjectives correspond to the case with two
priorities,p : Q → {0, 1} andp : Q → {1, 2} respectively.

– Energy objectives.Given an initial credit c0 ∈ N, the energy objective
PosEnergy(c0) = {ρ ∈ Ω | ∀n ≥ 0 : c0 + EL(ρ(n)) ≥ 0} requires that the
energy level be always positive.

– Mean-payoff objectives.Given a thresholdν ∈ Q, the mean-payoffobjective
MeanPayoff≥ν = {ρ ∈ Ω | MP(ρ) ≥ ν} (resp.MeanPayoff>ν = {ρ ∈ Ω |
MP(ρ) > ν}) requires that the mean-payoff value be at leastν (resp. strictly greater
thanν).

– Combined objectives.Theenergy parityobjectiveParity(p) ∩ PosEnergy(c0) and
themean-payoff parityobjectiveParity(p)∩MeanPayoff∼ν (for ∼∈ {≥, >}) com-
bine the requirements of parity and energy (resp., mean-payoff) objectives.

Almost-sure winning strategies.For MDPs, we say that a player-1 strategyσ is
almost-sure winningin a stateq for an objectiveφ if Pσ

q (φ) = 1. For two-player games,
we say that a player-1 strategyσ is winningin a stateq for an objectiveφ if all outcomes
of σ starting inq belong toφ. For energy objectives with unspecified initial credit, we
also say that a strategy is (almost-sure) winning if it is (almost-sure) winning forsome
finite initial credit.

Decision problems.We are interested in the following problems. Given an MDPM

with weight functionw and priority functionp, and a stateq0,
– the energy parity problemasks whether there exists a finite initial creditc0 ∈ N

and an almost-sure winning strategy for the energy parity objective fromq0 with
initial credit c0. We are also interested in computing theminimum initial credit
in q0 which is the least value of initial credit for which there exists an almost-sure
winning strategy for player1 in q0. A strategy for player1 is optimal in q0 if it is
winning fromq0 with the minimum initial credit;

– themean-payoff parity problemasks whether there exists an almost-sure winning
strategy for the mean-payoff parity objective with threshold 0 from q0. Note that it
is not restrictive to consider mean-payoff objectives withthreshold0 because for
∼∈ {≥, >}, we haveMP(w, ρ) ∼ ν iff MP(w − ν, ρ) ∼ 0, wherew − ν is the
weight function that assignsw(e) − ν to each edgee ∈ E.
The two-player game version of these problems is defined analogously [7]. It is

known that the initial credit problem for two-player energygames [6, 3], as well as two-
player parity games [14] can be solved in NP∩ coNP because memoryless strategies
are sufficient to win. Moreover, parity games reduce in polynomial time to mean-payoff
games [18], which are log-space equivalent to energy games [3, 5]. It is a long-standing

3 The results of this paper hold for the definition of mean-payoff value usinglim sup instead of
lim inf.
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Fig. 2. The gadget construction is wrong for mean-payoff parity MDPs. Player1 is almost-sure
winning for mean-payoff Büchi in the MDP (on the left) but player1 is losing in the two-player
game (on the right) because player2 (box-player) can force a negative-energy cycle.

open question to know if a polynomial-time algorithm existsfor these problems. Finally,
energy parity games and mean-payoff parity games are solvable in NP∩ coNP although
winning strategies may require exponential and infinite memory respectively, even in
one-player games (and thus also in MDPs) [11, 7].

The decision problem for MDPs with parity objective, as wellas with mean-payoff
objective, can be solved in polynomial time [15, 12, 9, 13]. However, the problem is in
NP ∩ coNP for MDPs with energy objective because an MDP with energy objective
is equivalent to a two-player energy game (where the probabilistic states are controlled
by player2). Indeed(1) a winning strategy in the game is trivially almost-sure winning
in the MDP, and(2) if an almost-sure winning strategyσ in the MDP was not winning
in the game, then for all initial creditc0 there would exist an outcomeρ of σ such that
c0 + EL(ρ(i)) < 0 for some positioni ≥ 0. The prefixρ(i) has a positive probability in
the MDP, in contradiction with the fact thatσ is almost-sure winning. As a consequence,
solving MDP with energy objectives is at least as hard as solving parity games.

In this paper, we show that the decision problem for MDPs withenergy parity ob-
jective is in NP∩ coNP, which is the best conceivable upper bound unless parity games
can be solved in P. And for MDPs with mean-payoff parity objective, we show that the
decision problem can be solved in polynomial time. The problem for MDPs with mean-
payoff parity objectives under expectation semantics was considered in [10], whereas
our semantics (threshold semantics) is different (we require the set of paths that sat-
isfy the mean-payoff threshold has probability 1 rather than the expected value satisfy
threshold).

The MDP in Fig. 2 on the left, which is essentially a Markov chain, is an exam-
ple where the mean-payoff parity condition is satisfied almost-surely, while the energy
parity condition is not, no matter the value of the initial credit. For initial creditc0, the
energy will drop below0 with positive probability, namely 1

2c0+1 .

End-component lemma.We now present an important lemma about end-components
from [12, 13] that we use in the proofs of our result. It statesthat for arbitrary strategies
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Fig. 3. Gadget for probabilistic states in energy Büchi MDP. Diamonds are probabilistic states,
circles are player1 states, and boxes are player2 states.

(memoryless or not), with probability 1 the set of states visited infinitely often along a
play is an end-component. This lemma allows us to derive conclusions on the (infinite)
set of plays in an MDP by analyzing the (finite) set of end-components in the MDP.

Lemma 1. [12, 13] Given an MDPM , for all statesq ∈ Q and all strategiesσ ∈ Σ,
we havePσ

q ({ω | Inf(ω) ∈ E(M)}) = 1.

3 MDPs with Energy Parity Objectives

We show that energy parity MDPs can be solved in NP∩ coNP, using a reduction to
two-player energy Büchi games. Our reduction also preserves the value of the minimum
initial credit. Therefore, we obtain a pseudo-polynomial algorithm for this problem,
which also computes the minimum initial credit. Moreover, we show that the memory
requirement for almost-sure winning strategies is at most2·|Q|·W , which is essentially
optimal4.

We first establish the results for the special case of energy Büchi MDPs. We present
a reduction of the energy Büchi problem for MDPs to the energy Büchi problem for
two-player games. The result then follows from the fact thatthe latter problem is in
NP∩ coNP and solvable in pseudo-polynomial time [7].

Given an MDPM , we can assume without loss of generality that every probabilis-
tic state has priority1, and has two outgoing transitions with probability1/2 each [23,
Section 6]. We construct a two-player gameG by replacing every probabilistic state of
M by a gadget as in Fig. 3. The probabilistic statesq of M are mapped to player-2
states inG with two successors(q, L) and(q, R). Intuitively, player2 chooses(q, L) to
check whether player1 can enforce the Büchi condition almost-surely. This is thecase
if player 1 can reach a Büchi state (with priority0) infinitely often when he controls
the probabilistic states (otherwise, no Büchi state is ever visited, and since(·, L) states
have priority1, the Büchi condition is not realized inG). And player2 chooses(q, R)

4 Example1 in [7] shows that memory of size2·(|Q| − 1)·W + 1 may be necessary.
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to check that the energy condition is satisfied. If player2 can exhaust the energy level
in G, then the corresponding play prefix has positive probability in M . Note that(q, R)
has priority0 and thus cannot be used by player2 to spoil the Büchi condition.

Formally, givenM = (Q, E, δ) with partition(Q1, QP ) of Q, we construct a game
G = (Q′, E′) with partition (Q′

1, Q
′
P ) whereQ′

1 = Q1 ∪ (QP × {L}) andQ′
2 =

QP ∪ (QP × {R}), see also Fig. 3. The states inQ′ that are already inQ get the same
priority as inM , the states(·, L) have priority1, and the states(·, R) have priority0.
The setE′ contains the following edges:

– all edges(q, q′) ∈ E such thatq ∈ Q1;
– edges(q, (q, d)), ((q, d), q′) for all q ∈ QP , d ∈ {L, R}, andq′ ∈ Supp(δ(q)).

The edges(q, q′) and((q, d), q′) in E′ get the same weight as(q, q′) in M , and all edges
(q, (q, d)) get weight0.

Lemma 2. Given an MDPM with energy B̈uchi objective, we can construct in linear
time a two-player gameG with energy B̈uchi objective such that for all statesq0 in M ,
there exists an almost-sure winning strategy fromq0 in M if and only if there exists a
winning strategy fromq0 in G (with the same initial credit).

Note that the reduction presented in the proof of Lemma 2 would not work for
mean-payoff Büchi MDPs. Consider the MDP on Fig. 2 for whichthe gadget-based
reduction to two-player games is shown on the right. The gameis losing for player1
both for energy and mean-payoff parity, simply because player2 can always choose to
loop through the box states, thus realizing a negative energy and mean-payoff value (no
matter the initial credit). However player1 is almost-sure winning in the mean-payoff
parity MDP (on the left in Fig. 2).

While the reduction in the proof of Lemma 2 gives a game withn′ = |Q1| + 3 ·
|QP | states, the structure of the gadgets (see Fig. 3) is such thatthe energy level is
independent of which of the transitions(q, (q, L)) or (q, (q, R)) is taken. Since from the
result of [7, Lemma 8] and its proof, it follows that the memory updates in winning
strategies for energy Büchi games can be done according to the energy level of the
play prefix, it follows that the memory bound of2 ·n ·W can be transfered to almost-
sure winning strategies in Energy Büchi MDPs, wheren = |Win∩Q1| is the number of
player-1 almost-sure winning states. Also, the pseudo-polynomial algorithm for solving
two-player energy Büchi games can be used for MDPs, with thesameO(|E| · |Q|5 ·W )
complexity [7, Table 1] .

Using Lemma 2, we solve energy parity MDPs by a reduction to energy Büchi
MDPs. The key idea of the reduction is that if player1 has an almost-sure winning
strategy for the energy parity objective, then player 1 can choose an even priority2i

and decide to satisfy the energy objective along with satisfying that priority2i is visited
infinitely often, and priorities less than2i are visited finitely often.

W.l.o.g. we assume that player-1 states and probabilistic states alternate, i.e.E(q) ⊆
Q1 for all q ∈ QP , andE(q) ⊆ QP for all q ∈ Q1. The reduction is then as follows.
Given an MDPM = (Q, E, δ) with a priority functionp : Q → N and a weight
function w : E → Z, we construct〈M ′, p′, w′〉 as follows.M ′ is the MDPM =
(Q′, E′, δ′) where:
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– Q′ = Q ∪ (Q × {0, 2, . . . , 2r}) ∪ {sink} where2r is the largest even priority of
a state inQ. Intuitively, a state(q, i) ∈ Q′ corresponds to the stateq of M from
which player1 will ensure to visit priorityi (which is even) infinitely often, and
never visit priority smaller thani;

– E′ containsE ∪{(sink, sink)} and the following edges. For each probabilistic state
q ∈ QP , for i = 0, 2, . . . , 2r,
• (a) if p(q′) ≥ i for all q′ ∈ E(q), then((q, i), (q′, i)) ∈ E′ for all q′ ∈ E(q),
• (b) otherwise,((q, i), sink) ∈ E′.

For each player1 stateq ∈ Q1, for eachq′ ∈ E(q), for i = 0, 2, . . . , 2r,
• (a) (q, sink) ∈ E′ and((q, i), sink) ∈ E′, and
• (b) if p(q′) ≥ i, then(q, (q′, i)) ∈ E′ and((q, i), (q′, i)) ∈ E′.

The partition(Q′
1, Q

′
P ) of Q′ is defined byQ′

1 = Q1 ∪ (Q1 × {0, 2, . . . , 2r})∪ {sink}
and Q′

P = Q′ \ Q′
1. The weight of the edges(q, q′), (q, (q′, i)) and ((q, i), (q′, i))

according tow′ is the same as the weight of(q, q′) according tow. The states(q, i)
such thatp(q) = i have priority0 according top′ (they are the Büchi states), and all the
other states inQ′ (includingsink) have priority1.

Lemma 3. Given an MDPM with energy parity objective, we can construct in
quadratic time an MDPM ′ with energy B̈uchi objective such that for all statesq0

in M , there exists an almost-sure winning strategy fromq0 in M if and only if there
exists an almost-sure winning strategy fromq0 in M ′ (with the same initial credit).

From the proof of Lemma 3, it follows that the memory requirement is the same as
for energy Büchi MDPs. And if the weights are in{−1, 0, 1}, it follows that the energy
parity problem can be solved in polynomial time.

Theorem 1. For energy parity MDPs, (1) the decision problem of whether agiven
state is almost-sure winning is in NP∩ coNP, and there is a pseudo-polynomial time
algorithm inO(|E| ·d · |Q|5 ·W ) to solve it; and (2) memory of size2·|Q|·W is sufficient
for almost-sure winning strategies.

4 MDPs with Mean-payoff Parity Objectives

In this section we present a polynomial-time algorithm for solving MDPs with mean-
payoff parity objective. We first recall some useful properties of MDPs.

For an end-componentU ∈ E(M), consider the memoryless strategyσU that plays
in every states ∈ U ∩ Q1 all edges inE(s) ∩ U uniformly at random. Given the
strategyσU , the end-componentU is a closed connected recurrent set in the Markov
chain obtained by fixingσU .

Lemma 4. Given an MDPM and an end-componentU ∈ E(M), the strategyσU

ensures that for all statess ∈ U , we havePσU

s ({ω | Inf(ω) = U}) = 1.

Expected mean-payoff value.Given an MDPM with a weight functionw, the ex-
pected mean-payoff value, denotedValMP(w), is the function that assigns to every
state the maximal expectation of the mean-payoff objectivethat can be guaranteed by
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any strategy. Formally, forq ∈ Q we haveValMP(w)(q) = supσ∈Σ Eσ
q (MP(w)),

whereMP(w) is the measurable function that assigns to a playρ the long-run av-
erageMP(w, ρ) of the weights. By the classical results of MDPs with mean-payoff
objectives, it follows that there exists pure memoryless optimal strategies [15], i.e.,
there exists a pure memoryless optimal strategyσ∗ such that for allq ∈ Q we have
ValMP(w)(q) = Eσ∗

q (MP(w)).
It follows from Lemma 4 that the strategyσU ensures that from any starting states,

any other statet is reached in finite time with probability 1. Therefore, the value for
mean-payoff parity objectives in MDPs can be obtained by computing values for end-
components and then playing a strategy to maximize the expectation to reach the values
of the end-components.

We now present the key lemma where we show that for an MDP that is an end-
component such that the minimum priority is even, the mean-payoff parity objective
Parity(p) ∩ MeanPayoff≥ν is satisfied with probability 1 if the expected mean-payoff
value is at leastν at some state (the result also holds for strict inequality).In other
words, from the expected mean-payoff value of at leastν we ensure that both the mean-
payoff and parity objective is satisfied with probability 1 from all states. The proof of
the lemma considers two pure memoryless strategies: one forstochastic shortest path
and the other for optimal expected mean-payoff value, and combines them to obtain an
almost-sure winning strategy for the mean-payoff parity objective (details in [8]).

Lemma 5. Consider an MDPM with state spaceQ, a priority functionp, and weight
functionw such that (a)M is an end-component (i.e.,Q is an end-component) and
(b) the smallest priority inQ is even. If there is a stateq ∈ Q such thatValMP(w) ≥ ν

(resp.ValMP(w) > ν), then there exists a strategyσ∗ such that for all statesq ∈ Q we
havePσ∗

q (Parity(p)∩MeanPayoff≥ν) = 1 (resp.Pσ∗

q (Parity(p)∩MeanPayoff>ν) = 1).

Memory required by strategies.Lemma 5 shows that if the smallest priority in an end-
component is even, then considering the sub-game restricted to the end-component, the
mean-payoff parity objective is satisfied if and only if the mean-payoff objective is
satisfied. The strategy constructed in Lemma 5 requires infinite memory, and in the
case of loose inequality (i.e.,MeanPayoff≥ν) infinite memory is required in general
(see [11] for an example on graphs), and if the inequality is strict (i.e.,MeanPayoff>ν ),
then finite memory strategies exist [17]. For the purpose of computation we show that
both strict and non-strict inequality can be solved in polynomial time. Since Lemma 5
holds for both strict and non-strict inequality, in sequel of this section we consider non-
strict inequality and all the results hold for strict inequality as well.

Winning end-component. Given an MDP M with a parity objectiveParity(p)
and a mean-payoff objectiveMeanPayoff≥ν for a weight functionw, we call an
end-componentU winning if (a) min(p(U)) is even; and (b) there exists a state
with expected mean-payoff value at leastν in the sub-MDP induced byU , i.e.,
maxq∈U ValMP(w)(q) ≥ ν in the sub-MDP induced byU . We denote byW the set
of winning end-components, and letWin =

⋃
U∈W U be the union of the winning

end-components.

Reduction to reachability of winning end-component.By Lemma 5 it follows that in
every winning end-component the mean-payoff parity objective is satisfied with prob-
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ability 1. Conversely, consider an end-componentU that is not winning, then either
the smallest priority is odd, or the maximal expected mean-payoff value that can be
ensured for any state inU by staying inU is less thanν. Hence if only states inU
are visited infinitely often, then with probability 1 (i) either the parity objective is not
satisfied, or (ii) the mean-payoff objective is not satisfied. In other words, if an end-
component that is not winning is visited infinitely often, then the mean-payoff parity
objective is satisfied with probability 0. It follows that the value function for MDPs
with mean-payoff parity objective can be computed by computing the value function for
reachability to the setWin, i.e., formally,supσ∈Σ Pσ

q (Parity(p) ∩ MeanPayoff≥ν) =
supσ∈Σ Pσ

q (Reach(Win)), whereReach(Win) is the set of paths that reaches a state in
Win at least once. Since the value function in MDPs with reachability objectives can
be computed in polynomial time using linear programming [15], it suffices to present a
polynomial-time algorithm to computeWin in order to obtain a polynomial-time algo-
rithm for MDPs with mean-payoff parity objectives.

Computing winning end-components. The computation of the winning end-
components is done iteratively by computing winning end-components with smallest
priority 0, then winning end-components with smallest priority 2, and so on. The com-
putation ofWin is as follows:

– Fori ≥ 0, letW2i be the set of maximal end-componentsU with states with priority
at least2i and that contain at least one state with priority2i, i.e.,U contains only
states with priority at least2i, and contains at least one state with priority2i. Let
W ′

2i ⊆ W2i be the set of maximal end-componentsU ∈ W2i such that there is a
stateq ∈ U such that the expected mean-payoff value in the sub-MDP restricted to
U is at leastν. Let Win2i =

⋃
U∈W′

2i

U .

The setWin =
⋃⌊d/2⌋

i=0
Win2i is the union of the states of the winning end-components

(formal pseudo-code in [8]).

Complexity of computing winning end-components.The winning end-component
algorithm runs forO(d) iterations and in each iteration requires to compute a maxi-
mal end-component decomposition and compute mean-payoff values of at mostn end-
components, wheren is the number of states of the MDP. The maximal end-component
decomposition can be achieved in polynomial time [12, 13, 9]. The mean-payoff value
function of an MDP can also be computed in polynomial time using linear program-
ming [15]. It follows that the value function of an MDP with mean-payoff parity
objectives can be computed in polynomial time. The almost-sure winning set is ob-
tained by computing almost-sure reachability toWin in polynomial time [12, 13, 9].
This polynomial-time complexity provides a tight upper bound for the problem.

Theorem 2. The following assertions hold:
1. The set of almost-sure winning states for mean-payoff parity objectives can be com-

puted in polynomial time for MDPs.
2. For mean-payoff parity objectives, almost-sure winningstrategies require infinite

memory in general for non-strict inequality (i.e, for mean-payoff parity objectives
Parity(p)∩MeanPayoff≥ν) and finite-memory almost-sure winning strategies exist
for strict inequality (i.e., forParity(p) ∩ MeanPayoff>ν).
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