
Computation Tree Logic for Synchronization
Properties∗†

Krishnendu Chatterjee1 and Laurent Doyen2

1 IST Austria, Wien, Austria
2 LSV, ENS Cachan & CNRS, Paris, France

Abstract
We present a logic that extends CTL (Computation Tree Logic) with operators that express
synchronization properties. A property is synchronized in a system if it holds in all paths of
a certain length. The new logic is obtained by using the same path quantifiers and temporal
operators as in CTL, but allowing a different order of the quantifiers. This small syntactic
variation induces a logic that can express non-regular properties for which known extensions of
MSO with equality of path length are undecidable. We show that our variant of CTL is decidable
and that the model-checking problem is in ∆P

3 = PNPNP
, and is hard for the class of problems

solvable in polynomial time using a parallel access to an NP oracle. We analogously consider
quantifier exchange in extensions of CTL, and we present operators defined using basic operators
of CTL* that express the occurrence of infinitely many synchronization points. We show that
the model-checking problem remains in ∆P

3 . The distinguishing power of CTL and of our new
logic coincide if the Next operator is allowed in the logics, thus the classical bisimulation quotient
can be used for state-space reduction before model checking.

1998 ACM Subject Classification F.4.1 Temporal Logic

Keywords and phrases Computation Tree Logic, Synchronization, model-checking, complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.98

1 Introduction

In computer science, it is natural to view computations as a tree, where each branch represents
an execution trace, and all possible execution traces are arranged in a tree. To reason about
computations, the logical frameworks that express properties of trees have been widely
studied [10, 20, 24], such as CTL, CTL*, µ-calculus, MSO, etc. These logics can express
ω-regular properties about trees.

A key advantage of logics is to provide concise and formal semantics, and a rigorous
language to express properties of a system. For example, the logic CTL is widely used in
verification tools such as NuSMV [9], and hyperproperties, i.e. tree-based properties that
cannot be defined over individual traces, are relevant in security [11, 12].

One key property that has been studied in different contexts is the property of synchron-
ization, which intuitively requires that no matter how the system behaves it synchronizes to
a common good point. Note that the synchronization property is inherently a tree-based
property, and is not relevant for traces. Synchronization has been studied for automata [25, 8],

∗ Full version [6].
† This research was partially supported by Austrian Science Fund (FWF) NFN Grant No S11407-N23

(RiSE/SHiNE), ERC Start grant (279307: Graph Games), Vienna Science and Technology Fund
(WWTF) through project ICT15-003, and European project Cassting (FP7-601148).

EA
T

C
S

© Krishnendu Chatterjee and Laurent Doyen;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 98; pp. 98:1–98:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.98
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

98:2 Computation Tree Logic for Synchronization Properties

probabilistic models such as Markov decision processes [15, 16], as well as partial-information,
weighted, and timed models [19, 17, 14], and has a rich collection of results as well as open
problems, e.g., Černý’s conjecture about the length of synchronizing words in automata is
one of the long-standing and well-studied problems in automata theory [5, 25]. A natural
question is how can synchronization be expressed in a logical framework.

First, we show that synchronization is a property that is not ω-regular. Hence it cannot
be expressed in existing tree-based logics, such as MSO, CTL*, etc. A natural candidate to
express synchronization in a logical framework is to consider MSO with quantification over
path length. Unfortunately the quantification over path length in MSO leads to a logic for
which the model-checking problem is undecidable [23, Theorem 11.6]. Thus an interesting
question is how to express synchronization in a logical framework where the model-checking
problem is decidable.

Contributions. In this work we introduce an elegant logic, obtained by a natural variation
of CTL. The logic allows to exchange the temporal and path quantifiers in classical CTL
formulas. For example, consider the CTL formula ∀Fq expressing the property that in all
paths there exists a position where q holds (quantification pattern ∀paths · ∃position). In
our logic, the formula F∀q with quantifiers exchanged expresses that there exists a position
k such that for all paths, q holds at position k (quantification pattern ∃position · ∀paths),
see Figure 1a. Thus q eventually holds in all paths at the same position, expressing that the
paths are eventually synchronized.

We show that the model-checking problem is decidable for our logic, which we show is in
∆P

3 = PNPNP
(in the third level of the polynomial hierarchy) and is hard for the class PNP

‖ of
problems solvable in polynomial time using a parallel access to an NP oracle (Theorem 1).
The problems in PNPNP

can be solved by a polynomial-time algorithm that uses an oracle
for a problem in NPNP, and the problems in NPNP can be solved by a non-deterministic
polynomial-time algorithm that uses an oracle for an NP-complete problem; the problems in
PNP
‖ can be solved by a polynomial-time algorithm that works in two phases, where in the

first phase a list of queries is constructed, and in the second phase the queries are answered
by an NP oracle (giving a list of yes/no answers) and the algorithm proceeds without further
calling the oracle [26, 21].

We present an extension of our logic that can express the occurrence of infinitely many
synchronization points (instead of one as in eventually sychronizing), and the absence of
synchronization from some point on, with the same complexity status (Section 3). These
properties are the analogue of the classical liveness and co-liveness properties in the setting
of synchronization. We show that such properties cannot be expressed in the basic logic
(Section 4). In Section 6, we consider the possibility to further extend our logic with
synchronization to CTL*, and show that the exchange of quantifiers in CTL* formulas would
lead to either a counter-intuitive semantics, or an artificial logic that would be inelegant.

We study the distinguishing power of the logics in Section 5, that is the ability of the
logics, given two models, to provide a formula that holds in one model, and not in the other.
The distinguishing power is different from the expressive power of a logic, as two logics with
the same expressive power have the same distinguishing power but not vice versa. The
distinguishing power can be used for state-space reduction before running a model-checking
algorithm, in order to obtain a smaller equivalent model, that the logic cannot distinguish
from the original model, and thus for which the answer of the model-checking algorithm is
the same. We show that if the Next operator is allowed in the logic, then the distinguishing
power coincides with that of CTL (two models are indistinguishable if and only if they

K. Chatterjee and L. Doyen 98:3

are bisimilar), and if the Next operator is not allowed, then the distinguishing power lies
between bisimulation and stuttering bisimulation, and is NP-hard to decide. In particular,
it follows that with or without the Next operator the state-space reduction with respect to
bisimulation, which is computable in polynomial time, is sound for model-checking. Detailed
proofs are available in [6].

2 CTL + Synchronization

We introduce the logic CTL+Sync after presenting basic definitions related to Kripke
structures. A Kripke structure is a tuple K = 〈T,Π, π,R〉 where T is a finite set of states, Π
is a finite set of atomic propositions, π : T → 2Π is a labeling function that maps each state t
to the set π(t) of propositions that are true at t, and R ⊆ T × T is a transition relation. We
denote by R(t) = {t′ | (t, t′) ∈ R} the set of successors of a state t according to R, and given
a set s ⊆ T of states, let R(s) =

⋃
t∈sR(t). A Kripke structure is deterministic if R(t) is

a singleton for all states t ∈ T . A path in K is an infinite sequence ρ = t0t1 . . . such that
(ti, ti+1) ∈ R for all i ≥ 0. For n ∈ N, we denote by ρ+ n the suffix tntn+1

2.1 Syntax and semantics
In the CTL operators, a path quantifier always precedes the temporal quantifiers (e.g., ∃U
or ∀U). We obtain the logic CTL+Sync from traditional CTL by allowing to switch the
order of the temporal and path quantifiers. For example, the CTL formula p ∀U q holds in a
state t if for all paths (∀) from t, there is a position where q holds, and such that p holds in
all positions before (U). In the CTL+Sync formula pU∀ q, the quantifiers are exchanged,
and the formula holds in t if there exists a position k, such that for all positions j < k before
(U), in all paths (∀) from t, we have that q holds at position k and p holds at position j
(see Figure 1d). Thus the formula pU∀ q requires that q holds synchronously after the same
number of steps in all paths, while the formula p ∀U q does not require such synchronicity
across several paths.

The syntax of the formulas in CTL+Sync is as follows:

ϕ ::= p | ¬ϕ1 | ϕ1 ∨ ϕ2 | QX ϕ1 | ϕ1QU ϕ2 | ϕ1 UQϕ2

where p ∈ Π and Q ∈ {∃,∀}. We define true and additional Boolean connectives as usual,
and let
∃Fϕ ≡ true∃U ϕ, and F∃ϕ ≡ trueU∃ϕ, etc.
∃Gϕ ≡ ¬∀F¬ϕ, etc.

Note that the Next operators QX has only one quantifier, and thus there is no point in
switching quantifiers or defining an operator XQ.

Given a Kripke structure K = 〈T,Π, π,R〉, and a state t ∈ T , we define the satisfaction
relation |= as follows. The first cases are standard and exist already in CTL:

K, t |= p if p ∈ π(t).
K, t |= ¬ϕ1 if K, t 6|= ϕ1.
K, t |= ϕ1 ∨ ϕ2 if K, t |= ϕ1 or K, t |= ϕ2.
K, t |= ∃X ϕ1 if K, t′ |= ϕ1 for some t′ ∈ R(t).
K, t |= ∀X ϕ1 if K, t′ |= ϕ1 for all t′ ∈ R(t).

The interesting new cases are built using the until operator of CTL:
K, t |= ϕ1 ∃U ϕ2 if there exists a path t0t1 . . . in K with t0 = t and there exists k ≥ 0
such that: K, tk |= ϕ2, and K, tj |= ϕ1 for all 0 ≤ j < k.

ICALP 2016

98:4 Computation Tree Logic for Synchronization Properties

F∀q

(a) Eventually synchronizing.

G∃p

(b) Not eventually synchroniz-
ing.

∀G(F∀q)

(c) Every subtree is eventually
synchronizing.

pU∀ q

(d) Until universal.

pU∃ q

(e) Until existential.

p holds

q holds

neither p nor q holds

Figure 1 Formulas of CTL+Sync.

K, t |= ϕ1 U∃ϕ2 if there exists k ≥ 0 such that for all 0 ≤ j < k, there exists a path
t0t1 . . . in K with t0 = t such that K, tj |= ϕ1 and K, tk |= ϕ2.
K, t |= ϕ1 ∀U ϕ2 if for all paths t0t1 . . . in K with t0 = t, there exists k ≥ 0 such that:
K, tk |= ϕ2, and K, tj |= ϕ1 for all 0 ≤ j < k.
K, t |= ϕ1 U∀ϕ2 if there exists k ≥ 0 such that for all 0 ≤ j < k and for all paths t0t1 . . .
in K with t0 = t, we have K, tj |= ϕ1 and K, tk |= ϕ2.

We often write t |= ϕ when the Kripke structure K is clear from the context.
Examples of formulas are given in Figure 1. The examples show the first steps of the

unravelling of Kripke structures defined over atomic propositions {p, q}. The formula F∀q
expresses that q eventually holds synchronously on all paths, after the same number of steps
(Figure 1a). This is different from the CTL formula ∀Fq, which expresses that all paths
eventually visit a state where q holds, but not necessarily after the same number of steps in
all paths. The dual formula G∃p requires that at every depth (i.e., for all positions k), there
exists a path where p holds at depth k (Figure 1b). On the other hand note that F∃q ≡ ∃Fq
and dually G∀p ≡ ∀Gp. Another example is the formula ∀G(F∀q) expressing that every
subtree is eventually synchronizing (Figure 1c). The until universal formula pU∀ q holds
if q holds at a certain position in every path (like for the formula F∀q), and p holds in all
positions before (Figure 1d). The until existential formula pU∃ q says that it is possible to
find path(s) where q holds at the same position, and such that for all smaller positions there
is one of those paths where p holds at that position (Figure 1e).
I Remark. The definition of CTL+Sync, although very similar to the definition of CTL,
interestingly allows to define non-regular properties, thus not expressible in CTL (or even
in MSO over trees). It is easy to show using a pumping argument that the property

K. Chatterjee and L. Doyen 98:5

F∀q of eventually sychronizing is not regular (Figure 1a). This property of eventually
sychronizing can be expressed in MSO extended with a length predicate, by a formula such
as ∃ρ ∈ T ∗ · ∀ρ′ ∈ T ∗ : |ρ| = |ρ′| =⇒ q(ρ′) where T = {0, 1} and q(·) is a monadic predicate
for the proposition q over the binary tree T ∗, where q(ρ) means that q holds in the last state
of ρ. However, model-checking for the logic MSO extended with the “equal-length” predicate
p defined by p(ρ, ρ′) ≡ |ρ| = |ρ′| is undecidable [23, Theorem 11.6]. In contrast, we show in
Theorem 1 that the logic CTL+Sync is decidable.

2.2 Model-checking
Given a CTL+Sync formula ϕ, a Kripke structure K, and a state t, the model-checking
problem for CTL+Sync is to decide whether K, t |= ϕ holds.

Model-checking of CTL+Sync can be decided by considering a powerset construction
for the Kripke structure, and evaluating a CTL formula on it. For example, to evaluate a
formula ϕ1 U∀ϕ2 from state tI in a Kripke structure K, it suffices to consider the sequence
s1s2 . . . defined by s1 = {tI} and si+1 = R(si) for all i ≥ 1, where a set s is labeled by ϕ1
if K, t |= ϕ1 for all t ∈ s (and analogously for ϕ2). The formula ϕ1 U∀ϕ2 holds in tI if and
only if the formula ϕ1 U ϕ2 holds in the sequence s1s2 . . . (note that on a single sequence
the operators ∀U and ∃U are equivalent, thus we simply write U).

For the formula ϕ1 U∃ϕ2, intuitively it holds in tI if there exists a set P of finite paths
ρ1, ρ2, . . . , ρn from tI in K, all of the same length k, such that ϕ2 holds in the last state
of ρi for all 1 ≤ i ≤ n, and for every 1 ≤ j < k there is a path ρij such that ϕ1 holds
in the jth state of ρij . To evaluate ϕ1 U∃ϕ2 from tI , we construct the Kripke structure
2K = 〈2T , {ϕ1, ϕ2}, π, R̂〉 where (s, s′) ∈ R̂ if for all t ∈ s there exists t′ ∈ s′ such that
(t, t′) ∈ R, thus we have to choose (nondeterministically) at least one successor from each
state in s, that is for every set P of paths ρ1, ρ2, . . . , ρn as above, there is a path s1, s2, . . . , sk
(with s1 = {tI}) in 2K where the sets si are obtained by following simultaneously the finite
paths ρ1, . . . , ρn, thus such that si is the set of states at position i of the paths in P . The
path s1, s2, . . . , sk in 2K corresponds to a set P of finite paths in K that show that ϕ1 U∃ϕ2
holds if (1) ϕ2 holds in all states of sk, and (2) ϕ1 holds in some state of si (i = 1, . . . , k− 1).
Hence we define the labeling function π in 2K as follows: for all s ∈ 2T let ϕ2 ∈ π(s) if
K, t |= ϕ2 for all t ∈ s, and let ϕ1 ∈ π(s) if K, t |= ϕ1 for some t ∈ s. Finally it suffices to
check whether the CTL formula ϕ1 ∃U ϕ2 holds in 2K from {tI}.

This approach gives an exponential algorithm, and even a PSPACE algorithm by exploring
the powerset construction on the fly. However, we show that the complexity of the model-
checking problem is much below PSPACE. For example our model-checking algorithm for the
formula F∀q relies on guessing a position k ∈ N (in binary) and checking that q holds on all
paths at position k. To compute the states reachable after exactly k steps, we compute the
kth power of the transition matrix M ∈ {0, 1}T×T where M(t, t′) = 1 if there is a transition
from state t to state t′. The power Mk can be computed in polynomial time by successive
squaring of M . For this formula, we obtain an NP algorithm. For the whole logic, combining
the guessing and squaring technique with a dynamic programming algorithm that evaluates
all subformlas, we obtain an algorithm in PNPNP

for the model-checking problem [6]. We
present a hardness result for the class PNP

‖ of problems solvable in polynomial time using a
parallel access to an NP oracle [26, 21].

I Theorem 1. The model-checking problem for CTL+Sync lies in PNPNP
and is PNP

‖ -hard.

The complexity lower bounds for the model-checking problem in Theorem 1 are based on
Lemma 2 where we establish complexity bounds for fixed formulas.

ICALP 2016

98:6 Computation Tree Logic for Synchronization Properties

I Lemma 2. Let p, q ∈ Π be two atomic propositions. The model-checking problem is:
NP-complete for the formulas pU∀ q and F∀q,
DP-hard for the formula pU∃ q, and
coNP-complete for the formula G∃q.

Proof. We prove the hardness results (complexity lower bounds), since the complexity upper
bounds follow from the proof of Theorem 1.

The proof technique is analogous to the NP-hardness proof of [22, Theorem 6.1], and
based on the following. Given a Boolean propositional formula ψ over variables x1, . . . , xn,
consider the first n prime numbers p1, . . . , pn. For a number z ∈ N, if z mod pi ∈ {0, 1} for
all 1 ≤ i ≤ n, then the binary vector (z mod p1, . . . , z mod pn) defines an assignment to the
variables of the formula. Note that conversely, every such binary vector can be defined by
some number z ∈ N (by the Chinese remainder theorem).

NP-hardness of F ∀q (and thus of p U∀ q). The proof is by a reduction from the Boolean
satisfiability problem 3SAT which is NP-complete [13]. Given a Boolean propositional formula
ψ in CNF, with set C of (disjunctive) clauses over variables x1, . . . , xn (where each clause
contains three variables), we construct a Kripke structure Kψ as follows: for each clause
c ∈ C, we construct a cycle t0, t1, . . . , tr−1 of length r = pu · pv · pw where the three variables
in the clause are xu, xv, and xw. We call t0 the origin of the cycle, and we assign to every
state ti the label q if the number i defines an assignment that satisfies the clause c. The
Kripke structure Kψ is the disjoint union of the cycles corresponding to each clause, and
an initial state tI with transitions from tI to the origin of each cycle. Note that the Kripke
structure Kψ can be constructed in polynomial time, as the sum of the first n prime numbers
is bounded by a polynomial in n:

∑n
i=1 pi ∈ O(n2 logn) [2].

It follows that a number z defines an assignment that satisfies the formula ψ (i.e., satisfies
all clauses of ψ) if and only if every path of length z+ 1 from tI reaches a state labelled by q.
Therefore the formula ψ is satisfiable if and only if Kψ, tI |= F∀q, and it follows that the
model-checking problem is NP-hard for the formulas F∀q and for pU∀ q (let p hold in every
state of Kψ).

NP-hardness of p U∃ q. The proof is by a reduction from 3SAT [13]. The reduction is
illustrated in Figure 2. Given a Boolean propositional formula ψ in CNF, with set C of
(disjunctive) clauses over variables x1, . . . , xn (where each clause contains three variables),
we construct a Kripke structure K as follows: let m = |C| be the number of clauses in ψ,
and construct m disjoint simple paths πi from tI of length m+ 1 (of the form tI , t1, . . . , tm),
where the last state of each path πi has a transition to the origin of a cycle corresponding to
the ith clause (the cycles and their labeling are as defined in the NP-hardness proof of F∀q).
The state tI and all states of the cycles are also labelled by p, and in the ith path from tI ,
the ith state after tI is labelled by p. The construction can be obtained in polynomial time.

We show that ψ is satisfiable if and only if the formula pU∃ q holds from tI in K. Recall
that pU∃ q holds if there exists k ≥ 0 such that for all 0 ≤ j < k, there exists a path t0t1 . . .
in K with t0 = tI and K, tj |= p and K, tk |= q.

For the first direction of the proof, if ψ is satisfiable, then let z ∈ N define a satisfying
assignment, and let k = m + 2 + z. Then all paths of length k from tI in K end up in a
state labelled by q. Now we consider an arbitrary j < k and show that there exists a path of
length k from tI that ends up in a state labelled by q, and with the jth state labelled by
p. For j = 0 and for j > m, the conditions are satisfied by all paths, and for j ≤ m, the
conditions are satisfied by the jth path from tI .

K. Chatterjee and L. Doyen 98:7

. . .c1 c2 c3 cm

p holds
at ith state
of ith path.

p holds
everywhere
in the cycles.

p tI

p . . .

p

p

...
...

...
...

. . . p

q q qq

q

q
q

q

ψ = c1 ∧ c2 ∧ · · · ∧ cm

c1 = x1 ∨ x2 ∨ ¬x3 : cycle of length r = p1 · p2 · p3 = 2 · 3 · 5 = 30
satisfying assignments for c1 : 0 (000), 1 (111), 10 (010), . . . , 25 (110).

Figure 2 Reduction to show NP-hardness of pU∃ q in Lemma 2.

For the second direction of the proof, let k be a position such that for all 0 ≤ j < k,
there exists a path t0t1 . . . in K with t0 = tI and K, tj |= p and K, tk |= q. Then k ≥ m+ 2
since only the states in the cycles are labelled by q. Consider the set P containing, for each
j = 1, 2, . . . ,m, a path tIt1 . . . in K with K, tj |= p and K, tk |= q. It is easy to see by the
construction of K that P contains all the paths of length k in K. Therefore, all paths of
length z = k− (m+ 2) from the origin of each cycle end up in a state labelled by q. It follows
that z defines an assignment that satisfies all clauses in ψ, thus ψ is satisfiable.

DP-hardness of p U∃ q. The DP-hardness proof of pU∃ q uses a reduction of the same
flavor as in the NP-hardness of F∀q [6].

coNP-hardness of G∃q. The result follows from the NP-hardness of F∀q since G∃q is
equivalent to ¬F∀¬q. J

The complexity result of Theorem 1 is not tight, with a PNPNP
upper bound and hardness

for PNP
‖ . Even for the fixed formula pU∃ q, the gap between the NPNP upper bound and the

DP-hardness result provides an interesting open question for future work.

3 Extension of CTL+Sync with Always and Eventually

We consider an extension of CTL+Sync with formulas of the form T Qϕ where T ∈ {F,G}+
is a sequence of unary temporal operators Eventually (F) and Always (G). For example,
the formula FG∀p expresses strong synchronization, namely that from some point on, all
positions on every path satisfy p; the formula GF∀p expresses weak synchronization, namely
that there are infinitely many positions such that, on every path at those positions p holds.
In fact only the combination of operators FG and GF need to be considered, as the other
combinations of operators reduce to either FG or GF using the LTL identities FGFϕ ≡ GFϕ
and GFGϕ ≡ FGϕ. Formally, define:

ICALP 2016

98:8 Computation Tree Logic for Synchronization Properties

K, t |= GF∀ϕ1 if for all k ≥ 0, there exists j ≥ k such that for all paths t0t1 . . . in K
with t0 = t, we have K, tj |= ϕ1.
K, t |= GF∃ϕ1 if for all k ≥ 0, there exists j ≥ k and there exists a path t0t1 . . . in K
with t0 = t such that K, tj |= ϕ1.
K, t |= FG∀ϕ1 if K, t 6|= GF∃¬ϕ1.
K, t |= FG∃ϕ1 if K, t 6|= GF∀¬ϕ1.

The model-checking problem for the formula GF∀ϕ1 is NP-complete: guess positions
n, k ≤ 2|T | (represented in binary) and check in polynomial time that the states reachable by
all paths of length n satisfy ϕ1, and that set of the states reachable after n+ k steps is the
same as the set of states reachable after n steps, where k > 0. This corresponds to finding a
lasso in the subset construction for the Kripke structure K. A matching NP lower bound
follows from the reduction in the NP-hardness proof of F∀q (Lemma 2).

The model-checking problem for the formula GF∃ϕ1 can be solved in polynomial time, as
this formula is equivalent to saying that there exists a state labeled by ϕ1 that is reachable
from a reachable non-trivial strongly connected component (SCC) — an SCC is trivial if it
consists of a single state without self-loop. To prove this, note that if a state t∗ labeled by
ϕ1 is reachable from a reachable non-trivial SCC, then t∗ can be reached by an arbitrarily
long path, thus the formula GF∃ϕ1 holds. For the other direction, if no state labeled by ϕ1
is reachable from a reachable non-trivial SCC, then every path to a state labeled by ϕ1 is
acyclic (otherwise, the path would contain a cycle, belonging to an SCC). Since acyclic paths
have length at most |T |, it follows that the formula GF∃ϕ1 does not hold, which concludes
the proof.

From the above arguments, it follows that the complexity status of the model-checking
problem for this extension of CTL+Sync is the same as the complexity of CTL+Sync
model-checking in Theorem 1.

I Theorem 3. The model-checking problem for CTL+Sync extended with sequences of unary
temporal operators lies in PNPNP

and is PNP
‖ -hard.

4 Expressive Power

The expressive power of CTL+Sync (even extended with Always and Eventually) is in-
comparable with the expressive power of MSO. By the remark at the end of Section 2.1,
CTL+Sync can express non-regular properties, and thus is not subsumed by MSO, and
standard argument based on counting properties [27] showing that CTL is less expressive
than MSO apply straightforwardly to show that formulas of MSO are not expressible in
CTL+Sync [10].

We show that the formulas GF∀p and FG∀p for weak and strong synchronization cannot
be expressed in the logic CTL+Sync, thus CTL+Sync extended with sequences of unary
temporal operators is strictly more expressive than CTL+Sync. The result holds if the Next
operator is not allowed, and also if the Next operator is allowed.

I Theorem 4. The logic CTL+Sync (even without the Next operator) extended with sequences
of unary temporal operators is strictly more expressive than CTL+Sync (even using the Next
operator).

Proof. We show that the formula GF∀p cannot be expressed in CTL+Sync, even using the
Next operator. To prove this, given an arbitrary CTL+Sync formula ϕ, we construct two

K. Chatterjee and L. Doyen 98:9

t1 t2 t3
. . .

u1
u2

u3

u4

u5

. . .

. . . p

¬p

Figure 3 States t1 and u1 are indistinguishable by formulas of CTL+Sync.

Kripke structures such that ϕ holds in both Kripke structures, but the formula GF∀p holds
in one and not in the other. It follows that ϕ is not equivalent to GF∀p.

Given the formula ϕ, we construct the two Kripke structures as follows. Consider two
Kripke structures whose unravelling is shown in Figure 3 where the states reachable from t1
are satisfying alternately p and ¬p, and the states reachable from u2 and u5 are satisfying
alternately ¬p and p. Call black states the states where p holds, and white states the states
where ¬p holds. If n is the maximum number of nested Next operators in ϕ, then we
construct the n-stuttering of the two Kripke structures in Figure 3, where the n-stuttering of
a Kripke structure K = 〈T,Π, π,R〉 is the Kripke structure Kn = 〈T ×{1, . . . , n},Π, πn, Rn〉
where πn(t, i) = πn(t) for all 1 ≤ i ≤ n, and the transition relation Rn contains all pairs
((t, i), (t, i+ 1)) for all t ∈ T and 1 ≤ i < n, and all pairs ((t, n), (t′, 1)) for all (t, t′) ∈ R.

We claim that the formula ϕ holds either in both (t1, 1) and (u1, 1), or in none of (t1, 1)
and (u1, 1), while the formula GF∀p holds in (t1, 1) and not in (u1, 1). We show by induction
on the nesting depth of CTL+Sync formulas ϕ (that have at most n nested Next operators)
that (t1, i) and (u1, i) are equivalent for ϕ (for all 1 ≤ i ≤ n), and that for all black states
t, u, the copies (t, 1) and (u, 1) are equivalent for ϕ, and analogously for all pairs of white
states.

The result holds trivially for formulas of nesting depth 0, that is atomic propositions. For
the induction step, assume the claim holds for formulas of nesting depth k, and consider a
formula ϕ of nesting depth k + 1. If the outermost operator of ϕ is a Boolean operator, or a
CTL operator (QX or QU), then the result follows from the induction hypothesis and the
result of [18, Theorem 2] showing two paths that differ only in the number of consecutive
repetitions of a state, as long as the number of repetitions is at least n, are equivalent for
the formulas with at most n nested Next operators. If the outermost operator of ϕ is either
U∃ or U∀, that is ϕ ≡ ϕ1 U∃ϕ2 or ϕ ≡ ϕ1 U∀ϕ2, then consider a state where ϕ holds: either
ϕ2 holds in that state, and by the induction hypothesis, ϕ2 also holds in the corresponding
state (that we claimed to be equivalent), or ϕ2 holds in the states of the other color than
the current state, and ϕ1 holds on the path(s) at all positions before. By the induction
hypothesis, at the same distance from the claimed equivalent states, we can find a state
where ϕ2 holds in all paths, and ϕ1 holds on all positions before, which concludes the proof
for the induction step. J

5 Distinguishing Power

Two states of a Kripke structure can be distinguished by a logic if there exists a formula in the
logic that holds in one state but not in the other. Each logic induces an indistinguishability
relation (which is an equivalence) on Kripke structures that characterizes the distinguishing
power of the logic. Two states t and t′ of a Kripke structure K are indistinguishable by a logic
L if they satisfy the same formulas of L, that is {ϕ ∈ L | K, t |= ϕ} = {ϕ ∈ L | K, t′ |= ϕ}.

ICALP 2016

98:10 Computation Tree Logic for Synchronization Properties

u1

t1

(a) The states t1 and u1 are stuttering
bisimilar (they satisfy the same CTL
formulas without the Next operator),
but they can be distinguished by the
CTL+Sync formula pU∀ ¬p which holds
in t1 but not in u1.

u1

t1

(b) The states t1 and u1 are indistin-
guishable by CTL+Sync formulas, but
they are not bisimilar, i.e. they can
be distinguished by CTL formulas with
the Next operator, for example ∀X ∀X p

which holds in t1 but not in u1.

p

¬p

Figure 4 The distinguishing power of CTL+Sync lies strictly between bisimulation and stuttering
bisimulation.

For CTL (with the Next operator), the distinguishing power is standard bisimulation, and
for CTL without the Next operator, the distinguishing power is stuttering bisimulation [4].
Stuttering bisimulation is a variant of bisimulation where intuitively several transitions can be
used to simulate a single transition, as long as the intermediate states of the transitions are all
equivalent (for stuttering bisimulation). We omit the definition of bisimulation and stuttering
bisimulation [4], and in this paper we consider that they are defined as the distinguishing
power of respectively CTL and CTL without the Next operator.

It is easy to show by induction on the nesting depth of formulas that the distinguishing
power of CTL+Sync is the same as for CTL, since (i) CTL+Sync contains CTL, and (ii) if
two states t and t′ are bisimilar, there is a correspondence between the paths starting from
t and the paths starting from t′ (for every path from t, there is a path from t′ such that
their states at position i are bisimilar, for all i ∈ N, and analogously for every path of t′ [4,
Lemma 3.1]), which implies the satisfaction of the same formulas in CTL+Sync. The same
argument holds for CTL+Sync extended with unary temporal operators (Section 3).

I Theorem 5. Two states t and t′ of a Kripke structure K are indistinguishable by CTL+Sync
formulas (even extended with unary temporal operators) if and only if t and t′ are bisimilar.

Without the Next operator, the logic CTL+Sync has a distinguishing power that lies
strictly between bisimulation and stuttering bisimulation, as shown by the examples in
Figure 4a and Figure 4b. Indistinguishability by CTL+Sync formulas without the Next
operator implies indistinguishability by standard CTL without the Next operator, and thus
stuttering bisimilarity. We obtain the following result.

I Theorem 6. The following implications hold for all states t, t′ of a Kripke structure K:
if t and t′ are bisimilar, then t and t′ are indistinguishable by CTL+Sync formulas without
the Next operator (even extended with unary temporal operators);
if t and t′ are indistinguishable by CTL+Sync formulas without the Next operator (even
extended with unary temporal operators), then t and t′ are stuttering bisimilar.

It follows from the first part of Theorem 6 that the state-space reduction techniques
based on computing a bisimulation quotient before evaluating a CTL formula will work for
CTL+Sync. Although the exact indistinguishability relation for CTL+Sync is coarser than
bisimulation, we show that deciding this relation is NP-hard, and thus it may not be relevant
to compute it for quotienting before model-checking, but rather use the polynomial-time
computable bisimulation.

K. Chatterjee and L. Doyen 98:11

¬q
uI

¬q
u1

q
u2

q

v1

q

v2

¬q
v3

Figure 5 The Kripke structure K in the proof of Theorem 7.

I Theorem 7. Deciding whether two states of a Kripke structure are indistinguishable by
CTL+Sync formulas without the Next operator is NP-hard.

Proof. The proof is by a reduction from the Boolean satisfiability problem 3SAT which
is NP-complete [13]. Given a Boolean propositional formula ψ in CNF, we construct two
Kripke structures K and Kψ that are indistinguishable (from their initial state) if and only
if ψ is satisfiable, where:

K is the Kripke structure shown in Figure 5, and
Kψ is the Kripke structure constructed in the NP-hardness proof of F∀q (Lemma 2).

We know from the proof of Lemma 2 that Kψ, tI |= F∀q if and only if ψ is satisfiable.
Hence, it suffices to show that K and Kψ are indistinguishable if and only if the formula
F∀q holds in tI . Since the formula F∀q holds in uI , we only need to show that if F∀q holds
in tI , then K and Kψ are indistinguishable. To do this, we assume that F∀q holds in tI , and
we show that for all CTL+Sync formulas ϕ without the Next operator, tI |= ϕ if and only if
uI |= ϕ. The proof proceeds by induction on the nesting depth of ϕ and simple combinatorial
arguments [6]. J

6 CTL* + Synchronization

CTL* is a branching-time extension of LTL (and of CTL) where several nested temporal
operators and Boolean connectives can be used under the scope of a single path quantifier.
For example the CTL* formula ∃(Gϕ→ Gψ) says that there exists a path in which either ϕ
does not hold in every position, or ψ holds at every position. Note that ϕ and ψ may also
contain path quantifiers.

Extending CTL+Sync with formula quantification analogous to CTL* presents some
difficulties. Even considering only Boolean connectives and {F,G} operators leads to a logic
that is hard to define. For example, one may consider a formula like (Fp∨Fq)∀ which could
be naturally interpreted as there exist two positions m,n ≥ 0 such that on all paths ρ, either
p holds at position m in ρ, or q holds at position n in ρ. In this definition the ∨ operator
would not be idempotent, that is ψ1 = (Fp ∨ Fp)∀ is not equivalent to ψ2 = (Fp)∀, where
ψ1 means that the set of all paths can be partitioned into two sets of paths where p holds
synchronously at some position, but not necessarily the same position in both sets, while ψ2
expresses the property that p holds synchronously at some position in all paths.

Another difficulty with binary operators is the semantics induced by the order of the
operands. For instance, the formula (Fp ∨ Gq)∀ can be interpreted as (i) there exists a
position m ≥ 0 such that for all positions n ≥ 0, on all paths ρ, either ρ+m |= p or ρ+n |= q;

ICALP 2016

98:12 Computation Tree Logic for Synchronization Properties

or it can be interpreted as (ii) for all n ≥ 0, there exists m ≥ 0 such that on all paths ρ,
either ρ+m |= p or ρ+ n |= q. These two interpretations differ on the Kripke structure that
produces exactly two paths ρ1 and ρ2 such that p and q hold at the following positions (p
holds nowhere except at position 1 in ρ1 and position 3 in ρ2, and q holds everywhere except
position 2 in ρ1 and position 4 in ρ2):

in ρ1: {p̄, q} {p, q} {p̄, q̄} {p̄, q} {p̄, q} {p̄, q} . . .
in ρ2: {p̄, q} {p̄, q} {p̄, q} {p, q} {p̄, q̄} {p̄, q} . . .

0 1 2 3 4 5

Note that the two paths agree on their initial position, and we can construct a Kripke
structure that produces exactly those two paths. It is easy to see that the formula (Fp∨Gq)∀
does not hold according to the first interpretation (indeed, for m = 1 we can take n = 4 and
consider the path ρ2 where p does not hold at position 1 and q does not hold at position 4,
and for all other values of m, take n = 2 and consider the path ρ1 where p does not hold
at position m and q does not hold at position 2), but it does hold according to the second
interpretation (for n = 2 take m = 1, for n = 4 take m = 3, and for all other values of n take
arbitrary value of m, for example m = n). The trouble is that the order of the existential
quantifier (associated to the left operand Fp) and the universal quantifier (associated to the
right operand Gq) actually matters in the semantics of the formula, leading to an annoying
situation that (Fp ∨Gq)∀ is not equivalent to (Gq ∨ Fp)∀ in any of the interpretations. One
way could be to use the branching Henkin quantifiers, like

(∃m
∀n
)
where the existential choice

of m does not depend on the universal choice of m. This interpretation suffers from lack of
symmetry, as the negation of such a branching Henkin quantifier is in general not expressible
as a branching Henkin quantifier [3].

7 Conclusion

The logic CTL+Sync and its extensions presented in this paper provide an elegant framework
to express non-regular properties of synchronization. It is intriguing that the exact optimal
complexity of the model-checking problem remains open, specially even for the fixed formula
pU∃ q (which we show is in NPNP, and DP-hard). Extending CTL+Sync to an elegant
logic à la CTL* seems challenging. One may want to express natural properties with the
flavor of synchronization, such as the existence of a fixed number of synchronization points,
or the property that all paths synchronize in either of a finite set of positions, etc. (see
also Section 6). Another direction is to consider alternating-time temporal logics (ATL [1])
with synchronization. ATL is a game-based extension of CTL for which the model-checking
problem remains in polynomial time. For instance, ATL can express the existence of a winning
strategy in a two-player reachability game. For the synchronized version of reachability
games (where the objective for a player is to reach a target state after a number of steps that
can be fixed by this player, independently of the strategy of the other player), it is known
that deciding the winner is PSPACE-complete [15]. Studying general game-based logics such
as ATL or strategy logic [7] combined with quantifier exchange is an interesting direction for
future work.

Acknowledgment. We thank Stefan Göller and anonymous reviewers for their insightful
comments and suggestions.

K. Chatterjee and L. Doyen 98:13

References
1 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of

the ACM, 49:672–713, 2002.
2 E. Bach and J. Shallit. Algorithmic Number Theory, Vol. 1: Efficient Algorithms. MIT

Press, 1996.
3 A. Blass and Y. Gurevich. Henkin quantifiers and complete problems. Ann. Pure Appl.

Logic, 32:1–16, 1986.
4 M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in

propositional temporal logic. Theor. Comput. Sci., 59:115–131, 1988.
5 J. Černý. Poznámka k. homogénnym experimentom s konečnými automatmi. In

Matematicko-fyzikálny Časopis, volume 14(3), pages 208–216, 1964.
6 K. Chatterjee and L. Doyen. Computation tree logic for synchronization properties. CoRR,

arXiv:1604.06384, 2016.
7 K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. Inf. Comput., 208(6):677–

693, 2010.
8 D. Chistikov, P. Martyugin, and M. Shirmohammadi. Synchronizing automata over nested

words. In Proc. of FOSSACS: Foundations of Software Science and Computation Structures,
LNCS 9634, pages 252–268. Springer, 2016.

9 A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A new symbolic model
checker. STTT, 2(4):410–425, 2000.

10 E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 2001.
11 M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, and C. Sánchez.

Temporal logics for hyperproperties. In Proceedings of POST: Principles of Security and
Trust, LNCS 8414, pages 265–284. Springer, 2014.

12 M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010.

13 S. A. Cook. The complexity of theorem proving procedures. In Proc. of STOC: Symposium
on the Theory of Computing, pages 151–158. ACM Press, 1971.

14 L. Doyen, L. Juhl, K. G. Larsen, N. Markey, and M. Shirmohammadi. Synchronizing
words for weighted and timed automata. In Proc. of FSTTCS: Foundations of Software
Technology and Theoretical Computer Science, LIPIcs, pages 121–132. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.121.

15 L. Doyen, T. Massart, and M. Shirmohammadi. Limit synchronization in Markov decision
processes. In Proc. of FoSSaCS: Foundations of Software Science and Computation Struc-
tures, LNCS 8412, pages 58–72. Springer-Verlag, 2014.

16 L. Doyen, T. Massart, and M. Shirmohammadi. Robust synchronization in Markov decision
processes. In Proc. of CONCUR: Concurrency Theory, volume LNCS 8704, pages 234–248.
Springer, 2014.

17 J. Kretínský, K. G. Larsen, S. Laursen, and J. Srba. Polynomial time decidability of
weighted synchronization under partial observability. In Proc. of CONCUR: Concurrency
Theory, volume 42 of LIPIcs, pages 142–154. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.142.

18 A. Kučera and Jan Strejček. The stuttering principle revisited. Acta Inf., 41(7-8):415–434,
2005.

19 K. G. Larsen, S. Laursen, and J. Srba. Synchronizing strategies under partial observability.
In Proc. of CONCUR: Concurrency Theory, LNCS 8704, pages 188–202. Springer, 2014.

20 G. Lenzi. Recent results on modal mu-calculus: a survey. Rend. Istit. Mat. Univ. Trieste,
42(2):235–255, 2010.

21 H. Spakowski. Completeness for Parallel Access to NP and Counting Class Separations.
PhD thesis, Heinrich-Heine-Universität Düsseldorf, 2005.

ICALP 2016

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.121
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.142

98:14 Computation Tree Logic for Synchronization Properties

22 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time: Preliminary
report. In Proc. of STOC: Symposium on Theory of Computing, pages 1–9. ACM, 1973.

23 W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer Science,
Vol. B: Formal Models and Sematics, pages 133–192. MIT Press, 1990.

24 W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages, Vol. 3:
Beyond Words, pages 389–455. Springer, 1997.

25 M. V. Volkov. Synchronizing automata and the Černý conjecture. In Proc. of LATA:
Language and Automata Theory and Applications, LNCS 5196, pages 11–27. Springer, 2008.

26 K. W. Wagner. More complicated questions about maxima and minima, and some closures
of NP. Theor. Comput. Sci., 51:53–80, 1987.

27 P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1/2):72–99,
1983.

	Introduction
	CTL + Synchronization
	Syntax and semantics
	Model-checking

	Extension of CTL+Sync with Always and Eventually
	Expressive Power
	Distinguishing Power
	CTL* + Synchronization
	Conclusion

