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Abstract. We consider multi-player graph games with partial-observation and
parity objective. While the decision problem for three-player games with a coali-
tion of the first and second players against the third player is undecidable in gen-
eral, we present a decidability result for partial-observation games where the first
and third player are in a coalition against the second player, thus where the sec-
ond player is adversarial but weaker due to partial-observation. We establish tight
complexity bounds in the case where player1 is less informed than player2,
namely 2-EXPTIME-completeness for parity objectives. Thesymmetric case of
player1 more informed than player2 is much more complicated, and we show
that already in the case where player1 has perfect observation, memory of size
non-elementary is necessary in general for reachability objectives, and the prob-
lem is decidable for safety and reachability objectives. Our results have tight con-
nections with partial-observation stochastic games for which we derive new com-
plexity results.

1 Introduction

Games on graphs.Games played on graphs are central in several important problems in
computer science, such as reactive synthesis [23, 24], verification of open systems [1],
and many others. The game is played by several players on a finite-state graph, with a
set of angelic (existential) players and a set of demonic (universal) players as follows:
the game starts at an initial state, and given the current state, the successor state is de-
termined by the choice of moves of the players. The outcome ofthe game is aplay,
which is an infinite sequence of states in the graph. Astrategyis a transducer to resolve
choices in a game for a player that given a finite prefix of the play specifies the next
move. Given an objective (the desired set of behaviors or plays), the goal of the exis-
tential players is to ensure the play belongs to the objective irrespective of the strategies
of the universal players. In verification and control of reactive systems an objective is
typically anω-regular set of paths. The class ofω-regular languages, that extends clas-
sical regular languages to infinite strings, provides a robust specification language to
express all commonly used specifications, and parity objectives are a canonical way to
define suchω-regular specifications [29]. Thus games on graphs with parity objectives
provide a general framework for analysis of reactive systems.

⋆ This research was partly supported by Austrian Science Fund(FWF) Grant No P23499- N23,
FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307:Graph Games), Microsoft
Faculty Fellowship Award, and European project Cassting (FP7-601148).
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Perfect vs partial observation.Many results about games on graphs make the hypoth-
esis ofperfect observation(i.e., players have perfect or complete observation about the
state of the game). In this setting, due to determinacy (or switching of the strategy quan-
tifiers for existential and universal players) [18], the questions expressed by an arbitrary
alternation of quantifiers reduce to a single alternation, and thus are equivalent to solv-
ing two-player games (all the existential players against all the universal players). How-
ever, the assumption of perfect observation is often not realistic in practice. For example
in the control of physical systems, digital sensors with finite precision provide partial
information to the controller about the system state [11, 14]. Similarly, in a concurrent
system the modules expose partial interfaces and have access to the public variables of
the other processes, but not to their private variables [27,1]. Such situations are better
modeled in the more general framework ofpartial-observationgames [26–28].

Partial-observation games.Since partial-observation games are not determined, un-
like the perfect-observation setting, the multi-player games problems do not reduce
to the case of two-player games. Typically, multi-player partial-observation games are
studied in the following setting: a set of partial-observation existential players, against a
perfect-observation universal player, such as for distributed synthesis [23, 13, 25]. The
problem of deciding if the existential players can ensure a reachability (or a safety) ob-
jective is undecidable in general, even for two existentialplayers [22, 23]. However, if
the information of the existential players form a chain (i.e., existential player 1 more
informed than existential player 2, existential player 2 more informed than existential
player 3, and so on), then the problem is decidable [23, 17, 19].

Games with a weak adversary.One aspect of multi-player games that has been largely
ignored is the presence of weaker universal players that do not have perfect observation.
However, it is natural in the analysis of composite reactivesystems that some universal
players represent components that do not have access to all variables of the system. In
this work we consider games where adversarial players can have partial observation.
If there are two existential (resp., two universal) playerswith incomparable partial ob-
servation, then the undecidability results follows from [22, 23]; and if the information
of the existential (resp., universal) players form a chain,then they can be reduced to
one partial-observation existential (resp., universal) player. We consider the following
case of partial-observation games: one partial-observation existential player (player 1),
one partial-observation universal player (player 2), one perfect-observation existential
player (player 3), and one perfect-observation universal player (player 4). Roughly, hav-
ing more partial-observation players in general leads to undecidability, and having more
perfect-observation players reduces to two perfect-observation players. We first present
our results and then discuss two applications of our model.

Results.Our main results are as follows:

1. Player 1 less informed.We first consider the case when player 1 is less informed
than player 2. We establish the following results:(i) a 2-EXPTIME upper bound
for parity objectives and a 2-EXPTIME lower bound for reachability objectives
(i.e., we establish 2-EXPTIME-completeness);(ii) an EXPSPACE upper bound for
parity objectives when player 1 is blind (has only one observation), and EXPSPACE
lower bound for reachability objectives even when both player 1 and player 2 are
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blind. In all these cases, if the objective can be ensured then the upper bound on
memory requirement of winning strategies is at most doubly exponential.

2. Player 1 is more informed.We consider the case when player 1 can be more in-
formed as compared to player 2, and show that even when player1 has perfect
observation there is a non-elementary lower bound on the memory required by
winning strategies. This result is also in sharp contrast todistributed games, where
if only one player has partial observation then the upper bound on memory of win-
ning strategies is exponential.

Applications. We discuss two applications of our results: the sequential synthesis prob-
lem, and new complexity results for partial-observationstochasticgames.

1. The sequential synthesis problem consists of a set of partially implemented mod-
ules, where first a set of modules needs to be refined, followedby a refinement of
some modules by an external source, and then the remaining modules are refined so
that the composite open reactive system satisfies a specification. Given the first two
refinements cannot access all private variables, we have a four-player game where
the first refinement corresponds to player 1, the second refinement to player 2, the
third refinement to player 3, and player 4 is the environment.

2. In partial-observation stochastic games, there are two partial-observation players
(one existential and one universal) playing in the presenceof uncertainty in the tran-
sition function (i.e., stochastic transition function). The qualitative analysis ques-
tion is to decide the existence of a strategy for the existential player to ensure the
parity objective with probability 1 (or with positive probability) against all strate-
gies of the universal player. The witness strategy can be randomized or determin-
istic (pure). While the qualitative problem is undecidable, the practically relevant
restriction to finite-memory pure strategies reduces to thefour-player game prob-
lem. Moreover, for finite-memory strategies, the decision problem for randomized
strategies reduces to the pure strategy question [6]. By theresults we establish in
this paper, new decidability and complexity results are obtained for the qualitative
analysis of partial-observation stochastic games with player2 partially informed but
more informed than player1. The complexity results for almost-sure winning are
summarized in Table 1. Surprisingly for reachability objectives, whether player 2 is
perfectly informed or more informed than player 1 does not change the complexity
for randomized strategies, but it results in an exponentialincrease in the complexity
for pure strategies.

Organization of the paper. In Section 2 we present the definitions of three-player
games, and other related models (such as partial-observation stochastic games). In Sec-
tion 3 we establish the results for three-player games with player 1 less informed, and in
Section 4 we show hardness of three-player games with perfect observation for player 1
(which is a special case of player 1 more informed). Finally,in Section 5 we show how
our upper bounds for three-player games from Section 3 extend to four-player games,
and we discuss multi-player games. We conclude with the applications in Section 6.
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Reachability Parity Parity

Player1
Player2 Finite- or infinite-memory strategiesInfinite-memory strategies Finite-memory strategies

Perfect More informed Perfect More informed Perfect More informed
Randomized EXP-c [8] EXP-c [3] Undec. [2, 7] Undec. [2, 7] EXP-c [9] 2EXP
Pure EXP-c [6] 2EXP-c Undec. [2] Undec. [2] EXP-c [9] 2EXP-c

Table 1.Complexity of qualitative analysis (almost-sure winning)for partial-observation stochas-
tic games with partial observation for player 1 with reachability and parity objectives. Player 2 has
either perfect observation or more information than player1(new results boldfaced). For positive
winning, all entries other than the first (randomized strategies for player 1 and perfect observa-
tion for player 2) remain the same, and the complexity for thefirst entry for positive winning is
PTIME-complete.

2 Definitions

We first consider three-player games with parity objectivesand we establish new com-
plexity results in Section 3 that we later extend to four-player games in Section 5. In
this section, we also present the related models of alternating tree automata that provide
useful technical results, and two-player stochastic gamesfor which our contribution
implies new complexity results.

2.1 Three-player games

GamesGiven alphabetsAi of actions for playeri (i = 1, 2, 3), a three-player gameis
a tupleG = 〈Q, q0, δ〉 where:

– Q is a finite set of states withq0 ∈ Q the initial state; and
– δ : Q × A1 × A2 × A3 → Q is a deterministic transition function that, given a

current stateq, and actionsa1 ∈ A1, a2 ∈ A2, a3 ∈ A3 of the players, gives the
successor stateq′ = δ(q, a1, a2, a3).

The games we consider are sometimes calledconcurrentbecause all three players need
to choose simultaneously an action to determine a successorstate. The special class
of turn-basedgames corresponds to the case where in every state, one player has the
turn and his sole action determines the successor state. In our framework, a turn-based
state for player1 is a stateq ∈ Q such thatδ(q, a1, a2, a3) = δ(q, a1, a

′
2, a

′
3) for all

a1 ∈ A1, a2, a′2 ∈ A2, anda3, a′3 ∈ A3. We define analogously turn-based states for
player2 and player3. A game is turn-based if every state ofG is turn-based (for some
player). The class of two-player games is obtained whenA3 is a singleton. In a gameG,
givens ⊆ Q, a1 ∈ A1, a2 ∈ A2, let postG(s, a1, a2,−) = {q′ ∈ Q | ∃q ∈ s · ∃a3 ∈
A3 : q′ = δ(q, a1, a2, a3)}.

ObservationsFor i = 1, 2, 3, a setOi ⊆ 2Q of observations(for playeri) is a par-
tition of Q (i.e., Oi is a set of non-empty and non-overlapping subsets ofQ, and
their union coversQ). Let obsi : Q → Oi be the function that assigns to each state
q ∈ Q the (unique) observation for playeri that containsq, i.e. such thatq ∈ obsi(q).
The functionsobsi are extended to sequencesρ = q0 . . . qn of states in the natu-
ral way, namelyobsi(ρ) = obsi(q0) . . . obsi(qn). We say that playeri is blind if
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Oi = {Q}, that is playeri has only one observation; playeri hasperfect informa-
tion if Oi = {{q} | q ∈ Q}, that is playeri can distinguish each state; and player1 is
less informedthan player2 (we also say player 2 is more informed) if for allo2 ∈ O2,
there existso1 ∈ O1 such thato2 ⊆ o1.

StrategiesFor i = 1, 2, 3, let Σi be the set ofstrategiesσi : O+
i → Ai of playeri

that, given a sequence of past observations, give an action for playeri. Equivalently,
we sometimes view a strategy of playeri as a functionσi : Q+ → Ai satisfying
σi(ρ) = σi(ρ

′) for all ρ, ρ′ ∈ Q+ such thatobsi(ρ) = obsi(ρ
′), and say thatσi is

observation-based.

OutcomeGiven strategiesσi ∈ Σi (i = 1, 2, 3) in G, theoutcome playfrom a stateq0
is the infinite sequenceρσ1,σ2,σ3

q0
= q0q1 . . . such that for allj ≥ 0, we haveqj+1 =

δ(qj , a
j
1, a

j
2, a

j
3) whereaji = σi(q0 . . . qj) (for i = 1, 2, 3).

ObjectivesAn objectiveis a setα ⊆ Qω of infinite sequences of states. A playρ satis-
fiesthe objectiveα if ρ ∈ α. An objectiveα is visible for playeri if for all ρ, ρ′ ∈ Qω,
if ρ ∈ α andobsi(ρ) = obsi(ρ

′), thenρ′ ∈ α. We consider the following objectives:
– Reachability. Given a setT ⊆ Q of target states, thereachability objective
Reach(T ) requires that a state inT be visited at least once, that is,Reach(T ) =
{ρ = q0q1 · · · | ∃k ≥ 0 : qk ∈ T }.

– Safety. Given a setT ⊆ Q of target states, thesafetyobjectiveSafe(T ) requires that
only states inT be visited, that is,Safe(T ) = {ρ = q0q1 · · · | ∀k ≥ 0 : qk ∈ T }.

– Parity. For a playρ = q0q1 . . . we denote byInf(ρ) the set of states that occur
infinitely often inρ, that is,Inf(ρ) = {q ∈ Q | ∀k ≥ 0 · ∃n ≥ k : qn = q}. For
d ∈ N, let p : Q → {0, 1, . . . , d} be a priority function, which maps each state
to a nonnegative integer priority. The parity objectiveParity(p) requires that the
minimum priority occurring infinitely often be even. Formally, Parity(p) = {ρ |
min{p(q) | q ∈ Inf(ρ)} is even}. Parity objectives are a canonical way to express
ω-regular objectives [29]. If the priority function is constant over observations of
playeri, that is for all observationsγ ∈ Oi we havep(q) = p(q′) for all q, q′ ∈ γ,
then the parity objectiveParity(p) is visible for playeri.

Decision problemGiven a gameG = 〈Q, q0, δ〉 and an objectiveα ⊆ Qω, the three-
player decision problemis to decide if∃σ1 ∈ Σ1 ·∀σ2 ∈ Σ2 ·∃σ3 ∈ Σ3 : ρσ1,σ2,σ3

q0
∈ α.

2.2 Related models

The results for the three-player decision problem have tight connections and impli-
cations for decision problems on alternating tree automataand partial-observation
stochastic games that we formally define below.

TreesAn Σ-labeled tree(T, V ) consists of a prefix-closed setT ⊆ N
∗ (i.e., if x ·d ∈ T

with x ∈ N
∗ andd ∈ N, thenx ∈ T ), and a mappingV : T → Σ that assigns to each

node ofT a letter inΣ. Givenx ∈ N
∗ andd ∈ N such thatx · d ∈ T , we callx · d the

successorin directiond of x. The nodeε is theroot of the tree. Aninfinite pathin T is
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an infinite sequenceπ = d1d2 . . . of directionsdi ∈ N such that every finite prefix of
π is a node inT .

Alternating tree automataGiven a parameterk ∈ N \ {0}, we consider input trees of
rankk, i.e. trees in which every node has at mostk successors. Let[k] = {0, . . . , k−1},
and given a finite setU , letB+(U) be the set of positive Boolean formulas overU , that
is formulas built from elements inU ∪ {true, false} using the Boolean connectives∧
and∨. An alternating tree automatonover alphabetΣ is a tupleA = 〈S, s0, δA〉 where:

– S is a finite set of states withs0 ∈ S the initial state; and
– δA : S ×Σ → B+(S × [k]) is a transition function.

Intuitively, the automaton is executed from the initial state s0 and reads the input tree
in a top-down fashion starting from the rootε. In states, if a ∈ Σ is the letter that
labels the current nodex of the input tree, the behavior of the automaton is given by the
formulasϕ = δA(s, a). The automaton chooses asatisfying assignmentof ϕ, i.e. a set
Z ⊆ S× [k] such that the formulaϕ is satisfied when the elements ofZ are replaced by
true, and the elements of(S×[k])\Z are replaced byfalse. Then, for each〈s1, d1〉 ∈ Z

a copy of the automaton is spawned in states1, and proceeds to the nodex · d1 of the
input tree. In particular, it requires thatx · d1 belongs to the input tree. For example, if
δA(s, a) = (〈s1, 0〉 ∧ 〈s2, 0〉)∨ (〈s3, 0〉 ∧ 〈s4, 1〉 ∧ 〈s5, 1〉), then the automaton should
either spawn two copies that process the successor ofx in direction0 (i.e., the node
x · 0) and that enter the statess1 ands2 respectively, or spawn three copies of which
one processesx · 0 and enters states3, and the other two processx · 1 and enter the
statess4 ands5 respectively.

Language and emptiness problemA run of A over aΣ-labeled input tree(T, V ) is
a tree(Tr, r) labeled by elements ofT × S, where a node ofTr labeled by(x, s)
corresponds to a copy of the automaton processing the nodex of the input tree in state
s. Formally, arun of A over an input tree(T, V ) is a(T × S)-labeled tree(Tr, r) such
that r(ε) = (ε, s0) and for ally ∈ Tr, if r(y) = (x, s), then the set{〈s′, d′〉 | ∃d ∈
N : r(y ·d) = (x ·d′, s′)} is a satisfying assignment forδA(s, V (x)). Hence we require
that, given a nodey in Tr labeled by(x, s), there is a satisfying assignmentZ ⊆ S× [k]
for the formulaδA(s, a) wherea = V (x) is the letter labeling the current nodex of the
input tree, and for all states〈s′, d′〉 ∈ Z there is a (successor) nodey · d in Tr labeled
by (x · d′, s′).

Given an accepting conditionϕ ⊆ Sω, we say that a run(Tr, r) is acceptingif
for all infinite pathsd1d2 . . . of Tr, the sequences1s2 . . . such thatr(di) = (·, si)
for all i ≥ 0 is in ϕ. The languageof A is the setLk(A) of all input trees of rankk
over which there exists an accepting run ofA. The emptiness problem for alternating
tree automata is to decide, givenA and parameterk, whetherLk(A) = ∅. For details
related to alternating tree automata and the emptiness problem see [12, 20].

Two-player partial-observation stochastic gamesGiven alphabetAi of actions, and set
Oi of observations (for playeri ∈ {1, 2}), a two-player partial-observation stochastic
game(for brevity, two-player stochastic game) is a tupleG = 〈Q, q0, δ〉 whereQ is
a finite set of states,q0 ∈ Q is the initial state, andδ : Q × A1 × A2 → D(Q) is a
probabilistic transition whereD(Q) is the set of probability distributionsκ : Q → [0, 1]
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onQ, such that
∑

q∈Q κ(q) = 1. Given a current stateq and actionsa, b for the players,
the transition probability to a successor stateq′ is δ(q, a, b)(q′).

Observation-based strategies are defined as for three-player games. Anoutcome
play from a stateq0 under strategiesσ1, σ2 is an infinite sequenceρ = q0 a0b0 q1 . . .

such thatai = σ1(q0 . . . qi), bi = σ2(q0 . . . qi), andδ(qi, ai, bi)(qi+1) > 0 for all i ≥ 0.

Qualitative analysisGiven an objectiveα that is Borel measurable (all Borel sets in
the Cantor topology and all objectives considered in this paper are measurable [15]), a
strategyσ1 for player1 is almost-sure winning(resp.,positive winning) for the objective
α fromq0 if for all observation-basedstrategiesσ2 for player2, we havePrσ1,σ2

q0
(α) = 1

(resp.,Prσ1,σ2

q0
(α) > 0) wherePrσ1,σ2

q0
(·) is the unique probability measure induced

by the natural probability measure on finite prefixes of plays(i.e., the product of the
transition probabilities in the prefix).

3 Three-Player Games with Player 1 Less Informed

We consider the three-player (non-stochastic) games defined in Section 2.1. We show
that for reachability and parity objectives the three-player decision problem is decidable
when player1 is less informed than player2. The problem is EXPSPACE-complete
when player1 is blind, and 2-EXPTIME-complete in general.

Remark 1.Observe that for three-player (non-stochastic) games, once the strategies of
the first two players are fixed we obtain a graph, and in graphs perfect-information co-
incides with blind for construction of a path (see [5, Lemma 2] that counting strategies
that count the number of steps are sufficient which can be ensured by a player with no
information). Hence without loss of generality we considerthat player 3 has perfect
observation, and drop the observation for player 3.

Our results for upper bounds are obtained by a reduction of the three-player game
problem to an equivalent exponential-size partial-observation game with only two play-
ers, which is known to be solvable in EXPTIME for parity objectives, and in PSAPCE
when player1 is blind [8]. Our reduction preserves the number of observations of
player1 (thus if player1 is blind in the three-player game, then player1 is also blind
in the constructed two-player game). Hence, the 2-EXPTIME and EXPSPACE bounds
follow from this reduction.

Theorem 1 (Upper bounds).Given a three-player gameG = 〈Q, q0, δ〉 with player1
less informed than player2 and a parity objectiveα, the problem of deciding whether
∃σ1 ∈ Σ1 · ∀σ2 ∈ Σ2 · ∃σ3 ∈ Σ3 : ρσ1,σ2,σ3

q0
∈ α can be solved in 2-EXPTIME. If

player1 is blind, then the problem can be solved in EXPSPACE.

Proof. The proof is by a reduction of the decision problem for three-player games to
a decision problem for partial-observation two-player games with the same objective.
We present the reduction for parity objectives that are visible for player2 (defined by
priority functions that are constant over observations of player 2). The general case
of not necessarily visible parity objectives can be solved using a reduction to visible
objectives, as in [5, Section 3].
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Given a three-player gameG = 〈Q, q0, δ〉 over alphabet of actionsAi (i = 1, 2, 3),
and observationsO1,O2 ⊆ 2Q for player1 and player2, with player1 less informed
than player2, we construct a two-player gameH = 〈QH , {q0}, δH〉 over alphabet of
actionsA′

i (i = 1, 2), and observationsO′
1 ⊆ 2QH and perfect observation for player 2,

where (intuitive explanations follow):
– QH = {s ∈ 2Q | s 6= ∅ ∧ ∃o2 ∈ O2 : s ⊆ o2};
– A′

1 = A1 × (2Q ×A2 → O2), andA′
2 = A2;

– O′
1 =

{

{s ∈ QH | s ⊆ o1} | o1 ∈ O1

}

, and letobs′1 : QH → O′
1 be the

corresponding observation function;
– δH(s, (a1, f), a2) = postG(s, a1, a2,−) ∩ f(s, a2).

Intuitively, the state spaceQH is the set of knowledges of player2 about the current
state inG, i.e., the sets of states compatible with an observation of player2. Along a
play inH , the knowledge of player2 is updated to represent the set of possible current
states in which the gameG can be. InH player2 has perfect observation and the role
of player1 in the gameH is to simulate the actions of both player1 and player3 in
G. Since player2 fixes his strategy before player3 in G, the simulation should not let
player2 know player-3’s action, but only the observation that player2 will actually see
while playing the game. The actions of player1 in H are pairs(a1, f) ∈ A′

1 where
a1 is a simple action of player1 in G, andf gives the observationf(s, a2) received by
player2 after the response of player3 to the actiona2 of player2 when the knowledge of
player2 is s. InH , player1 has partial observation, as he cannot distinguish knowledges
of player2 that belong to the same observation of player1 in G. The transition relation
updates the knowledges of player2 as expected. Note that|O1| = |O′

1|, and therefore
if player1 is blind inG then he is blind inH as well.

Given a visible parity objectiveα = Parity(p) wherep : Q → {0, 1, . . . , d} is
constant over observations of player2, let α′ = Parity(p′) wherep′(s) = p(q) for all
q ∈ s ands ∈ QH . Note that the functionp′ is well defined sinces is a subset of an
observation of player2 and thusp(q) = p(q′) for all q, q′ ∈ s. However, the parity
objectiveα′ = Parity(p′) may not be visible to player1 in G. We show that given a
witness strategy inG we can construct a witness strategy inH and vice-versa. LetΣi

be the set of observation-based strategies of playeri (i = 1, 2, 3) in G, and letΣ′
i be

the set of observation-based strategies of playeri (i = 1, 2) in H . We claim that the
following statements are equivalent:

(1) In G, ∃σ1 ∈ Σ1 · ∀σ2 ∈ Σ2 · ∃σ3 ∈ Σ3 : ρσ1,σ2,σ3

q0
∈ α.

(2) In H , ∃σ′
1 ∈ Σ′

1 · ∀σ
′
2 ∈ Σ′

2 : ρ
σ′

1
,σ′

2

{q0}
∈ α′.

The 2-EXPTIME result of the theorem follows from this equivalence because the
gameH is at most exponentially larger than the gameG, and two-player partial-
observation games with a parity objective can be solved in EXPTIME, and when
player1 is blind they can be solved in PSPACE [8]. Observe that when player2 has
perfect information, his observations are singletons andH is no bigger thanG, and an
EXPTIME bound follows in that case.

To show that(1) implies(2), letσ1 : O+
1 → A1 be a strategy for player1 such that

for all strategiesσ2 : O+
2 → A2, there is a strategyσ3 : O+

3 → A3 such thatρσ1,σ2,σ3

q0
∈

α. From σ1, we construct an (infinite) DAG over state spaceQH × O+
1 with edges
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labeled by elements ofA2 ×O2 defined as follows. The root is({q0}, obs1(q0)). There
is an edge labeled by(b, o2) ∈ A2×O2 from (s, ρ) to (s′, ρ′) if s′ = postG(s, a, b,−)∩
o2 6= ∅ wherea = σ1(ρ), andρ′ = ρ · o1 whereo1 ∈ O1 is the (unique) observation
of player1 such thato2 ⊆ o1. Note that for every noden = (s, ρ) in the DAG, for
all statesq ∈ s, for all b ∈ A2, c ∈ A3, there is a successorn′ = (s′, ρ′) of n such
that δ(q, a, b, c) ∈ s′ wherea = σ1(ρ). Consider a perfect-information turn-based
game played over this DAG, between player2 choosing actionsb ∈ A2 and player3
choosing observationso2 ∈ O2, resulting in an infinite path(s0, ρ0)(s1, ρ1) . . . in
the DAG as expected, and that is defined to be winning for player 3 if the sequence
s0s1 . . . satisfiesα′. We show that in this game, for all strategies of player2 (which
naturally define functionsσ2 : O+

2 → A2), there exists a strategy of player3 (a function
f3 : QH×O+

1 ×A2 → O+
2 ) to ensure that the resulting play satisfiesα′. The argument is

based on(1) saying that given the strategyσ1 is fixed, for all strategiesσ2 : O+
2 → A2,

there is a strategyσ3 : O+
3 → A3 such thatρσ1,σ2,σ3

q0
∈ α. Given a strategy for player2

in the game over the DAG, we useσ3 to choose observationso2 ∈ O2 as follows. We
define a labelling functionλ : QH × O+

1 → Q over the DAG in a top-down fashion
such thatλ(s, ρ) ∈ s. First, letλ({q0}, obs1(q0)) = q0, and givenλ(s, ρ) = q with
an edge labeled by(b, o2) to (s′, ρ′), let λ(s′, ρ′) = δ(q, a, b, c) wherea = σ1(ρ) and
c = σ3(ρ). Note that indeedδ(q, a, b, c) ∈ s′. Now we define a strategy for player3
that, in a node(s, ρ) of the DAG, chooses the observationobs2(δ(q, a, b, c)) where
q = λ(s, ρ), a = σ1(ρ), b is the action chosen by player2 at that node (remember
we fixed a strategy for player2), andc = σ3(ρ). Sinceλ(s, ρ) ∈ s, it follows that the
resulting play satisfiesα′ sinceρσ1,σ2,σ3

q0
satisfiesα.

By determinacy of perfect-information turn-based games [18], in the game over
the DAG there exists a strategyf3 for player3 such that for all player-2 strategies,
the outcome play satisfiesα′. Usingf3, we construct a strategyσ′

1 for player1 in H

as follows. First, by a slight abuse of notation, we identifythe observationso′1 ∈ O′
1

with the observationo1 ∈ O1 such thatu ⊆ o1 for all u ∈ o′1. For all ρ ∈ O+
1 ,

let σ′
1(ρ) = (a, f) wherea = σ1(ρ) and f is defined byf(s, a2) = f3(s, ρ, a2).

By construction of the DAG and of the strategyσ′
1, for all strategies of player2 in H

the outcome plays0s1 . . . satisfies the parity objectiveα′, and thusσ′
1 is a winning

observation-based strategy inH .

To show that(2) implies(1), letσ′
1 be a winning observation-based strategy for the

objectiveα′ in H . Consider the DAG over state spaceQH ×O+
1 with edges labeled by

elements ofA2 defined as follows. The root is({q0}, obs1(q0)). For all nodes(s, ρ), for
all b ∈ A2, there is an edge labeled byb from (s, ρ) to (s′, ρ′) if s′ = postG(s, a, b,−)∩
o2 andρ′ = ρ · o1 whereo2 = f(s, b) and(a, f) = σ′

1(ρ), ando1 ∈ O1 is the (unique)
observation of player1 such thato2 ⊆ o1. We say that(s′, ρ′) is theb-successor of
(s, ρ). Note that for allq′ ∈ s′, there existsq ∈ s andc ∈ A3 such thatq′ = δ(q, a, b, c).

This DAG mimics the unraveling ofH underσ′
1, and sinceσ′

1 is a winning strategy,
for all infinite paths(s0, ρ0)(s1, ρ1) . . . of the DAG, the sequences0s1 . . . satisfiesα′.

Define the strategyσ1 such thatσ1(ρ) = a if σ′
1(ρ) = (a, f) (again identifying

the observations inO′
1 andO1). To show that(1) holds, fix an arbitrary observation-

based strategyσ2 for player2. The outcome play ofσ1 andσ2 in H is the sequence
(s0, ρ0)(s1, ρ1) . . . where(s0, ρ0) is the root, and such that for alli ≥ 1, the node
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(si, ρi) is theb-successor of(si−1, ρi−1) whereb = σ2(obs2(s0s1 . . . si−1)) (where
obs2(si) is naturally defined as the unique observationo2 ∈ O2 such thatsi ⊆ o2).
From this path in the DAG, we construct an infinite pathp0p1 . . . in G using König’s
Lemma [16] as follows. First, it is easy to show by induction (onk) that for every finite
prefix s0s1 . . . sk and for everypk ∈ sk there exists a pathp0p1 . . . pk in G such that
pi ∈ si for all 0 ≤ i ≤ k. Note thatp0 = q0 sinces0 = {q0} and that by definition of
the DAG, for eachsi+1 (i = 0, . . . , k − 1), there exista ∈ A1, b ∈ A2, ando2 ∈ O2

such thatsi+1 = postG(si, a, b,−)∩o2. Hence, givenpi+1 ∈ si+1, there existci ∈ A3

andpi ∈ si such thatδ(pi, a, b, ci) = pi+1.
Arranging all these finite paths in a tree, we obtain an infinite finitely-branching

tree which by König’s Lemma [16] contains an infinite branchq0q1 . . . that is a path
in G and such thatqi ∈ si for all i ≥ 0. Now we can construct the strategyσ3 such
thatσ3(p0 . . . pi) = ci. Sinces0s1 . . . satisfiesα′, it follows thatρσ1,σ2,σ3

q0
= p0p1 . . .

satisfiesα, which completes the proof. ⊓⊔

Theorem 2 (Lower bounds).Given a three-player gameG = 〈Q, q0, δ〉 with player1
less informed than player2 and a reachability objectiveα, the problem of deciding
whether∃σ1 ∈ Σ1 · ∀σ2 ∈ Σ2 · ∃σ3 ∈ Σ3 : ρσ1,σ2,σ3

q0
∈ α is 2-EXPTIME-hard. If

player1 is blind (and even when player 2 is also blind), then the problem is EXPSPACE-
hard.

Proof. The proof of 2-EXPTIME-hardness is obtained by a polynomial-time reduc-
tion of the membership problem for exponential-spacealternatingTuring machines to
the three-player problem. The same reduction for the special case of exponential-space
nondeterministicTuring machines shows EXPSPACE-hardness when player1 is blind
(because our reduction yields a game in which player1 is blind when we start from
a nondeterministic Turing machine). The membership problem for Turing machines is
to decide, given a Turing machineM and a finite wordw, whetherM acceptsw. The
membership problem is 2-EXPTIME-complete for exponential-space alternating Tur-
ing machines, and EXPSPACE-complete for exponential-space nondeterministic Tur-
ing machines [21].

An alternating Turing machine is a tupleM = 〈Q∨, Q∧, Σ, Γ,∆, q0, qacc, qrej〉
where the state spaceQ = Q∨ ∪Q∧ consists of the setQ∨ of or-states, and the setQ∧

of and-states. The input alphabet isΣ, the tape alphabet isΓ = Σ∪{#} where# is the
blank symbol. The initial state isq0, the accepting state isqacc, and the rejecting state
is qrej . The transition relation is∆ ⊆ Q × Γ × Q × Γ × {−1, 1}, where a transition
(q, γ, q′, γ′, d) ∈ ∆ intuitively means that, given the machine is in stateq, and the
symbol under the tape head isγ, the machine can move to stateq′, replace the symbol
under the tape head byγ′, and move the tape head to the neighbor cell in directiond.
A configurationc of M is a sequencec ∈ (Γ ∪ (Q × Γ ))ω with exactly one symbol in
Q×Γ , which indicates the current state of the machine and the position of the tape head.
The initial configuration ofM onw = a0a1 . . . an is c0 = (q0, a0) ·a1 ·a2 · · · · ·an ·#

ω .
Given the initial configuration ofM onw, it is routine to define the execution trees of
M where at least one successor of each configuration in an or-state, and all successors
of the configurations in an and-state are present (and we assume that all branches reach
eitherqacc or qrej), and to say thatM acceptsw if all branches of some execution tree
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reachqacc. Note thatQ∧ = ∅ for nondeterministic Turing machines, and in that case
the execution tree reduces to a single path. A Turing machineM uses exponential space
if for all wordsw, all configurations in the execution ofM onw contain at most2O(|w|)

non-blank symbols.

We present the key steps of our reduction from alternating Turing machines. Given
a Turing machineM and a wordw, we construct a three-player game with reachabil-
ity objective in which player1 and player2 have to simulate the execution ofM on
w, and player1 has to announce the successive configurations and transitions of the
machine along the execution. Player1 announces configurations one symbol at a time,
thus the alphabet of player1 is A1 = Γ ∪ (Q × Γ ) ∪ ∆. In an initialization phase,
the transition relation of the game forces player1 to announce the initial configuration
c0 (this can be done withO(n) states in the game, wheren = |w|). Then, the game
proceeds to a loop where player1 keeps announcing symbols of configurations. At all
times along the execution, some finite information is storedin the finite state space of
the game: a window of the last three symbolsz1, z2, z3 announced by player1, as well
as the last symbolhead ∈ Q× Γ announced by player1 (that indicates the current ma-
chine state and the position of the tape head). After the initialization phase, we should
havez1 = z2 = z3 = # andhead = (q0, a0). When player1 has announced a full
configuration, he moves to a state of the game where either player 1 or player2 has
to announce a transition of the machine: forhead = (p, a), if p ∈ Q∨, then player1
chooses the next transition, and ifp ∈ Q∧, then player2 chooses. Note that the tran-
sitions chosen by player2 are visible to player1 and this is the only information that
player1 observes. Hence player1 is less informed than player2, and both player1 and
player2 are blind when the machine is nondeterministic. If a transition (q, γ, q′, γ′, d)
is chosen by playeri, and eitherp 6= q or a 6= γ, then playeri loses (i.e., a sink state is
reached to let player1 lose, and the target state of the reachability objective is reached
to let player2 lose). If at some point player1 announces a symbol(p, a) with p = qacc,
then player1 wins the game.

The role of player2 is to check that player1 faithfully simulates the execution of
the Turing machine, and correctly announces the configurations. After every announce-
ment of a symbol by player1, the game offers the possibility to player2 to compare
this symbol with the symbol at the same position in the next configuration. We say that
player2 checks(and whether player2 checks or not is not visible to player1), and
the checked symbol is stored asz2. Note that player2 can be blind to check because
player2 fixes his strategy after player1. The windowz1, z2, z3 stored in the state space
of the game provides enough information to update the middlecell z2 in the next con-
figuration, and it allows the game to verify the check of player 2. However, the distance
(in number of steps) between the same position in two consecutive configurations is
exponential (say2n for simplicity), and the state space of the game is not large enough
to check that such a distance exists between the two symbols compared by player2. We
use player3 to check that player2 makes a comparison at the correct position. When
player2 decides to check, he has to count from0 to 2n by announcing after every sym-
bol of player1 a sequence ofn bits, initially all zeros (again, this can be enforced by
the structure of the game withO(n) states). It is then the responsibility of player3 to
check that player2 counts correctly. To check this, player3 can at any time choose a
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bit positionp ∈ {0, . . . , n − 1} and store the bit valuebp announced by player2 at
positionp. The value ofbp andp is not visible to player2. While player2 announces
the bitsbp+1, . . . , bn−1 at positionp+ 1, . . . , n− 1, the finite state of the game is used
to flip the value ofbp if all bits bp+1, . . . , bn−1 are equal to1, hence updatingbp to the
value of thep-th bit in what should be the next announcement of player2. In the next
bit sequence announced by player2, thep-th bit is compared withbp. If they match,
then the game goes to a sink state (as player2 has faithfully counted), and if they differ
then the game goes to the target state (as player2 is caught cheating). It can be shown
that this can be enforced by the structure of the game withO(n2) states, that isO(n)
states for each value ofp. As before, whether player3 checks or not is not visible to
player2.

Note that the checks of player2 and player3 are one-shot: the game will be over
(either in a sink or target state) when the check is finished. This is enough to ensure a
faithful simulation by player1, and a faithful counting by player2, because(1) partial
observation allows to hide to a player the time when a check occurs, and(2) player2
fixes his strategy after player1 (and player3 after player2), thus they can decide to run
a check exactly when player1 (or player2) is not faithful. This ensures that player1
does not win if he does not simulate the execution ofM onw, and that player2 does
not win if he does not count correctly.

Hence this reduction ensures thatM acceptsw if and only if the answer to the three-
player game problem is YES, where the reachability objective is satisfied if player1
eventually announces that the machine has reachedqacc (that is ifM acceptsw), or if
player2 cheats in counting, which can be detected by player3. ⊓⊔

4 Three-Player Games with Player 1 Perfect

When player 2 is less informed than player 1, we show that three-player games get much
more complicated (even in the special case where player1 has perfect information). We
note that for reachability objectives, the three-player decision problem is equivalent
to the qualitative analysis of positive winning in two-player stochastic games, and we
show that the techniques developed in the analysis of two-player stochastic games can
be extended to solve the three-player decision problem withsafety objectives as well.

For reachability objectives, the three-player decision problem is equivalent to the
problem of positive winning in two-player stochastic gameswhere the third player is
replaced by a probabilistic choice over the action set with uniform probability. Intu-
itively, after player1 and player2 fixes their strategy, the fact that player3 can con-
struct a (finite) path to the target set is equivalent to the fact that such a path has positive
probability when the choices of player3 are replaced by uniform probabilistic transi-
tions. Given a three-player gameG = 〈Q, q0, δ〉, let Uniform(G) = 〈Q, q0, δ

′〉 be the
two-player partial-observationstochasticgame (with same state space, action sets, and

observations for player1 and player2) whereδ′(q, a1, a2)(q′) =
|{a3|δ(q,a1,a2,a3)=q′}|

|A3|

for all a1 ∈ A1, a2 ∈ A2, andq, q′ ∈ Q. Formally, the equivalence result is presented in
Lemma 1, and the equivalence holds for all three-player games (not restricted to three-
player games where player 1 has perfect information). However, we will use Lemma 1
to establish results for three-player games where player 1 has perfect information.
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Lemma 1. Given a three-player gameG and a reachability objectiveα, the answer to
the three-player decision problem for〈G,α〉 is YES if and only if player1 is positive
winning forα in the two-player partial-observation stochastic gameUniform(G).

Reachability objectives.Even in the special case where player1 has perfect informa-
tion, and for reachability objectives, non-elementary memory is necessary in general for
player1 to win in three-player games. This result follows from Lemma1 and from the
result of [6, Example 4.2 Journal version] showing that non-elementary memory is nec-
essary to win with positive probability in two-player stochastic games. It also follows
from Lemma 1 and the result of [6, Corollary 4.9 Journal version] that the three-player
decision problem for reachability games is decidable in non-elementary time.

Safety objectives.We show that the three-player decision problem can be solvedfor
games with a safety objective when player1 has perfect information. The proof is using
thecounting abstractionof [6, Section 4.2 Journal version] and shows that the answer
to the three-player decision problem for safety objectiveSafe(T ) is YES if and only
if there exists a winning strategy in the two-player counting-abstraction game with the
safety objective to visit only counting functions (i.e., essentially tuples of natural num-
bers) with support contained in the target statesT . Intuitively, the counting abstraction
is as follows: with every knowledge of player 2 we store a tuple of counters, one for each
state in the knowledge. The counters denote the number of possible distinct paths to the
states of the knowledge, and the abstraction treats large enough values as infinite (value
ω). The counting-abstraction game is monotone with regards to the natural partial order
over counting functions, and therefore it is well-structured and can be solved by con-
structing a self-covering unraveling tree, i.e. a tree in which the successors of a node are
constructed only if this node has no greater ancestor. The properties of well-structured
systems (well-quasi-ordering and König’s Lemma) ensure that this tree is finite, and
that there exists a strategy to ensure only supports contained in the target statesT are
visited if and only if there exists a winning strategy in the counting-abstraction game (in
a leaf of the tree, one can copy the strategy played in a greater ancestor). It follows that
the three-player decision problem for safety games is equivalent the problem of solving
a safety game over this finite tree.

Theorem 3. When player 1 has perfect information, the three-player decision problem
is decidable for both reachability and safety games, and forreachability games memory
of size non-elementary is necessary in general for player1.

5 Four-Player Games

We show that the results presented for three-player games extend to games with four
players (the fourth player is universal and perfectly informed). The definition of four-
player games and related notions is a straightforward extension of Section 2.1.

In a four-player game with player1 less informed than player2, and perfect infor-
mation for both player3 and player4, consider thefour-player decision problemwhich
is to decide if∃σ1 ∈ Σ1 ·∀σ2 ∈ Σ2 ·∃σ3 ∈ Σ3 ·∀σ4 ∈ Σ4 : ρσ1,σ2,σ3,σ4

q0
∈ α for a parity
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objectiveα. Since player3 and player4 have perfect information, we assume without
loss of generality that the game is turn-based for them, thatis there is a partition of the
state spaceQ into two setsQ3 andQ4 (whereQ = Q3 ∪ Q4) such that the transition
function is the union ofδ3 : Q3×A1×A2×A3 → Q andδ4 : Q4×A1×A2×A4 → Q.
Strategies and outcomes are defined analogously to three-player games. A strategy of
playeri ∈ {3, 4} is of the formσi : Q

∗ ·Qi → Ai.
By determinacy of perfect-information turn-based games with countable state

space [18], the negation of the four-player decision problem is equivalent to∀σ1 ∈
Σ1 · ∃σ2 ∈ Σ2 · ∃σ4 ∈ Σ4 · ∀σ3 ∈ Σ3 : ρσ1,σ2,σ3,σ4

q0
∈ α. Once the strategiesσ1 and

σ2 are fixed, the condition∃σ4 ∈ Σ4 · ∀σ3 ∈ Σ3 : ρσ1,σ2,σ3,σ4

q0
∈ α can be viewed as

the membership problem for a treetσ1,σ2 in the language of an alternating parity tree
automaton [9] with state spaceQ wheretσ1,σ2 is the(A1 × A2)-labeled tree(T, V )
whereT = O+

2 andV (ρ) = (σ1(obs1(ρ)), σ2(ρ)) for all ρ ∈ T .
By the results of [12], if there exists an accepting(O+

2 ×Q)-labeled run tree(Tr, r)
for an input treetσ1,σ2 in an alternating parity tree automaton, then there exists amem-
orylessaccepting run tree, that is such that for all nodesx, y ∈ Tr such that|x| = |y|
andr(x) = r(y), the subtrees ofTr rooted atx andy are isomorphic. Since the mem-
bership problem is equivalent to a two-player parity game played on the structure of
the alternating automaton, a memoryless accepting run treecan be viewed as a winning
strategyσ4 : O+

2 × Q → A4, or equivalentlyσ4 : O+
2 → (Q → A4) such that for all

strategiesσ3 : Tr → A3, the resulting infinite branch in the treeTr satisfies the parity
objectiveα.

It follows from this that the (negation of the) original question∀σ1 ∈ Σ1 ·∃σ2 ∈ Σ2 ·
∃σ4 ∈ Σ4 ·∀σ3 ∈ Σ3 : ρσ1,σ2,σ3,σ4

q0
∈ α is equivalent to∀σ1 ∈ Σ1 ·∃σ24 ∈ Σ24 ·∀σ3 ∈

Σ3 : ρσ1,σ24,σ3

q0
∈ α whereΣ24 = O+

2 → (A2 × (Q → A4)) is the set of strategies of
a player (call it player 24) with observationsO2 and action setA′

2 = A2 × (Q → A4),
and the outcomeρσ1,σ24,σ3

q0
is defined as expected in a three-player game (played by

player1, player24, and player3) with transition functionδ′ : Q×A1 ×A′
2 ×A3 → Q

defined byδ′(q, a1, (a2, f), a3) = δ(q, a1, a2, a3, f(q)).
Hence the original question (and its negation) for four-player games reduces in poly-

nomial time to solving a three-player game with the first player less informed than the
second player. Hardness follows from the special case of three-player games.

Theorem 4. The four-player decision problem with player1 less informed than
player 2, and perfect information for both player3 and player4 is 2-EXPTIME-
complete for parity objectives.

Remark 2 (Combinations of strategy quantification.).We now discuss the various pos-
sibilities of strategy quantifiers and information of the players in multi-player games.
First, if there are two existential (resp., universal) players with incomparable infor-
mation, then the decision question is undecidable [22, 23];and if there is a sequence
of existential (resp., universal) quantification over strategies players such that the in-
formation of the players form a chain (i.e., in the sequence of quantification over the
players, let the players bei1, i2, . . . , ik such thati1 is more informed thani2, i2 more
informed thani3 and so on), then with repeated subset construction, the sequence can
be reduced to one quantification [23, 17, 19]. Note however that if there is a quantifier
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alternation between existential and universal, then even if the information may form a
chain, subset construction might not be sufficient: for example, if player 1 is perfect
and player 2 has partial-information, non-elementary memory might be necessary (as
shown in Section 4). We now discuss the various possibilities of strategy quantifica-
tion in four-player games. Without loss of generality we consider that the first strategy
quantifier is existential. The above argument for sequence of quantifiers (either unde-
cidability with incomparable information or the sequence reduces to one) shows that we
only need to consider the following strategy quantification: ∃1∀2∃3∀4, where the sub-
scripts denote the quantification over strategies for the respective player. First, note that
once the strategies of the first three players are fixed we obtain a graph, and similar to
Remark 1 without loss of generality we consider that player 4has perfect observation.
We now consider the possible cases for player 3 in presence ofplayer 4.
1. Perfect observation.The case when player 3 has perfect observation has been

solved in the main paper (results of Section 5).
2. Partial observation.We now consider the case when player 3 has partial observa-

tion. If player 2 is less informed than player 1, then the problem is at least as hard as
the problem considered in Section 4. If player 3 is less informed than player 2, then
even in the absence of player 1, the problem is as hard as the negation of the ques-
tion considered in Section 4 (where first a more informed player plays, followed
by a less informed player, just the strategy quantifiers are∀2∃3∀4 as compared to
∃1∀2∃3 considered in Section 4). Finally, if player 1 is less informed than player 2,
and player 2 is less informed than player 3, then we apply our construction of Sec-
tion 3 twice and obtain a double exponential size two-playerpartial-observation
game which can be solved in 3-EXPTIME. Recall that in absenceof player 4, by
Remark 1 whether player 3 has partial or perfect informationdoes not matter and
we obtain a 2-EXPTIME upper bound; whereas in presence of player 4, we obtain
a 3-EXPTIME upper bound if player 3 has partial information (but more informed
than player2), and a 2-EXPTIME upper bound if player 3 has perfect information
(Theorem 4).

6 Applications

We now discuss applications of our results in the context of synthesis and qualitative
analysis of two-player partial-observation stochastic games.

Sequential synthesis.The sequential synthesisproblem consists of an open sys-
tem of partially implemented modules (with possible non-determinism or choices)
M1,M2, . . . ,Mn that need to be refined (i.e., the choices determined by strategies) such
that the composite system after refinement satisfy a specification. The system is open
in the sense that after the refinement the composite system isreactive and interact with
an environment. Consider the problem where first a setM1, . . . ,Mk of modules are re-
fined, then a setMk+1, . . . ,Mℓ are refined by an external implementor, and finally the
remaining set of modules are refined. In other words, the modules are refined sequen-
tially: first a set of modules whose refinement can be controlled, then a set of modules
whose refinement cannot be controlled as they are implemented externally, and finally
the remaining set of modules. If the refinements of modulesM1, . . . ,Mℓ do not have
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access to private variables of the remaining modules we obtain a partial-observation
game with four players: the first (existential) player corresponds to the refinement of
modulesM1, . . . ,Mk, the second (universal) player corresponds to the refinement of
modulesMk+1, . . . ,Mℓ, the third (existential) player corresponds to the refinement of
the remaining modules, and the fourth (adversarial) playeris the environment. If the
second player has access to all the variables visible to the first player, then player 1 is
less informed.

Two-player partial-observation stochastic games.Our results for four-player games
imply new complexity results for two-player stochastic games. For qualitative analysis
(positive and almost-sure winning) under finite-memory strategies for the players the
following reduction has been established in [9, Lemma 1] (see Lemma 2.1 of the arxiv
version): the probabilistic transition function can be replaced by a turn-based gadget
consisting of two perfect-observation players, one angelic (existential) and one demonic
(universal). The turn-based gadget is the same as used for perfect-observation stochastic
games [4, 10]. In [9], only the special case of perfect observation for player 2 was con-
sidered, and hence the problem reduced to three-player games where only player 1 has
partial observation and the other two players have perfect observation. In case where
player 2 has partial observation, the reduction of [9] requires two perfect-observation
players, and gives the problem of four-player games (with perfect observation for
player 3 and player 4). Hence when player 1 is less informed, we obtain a 2-EXPTIME
upper bound from Theorem 4, and obtain a 2-EXPTIME lower bound from Theorem 2
since the three-player games problem with player 1 less informed for reachability ob-
jectives coincides withpositivewinning for two-player partial-observation stochastic
games (Lemma 1).

For almost-surewinning, a 2-EXPTIME lower bound can also be obtained by an
adaptation of the proof of Theorem 2. We use the same reduction from exponential-
space alternating Turing machines, with the following changes:(i) the third player is
replaced by a uniform probability distribution over player-3’s moves, thus the reduction
is now to two-player partial-observation stochastic games; (ii) instead of reaching a
sink state when player2 detects a mistake in the sequence of configurations announced
by player1, the game restarts in the initial state; thus the target state of the reachability
objective is not reached, but player1 gets another chance to faithfully simulate the
Turing machine.

It follows that if the Turing machine accepts, then player1 has an almost-sure win-
ning strategy by faithfully simulating the execution. Indeed, either(a) player2 never
checks, or checks and counts correctly, and then player1 wins since no mistake is de-
tected, or(b) player2 checks and cheats counting, and then player2 is caught with
positive probability (player1 wins), and with probability smaller than1 the counting
cheat is not detected and thus possibly a (fake) mismatch in the symbol announced by
player1 is detected. Then the game restarts. Hence in all cases afterfinitely many steps,
either player1 wins with (fixed) positive probability, or the game restarts. It follows that
player1 wins the game with probability1.

If the Turing machine rejects, then player1 cannot win by a faithful simulation
of the execution, and thus he should cheat. The strategy of player2 is then to check
and to count correctly, ensuring that the target state of thereachability objective is not
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reached, and the game restarts. Hence for all strategies of player1, there is a strategy
of player2 to always avoid the target state (with probability1), and thus player1 can-
not win almost-surely (he wins with probability0). This completes the proof of the
reduction for almost-sure winning.

Thus we obtain the following result.

Theorem 5. The qualitative analysis problems (almost-sure and positive winning)
for two-player partial-observation stochastic parity games where player 1 is less in-
formed than player 2, under finite-memory strategies for both players, are 2-EXPTIME-
complete.

Remark 3.Note that the lower bounds for Theorem 5 are established for reachability
objectives. Moreover, it was shown in [6, Section 5] that forqualitative analysis of two-
player partial-observation stochastic games with reachability objectives, finite-memory
strategies suffice, i.e., if there is a strategy to ensure almost-sure (resp. positive) win-
ning, then there is a finite-memory strategy. Thus the results of Theorem 5 hold for
reachability objectives even without the restriction of finite-memory strategies.
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