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Abstract. We consider multi-player graph games with partial-obséwaand
parity objective. While the decision problem for threey@agames with a coali-
tion of the first and second players against the third playentdecidable in gen-
eral, we present a decidability result for partial-obsgoregames where the first
and third player are in a coalition against the second pjdaies where the sec-
ond player is adversarial but weaker due to partial-obsiervalVe establish tight
complexity bounds in the case where playeis less informed than playez,
namely 2-EXPTIME-completeness for parity objectives. Simmetric case of
player1 more informed than player is much more complicated, and we show
that already in the case where playehas perfect observation, memory of size
non-elementary is necessary in general for reachabiligyatibes, and the prob-
lem is decidable for safety and reachability objectives: @sults have tight con-
nections with partial-observation stochastic games facktve derive new com-
plexity results.

1 Introduction

Games on graphsGames played on graphs are central in several importanigsnsin
computer science, such as reactive synthesis [23, 24ficagidn of open systems [1],
and many others. The game is played by several players ortex$taite graph, with a
set of angelic (existential) players and a set of demoniwéusal) players as follows:
the game starts at an initial state, and given the curret#, stee successor state is de-
termined by the choice of moves of the players. The outcontaefame is alay,
which is an infinite sequence of states in the graphbtrAtegyis a transducer to resolve
choices in a game for a player that given a finite prefix of ttegy @pecifies the next
move. Given an objective (the desired set of behaviors orsplahe goal of the exis-
tential players is to ensure the play belongs to the objeatrespective of the strategies
of the universal players. In verification and control of gcsystems an objective is
typically anw-regular set of paths. The classwefregular languages, that extends clas-
sical regular languages to infinite strings, provides a sblspecification language to
express all commonly used specifications, and parity olgEscare a canonical way to
define suchu-regular specifications [29]. Thus games on graphs withyahjectives
provide a general framework for analysis of reactive system
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Perfect vs partial observation.Many results about games on graphs make the hypoth-
esis ofperfect observatiofi.e., players have perfect or complete observation albheut t
state of the game). In this setting, due to determinacy (dckimg of the strategy quan-
tifiers for existential and universal players) [18], the sfigns expressed by an arbitrary
alternation of quantifiers reduce to a single alternation,thus are equivalent to solv-
ing two-player games (all the existential players agailhgta universal players). How-
ever, the assumption of perfect observation is often ndisteain practice. For example
in the control of physical systems, digital sensors withtdirgrecision provide partial
information to the controller about the system state [1]., S#nilarly, in a concurrent
system the modules expose partial interfaces and havesaocti® public variables of
the other processes, but not to their private variablesl[R Buch situations are better
modeled in the more general frameworlqafrtial-observatiorgames [26—28].

Partial-observation games.Since partial-observation games are not determined, un-
like the perfect-observation setting, the multi-playemga problems do not reduce
to the case of two-player games. Typically, multi-playertipobservation games are
studied in the following setting: a set of partial-obseimaexistential players, against a
perfect-observation universal player, such as for distetd synthesis [23,13, 25]. The
problem of deciding if the existential players can ensureaghability (or a safety) ob-
jective is undecidable in general, even for two existemgiajers [22, 23]. However, if
the information of the existential players form a chain.(iexistential player 1 more
informed than existential player 2, existential player 2renimformed than existential
player 3, and so on), then the problem is decidable [23, 17, 19

Games with a weak adversaryOne aspect of multi-player games that has been largely
ignored is the presence of weaker universal players thabtloave perfect observation.
However, it is natural in the analysis of composite reactiygems that some universal
players represent components that do not have access trialbles of the system. In
this work we consider games where adversarial players cem artial observation.
If there are two existential (resp., two universal) playwith incomparable partial ob-
servation, then the undecidability results follows fror2,[23]; and if the information
of the existential (resp., universal) players form a ch#dien they can be reduced to
one partial-observation existential (resp., universky@r. We consider the following
case of partial-observation games: one partial-obsenvatiistential player (player 1),
one partial-observation universal player (player 2), oedqrt-observation existential
player (player 3), and one perfect-observation univeisgigr (player 4). Roughly, hav-
ing more partial-observation players in general leads tteaidability, and having more
perfect-observation players reduces to two perfect-osien players. We first present
our results and then discuss two applications of our model.

Results.Our main results are as follows:

1. Player 1 less informediVe first consider the case when player 1 is less informed
than player 2. We establish the following results: a 2-EXPTIME upper bound
for parity objectives and a 2-EXPTIME lower bound for reduitity objectives
(i.e., we establish 2-EXPTIME-completenegs)) an EXPSPACE upper bound for
parity objectives when player 1 is blind (has only one obaton), and EXPSPACE
lower bound for reachability objectives even when both etaly and player 2 are



blind. In all these cases, if the objective can be ensurenl tive upper bound on
memory requirement of winning strategies is at most doukoaential.

2. Player 1 is more informed/e consider the case when player 1 can be more in-
formed as compared to player 2, and show that even when plahes perfect
observation there is a non-elementary lower bound on the anenequired by
winning strategies. This result is also in sharp contradigtsibuted games, where
if only one player has partial observation then the uppenb@mn memory of win-
ning strategies is exponential.

Applications. We discuss two applications of our results: the sequentighgsis prob-
lem, and new complexity results for partial-observastochastigames.

1. The sequential synthesis problem consists of a set aafpaimplemented mod-
ules, where first a set of modules needs to be refined, folldweadrefinement of
some modules by an external source, and then the remainidglesare refined so
that the composite open reactive system satisfies a spéoific&iven the first two
refinements cannot access all private variables, we havergfayer game where
the first refinement corresponds to player 1, the second neéintto player 2, the
third refinement to player 3, and player 4 is the environment.

2. In partial-observation stochastic games, there are @vtigb-observation players
(one existential and one universal) playing in the presehaacertainty in the tran-
sition function (i.e., stochastic transition functionhd qualitative analysis ques-
tion is to decide the existence of a strategy for the exigtbplayer to ensure the
parity objective with probability 1 (or with positive probiity) against all strate-
gies of the universal player. The witness strategy can béoraized or determin-
istic (pure). While the qualitative problem is undecidalbhe practically relevant
restriction to finite-memory pure strategies reduces tddbe-player game prob-
lem. Moreover, for finite-memory strategies, the decisiovbgem for randomized
strategies reduces to the pure strategy question [6]. Byethidts we establish in
this paper, new decidability and complexity results areivted for the qualitative
analysis of partial-observation stochastic games withglapartially informed but
more informed than player. The complexity results for almost-sure winning are
summarized in Table 1. Surprisingly for reachability olijezs, whether player 2 is
perfectly informed or more informed than player 1 does naingfe the complexity
for randomized strategies, but it results in an exponeimgakase in the complexity
for pure strategies.

Organization of the paper. In Section 2 we present the definitions of three-player
games, and other related models (such as partial-obsamstichastic games). In Sec-
tion 3 we establish the results for three-player games viéyer 1 less informed, and in
Section 4 we show hardness of three-player games with petbservation for player 1
(which is a special case of player 1 more informed). Finatlysection 5 we show how
our upper bounds for three-player games from Section 3 ehttefour-player games,
and we discuss multi-player games. We conclude with theigggjmns in Section 6.



Reachability Parity Parity (J
Player2 |Finite- or infinite-memory strategiesnfinite-memory strategieg Finite-memory strategiels

Playerl Perfect More informed Perfect |More informed Perfect |More informed
Randomized |EXP-c[8] EXP-c [3] Undec. [2, 7] Undec. [2, 7] [EXP-c [9] 2EXP
Pure EXP-c [6] 2EXP-c Undec. [2] | Undec.[2] |EXP-c[9] 2EXP-c

Table 1. Complexity of qualitative analysis (almost-sure winnifa)partial-observation stochas-
tic games with partial observation for player 1 with reagligtand parity objectives. Player 2 has
either perfect observation or more information than playeew results boldfaced). For positive
winning, all entries other than the first (randomized sgit® for player 1 and perfect observa-
tion for player 2) remain the same, and the complexity forfitst entry for positive winning is
PTIME-complete.

2 Definitions

We first consider three-player games with parity objectaes we establish new com-
plexity results in Section 3 that we later extend to fouryplagames in Section 5. In
this section, we also present the related models of altegaite automata that provide
useful technical results, and two-player stochastic gaimeshich our contribution
implies new complexity results.

2.1 Three-player games

GamesGiven alphabetsl; of actions for playei (i = 1, 2, 3), athree-player gamés
a tupleG = (Q, qo, 9) where:
— @ is afinite set of states witty € @ the initial state; and
—0:Q x A1 x Ay x A3 — (@ is a deterministic transition function that, given a
current statey, and actionsi; € Aj, as € Az, az € Az of the players, gives the
successor statg = d(q, a1, as, as).
The games we consider are sometimes caltetturrentoecause all three players need
to choose simultaneously an action to determine a succetser The special class
of turn-basedgames corresponds to the case where in every state, one pksy/the
turn and his sole action determines the successor statar fnaonework, a turn-based
state for played is a statey € @ such that(q, a1, a2, a3) = d(q, a1, ah, al) for all
a1 € A1, ag,ab € Ay, andas, a € As. We define analogously turn-based states for
player2 and playe. A game is turn-based if every state@fis turn-based (for some
player). The class of two-player games is obtained wi¢is a singleton. In a gam@,
givens C Q, a; € Ay, ay € Ay, letpost®(s,ay,az,—) = {¢ € Q| 3q € s-3Jagz €
As: ¢ =0(q,a1,a2,a3)}.

ObservationsFori = 1,2,3, a setO; C 29 of observationgfor playeri) is a par-
tition of @ (i.e., O; is a set of non-empty and non-overlapping subsets)ofind
their union covers)). Letobs; : @ — O; be the function that assigns to each state
q € @ the (unique) observation for playéthat containg,, i.e. such thay € obs;(q).
The functionsobs; are extended to sequences= ¢ ...q, Of states in the natu-
ral way, namelyobs;(p) = obs;(qo)...obs;(¢,). We say that playef is blind if



O; = {Q}, that is playeri has only one observation; playehasperfect informa-
tionif O; = {{q} | ¢ € Q}, that is playet can distinguish each state; and playes

less informedhan player (we also say player 2 is more informed) if for all € O,

there exist®, € O; such thab, C o;.

StrategiesFori = 1,2,3, let ¥; be the set obtrategiess; : O — A; of playeri
that, given a sequence of past observations, give an adiogpldyeri. Equivalently,
we sometimes view a strategy of playeas a functions; : Q+ — A; satisfying
ai(p) = oi(p’) for all p,p’ € Q such thatobs;(p) = obs;(p’), and say that; is
observation-based

OutcomeGiven strategies; € X; (i = 1,2, 3) in G, theoutcome playrom a state;y
is the infinite sequence!*“2:7% = goq; ... such that for allj > 0, we haveg; 1 =

0(gj, a{, aé, a?,;) WherEQg =0i(qo...q;) (fori =1,2,3).

ObjectivesAn objectiveis a set C Q¥ of infinite sequences of states. A plagatis-
fiesthe objectivex if p € .. An objectiveq is visiblefor players if for all p, p’ € Q%,
if p € aandobs;(p) = obs;(p’), thenp’ € «. We consider the following objectives:

— Reachability Given a set] C @ of target states, thesachability objective
Reach(T) requires that a state i be visited at least once, that Reach(7) =
{p=qoqi---|Fk>0:q, €T}

— SafetyGivenasef C ( of target states, theafetyobjectiveSafe(7) requires that
only states irif” be visited, that isSafe(7) = {p =qoq1 - | Vk > 0: ¢, € T }.

— Parity. For a playp = goq1 ... we denote byinf(p) the set of states that occur
infinitely often inp, thatis,Inf(p) = {¢ € Q | Vk > 0-3In > k : ¢, = ¢}. For
de N letp: Q@ — {0,1,...,d} be a priority function, which maps each state
to a nonnegative integer priority. The parity objectRaity(p) requires that the
minimum priority occurring infinitely often be even. FormalParity(p) = {p |
min{p(q) | ¢ € Inf(p)} is every. Parity objectives are a canonical way to express
w-regular objectives [29]. If the priority function is coastt over observations of
playeri, that is for all observations € O, we havep(q) = p(¢’) forall ¢,¢" € ~,
then the parity objectivRarity(p) is visible for player.

Decision problemGiven a gamé&s = (@, g0, d) and an objectivex C Q¥, thethree-
player decision problerns to decide ido; € X1 Voo € Xy-FJog € X3 ¢ P 7% € au

2.2 Related models

The results for the three-player decision problem havet tiginnections and impli-
cations for decision problems on alternating tree autonaat partial-observation
stochastic games that we formally define below.

Trees An X-labeled treéT, V') consists of a prefix-closed SBtC N* (i.e.,ifz-d € T
with z € N* andd € N, thenz € T, and a mappind’” : T' — X' that assigns to each
node ofT" a letter inX. Givenz € N* andd € N such thate - d € T, we callz - d the
successoin directiond of z. The node is theroot of the tree. Aninfinite pathin 7" is



an infinite sequence = d;d- ... of directionsd; € N such that every finite prefix of
mis anodeirl.

Alternating tree automataGiven a parameter € N\ {0}, we consider input trees of
rankk, i.e. trees in which every node has at mosticcessors. Lék] = {0,...,k—1},
and given a finite sdt/, let B*(U) be the set of positive Boolean formulas ol&rthat
is formulas built from elements ify U {true, false} using the Boolean connectives
andV. An alternating tree automatoover alphabel’ is a tupled = (S, s, . 4) where:

— Sis afinite set of states witky € S the initial state; and

—04:8%x X — BY(S x [k]) is a transition function.
Intuitively, the automaton is executed from the initialtstsy and reads the input tree
in a top-down fashion starting from the roatIn states, if a € X' is the letter that
labels the current nodeof the input tree, the behavior of the automaton is given iy th
formulasy = 0.4(s, a). The automaton choosesatisfying assignmemnf ¢, i.e. a set
Z C S x [k] such that the formula is satisfied when the elements®fare replaced by
true, and the elements @b x [k])\ Z are replaced bfalse. Then, for eaclis,,d;) € Z
a copy of the automaton is spawned in stateand proceeds to the node d; of the
input tree. In particular, it requires that d; belongs to the input tree. For example, if
da(s,a) = ((s1,0) A {s2,0)) V ({s3,0) A (s4,1) A (s5, 1)), then the automaton should
either spawn two copies that process the successerimfdirection0 (i.e., the node
x - 0) and that enter the states ands, respectively, or spawn three copies of which
one processes - 0 and enters states, and the other two process- 1 and enter the
statess, andss respectively.

Language and emptiness proble&run of A over aX-labeled input tredT, V) is
a tree(T,,r) labeled by elements df" x S, where a node of, labeled by(z, s)
corresponds to a copy of the automaton processing themoéithe input tree in state
s. Formally, arun of A over an inputtre€T, V') is a(T x S)-labeled tredT,, r) such
thatr(e) = (g,s0) and for ally € T,., if r(y) = (z, s), then the se{(s’,d’) | 3d €
N:r(y-d) = (z-d',s")} is a satisfying assignment féy (s, V(z)). Hence we require
that, given a nodg in T.. labeled by(z, s), there is a satisfying assignmeitC S x [k]
for the formulad 4 (s, a) wherea = V (z) is the letter labeling the current nodef the
input tree, and for all stateg’, d’) € Z there is a (successor) noge d in T;. labeled
by (x - d', s").

Given an accepting conditiop C S“, we say that a rufT,,r) is acceptingif
for all infinite pathsdids ... of T,., the sequence;ss ... such thatr(d;) = (-, s;)
for alli > 0is in p. Thelanguageof A is the setl;(.A) of all input trees of rank
over which there exists an accepting run4fThe emptiness problem for alternating
tree automata is to decide, givehand parametek, whetherL;(A) = @. For details
related to alternating tree automata and the emptines$gmnadee [12, 20].

Two-player partial-observation stochastic gam@s/en alphabet!; of actions, and set
O, of observations (for playerc {1, 2}), atwo-player partial-observation stochastic
game(for brevity, two-player stochastic game) is a tugfe= (Q, qo, §) where@ is
a finite set of stategy, € Q is the initial state, and : Q x 4; x Ay — D(Q) is a
probabilistic transition wher®(Q) is the set of probability distributions: @ — [0, 1]



onQ, such thaEqEQ k(g) = 1. Given a current statgand actions, b for the players,
the transition probability to a successor stgtes 6(q, a, b)(¢').

Observation-based strategies are defined as for threerpimmes. Amoutcome
play from a stateyy under strategies, o5 is an infinite sequence = ¢g apbo q1 - - -
such thatzi =01 (qO e Qi)a b; = Ug((]o .. -Qi)a andé(qi, a;, bi)(Qi+l) > Oforalli > 0.

Qualitative analysisGiven an objectivex that is Borel measurable (all Borel sets in
the Cantor topology and all objectives considered in thjzepare measurable [15]), a
strategy for playerl is almost-sure winningresp. positive winningfor the objective

a from g if for all observation-based strategiesfor player2, we havePry!* (a) = 1
(resp.,Pry 7 (o) > 0) wherePrg!?(-) is the unique probability measure induced
by the natural probability measure on finite prefixes of plays, the product of the
transition probabilities in the prefix).

3 Three-Player Games with Player 1 Less Informed

We consider the three-player (non-stochastic) games dkeifin8ection 2.1. We show
that for reachability and parity objectives the three-plajecision problem is decidable
when playerl is less informed than play&. The problem is EXPSPACE-complete
when playerl is blind, and 2-EXPTIME-complete in general.

Remark 1.0bserve that for three-player (non-stochastic) games thestrategies of
the first two players are fixed we obtain a graph, and in graphfegt-information co-
incides with blind for construction of a path (see [5, Lemrh#éhat counting strategies
that count the number of steps are sufficient which can bereddy a player with no
information). Hence without loss of generality we consitleat player 3 has perfect
observation, and drop the observation for player 3.

Our results for upper bounds are obtained by a reductioneofittee-player game
problem to an equivalent exponential-size partial-obstEzn game with only two play-
ers, which is known to be solvable in EXPTIME for parity olijees, and in PSAPCE
when playerl is blind [8]. Our reduction preserves the number of obséwaat of
player1 (thus if playerl is blind in the three-player game, then playes also blind
in the constructed two-player game). Hence, the 2-EXPTIM& BXPSPACE bounds
follow from this reduction.

Theorem 1 (Upper bounds) Given a three-player gam@ = (Q, qo, §) with playerl
less informed than player and a parity objectivey, the problem of deciding whether
doy € Xy -Vog € Xy - dog € X3 1 pgo7*7% € acan be solved in 2-EXPTIME. If
player1 is blind, then the problem can be solved in EXPSPACE.

Proof. The proof is by a reduction of the decision problem for thpéssrer games to
a decision problem for partial-observation two-player garwith the same objective.
We present the reduction for parity objectives that areblasior player2 (defined by
priority functions that are constant over observations laf/@r 2). The general case
of not necessarily visible parity objectives can be solvsithg a reduction to visible
objectives, as in [5, Section 3].



Given a three-player gant& = (Q, qo, 0) over alphabet of actiond; (i = 1, 2, 3),
and observation®;, O, C 29 for player1 and player, with player1 less informed
than player2, we construct a two-player gamé = (Qu, {qo}, du) over alphabet of
actionsA’, (i = 1,2), and observation®; C 2%# and perfect observation for player 2,
where (intuitive explanations follow):

- Qup={5€29|s£ADANTos€Oy:5C 03};

- All = A; X (2Q X Ay — 02), andA’2 = Ao;

-0, ={{s€Qu|sCo}|o €O} andletobs; : Qy — Of be the
corresponding observation function;

— 8u(s, (a1, f),az) = post©(s,ay,az, —) N f(s,as).

Intuitively, the state spad@y is the set of knowledges of play2about the current
state inG, i.e., the sets of states compatible with an observatioriayfgp2. Along a
play in H, the knowledge of playeZ is updated to represent the set of possible current
states in which the gam@ can be. InH player2 has perfect observation and the role
of player1 in the gameH is to simulate the actions of both playerland player3 in
G. Since playee fixes his strategy before playgiin G, the simulation should not let
player2 know player3’s action, but only the observation that playewill actually see
while playing the game. The actions of playem H are pairs(as, f) € A} where
aq is a simple action of playerin G, andf gives the observatiofi(s, az) received by
player2 after the response of play&to the actioru, of player2 when the knowledge of
player2is s. In H, playerl has partial observation, as he cannot distinguish knoveledg
of player2 that belong to the same observation of player G. The transition relation
updates the knowledges of playzas expected. Note thgd,| = |O}|, and therefore
if player 1 is blind in G then he is blind inHd as well.

Given a visible parity objectivec = Parity(p) wherep : @ — {0,1,...,d} is
constant over observations of playgiet o’ = Parity(p’) wherep’(s) = p(q) for all
g € sands € Qg. Note that the functiop’ is well defined since is a subset of an
observation of playe? and thusp(q) = p(¢’) for all ¢,¢' € s. However, the parity
objectivea’ = Parity(p’) may not be visible to player in G. We show that given a
witness strategy iz we can construct a witness strategyHnand vice-versa. LeL;
be the set of observation-based strategies of plager= 1,2,3) in G, and letX! be
the set of observation-based strategies of player= 1,2) in H. We claim that the
following statements are equivalent:

(1) InG,301 € X1 -Vogy € Xy -FJog € X5 : P € a
(2) InH, 3o} € X -Vohe Xy:p

{;6}2 ed.

The 2-EXPTIME result of the theorem follows from this equérzce because the
game H is at most exponentially larger than the gafie and two-player partial-
observation games with a parity objective can be solved ilPBHKIE, and when
player1 is blind they can be solved in PSPACE [8]. Observe that whaye2 has
perfect information, his observations are singletons &nd no bigger thartz, and an
EXPTIME bound follows in that case.

To show that(1) implies(2), leto; : Of — A; be a strategy for playdrsuch that
for all strategies, : O — A, thereis a strategys : O — As such thapg!-7273 €

a. From oy, we construct an (infinite) DAG over state spa@e x Of with edges



labeled by elements of; x O, defined as follows. The root {{qo}, obsi(qo)). There
is an edge labeled by, 02) € A x O3 from (s, p) to (s, p') if s’ = post¥ (s, a, b, —)N
02 # @ wherea = a1(p), andp’ = p - 0, whereo; € O, is the (unique) observation
of player1 such thato, C o0;. Note that for every node = (s, p) in the DAG, for
all statesg € s, forallb € As, ¢ € As, there is a successaf = (s, p’) of n such
thatd(q,a,b,c) € s’ wherea = o1(p). Consider a perfect-information turn-based
game played over this DAG, between plagecthoosing action$ € A, and player3
choosing observations, € O, resulting in an infinite pathisg, po)(s1,01)... In
the DAG as expected, and that is defined to be winning for playiethe sequence
5081 ... satisfiesa’. We show that in this game, for all strategies of plagdwhich
naturally define functions, : OF — A,), there exists a strategy of play®(a function
f3 1 QuxOf x Ay — OF ) to ensure that the resulting play satisfiésThe argumentis
based or{1) saying that given the strategy is fixed, for all strategies, : Of — A,,
there is a strategys : OF — A3 such thapg!-7>72 € a. Given a strategy for player
in the game over the DAG, we usg to choose observations € O, as follows. We
define a labelling function : Qi x O — @ over the DAG in a top-down fashion
such that\(s, p) € s. First, letA({qo}, obs1(g0)) = qo, and giveni(s, p) = g with
an edge labeled bfp, 02) to (s', '), let A(s', p') = d(q, a, b, c) wherea = o1(p) and
¢ = o3(p). Note that indeed(q, a, b, c) € s’. Now we define a strategy for playar
that, in a nodgs, p) of the DAG, chooses the observatiobss:(d(q, a, b, c)) where
q = M, p), a = o1(p), b is the action chosen by playerat that node (remember
we fixed a strategy for playe), andc = o3(p). SinceA(s, p) € s, it follows that the
resulting play satisfies’ sincepg!-72:7% satisfies.

By determinacy of perfect-information turn-based gamed,[Ih the game over
the DAG there exists a strategy for player3 such that for all playeg strategies,
the outcome play satisfies. Using f3, we construct a strategy, for playerl in H
as follows. First, by a slight abuse of notation, we identifg observations] € O]
with the observatiom; € O; such thatu C o; for all u € o). Forallp € Of,
let o1 (p) = (a,f) wherea = o1(p) and f is defined byf(s,as2) = f3(s,p,a2).
By construction of the DAG and of the strategy, for all strategies of playet in H
the outcome playgs; ... satisfies the parity objective’, and thuss] is a winning
observation-based strategy/ih

To show tha{2) implies(1), lets} be a winning observation-based strategy for the
objectivea’ in H. Consider the DAG over state spa@e; x O with edges labeled by
elements of4, defined as follows. The root {§¢o }, obsi1(¢o)). For all nodegs, p), for
allb € A, there is an edge labeled bjrom (s, p) to (s', p') if s’ = post®(s, a, b, —)N
o2 andp’ = p - 01 whereos = f(s,b) and(a, f) = o} (p), ando; € O, is the (unique)
observation of playet such thato, C 0;. We say that(s’, p’) is theb-successor of
(s, p). Note thatfor ally’ € §', there existg € s andc € Az suchthay’ = 6(q, a, b, ¢).

This DAG mimics the unraveling off unders, and sincer] is a winning strategy,
for all infinite paths(sg, po)(s1,p1) - .. of the DAG, the sequencgs; ... satisfiesy’.

Define the strategy; such thatry(p) = a if 01(p) = (a, f) (again identifying
the observations i®; and ;). To show that(1) holds, fix an arbitrary observation-
based strategy. for player2. The outcome play of; andos in H is the sequence
(s0,p0)(s1,p1) - .. Where(sg, po) is the root, and such that for all > 1, the node



(si, pi) is theb-successor ofs;—1, pi—1) whereb = oo(obsa(sgs1 -..s;—1)) (where
obsy(s;) is naturally defined as the unique observatigne O, such thats; C o).
From this path in the DAG, we construct an infinite pagip; ... in G using Konig's
Lemma [16] as follows. First, it is easy to show by induction ) that for every finite
prefix sgs1 ... s, and for everyp, € s there exists a pathgp; ... px in G such that
p; € s; forall 0 < i < k. Note thatpg = ¢o sincesp = {qo} and that by definition of
the DAG, for eachs;.1 (i = 0,...,k — 1), there exist € A1, b € Ay, andoy € 09
such thak;,; = post©(s;,a, b, —) Noy. Hence, givem; 1 € s;, 1, there exist; € A3
andp; € s; such that(p;, a, b, ¢;) = piy1-

Arranging all these finite paths in a tree, we obtain an irdifilbitely-branching
tree which by Kdnig's Lemma [16] contains an infinite brangh; ... that is a path
in G and such thaf; € s; for all i« > 0. Now we can construct the strategy such
thatos(po ... pi) = ¢i. Sincesps; ... satisfiex/, it follows thatpg1+72:78 = pops . . .
satisfiesy, which completes the proof. a0

Theorem 2 (Lower bounds).Given a three-player gam@ = (Q, qo, J) with playerl
less informed than playe?r and a reachability objectiver, the problem of deciding
whetherdo, € X - Voo € Yy - Jog € X3 - Par7®% € is 2-EXPTIME-hard. If
playerl is blind (and even when player 2 is also blind), then the probis EXPSPACE-
hard.

Proof. The proof of 2-EXPTIME-hardness is obtained by a polynortirak reduc-
tion of the membership problem for exponential-spalternating Turing machines to
the three-player problem. The same reduction for the spemsa of exponential-space
nondeterministiduring machines shows EXPSPACE-hardness when plaigeblind
(because our reduction yields a game in which player blind when we start from
a nondeterministic Turing machine). The membership prolft Turing machines is
to decide, given a Turing machirdd and a finite wordw, whetherM acceptsw. The
membership problem is 2-EXPTIME-complete for exponergfzce alternating Tur-
ing machines, and EXPSPACE-complete for exponentialespacdeterministic Tur-
ing machines [21].

An alternating Turing machine is a tupld = (Qv,Qn, X, I, A, o, Gace, Gre;)
where the state spacg= Q. U Q. consists of the sap,, of or-states, and the sé,
of and-states. The input alphabefisthe tape alphabet 8 = Y U{#} where# is the
blank symbol. The initial state i), the accepting state ig,.., and the rejecting state
iS gre;. The transition relation igl C @ x I' x @ x I' x {—1, 1}, where a transition
(¢,7,4',7',d) € A intuitively means that, given the machine is in stafeand the
symbol under the tape headijsthe machine can move to state replace the symbol
under the tape head by, and move the tape head to the neighbor cell in direcfion
A configurationc of M is a sequence € (I"' U (Q x I'))“ with exactly one symbol in
Q@ x I',which indicates the current state of the machine and thié@osf the tape head.
The initial configuration o/ onw = agay ... a, 1Sco = (go, ap) ar-ag -« an - #.
Given the initial configuration o/ onw, it is routine to define the execution trees of
M where at least one successor of each configuration in amatr-sind all successors
of the configurations in an and-state are present (and wenasthat all branches reach
eithergq.. Or gr;), and to say thad/ acceptsw if all branches of some execution tree
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reachq,... Note thatQ), = @ for nondeterministic Turing machines, and in that case
the execution tree reduces to a single path. A Turing madhineses exponential space
if for all words w, all configurations in the execution &f onw contain at mos©(»D
non-blank symbols.

We present the key steps of our reduction from alternatinghgunachines. Given
a Turing machine/ and a wordw, we construct a three-player game with reachabil-
ity objective in which playenl and player2 have to simulate the execution 8 on
w, and playerl has to announce the successive configurations and transsitifothe
machine along the execution. Playjleannounces configurations one symbol at a time,
thus the alphabet of playéris A; = I'U (Q x I') U A. In an initialization phase,
the transition relation of the game forces playao announce the initial configuration
¢o (this can be done witl®(n) states in the game, where= |w|). Then, the game
proceeds to a loop where playekeeps announcing symbols of configurations. At all
times along the execution, some finite information is staretthe finite state space of
the game: a window of the last three symhalszo, z3 announced by player, as well
as the last symbdlead € @ x I" announced by playdr(that indicates the current ma-
chine state and the position of the tape head). After thmliziation phase, we should
havez; = zo = z3 = # andhead = (qo, ap). When playerl has announced a full
configuration, he moves to a state of the game where eithgerplaor player2 has
to announce a transition of the machine: fiead = (p, a), if p € @\, then playerl
chooses the next transition, andife Q A, then player2 chooses. Note that the tran-
sitions chosen by playex are visible to playei and this is the only information that
playerl observes. Hence playgiis less informed than play@t and both playet and
player2 are blind when the machine is nondeterministic. If a tramsitg, v, ¢, 7', d)
is chosen by player, and eithep # g or a # ~, then playet loses (i.e., a sink state is
reached to let player lose, and the target state of the reachability objectiveashed
to let player2 lose). If at some point playdrannounces a symb@b, a) with p = g,ce,
then player wins the game.

The role of player is to check that playet faithfully simulates the execution of
the Turing machine, and correctly announces the configumsitiAfter every announce-
ment of a symbol by playet, the game offers the possibility to playgto compare
this symbol with the symbol at the same position in the nerfigaration. We say that
player2 checks(and whether playe2 checks or not is not visible to playé), and
the checked symbol is stored as Note that playeR can be blind to check because
player2 fixes his strategy after playeér The windowz, , z5, z3 stored in the state space
of the game provides enough information to update the midellez, in the next con-
figuration, and it allows the game to verify the check of plieHowever, the distance
(in number of steps) between the same position in two conisecconfigurations is
exponential (sag” for simplicity), and the state space of the game is not largaigh
to check that such a distance exists between the two symbwigared by playe?. We
use playeB to check that playe?2 makes a comparison at the correct position. When
player2 decides to check, he has to count froro 2" by announcing after every sym-
bol of playerl a sequence af bits, initially all zeros (again, this can be enforced by
the structure of the game with(n) states). It is then the responsibility of play&to
check that playe? counts correctly. To check this, play&ican at any time choose a
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bit positionp € {0,...,n — 1} and store the bit valug, announced by player at
positionp. The value ofb, andp is not visible to playeR. While player2 announces
the bitsby41,...,b,—1 atpositionp + 1, ..., n — 1, the finite state of the game is used
to flip the value of,, if all bits b,+1, ..., b,_1 are equal td, hence updating, to the
value of thep-th bit in what should be the next announcement of pl&yén the next
bit sequence announced by playeithe p-th bit is compared wittb,. If they match,
then the game goes to a sink state (as playes faithfully counted), and if they differ
then the game goes to the target state (as pajecaught cheating). It can be shown
that this can be enforced by the structure of the game @ith?) states, that i©)(n)
states for each value of As before, whether playek checks or not is not visible to
player2.

Note that the checks of play@rand player3 are one-shot: the game will be over
(either in a sink or target state) when the check is finishéds & enough to ensure a
faithful simulation by playeil, and a faithful counting by playe, becausé1) partial
observation allows to hide to a player the time when a checkisg and(2) player2
fixes his strategy after playénand playes after player), thus they can decide to run
a check exactly when playér(or player2) is not faithful. This ensures that playéer
does not win if he does not simulate the executiodbbn w, and that playe? does
not win if he does not count correctly.

Hence this reduction ensures tiidtacceptsv if and only if the answer to the three-
player game problem is &5, where the reachability objective is satisfied if player
eventually announces that the machine has reaghedthat is if M acceptaw), or if
player2 cheats in counting, which can be detected by pl&yer a

4 Three-Player Games with Player 1 Perfect

When player 2 is less informed than player 1, we show thaétpiayer games get much
more complicated (even in the special case where plakias perfect information). We
note that for reachability objectives, the three-playerisien problem is equivalent
to the qualitative analysis of positive winning in two-péaystochastic games, and we
show that the techniques developed in the analysis of tageplstochastic games can
be extended to solve the three-player decision problemgaaitbty objectives as well.
For reachability objectives, the three-player decisionbfegm is equivalent to the
problem of positive winning in two-player stochastic gamd®ere the third player is
replaced by a probabilistic choice over the action set wittiaum probability. Intu-
itively, after playerl and player2 fixes their strategy, the fact that play&ican con-
struct a (finite) path to the target set is equivalent to tieetfaat such a path has positive
probability when the choices of play8rare replaced by uniform probabilistic transi-
tions. Given a three-player ganig= (Q, qo, 9), let Uniform(G) = (Q, g0, ¢’) be the
two-player partial-observatiostochastiggame (with same state space, action sets, and

observations for player and playe) whered’(q, a1, a;)(¢') = |{a‘°"5(q’a‘1£2"a3):q i

foralla; € Ay, a0 € Az, andq, ¢’ € Q. Formally, the equivalence result is presented in
Lemma 1, and the equivalence holds for all three-player gamat restricted to three-
player games where player 1 has perfect information). Heweve will use Lemma 1
to establish results for three-player games where playesiphbrfect information.
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Lemma 1. Given a three-player gam@ and a reachability objective, the answer to
the three-player decision problem fo&, o) is YES if and only if playerl is positive
winning fora in the two-player partial-observation stochastic gabhéform(G).

Reachability objectivesEven in the special case where playdras perfect informa-
tion, and for reachability objectives, non-elementary rognis necessary in general for
playerl to win in three-player games. This result follows from Leminand from the
result of [6, Example 4.2 Journal version] showing that etementary memory is nec-
essary to win with positive probability in two-player stashic games. It also follows
from Lemma 1 and the result of [6, Corollary 4.9 Journal varthat the three-player
decision problem for reachability games is decidable in-al@mentary time.

Safety objectivesWe show that the three-player decision problem can be sdbred
games with a safety objective when playdras perfect information. The proofis using
the counting abstractiorf [6, Section 4.2 Journal version] and shows that the answer
to the three-player decision problem for safety objecfué&(7) is YES if and only

if there exists a winning strategy in the two-player cougiabstraction game with the
safety objective to visit only counting functions (i.e.sestially tuples of natural num-
bers) with support contained in the target statesntuitively, the counting abstraction
is as follows: with every knowledge of player 2 we store aéugficounters, one for each
state in the knowledge. The counters denote the number sitpeslistinct paths to the
states of the knowledge, and the abstraction treats la@egnalues as infinite (value
w). The counting-abstraction game is monotone with regarttsst natural partial order
over counting functions, and therefore it is well-struetliand can be solved by con-
structing a self-covering unraveling tree, i.e. a tree imolwlthe successors of a node are
constructed only if this node has no greater ancestor. Togepties of well-structured
systems (well-quasi-ordering and Konig's Lemma) ensheg this tree is finite, and
that there exists a strategy to ensure only supports catamnthe target stateg are
visited if and only if there exists a winning strategy in thoeinting-abstraction game (in
a leaf of the tree, one can copy the strategy played in a greatestor). It follows that
the three-player decision problem for safety games is et the problem of solving
a safety game over this finite tree.

Theorem 3. When player 1 has perfect information, the three-playeisiea problem
is decidable for both reachability and safety games, anddachability games memory
of size non-elementary is necessary in general for player

5 Four-Player Games

We show that the results presented for three-player ganteaegxo games with four
players (the fourth player is universal and perfectly infed). The definition of four-
player games and related notions is a straightforward eidamof Section 2.1.

In a four-player game with playdrless informed than playe;, and perfect infor-
mation for both playes and player, consider théour-player decision problemwhich
istodecideifdo; € X -Vo, € Xy-Joz € Y3-Vou € Xy : Par 77 € for a parity
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objectivea. Since playeB and playerl have perfect information, we assume without
loss of generality that the game is turn-based for them,isttaere is a partition of the
state space) into two sets)s and@Q4 (where@ = Qs U Q4) such that the transition
functionis the union ofs : Q3 x A; x Ao x A3 — Q anddy : Q4 x Ay x Aa x Ay — Q.
Strategies and outcomes are defined analogously to thagergyames. A strategy of
player: € {3,4} is of the forme; : Q* - Q; — A;.

By determinacy of perfect-information turn-based gameth vgiountable state
space [18], the negation of the four-player decision pnobie equivalent tovo; €
2y -dog € Xy - oy € Xy Vo3 € X3 1 pgl 7277 € . Once the strategies and
oo are fixed, the conditiodo, € Xy - Vo3 € X5 : poL 7% € arcan be viewed as
the membership problem for a tré&:?2 in the language of an alternating parity tree
automaton [9] with state spacg wheret?'?2 is the (A; x As)-labeled tregT,V)
whereT = O andV (p) = (o1(obs;(p)), o2(p)) forall p € T.

By the results of [12], if there exists an acceptidd) x Q)-labeled run tre¢T., )
for an input treg?::?2 in an alternating parity tree automaton, then there exigtgiam-
orylessaccepting run tree, that is such that for all nodeg € T, such thaiz| = |y|
andr(z) = r(y), the subtrees df’. rooted atr andy are isomorphic. Since the mem-
bership problem is equivalent to a two-player parity gamey@dl on the structure of
the alternating automaton, a memoryless accepting rurcénede viewed as a winning
strategyos : OF x Q — Ay, or equivalentlyr, : OF — (Q — Ay) such that for all
strategiesrs : 1. — As, the resulting infinite branch in the tr&é satisfies the parity
objectivea.

It follows from this that the (negation of the) original qtiea Vo, € X'y -Jos € Xs-
Joy € Yy-Voz € X3 1 pgl 72939 € s equivalenttodo; € Xy - 3024 € Yoy Vo3 €
X3 1 pgl7298 € aowhereXyy = (’); — (A2 x (Q — Ay)) is the set of strategies of
a player (call it player 24) with observatiois and action setl, = As x (Q — A4),
and the outcome{ -2+ is defined as expected in a three-player game (played by
playerl, player24, and playeB) with transition functiony’ : Q@ x A; x A, x A3 — Q
defined byo'(q, a1, (a2, f), as) = 6(q, ax, az, as, f(q)).

Hence the original question (and its negation) for fouryplayames reduces in poly-
nomial time to solving a three-player game with the first plagss informed than the
second player. Hardness follows from the special case eétptayer games.

Theorem 4. The four-player decision problem with playér less informed than
player 2, and perfect information for both playey and player4 is 2-EXPTIME-
complete for parity objectives.

Remark 2 (Combinations of strategy quantificatiod® now discuss the various pos-
sibilities of strategy quantifiers and information of theysrs in multi-player games.
First, if there are two existential (resp., universal) gliesywith incomparable infor-
mation, then the decision question is undecidable [22,234 if there is a sequence
of existential (resp., universal) quantification over &gées players such that the in-
formation of the players form a chain (i.e., in the sequerfaguantification over the
players, let the players b, is, .. ., i, such that; is more informed thams, i, more
informed thani3 and so on), then with repeated subset construction, theesegican
be reduced to one quantification [23,17,19]. Note howe\arifithere is a quantifier
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alternation between existential and universal, then elvéreiinformation may form a
chain, subset construction might not be sufficient: for epdemif player 1 is perfect
and player 2 has partial-information, non-elementary nrgmught be necessary (as
shown in Section 4). We now discuss the various possilslidestrategy quantifica-
tion in four-player games. Without loss of generality we sider that the first strategy
quantifier is existential. The above argument for sequeficgpiantifiers (either unde-
cidability with incomparable information or the sequeneguces to one) shows that we
only need to consider the following strategy quantificatiér/,35V4, where the sub-
scripts denote the quantification over strategies for thpeaetive player. First, note that
once the strategies of the first three players are fixed weroatgraph, and similar to
Remark 1 without loss of generality we consider that playbag perfect observation.
We now consider the possible cases for player 3 in presenuaydr 4.

1. Perfect observationThe case when player 3 has perfect observation has been
solved in the main paper (results of Section 5).

2. Partial observationWe now consider the case when player 3 has partial observa-
tion. If player 2 is less informed than player 1, then the feobis at least as hard as
the problem considered in Section 4. If player 3 is less mfet than player 2, then
even in the absence of player 1, the problem is as hard as ¢fa¢iowe of the ques-
tion considered in Section 4 (where first a more informed g@latays, followed
by a less informed player, just the strategy quantifiersvaegVv, as compared to
3,V233 considered in Section 4). Finally, if player 1 is less infedrthan player 2,
and player 2 is less informed than player 3, then we apply onstruction of Sec-
tion 3 twice and obtain a double exponential size two-plgyeatial-observation
game which can be solved in 3-EXPTIME. Recall that in abserigdayer 4, by
Remark 1 whether player 3 has partial or perfect informatioes not matter and
we obtain a 2-EXPTIME upper bound; whereas in presence gepk, we obtain
a 3-EXPTIME upper bound if player 3 has partial informatibaot(more informed
than player), and a 2-EXPTIME upper bound if player 3 has perfect infaiora
(Theorem 4).

6 Applications

We now discuss applications of our results in the contextaftesis and qualitative
analysis of two-player partial-observation stochastimgs.

Sequential synthesis.The sequential synthesiproblem consists of an open sys-
tem of partially implemented modules (with possible notedainism or choices)
My, M, ..., M, that need to be refined (i.e., the choices determined bygies) such
that the composite system after refinement satisfy a spaiific The system is open
in the sense that after the refinement the composite systeradive and interact with
an environment. Consider the problem where first d\égt. . ., M}, of modules are re-
fined, then a seM}. 1, ..., M, are refined by an external implementor, and finally the
remaining set of modules are refined. In other words, the hesdare refined sequen-
tially: first a set of modules whose refinement can be cortipthen a set of modules
whose refinement cannot be controlled as they are implemienternally, and finally
the remaining set of modules. If the refinements of modigs. . . , M, do not have
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access to private variables of the remaining modules werohtgartial-observation
game with four players: the first (existential) player cepends to the refinement of
modulesMy, . .., My, the second (universal) player corresponds to the refineafen
modulesMy1, . .., My, the third (existential) player corresponds to the refinenoé
the remaining modules, and the fourth (adversarial) plég/éne environment. If the
second player has access to all the variables visible tor$tepfayer, then player 1 is
less informed.

Two-player partial-observation stochastic gamesOur results for four-player games
imply new complexity results for two-player stochastic gemFor qualitative analysis
(positive and almost-sure winning) under finite-memonratsgies for the players the
following reduction has been established in [9, Lemma 1 (semma 2.1 of the arxiv
version): the probabilistic transition function can beleged by a turn-based gadget
consisting of two perfect-observation players, one angelistential) and one demonic
(universal). The turn-based gadget is the same as usedrfecpebservation stochastic
games [4,10]. In [9], only the special case of perfect oketesm for player 2 was con-
sidered, and hence the problem reduced to three-playergyatrere only player 1 has
partial observation and the other two players have perfes¢ation. In case where
player 2 has partial observation, the reduction of [9] regpiiwo perfect-observation
players, and gives the problem of four-player games (wittfege observation for
player 3 and player 4). Hence when player 1 is less informedybtain a 2-EXPTIME
upper bound from Theorem 4, and obtain a 2-EXPTIME lower lidoom Theorem 2
since the three-player games problem with player 1 lessrimgd for reachability ob-
jectives coincides witlpositivewinning for two-player partial-observation stochastic
games (Lemma 1).

For almost-surewinning, a 2-EXPTIME lower bound can also be obtained by an
adaptation of the proof of Theorem 2. We use the same redufttion exponential-
space alternating Turing machines, with the following des (i) the third player is
replaced by a uniform probability distribution over playys moves, thus the reduction
is now to two-player partial-observation stochastic gani&s instead of reaching a
sink state when playeXdetects a mistake in the sequence of configurations anndunce
by playerl, the game restarts in the initial state; thus the target stithe reachability
objective is not reached, but playérgets another chance to faithfully simulate the
Turing machine.

It follows that if the Turing machine accepts, then playéras an almost-sure win-
ning strategy by faithfully simulating the execution. lede either(a) player2 never
checks, or checks and counts correctly, and then playéns since no mistake is de-
tected, or(b) player2 checks and cheats counting, and then pl&yesr caught with
positive probability (playei wins), and with probability smaller thahthe counting
cheat is not detected and thus possibly a (fake) mismatdreisytmbol announced by
playerl is detected. Then the game restarts. Hence in all casediaitiely many steps,
either player wins with (fixed) positive probability, or the game restaltt$ollows that
playerl wins the game with probability.

If the Turing machine rejects, then playercannot win by a faithful simulation
of the execution, and thus he should cheat. The strategyagep? is then to check
and to count correctly, ensuring that the target state oféhehability objective is not
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reached, and the game restarts. Hence for all strategiday#ry, there is a strategy
of player2 to always avoid the target state (with probabilify and thus playet can-
not win almost-surely (he wins with probability). This completes the proof of the
reduction for almost-sure winning.

Thus we obtain the following result.

Theorem 5. The qualitative analysis problems (almost-sure and pgsitivinning)
for two-player partial-observation stochastic parity gasnwhere player 1 is less in-
formed than player 2, under finite-memory strategies fohiptayers, are 2-EXPTIME-
complete.

Remark 3.Note that the lower bounds for Theorem 5 are establishedearhrability
objectives. Moreover, it was shown in [6, Section 5] thatcfoalitative analysis of two-
player partial-observation stochastic games with reaitihyabbjectives, finite-memory
strategies suffice, i.e., if there is a strategy to ensurestisure (resp. positive) win-
ning, then there is a finite-memory strategy. Thus the rexaflfTheorem 5 hold for
reachability objectives even without the restriction ofttrmemory strategies.
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