
Tractable inference systems: an extension with a
deducibility predicate

Hubert Comon-Lundh1, Véronique Cortier2, Guillaume Scerri12

1 LSV, CNRS & ENS Cachan, France
2 LORIA, CNRS, France

Abstract. The main contribution of the paper is a PTIME decision
procedure for the satisfiability problem in a class of first-order Horn
clauses. Our result is an extension of the tractable classes of Horn clauses
of Basin & Ganzinger in several respects. For instance, our clauses may
contain atomic formulas S ` t where ` is a predicate symbol and S
is a finite set of terms instead of a term. ` is used to represent any
possible computation of an attacker, given a set of messages S. The class
of clauses that we consider encompasses the clauses designed by Bana &
Comon-Lundh for security proofs of protocols in a computational model.
Because of the (variadic) ` predicate symbol, we cannot use ordered res-
olution strategies only, as in Basin & Ganzinger: given S ` t, we must
avoid computing S′ ` t for all subsets S′ of S. Instead, we design PTIME
entailment procedures for increasingly expressive fragments, such proce-
dures being used as oracles for the next fragment.
Finally, we obtain a PTIME procedure for arbitrary ground clauses and
saturated Horn clauses (as in Basin & Ganzinger), together with a par-
ticular class of (non saturated) Horn clauses with the ` predicate and
constraints (which are necessary to cover the application).

1 Introduction

1.1 The application context

The design of automated security proofs is a topic extensively studied for over
20 years. One problem that was raised about 12 years ago is the validity (or the
scope) of such proofs. More specifically, for most of the automatic security proofs
messages are abstracted by terms and the attackers capabilities are restricted to
a specific set of operations. In contrast, modern cryptography typically consid-
ers attackers that can perform any computation that does not require too much
time (say, in probabilistic polynomial time). This includes of course some com-
putations that are not explicitly specified. This issue has been first addressed by
M. Abadi and P. Rogaway [?], followed by many authors. The idea is to prove
that the symbolic formal model is sound with respect to the more concrete com-
putational model: if there is no attack in the symbolic model, then there is no
attack in the computational model, except with negligible probability. There are
several such soundness proofs, for various primitives and in various contexts (see

e.g. [?,?,?] to cite only a few). However, all these results require heavy proofs
and assume strong hypotheses, some of which are not quite realistic. Typical
examples of unrealistic assumptions include: a key cycle is never created, or the
attacker does use his own keys.

These difficulties lead to try to prove the security protocols directly in the
computational model. For instance CryptoVerif [?] or Easycrypt [?] are de-
signed in this spirit. The proofs have however to account for probability distri-
butions computations, attacker’s time computation, and are relatively difficult,
often requiring user interactions. We study here an alternative approach pre-
sented in [?] which consists in specifying formally what the attacker cannot do.
Each axiom in such a specification can be a consequence of an assumption on
the primitives, which yields the soundness of the model by construction. The
drawback is however the proof automation in this model: there was no evidence
that this is possible in a reasonably efficient way. This is the problem that we
want to address in this paper.

In the model of [?], transitions of the system are possible, as soon as they do
not contradict the axioms. Hence, an attack consists in a sequence of attacker’s
actions, that is consistent with the axioms and the negation of the security
property. Conversely, if all (symbolic) transition sequences yield a formula, which
is inconsistent with the axioms and the negation of the security property, then
the protocol is secure, for any attacker, in any model that satisfies the axioms.
The clauses make use of a deducibility predicate `, whose interpretation is not
fixed: it stands for any attacker’s computation. In other words, S ` h states that
the attacker must be able to compute h from his knowledge at this stage.

In summary, checking for cryptographic security amounts to checking the
satisfiability of a finite set of ground formulas Φ together with axioms A (which
are Horn clauses) and the negation of the security property π (a ground fact).
Since, in practice, this satisfiability check has to be performed for any interleaving
of (symbolic) actions, it must be efficiently performed. Fortunately, the formulas
are not arbitrary first-order formulas. We introduce them informally below.

– Φ contains only literals (positive or negative). We actually prove that satis-
fiability is in PTIME as soon as Φ only contains (ground) Horn clauses.

– A could be arbitrary, in principle, provided that it is consistent with π. In
practice, we may assume that A∪{π} is a finite set of (possibly constrained)
Horn clauses with equality (see [?] for a complete example). A typical exam-
ple of an axiom (a consequence of IND-CCA, see [?]) is the secrecy axiom

∀X,x, y.
[
X; enc(x, pk) ` n(y) → X ` n(y)

]
‖ sk /∈ X

The expression n(y) represents a function that returns a random number.
The formula states that the encryption of x does not help in deducing the
nonce n(y), unless the decryption key sk appears as a plain text of some
term in X.

The problem that we consider in this paper is then the following one: when
is such a satisfiability check tractable?

1.2 Difficulties

Following the approach of D. Mc Allester [?], D. Basin and H. Ganzinger [?]
show that, if a set of Horn clauses is saturated, with respect to a well suited
ordering and a well suited notion of redundancy, then the associated inference
system is tractable. The main restriction in this paper is on the ordering with
respect to which the clauses have to be saturated: given a ground term t, there
should be only polynomially many terms smaller than t. (The subterm ordering,
is an example. The term embedding does not satisfy this property).

However, the Horn clauses derived from security assumptions are beyond the
scope of these results for several reasons that we describe below.

– The deducibility predicate ` can be seen as a variadic predicate symbol,
whose arguments (except the last one) are unordered. This is a problem,
since Basin and Ganzinger’s method yields an NP decision procedure with
such a predicate: even if A is saturated (modulo the set axioms for the left
part of the ` predicate), when we use A to reduce a ground atom S ` t,
potentially all subsets of S will be considered (see Section 3 for an example).

– Axioms (i.e. Horn clauses) are constrained. A priori, this is not an obstacle
to the Basin and Ganzinger procedure, as the constraints can be checked on
each superposition between an axiom and a ground clause. However, the very
notion of saturation of a set of constrained clauses is an issue (as reported
for instance in [?] for basic strategies or [?] for order constraints). In short:
we cannot assume our set of axioms to be saturated.

– Clauses contain an equality predicate. This is not too tricky, since we may
assume that A does not contain any equality. Hence equalities appear only
as ground literals. We can then easily extend Basin and Ganzinger algorithm
to clauses modulo a ground equational theory.

1.3 Overview of the results and proofs

Including a variadic predicate. We consider sets of ground Horn clauses with
equality, whose atomic formulas may (also) be S ` t where S is a finite set of
(ground) terms and t is a ground term, together with a saturated set of clauses
A with no deducibility predicate and the following set of clauses A0:

A0 =


X ` x→ X; y ` x weakening

X ` x, Y ;x ` y → X;Y ` y transitivity
→ x ` x reflexivity

X1 ` x1, . . . , Xn ` xn → X1; . . . ;Xn ` f(x1, . . . , xn) f function symbol

Note that the left argument of ` is a set. We write X;x for X ∪ {x} and X;Y
for X ∪ Y and we compute modulo the set properties.

We prove first that satisfiability of such a set of clauses is in PTIME, therefore
extending Basin and Ganzinger result, on the one hand with equalities (this is
not the difficult part) and on the other hand with the deducibility predicate.

The main idea then is to use another layer of the ground Horn clauses en-
tailment problem: given S1 ` t1, . . . , Sn ` tn, S ` t, whether S1 ` t1, . . . , Sn ` tn
entails S ` t can be solved in PTIME. This is done by transforming literals
S ` t into clauses S → t. Since the resulting clauses do not contain ` anymore,
this can be used as an oracle in a (modified) ground Horn clauses entailment
problem.

Adding axioms on the deducibility predicate. The previous result is not sufficient
for our purpose as, for instance, simple axioms such as secrecy (provided in
Section 1.1) cannot be expressed in the considered fragment.

We therefore extend the previous results, adding formulas of the form

S ` x, S;u(x) ` t(y) → S ` t(y)

S;u(x) ` v(y) → S ` v(y)

These formulas are relevant for our application. Indeed, the secrecy axiom
described in Section 1.1 is an axiom of the second form. The axioms of the first
form are useful to express e.g. non-malleability of encryption:

∀X,x, y. X ` x, X; dec(x, k) ` n(y) → X ` n(y) ‖ P (x)

The decryption of a deducible message x does not help to learn a nonce n(y),
provided that x does not appear as subterm of X, which can be encoded in a
predicate P .

We show again in this case that the satisfiability is in PTIME. The first
idea consists in seeing these clauses as new inference rules. For instance the first
above axiom can be seen as a generalized cut (it is a cut when u(x) = x). As
before, we first consider the entailment problem for deduction atomic formulas,
which in turn can be seen as an entailment problem for Horn clauses. This can
also be easily reduced to the problem of deducing the empty clause.

We design a complete strategy for this extended deduction system for which
the proof search is in PTIME. Let us explain how it works. With the usual
cut rule (and not the extended one above), whether the empty clause can be
derived, can be decided in PTIME using a unit strategy. This is not the case
with an extended cut rule. However, introducing some new rules and additional
syntactic constructions, we design a proof system, whose expressive power is the
same as the original proof system, and for which the unit strategy is complete,
yielding a PTIME decision procedure. In other words, our strategy, that cannot
be explained as a local strategy of application, can be reduced to a unit strategy,
thanks to some memorization.

Adding constraints. Our application case requires to consider constraints, typ-
ically expressing that some term does not occur in the left side of a deduction
relation. Such constraints have good stability properties: if they are satisfied by
two sets of literals, then they are satisfied by their union and, if a constraint is
satisfied by a set of literals S, then it is satisfied by any subset of S. Our main

restriction is however that there are only a fixed set of possible constraints. We
show again that the satisfiability is in PTIME.

We cannot simply use the previous strategy, checking that constraints are
satisfied whenever we need to apply them. The extended deduction system of
the previous section is proved to be complete by a proof transformation that may
not preserve constraint satisfaction. We therefore refine the strategy, memorizing
additional information in the formulas: on the one hand, we store the constraints
that are necessarily satisfied by all instances of the clause (this is inherited in the
deduction rules) and, on the other hand, the constraints that have to be satisfied
in the remainder of the proofs. Using this new syntax and inference rules, we
show that they do not increase the expressiveness and yet that the unit strategy
is refutation complete for these new rules. This shows the PTIME membership.

In the next step, we show that the entailment problem is decidable in PTIME
in this new syntax. We need however to memorize a third component, which
depends on the instance of the entailment problem.

Final result. From the previous paragraphs, we can build a PTIME entailment
algorithm which, given S1 ` t1 . . . Sn ` tn, S ` t and clauses

A1 =

{
S ` x, S;ui(x) ` t(y) → S ` t(y) ‖ Γi

S; sj(x) ` v(y) → S ` v(y) ‖ ∆j

where Γi, ∆j are finite sets of constraints, decides in PTIME whether S1 `
t1, . . . , Sn ` tn, A1, A0,A |= S ` t.

This algorithm can be used as an oracle in a variant of the Basin and
Ganzinger algorithm, to decide the satisfiability of a set of clauses including for-
mulas extending A0, A1 together with ground clauses with equality. Altogether,
we obtain a PTIME procedure for arbitrary ground clauses and saturated Horn
clauses (as in Basin & Ganzinger), together with the aforementioned clauses.
This is exactly what we needed for our application, that is checking satisfiability
of clauses corresponding to the computational security of a protocol.

Beyond our tractability results, we hope that our techniques and ideas of
memorization can be reused in other contexts for the design of efficient strategies.

2 Formal setting

Let F be a finite set of function symbols (together with their arity) and P be
a finite set of predicate symbols together with their arity. T (F) is the set of
ground terms built on F (which is assumed to contain at least one constant)
and T (F ,X) is the set of terms built on F and a set of variable symbols X . We
also use set variables (written using upper case letters X,Y, Z, ...) ranging in a
set SX and a function symbol, denoted by a semicolon, for set union. Extended
terms ET (F ,X ,SX) are expressions s1; . . . ; sn where si ∈ T (F ,X) ∪ SX . As
a shortcut, when n = 0 in the previous definition we denote the extended term
as ∅. A basic ordering is an ordering on terms, which is : (1) Compatible with
substitutions and (2) such that, for every ground term t, the number of terms

smaller than t is polynomial in the size of t. (An example of such an ordering is
the subterm ordering).

Atomic formulas are of the following forms:

– P (t1, . . . , tn) where P ∈ P and t1, . . . , tn ∈ T (F ,X)
– t1 = t2 where t1, t2 ∈ T (F ,X)
– S ` t where t ∈ T (F ,X) and S ∈ ET (F ,X ,SX).

We consider clauses that are built on these atomic formulas. The axioms for the
set theory ACIN (associativity, commutativity, idempotence and neutral element
∅) are implicitly assumed without mention on the left side of the `. As usual,
Horn clauses are clauses with at most one positive literal.

Given an extended term S and a substitution σ, mapping variables of SX
to finite subsets of T (F) and variables of X to terms in T (F), Sσ is defined by
∅σ = ∅, (s;S)σ = {sσ}∪Sσ if s ∈ T (F ,X), and (X;S)σ = Xσ∪Sσ if X ∈ SX .

3 Tractability of deducibility axioms

We first consider the consistency problem of a very specific case: let C be a set
of ground clauses built on the deducibility predicate only. Is C ∪ {→ X;x `
x, X ` x → X; y ` x, X ` x, X;x ` y → X ` y} consistent? (We call
respectively r(eflexivity), w(eakening) and t(ransitivity) the three last clauses).

Consider for instance a ground clause a1, . . . , an ` a →⊥. If we simply use
a unit resolution strategy (which is refutation complete for Horn clauses), this
single clause, together with the weakening clause, may generate all unit clauses
S ` a →⊥ where S ⊆ {a1, . . . , an}. This should be avoided since we seek for a
polynomial time algorithm. Similar problems occur with transitivity, if we try to
use binary resolution with a simple strategy. Here is a more concrete example.

Example 1. Let C = {a1; a2; a3`a0 →⊥, → a1; a4`a0, → a2`a4}. C∪{w, t}
is provably unsatisfiable using binary resolution modulo ACIN only.

→ a1; a4`a0 X1`x1 → X1; y1`x1
→ a1; a4; y1`a0 X2`x2, X2;x2`y2 → X2`y2

a1; y1`a4 → a1; y1`a0
with unifiers X1 = a1; a4, X2 = a1; y1, x1 = a0, x2 = a4 and y2 = a0

a1; y1`a4 → a1; y1`a0

→ a2`a4 X3`x3 → X; y3`x3
→ a2; y3`a4

→ a1; a2`a0
with unifiers X3 = a2, y1 = a2 and y3 = a1

and

→ a1; a2 ` a0 X4 ` x4 → X4; y4 ` x4
→ a1; a2; y4 ` a0 a1; a2; a3 ` a0 →⊥

⊥

with unifiers X4 = a1; a2, x4 = a0 and y4 = a3.
This derivation introduces the clause → a1; a2 ` a0, where a1; a2 is a new

set (i.e. it does not appear in the initial sets). This is actually unavoidable: any
derivation of the empty clause requires as an intermediate step the derivation of
either → a1; a2 ` a0 or a1; a4; a3 ` a0 →⊥. Both of them involve sets that are
not in the initial class.

However if we move from the object level to the meta-level, viewing weakening
and transitivity as inference rules and deducibility atoms as clauses, we can at
least solve this very particular case. More precisely, consider the inference system:

R
X;x ` x

X ` x
W

X; y ` x

X ` x X;x ` y
T

X ` y

where X is a logical variable ranging over extended terms and x, y are logical
variables ranging over terms.
Let
R,W,T be the derivability relation associated with these two inference rules.

Lemma 2. Given ground atomic formulas S1 ` t1, . . . , Sn ` tn and S ` t, we
can decide in linear time whether {S1 ` t1, . . . , Sn ` tn}
R,W,T S ` t.

Proof. We associate with each term occurring in S1∪ . . .∪Sn∪S∪{t1, . . . , tn, t}
a proposition variable. We claim that S1 ` t1, . . . , Sn ` tn
R,W,T S ` t iff S → t
is derivable from S1 → t1, . . . , Sn → tn using the propositional binary resolution,
excluded middle and weakening rules only. Indeed we notice that T , R and W
can be simulated by resolution and excluded middle. For W the proof rewriting
is straightforward. We present the proof rewriting for T and R (the double bar
stands for multiple applications of a rule) :

S` t S; t`u
T

S`u
=⇒

S → t S, t→ u
Res

S → u

R
S; t` t =⇒

Excl
t→ t

====== Weak
S, t→ t

Conversely the resolution, excluded middle and weakening can be simulated
by R, T and W . The proof rewriting is straightforward for excluded middle and
weakening, we only present it for resolution :

S1 → t S2, t→ u
Res

S1, S2 → u
=⇒

S1` t
======= W
S1;S2` t

S2; t`u
========= W
S1;S2; t`u

T
S1;S2`u

With these observations we now have that derivability of S → t is equivalent
to unsatisfiability of S1 → t1, . . . , Sn → tn, S,¬t (where Si is a shortcut for the
conjunction of propositional variables corresponding to terms occurring in Si),
which can be decided in linear time: it is a HornSat problem.

Now, the trick of viewing the clauses w, t as new inference rules allows to
decide our problem in PTIME. We write
Resu+R+W+T for the derivability
with inference rules R, W , T and unit resolution.

Lemma 3. Given a set of ground Horn clauses (built on `) C, the satisfiability
of C ∪ {r, w, t} is decidable in cubic time.

Proof. We show first that C ∪ {r, w, t} is unsatisfiable iff the empty clause can
be derived from C, using unit resolution R + W + T . If we can derive the empty
clause in this system, then we can derive the empty clause from C ∪ {r, w, t} by
resolution, thanks to simple proof rewriting rules :

R
S; t` t =⇒ S; t` t (instance of r)

π1
S` t

W
S;u` t

=⇒
π1
S` t X `x → X; y`x

Res
S;u` t

π1
S` t

π2
S; t`u

T
S`u

=⇒

π1
S` t X;x`y, X `x → X `y

Res
S; t`y → S`y π2

S; t`u
Res

S`u

Conversely, if we cannot derive the empty clause from C using unit resolution R
+ W + T , then letM = {S ` u | C
Resu+R+W+T S ` u}. We claim thatM is
a model of C ∪{r, w, t}: AsM is closed by R,W, T , it is a model of {r, w, t} and,
if B1, . . . , Bn → H ∈ C, then either Bi /∈ M for some i or else, by construction,
for every i, C
Resu+R+W+T Bi, hence, by unit resolution, C
Resu+R+W+T H.
In all cases, M |= B1, . . . , Bn → H.

It only remains to prove that whether C
Resu+R+W+T⊥ or not can be
decided in cubic time. Let B be the set of atomic formulas occurring in C. Let
M be the least fixed point of

f(X) = {S ` u ∈ B | C ∪X
Resu S ` u or C ∪X
R+W+T S ` u}

Since f is monotone, there is a least fixed point, which is contained in B. Com-
puting M can be performed in cubic time, as there are at most |B| iterations
and each step requires at most a linear time, thanks to Lemma 2.

If the empty clause can be derived from M, C using unit resolution, then
C
Resu+R+W+T⊥. Let us show the converse implication. For this, we prove,
by induction on the proof size that, for every atomic formula S ` t ∈ B,
C
Resu+R+W+T S ` t implies S ` t ∈M.

If the last rule of the proof is a unit resolution, then the proof can be written:

π1
S1 ` t1

π2
S2 ` t2

πn
Sn ` tn

(S1 `t1, . . . , Sn `tn →S`t) ∈ C

S1` t1, . . . , Sn` tn → S` t
S1 ` t1, . . . , Sn−1 ` tn−1 → S ` t

...

S1 ` t1, S2 ` t2 → S ` t

S1 ` t1 → S ` t

S ` t

S1 ` t1, . . . , Sn ` tn ∈ B and, by induction hypothesis, S1 ` t1, . . . , Sn ` tn ∈M.
It follows that M, C
Resu S ` t, hence S ` t ∈ f(M) =M.

If the last rule of the proof is W or T , then there are atomic formulas S1 `
t1, . . . , Sn ` tn such that S1 ` t1, . . . , Sn ` tn
R+W+T S ` t and, for every i,
either Si ` ti ∈ C or the last rule in the proof of Si ` ti is a resolution step and, as
noticed previously all, Si ` ti are in B. In all cases Si ` ti ∈ B and, by induction
hypothesis, Si ` ti ∈M. By definition of the function f , S ` t ∈ f(M) =M.

If C
Resu+R+W+T⊥, then there is a negative clause S1 ` t1, . . . , Sn ` tn →⊥
in C such that, for every i, C
Resu+R+T+W Si ` ti, hence Si ` ti ∈ M as we
just saw. Then ⊥ can be deduced from C,M using unit resolution (which can
be decided in linear time again).

Example 4. Applying Lemma 3 to Example 1, checking the satisfiability of C ∪
{r, w, t} simply amounts into checking whether {a1; a4 → a0, a2 → a4} (does
not) entail a1; a2; a3 → a0.

3.1 Adding equality

Now, we assume that atomic formulas in C may contain equalities on terms (not
extended terms). The equality axioms (the equality is a congruence) are implicit
in what follows.

Lemma 5. Given a set of ground Horn clauses (built on ` and =) C, the sat-
isfiability of C ∪ {r, w, t} is decidable in polynomial time.

Proof sketch: First, we extend Lemma 2. Given a finite set of equations E, the
transitivity rule is extended to

x =E z X ` x X; z ` y
T (E)

X ` y

Given S1 ` t1 . . . , Sn ` tn, S ` t and a finite set of ground equations E, we
can decide in polynomial time whether S1 ` t1, . . . , Sn ` tn
R,W,T (E) S ` t.
We only have to check, for every pair of terms u, v in S1, t1, . . . , Sn, tn, S, t,
whether u =E v. This can be completed in polynomial time, for instance using

a quadratic time congruence closure algorithm. We may then choose one repre-
sentative for each congruence class and use the same proof as in Lemma 2 on
the representatives.

Then, as in Lemma 3, we consider the set B` of atomic formulas S ` t
occurring in C and B= the set of equations occurring as atomic formulas in C.
We consider the monotone function

f(X,E) = ({S ` t ∈ B` | C ∪X
Resu(E) S ` t or C ∪X
R+W+T (E) S ` t},
{s = t ∈ B= | C ∪X
Resu(E) s = t})

where
Resu(E) is the unit resolution on representatives of the clauses w.r.t. E.
The least fixed point of f can be computed in polynomial time, as each

iteration is polynomial and there is a polynomial number of iterations. C∪{r, w, t}
is satisfiable iff the empty clause can not be derived by unit resolution from this
least fixed point.

3.2 Adding a function axiom

We extend now the clauses specifying ` with the clauses (denoted by f(F) later):
X ` x1, · · · X ` xn → X ` g(x1, . . . , xn), for every function symbol g
in a set of function symbols F (which is later omitted).

Lemma 6. Given a set of ground Horn clauses (built on ` and =) C, the sat-
isfiability of C ∪ {r, w, t} ∪ f(F)} is decidable in polynomial time.

Proof sketch: Again, adding an inference Fg for each of the new clauses, we
first show that deciding S1 ` t1, . . . , Sn ` tn
R+W+T (E)+{Fg,g∈F} S ` t is in
PTIME. We use a proof similar to Lemma 5, with an additional observation:
given a finite set E of ground equations and ground terms t1, . . . , tn, t, we can
decide in PTIME whether there is a context C (built using function symbols
in F) such that C[t1, . . . , tn] =E t. To prove this we may for instance compute
a tree automaton At that recognizes the equivalence class of t and decide the
emptiness of the intersection of L(At) with the set of terms C[t1, . . . , tn]. All
these steps can be performed in a total time, which is polynomial in the size of
E, t1, . . . , tn, t.

Example 7. b ` c, ` a
R+W+T (g(g(a))=b)+Fg
` c since there is a context C (with

C[] = g(g())) such that C[a] = b.

4 More clauses using the deducibility predicate

We now enrich the class of clauses involving the deducibility predicate. Given
a term p (later called the pattern), we consider a finite set of clauses of the
following forms:

cs(u) : X;u ` p→ X ` p where u is a term that does not share variables with p

cc(w) : X ` y,X;w ` p→ X ` p where w is a term that does not share variables
with p, and y is a variable of w.

Example 8. The secrecy axiom described in introduction

X; enc(x, pk) ` n(y) → X ` n(y)

is an instance of the first class of clauses above, with p = n(y) and u = enc(x, pk).
The condition sk /∈ X requires constraints, that are considered in Section 5.

As explained in the previous section, we may turn the additional clauses into
new inference rules, using ≤E , the matching modulo E (a term t satisfies u ≤E t
if there is a substitution σ such that t =E uσ).

u ≤E x X;x ` p
Stru

X ` p
(y, w) ≤E (x, z) X ` x X; z ` p

Cutw
X ` p

Let I be the inference system defined by a finite collection of rules Stru,Cutw,
the rules R,W, T (E) for a finite set of ground equations E and the rules Fg for
a set of function symbols g.

We are going to prove that, again, I can be decided in polynomial time. How-
ever, we cannot use the same proof as in the previous section. S1 ` t1, . . . , Sn `
tn
I S ` t can no longer be reduced to a problem S1 → t1, . . . , Sn → t1, S
Resu

t (modulo a PTIME oracle).

Example 9. Assume E is empty and we have a single rule Cutf(x,k) for the pat-
tern p = n. f(a, k) ` f(b, k), f(b, k) ` n
I a ` n:

R
a ` a

f(a, k) ` f(b, k)
W

a; f(a, k) ` f(b, k)

f(b, k) ` n
W

a; f(a, k); f(b, k) ` n
T

a; f(a, k) ` n
Cutf(x,k)

a ` n

We cannot use a unit version of T (or resolution) in this example. And moving
to a general binary resolution would yield an exponential procedure.

As before, after turning the clauses into inference rules, we turn the deducibil-
ity atomic formulas into clauses. We call again I the resulting inference system.
We have to be careful however: this is a purely syntactic transformation and the
inference rules resulting from this translation are no longer correct in a classical
semantics. For instance Cutw becomes

A1, . . . , An → y w,B1, . . . , Bm → p

A1, . . . , An, B1, . . . , Bm → p

where the premises are matched modulo a set of ground equations E.
In order to apply a simple fixed point computation, we would like to be

able to transform any proof into a unit strategy proof. Since this is not possible

with the current proof system (as shown by Example 9), we introduce additional
inference rules that will allow such a strategy, however bookkeeping what the
rest of the proof owes, in order to enable a translation back into the original
proof system.

Example 10. Continuing Example 9, the unit proof of → n from the hypotheses
→ a, f(a, k)→ f(b, k), f(b, k)→ n will look like this:

→ a f(a, k)→ f(b, k)
Cut1f(x,k)→p f(b, k) f(b, k)→ n

Cut2

→ n

The rule Cut1u is a generalisation of Cutu since the constraint of being an instance
of the pattern p on the right is dropped. It bookkeeps however a duty as a mark
p on the arrow. The mark on a clause S →p t can in turn be erased only when a
clause S′, t → p is one of the premises. Such a mechanism allows both to use a
complete unit strategy and to enable reconstructing an original proof from the
extended one, as we will prove (here the annotation is erased in the last rule as
the second premise is an instance of S, f(x, k) ` n).

Intuitively, the head s of a marked clause can only be used in a proof that
will end up deriving an instance of the pattern.

We extend the syntax, allowing both unmarked clauses S → t and marked
clauses S →p t. For simplicity, we first do not consider the set of ground equations
E nor the function axioms. We write S →? t when it does not matter whether
the arrow is marked or not. We then consider the inference system J consisting
of T (E), W and the following rules (for each Cutw there are two rules Cutiw and
for each rule Stru there are two rules Striu):

A1, . . . , An →? x B1, . . . , Bm, w →? v
Cut1w

A1, . . . , An, B1, . . . , Bm →p v

A1, . . . , An →? x w,B1, . . . , Bm → p
Cut2w

A1, . . . , An, B1, . . . , Bm → p

A1, . . . , An →? x B1, . . . , Bm, x→? v
Cut1

A1, . . . , An, B1, . . . , Bm →? v

in which the conclusion is marked iff one of the premises is marked.

A1, . . . , An →? x x,B1, . . . , Bm → p
Cut2

A1, . . . , An, B1, . . . , Bm → p

A1, . . . , An, u→? x
Str1u

A1, . . . , An →p x

A1, . . . , An, u→? p
Str2u

A1, . . . , An → p

Note that the above system has no classical semantics.

Lemma 11. Let S be a set of ground clauses, and s be a ground term. In case
E = ∅ and removing the function and reflexivity axioms from I, S
I→ s if and
only if S
J→ s.

Proof sketch: For one implication we prove that W is not necessary, hence I
can be simulated by J . For the other implication, we rewrite a proof in J as
follows. We consider a last rule that introduces a mark. Since the marks must
eventually disappear, there is also a matching rule that removes the mark. This
part of proof is then rewritten as explained on the following example:

Sn → tn

S2 → t2

S1 → t1 S,wσ → vσ
Cut1w

S1, S →p vσ
Cut1w2

S′2 →p vσ
...

Cut1wn
S′n →p vσ S0, tσ

′ → pθ
Cut2t

S0, S
′
n → pθ

rewrites to

Sn → tn

S1 → t1

S,wσ → vσ S0, tσ
′ → pθ

Cutt
S0, S, wσ → pθ

Cutw
S0, S1, S → pθ

...
Cutwn

S0, S
′
n → pθ

The proof rewriting terminates and we end up with a proof in I. See Appendix
A for more details.

The unit strategy for J consists in applying the rules only when n = 0 for
the Cutiw rules (i.e. when the left premise of a Cutiw is a unit clause).

Lemma 12. If S
J→ s then → s is derivable from S in J using the unit
strategy.

Proof sketch: We prove it by induction on the proof size. We assume w.l.o.g. that
all proofs of literals (whether marked or not) labeling a node in the proof (except
the root) use a unit strategy. We consider the last step that does not comply with
the unit strategy. If A1, . . . , An →? s is its conclusion, then all atoms A1, . . . , An

can be proved in J with the unit strategy. We therefore simplify the premises
accordingly, which yields an inference rule complying with the unit strategy.

Theorem 13. If S is a set of ground clauses built on `, we can decide in PTIME
the satisfiability of S, together with T,W and finitely many clauses cs, cc, that
are built on the same pattern p.

Proof sketch: we first observe that, thanks to the lemmas 11 and 12 (and using
a fixed point computation), given the ground atoms S1 ` t1, . . . , Sn ` tn, S ` t,
it is possible to decide in PTIME whether S1 ` t1, . . . , Sn ` tn
I S ` t. We
then conclude using an argument similar to the one given in Section 3.

4.1 Adding other predicate symbols

We now consider the case where the clauses cs, cn, cc are guarded with literals
built on a set of predicate symbols P not containing ` and that are defined using
a saturated set of Horn clauses A0. For instance, cc(w) is extended to clauses
of the form P1(s1), . . . , Pn(sn), X ` y, X;w ` p → X ` p. The variables of
s1, . . . , sn are assumed to be a subset of the variables of w, y.

We modify the rules Cutiw adding as premises the literals P1(s1), ..., Pn(sn).
Lemma 11 still holds, provided we add to S finitely many ground atoms on
the new alphabet of predicates. To see this, we need to check that the proof
transformation yields the same instances of Pi(si). Lemma 12 is unchanged.
These properties rely on the fact that guards (and their instances) do neither
depend on the set variable X (nor its instances) nor on the instances of the
pattern.

Theorem 13 can then be extended to this case: when computing the fixed
point, the instances of applicable inference rules are known at each step and
we only have to check whether the corresponding instances of the guards are
consequences of A0 (and possibly a finite set of ground atoms), which can be
performed in PTIME, thanks to [?]. As a consequence, we get:

Theorem 14. Let P be a set of predicate symbols, not containing `,= and A0

be a set of Horn clauses built on P and which is saturated w.r.t. a basic ordering.
If S is a set of ground clauses built on ` (possibly with guards using P), we can
decide in PTIME the satisfiability of S ∪ A0, together with T,W and finitely
many clauses cn, cs, cc, that are built on the same pattern p and which may be
guarded by atomic formulas that use the predicate symbols in P.

4.2 Adding equality

We can extend again Theorem 14 to ground equalities in the atomic formulas
of S. The procedure is the same as in Lemma 5: for a fixed E, Lemmas 11 and
12 can be extended, considering representatives modulo =E . Then we only have
to compute a fixed point of a function f on the atomic formulas of S, using the
PTIME oracles provided by (extensions of) Lemmas 11 and 12.

5 The general case

Finally, we extend the results of the previous section to clauses with constraints.
A constraint Γ is a formula interpreted as a subset of ((T (F))∗)n (n-tuples

of finite sets of ground terms) if n is the number of free variables of Γ . We write
S1, . . . , Sn |= Γ when (S1, . . . , Sn) belongs to this interpretation. A constrained
clause is a pair of a clause and a constraint, which is written φ ‖ Γ . Given
a constrained clause φ ‖ Γ , we let Jφ‖Γ K = {φσ|σ satisfies Γ}. A model of
φ ‖ Γ is, by definition, a model of Jφ‖Γ K. A constraint Γ is monotone if

– if S1, . . . , Sn |= Γ and, for every i, S′i ⊆ Si, then S′1, . . . , S
′
n |= Γ

– if S1, . . . , Sn |= Γ and S′1, . . . , S
′
n |= Γ , then S1 ∪ S′1, . . . , Sn ∪ S′n |= Γ .

We typically use constraints of the form t /∈ X (where t ∈ T (F)), satisfied by
any S that does not contain t as subterm. Such constraints are monotone.

Adding a fixed set of possible constraints increases significantly the difficulty:
Lemmas 11 and 12 no longer hold, as shown by the following example:

Example 15. Consider the clause cf(y,k) : X ` y, X; f(y, k) ` n → X `
n ‖f(a, k), f(b, k), f(c, k) /∈ X. Consider the ground deducibility formulas: S =
{(f(a, k) ` f(b, k), f(b, k); f(c, k) ` n}. Does cf(y,k) and S entail a; c ` n ?

Following the procedure of Section 4,

→ c

→ a f(a, k)→ f(b, k)
Cut1f(y,k)→p f(b, k) f(b, k); f(c, k)→ n

Cut2

f(c, k)→ n
Cut2f(y,k)→ n

in which each Cutif(y,k) satisfies the constraint that f(a, k), f(b, k), f(c, k) do not
appear in the context: the instance of X is empty in each case. The procedure
would then incorrectly answers “yes” to the entailment question.

Indeed, the proof rewriting of Lemma 11 yields the following (invalid) proof,
in which the constraints are not satisfied in the first application of Cutf(x,k),
since the corresponding instance of X is the one element set f(c, k):

→ c

→ a

f(a, k)→ f(b, k) f(b, k); f(c, k)→ n
Res

f(a, k); f(c, k)→ n
Cutf(x,k)

f(c, k)→ n
Cutf(x,k)→ n

Our solution consists in designing another inference system, along the same
ideas as before, for which Lemmas 11 and 12 still hold. To do so, we memorize
more information in the mark (typically the constraints that need to be satisfied)
so that the matching rule (removing the mark) can be applied only if the actual
clauses would satisfy the constraints recorded in the mark.

Example 16. To explain the main idea, we give a simplified example of how the
new proof system works. Coming back to Example 15, in our system we get:

→ a f(a, k)→ f(b, k)
Cut1f(y,k)→f(a,b),f(b,k),f(c,k)/∈X f(b, k)

But we cannot apply Cut2 since its application requires that the context satisfies
the constraint in the mark, which is not the case. We could apply a Cut1, without
removing the mark but then the mark could not be removed any more since the
marks can never be removed from the “pattern premisse” of a Cutiw rule.

If the clause is less constrained, for instance assume that we only impose
f(b, k) /∈ X, then we can prove → n as follows:

→ c

→ a f(a, k)→ f(b, k)
Cut1f(y,k)→f(b,k)/∈X f(b, k) f(b, k); f(c, k)→ n

Cut2

f(c, k)→ n
Cut2f(y,k)→ n

This time, we may remove the mark, as the instance of X is the singleton
{f(c, k)}, that does not contain f(b, k).

We get an analog of Lemmas 11 and 12, which yields a PTIME decision
procedure (because the number of possible marks is fixed).

Theorem 17. If S is a set of ground clauses built on `, we can decide in PTIME
the satisfiability of S together with T,W and finitely many constrained clauses
cs, cc built on the same pattern p, provided the constraints are monotone.

Again, this can be extended, as in the theorem 14, guarding the clauses with
predicates that are defined by a saturated set of Horn clauses A0 (w.r.t. a basic
ordering). This can be extended also to the case where S contains equalities.

6 Conclusion

We designed a technique for proving tractability of a collection of proof systems
(or Horn clauses): the idea is to extend the proof system with marked clauses such
that the expressivity is unchanged while the unit strategy becomes complete. Our
technique captures a class of clauses relevant to a computer security application.

PTIME membership is obtained by nesting PTIME oracles. We did not suc-
ceed however in showing a more abstract combination result allowing, say, to
combine two tractable inference systems, one of which depends on the other.
For instance, when we add guards to another system (resp. equalities in the
input clauses) we would like to get automatically a tractability property from
the tractability of the system without guards (resp. without equality) and the
tractability of the guards entailment (resp. tractability of the word problem).

Another perspective is to provide a more abstract statement of the proof
method, which does not rely on the specific deducibility predicate. Moreover, our
work is not fully complete since we did not consider the function and reflexivity
axioms in the two last sections. We could also investigate the case of several
patterns and/or constraints that involve both a (non-ground) term and a set.

A Proof of lemma 11

Lemma 11. Let S be a set of ground clauses, and s be a ground term. In case
E = ∅ and removing the function and reflexivity axioms from I, S
I→ s if and
only if S
J→ s.

Proof. We first prove that, if there is a proof Π of s in I from S, then there is
a proof Π ′ without W . Indeed, we may push W to the bottom of the proof as
follows:

A1, . . . , An → x
W

A1, . . . , An, C → x B1, . . . , Bm, w → p
Cutw

A1, . . . , An, B1, . . . , Bm, C → p

can be rewritten to

A1, . . . , An,→ x B1, . . . , Bm, w → p
Cutw

A1, . . . , An, B1, . . . , Bm,→ p
W

A1, . . . , An, B1, . . . , Bm, C → p

W also commutes with the rules Stru. Since the proof of a unit clause cannot
end with W , Π does not contain W .

Now let us show that if there is a proof of → s in J then there is a proof
of → s in I : Consider a minimal (in number of Cut1, Cut1w, Str1u rules) proof
Π of S → t in J . Consider a subproof Π ′ of Π that uses once Cut2w, as a last
inference rule. We show that Π ′ can be rewritten into a strictly smaller proof
(w.r.t. the size). This contradicts the minimality of Π, hence this proves that
the minimal size proof does not make use of any extra rule.

First note that, according to labels inheritance, once a clause is annotated,
then the label cannot be removed completely, unless we apply Cut2w or Cut2.
Since the leaves of Π ′ are not annotated, we can write Π ′ as :

...

...
π1

S1 → t
R1

...
Rn

Sn →p t
π2

S,wσ → pσ
Cut2w

Sn, S → pσ

where R1, . . . , Rn are Cut1w, Cut1 or Str1u.
We argue that Π ′ can be rewritten into

...

...

π1
S1 → t

π2
S,wσ → pσ

Cut2w
S1, S → pσ

R̃1

...
R̃n

Sn, S → pσ

This is a strictly smaller proof. It only remains to define the rules R̃i and check
that the above proof is a valid proof in the new inference system indeed.

If Rk =
V k
2 →p t

k V k
1 , w

′σ →p t

Sk →p t

we let R̃k =
V k
2 →p t

k S, V k
1 , w

′σ → pσ

S, Sk → pσ

The rule Cut1w′ is therefore replaced with a rule Cut2w′ .

If Rk =
V k
1 , vσ →p t

V k
1 →p t

we let R̃k =
S, V k

1 , vσ → pσ

S, V k
1 → pσ

The rule Str1v is replaced with a rule Str2v.

It is now enough to note that the choice of R̃k ensures that Π ′ is a valid
proof in the I inference system.

