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Abstract. We show that any one-counter automaton with n states, if
its language is non-empty, accepts some word of length at most O(n2).
This closes the gap between the previously known upper bound of O(n3)
and lower bound of Ω(n2). More generally, we prove a tight upper bound
on the length of shortest paths between arbitrary configurations in one-
counter transition systems. Weaker bounds have previously appeared in
the literature, and our result offers an improvement.

1 Introduction

Extremal combinatorial questions are a routine in today’s theory of computing:
How many steps does an algorithm take in the worst case when traversing a data
structure? How large is the most compact automaton for a formal language?
While some specific questions of this form are best seen as standalone puzzles,
only interesting for their own sake, others can be used as basic building blocks
for more involved arguments.

We look into the following extremal problem: Given a one-counter automaton
A with n states, how long can the shortest word accepted by A be? It is folklore
that, unless the language of A is empty, A accepts some word of length at most
polynomial in n. This fact and a number of related results of similar form have
appeared as auxiliary lemmas in the literature on formal languages, analysis
of infinite-state systems, and applications of formal methods [11, Lemma 6; 10,
Section 8.1; 7, Lemma 5; 1, Lemma 11; 8, Lemmas 28 and 29]. A closer inspection
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reveals that the arguments behind these results deliver (or can deliver) an upper
bound of O(n3), while the best known lower bound comes from examples of
one-counter automata with shortest accepted words of length Θ(n2). In other
words, the true value is at least quadratic and at most cubic.

The main result of the present paper is that we close this gap by showing
a quadratic upper bound, O(n2). We also extend this result to a more general
reachability setting: in any one-counter (transition) system with n control states,
whenever there is a path from a configuration α to a configuration β—recall
that configurations are pairs of the form (q, c) where q ∈ Q is the control state,
|Q| = n, and c is a counter value, a nonnegative integer—there is also a path
from α to β that has length at most O(n2 + n · max(cα, cβ)) where cα and cβ
are the counter values of α and β. We discuss our contribution in more detail in
the following Section 2.

Related work and motivation. Reachability is a fundamental problem in
theoretical computer science and in its applications in verification, notably via
analysis of infinite-state systems [4; 16; 2; 13]. Among such systems, counter-
based models of computation are a standard abstraction in many domains and
have attracted a lot of attention [3]; machines with a single counter are, of
course, the most basic. Nevertheless, while our main motivation has been purely
theoretical, we find it interesting to note that bounds on the length of shortest
paths in one-counter systems have appeared as building blocks in the literature
on rather diverse topics.

More specifically, a polynomial upper bound is used by Etessami et al. [7]
in an analysis of probabilistic one-counter systems (which are equivalent to so-
called discrete-time quasi-birth-death processes, QBDs). They prove that in the
(q, 1)  (q′, 0)-reachability setting the counter does not need to grow higher
than n2 and provide examples showing that this bound is tight. However, they
only deduce upper bounds of n3 and n4 on the length of shortest paths without
and with zero tests, respectively. A simple corollary shows that if a state q can
eventually reach a state q′ with a non-zero probability, then this probability is
lower-bounded by p poly(n) where p is the smallest among positive probabilities
associated with transitions. This becomes a step in the proof that a (decomposed)
Newton’s method approximates termination probabilities of the system in time
polynomial in its size, n; the results of the present paper reduce the (theoretical)
worst-case upper bounds on the number of steps roughly by a factor of n.

In a subsequent work, Hofman et al. [8] reuse the auxiliary lemmas on the
length of shortest paths from [7] and show that (strong and weak) trace inclusion
for a one-counter system and a finite-state process is decidable in PSPACE (and
is, in fact, PSPACE-complete).

One may note that a stronger upper bound of O(n3) on the length of shortest
paths can be derived from the above bound on the largest needed counter value
even in the presence of zero tests. This value, O(n3), seems to be a recurring
theme in the literature on one-counter systems; it already appears in the pumping
lemma for one-counter languages due to Latteux [12] as the pumping constant : a
number N such that any accepted word longer than N can be pumped. In fact,
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the formulation in [12] does not permit removals of factors from an accepted
word, but even such a version would only yield the same upper bound of O(n3)
on the length of shortest paths. While the arguments of the present paper do not
lead to an improvement in the pumping constant for one-counter languages, we
nevertheless show that in the reachability setting the optimal value (the length
of the shortest path) is actually O(n2).

A cubic upper bound on the largest needed counter value (for the reachability
setting) in one-counter systems without zero tests, also known as one-counter
nets, appears in the work of Lafourcade et al. [11; 10]. This result is applied in
the context of the Dolev-Yao intruder model, where the question of whether a
passive eavesdropper (an intruder) can obtain a piece of information is reduced
to the decision problem for a deduction system. For several such systems, Lafour-
cade et al. show that, under certain assumptions, the problem is decidable in
polynomial time. They construct a one-counter system where states represent
terms from a finite set and the counter value corresponds to the number of ap-
plications of a free unary function symbol to a term. After this, the upper bound
on counter values along shortest paths is extended to an upper bound on the
size of terms that can be used in a minimal deductive proof; needless to say, an
improvement in the upper bound extends in a natural way.

Finally, we would like to mention the work of Alur and Černý [1], who use
a related model of one-counter systems with counter values in Z and without
zero tests. They reduce the equivalence problem for so-called streaming data-
string transducers to (q, 0)  (q′, 0)-reachability in such counter systems: the
transducers produce output at the end of the computation, and the counter is
used to track the accumulated distance between a distinguished pair of symbols
in the output. Since these transducers are designed to model list-manipulating
programs (in two syntactically restricted models), decision procedures for equiv-
alence of such programs can rely on the upper bounds for shortest paths to effi-
ciently prune the search space. In [1], the upper bound on the path length is the
familiar O(n3); this gives an upper bound on the length of smallest counterexam-
ples to equivalence. Our upper bound of O(n2) extends to this model of counter
systems too. The reduction to reachability in one-counter systems was recently
implemented by Thakkar et al. [15] on top of ARMC, an abstraction-refinement
model checker [14], for the purpose of verifying retransmission protocols over
noisy channels.

2 Summary

One-counter systems. In this paper we work in the framework of one-counter
systems, which are an abstract version of one-counter automata. More precisely,
they are one-counter automata without input alphabet (see below).

Let us first introduce formal definitions. A one-counter system (OCS) O
consists of a finite set of states Q, a set of non-zero transitions T>0 ⊆ Q ×
{−1, 0, 1} ×Q, and a set of zero tests T=0 ⊆ Q× {0, 1} ×Q. A configuration of
the OCS O is a pair in Q×N. We define a binary relation −→ on the set Q×N
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as follows: (p, c) −→ (q, c+d) whenever (i) c ≥ 1 and (p, d, q) ∈ T>0 or (ii) c = 0
and (p, d, q) ∈ T=0. The reflexive transitive closure of −→ is denoted by −→∗;
we say that a configuration β is reachable from α if α −→∗ β. This reachability
is witnessed by a path in OCS O, which is simply a path in the infinite directed
graph with vertices Q × N and edge relation −→; vertices and edges along the
path can be repeated. The length of the path is the number of (not necessarily
distinct) edges that occur on it.

Our contribution. We first formulate our results in terms of one-counter sys-
tems. Our first result is on reachability between configurations of OCS with zero
counter values.

Theorem 1. Let O be a one-counter system with n states. Suppose a configura-
tion β = (pβ , 0) is reachable from a configuration α = (pα, 0) in O. Then O has
a path from α to β of length at most 14n2.

Using Theorem 1 as a black-box, we generalize it to the case where source and
target configurations have arbitrary counter values.

Theorem 2. Let O be a one-counter system with n states. Suppose a configu-
ration β = (pβ , cβ) is reachable from a configuration α = (pα, cα) in O. Then
O has a path from α to β of length at most 14n2 + n ·max(cα, cβ).

The proof of Theorem 1 is the main technical contribution of this work. We
prove Theorem 1 in Section 5 and Theorem 2, as well as an extension to OCS
with negative counter values, in Section 6.

One-counter automata. We now restate our contribution in terms of one-
counter automata (which are the original motivation for this work).

Take any finite set Σ. The set of all finite words over Σ is denoted by Σ∗, and
the empty word by ε. A (nondeterministic) one-counter automaton A over the
input alphabet Σ is a one-counter system where every transition t ∈ T>0 ∪ T=0

is associated with a label, λ(t) ∈ Σ ∪ {ε}, and where some subsets I ⊆ Q and
F ⊆ Q are distinguished as sets of initial and final states respectively. The
labeling function λ is extended from transitions to edges −→ and to paths in
a natural way; the automaton accepts all words that are labels of paths from
I ×{0} to F ×N. The language of a one-counter automaton A is the set L ⊆ Σ∗

of all words accepted by A.

Corollary 1. Let A be a nondeterministic one-counter automaton with n states.
If the language of A is non-empty, then A accepts some word of length at most
14n2.

Proof. Take A with a non-empty language and add self-loops with decrements to
all final states: (p,−1, p) ∈ T>0 for p ∈ F . Since the language of A is non-empty,
some final configuration (in F × N) is reachable from some initial configuration
(from I × {0}); this implies that in the modified automaton, denoted by A′, a
configuration β = (pβ , 0), pβ ∈ F , is reachable from a configuration α = (pα, 0),
pα ∈ I. Consider the shortest path in A′ between α and β: by Theorem 1, its
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length is at most 14n2. Take the shortest prefix of this path whose target has
state from F ; this path is a path in A. Since the label of the path cannot be
longer than the path itself, the result follows. ut

As a concrete example, one can deduce from Corollary 1 that any nonde-
terministic one-counter automaton that accepts the singleton unary language
{an}—a basic version of counting to n— must have at least Ω(

√
n) states. This

lower bound is tight and shows that nondeterminism does not help to “count
to n”, because deterministic one-counter automata can also do this using Θ(

√
n)

states [5].

Lower bounds. As we already said, the lower bound on the length of the
shortest path is Ω(n2). We present constructions of OCS that match the upper
bounds of Theorems 1 and 2. Note that Examples 1 and 2 seem to use different
phenomena; they previously appeared in [7; 5].

Example 1. Consider an OCSO1 with 2n states: p1, . . . , pn and q1, . . . , qn. LetO1

have, for 1 ≤ i < n, transitions (pi,+1, pi+1) and (qi, 0, qi+1), as well as (qn,−1, q1)
and (pn, 0, q1). All the transitions are non-zero, except for transition (p1,+1, p2),
which is a zero test. This OCS is deterministic: every configuration has at most
one outgoing transition. The only path from (p1, 0) to (q1, 0) has length n2.

Example 2. Let k and m be coprime and let OCS O′2 have states p0, . . . , pk−1,
q0, . . . , qm−1, and s1, s2. Let O′2 have, for all 0 ≤ i < k and 0 ≤ j < m, non-
zero transitions (pi,+1, pi+1 mod k) and (qj ,−1, qj+1 mod m), non-zero transitions
(p0, 0, q0), (qm−1,−1, s1), and zero tests (p0,+1, p1) and (s1, 0, s2). Now paths
from (p1, 0) to (s2, 0) correspond to solutions of x·k−(y ·m−1) = 1; the shortest
path takes the first cycle x = m times and the second cycle y = k times and
thus has length 2km + 2. Setting k = n and m = n − 1 gives an OCS O2 with
2n+ 1 states where not only does the shortest path have quadratic length, but
all such paths also need to use quadratic counter values.

Example 3. This example justifies the need for the term n ·max(cα, cβ) in The-
orem 2. Modify O1 from Example 1 as follows. Add states a1, . . . , an, b1, . . . , bn
and the following non-zero transitions: (an,−1, a1), (bn,+1, b1), and, for all
0 ≤ i < n, (ai, 0, ai+1) and (bi, 0, bi+1). For each of these non-zero transition,
apart from (an,−1, a1), introduce also the same transition as a zero test. Finally,
add two more zero tests: (an, 0, p1) and (q1, 0, b1). Thus, the obtained OCS O3

has 4n states. Observe that every path in O3 from (a1, cα) to (bn, cβ) has to go
through (an, 0) and (b1, 0) and thus has length at least n2 + n(cα + cβ + 2).

3 Challenges and techniques

We now discuss shortly the intuition behind our approach to proving Theorem 1,
and where the main challenges lie.

The first, obvious observation is as follows: if some configuration appears
more than once on a path, then the segment between any two appearances of this
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configuration can safely be removed. If we apply this modification exhaustively,
then on each “level” — a set of configurations with the same counter value — we
cannot see more than n configurations. If the maximum counter value observed
on some path were bounded by O(n), then we would immediately obtain a
quadratic upper bound on its length. Unfortunately, this is not the case: as
Example 2 shows, the counter values in the shortest accepting path can be as
large as quadratic. Hence, applying this observation in a straightforward manner
cannot lead to any upper bound better than cubic.

Instead, we perform an involved surgery on the path. The first idea is to
start with a path ρ◦ that is not the shortest, but uses the fewest zero tests;
the observation above shows that their number is bounded by n. Each subpath
between two consecutive zero tests is called an arc, and we aim at modifying
each arc separately to make it short. An arc is called low if it contains only
configurations with counter values at most 5n, and high otherwise. The total
length of low arcs can again be bounded by O(n2) by just excluding repeated
configurations, so it suffices to focus on high arcs.

Suppose ρ is a high arc. Since we observe high counter values on ρ, one can
easily find a positive cycle σ+ in the early parts of ρ, and a negative cycle σ−

in the late parts of ρ. Here by a cycle we mean a sequence of transitions that
starts and ends in the same state, and the cycle is positive/negative if the total
effect it has on the counter during its traversal is positive/negative. Let A be the
(positive) effect of σ+ on the counter, and −B be the (negative) effect of σ−.

Now comes the crucial idea of the proof: we can modify ρ by pumping σ+

and σ− up many times, thus effectively “lifting” the central part of the path
(called cap) to counter levels where there is no threat of hitting counter value
zero while performing modifications (see Figure 1, p. 11). More importantly,
the cap can now be unpumped “modulo gcd(A,B)” in the following sense: we
can exhaustively remove subpaths between configurations that have the same
state and whose counter values are congruent modulo gcd(A,B). The reason is
that any change in the total effect of the cap on the counter that is divisible
by gcd(A,B) can be compensated by adjusting the number of times we pump
cycles σ+ and σ−. In particular, the length of the cap becomes reduced to at
most gcd(A,B) · n, at the cost of pumping σ+ and σ− several times.

By performing this operation (we call it normalization) on all high arcs,
we make them normal. After this, we apply an involved amortization scheme to
show that the total length of normal arcs is at most quadratic in n. This requires
very delicate arguments for bounding (i) the total length of the caps and (ii) the
total length of the pumped cycles σ+ and σ− throughout all the normal arcs.
In particular, for this part of the proof to work we need to assert a number of
technical properties of normal arcs; we ensure that these properties hold when
we perform the normalization. Most importantly, whenever for two arcs the
corresponding cycles σ+ (or σ−) lie in the same strongly connected component
of the system (looking at the graph induced only by non-zero transitions), we
stipulate that in both arcs σ+ (or σ−) actually refer to the same cycle. The final
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amortization is based on the analysis of pairs of strongly connected components
to which σ+ and σ− belong, for all normal arcs.

At least as of now, arguments of this flavor (inspired by amortized analysis
reasoning) are not typical for formal language theory and are more characteristic
of the body of work on algorithms and data structures; see, e.g., [9; 6].

4 Preliminaries

In this paper N stands for the set of nonnegative integers. For any set X and a
word w ∈ X∗, the length of w = x1 . . . xn, denoted len(w), is the number n of
symbols in w. For k ∈ N and a word w, by wk we denote the word w repeated
k times. For two positive integers x, y, by gcd(x, y) and lcm(x, y) we denote the
greatest common divisor and the least common multiple of x and y, respectively.
Recall that x · y = gcd(x, y) · lcm(x, y).

We now give all definitions related to one-counter systems that we need in
the sequel. For the reader’s convenience, concepts that appeared in Section 2 are
defined anew.

A one-counter system (OCS) O consists of a finite set of states Q, a set of
non-zero transitions T>0 ⊆ Q × {−1, 0, 1} × Q, and a set of zero tests T=0 ⊆
Q × {0, 1} × Q. The set of transitions is T = T>0 ∪ T=0. For a transition t =
(q, d, q′) ∈ T , by src(t) and targ(t) we denote q and q′, i.e., the source and the
target state of t respectively. Further, the effect of the transition t = (q, d, q′)
is the number d; we write eff(t) = d. We extend this notion to sequences of
transitions: eff(t1 . . . tm) =

∑m
i=1 eff(ti).

A configuration of the OCS O is a pair in Q×N. The state of a configuration
(q, c) is the state q; we also say that configuration (q, c) has state q, and write
st((q, c)) = q. The counter value of configuration (q, c) is the number c; we write
cnt((q, c)) = c.

A transition t = (q, d, q′) ∈ T can be fired in a configuration γ = (q, c) if
either t ∈ T>0 and c > 0 or t ∈ T=0 and c = 0. In other words, zero tests can
be fired only if the counter value is zero, and non-zero transitions can be fired
only if the counter value is positive. The result of firing (q, d, q′) in (q, c) is the

configuration γ′ = (q′, c+ d). We then write γ
t−→ γ′.

A path ρ of the OCS O is a sequence of pairs

(γ1, t1)(γ2, t2) . . . (γm, tm) ∈ ((Q× N)× T )∗

such that for every i ∈ {1, . . . ,m−1} we have γi
ti−→ γi+1 and there exists a con-

figuration γm+1 such that γm
tm−→ γm+1. The length of this path is m. The source

of ρ, denoted by src(ρ), is γ1; we also say that ρ starts in its source. Similarly,
the target of ρ, denoted by targ(ρ), is γm+1; we say that ρ finishes in its target.
Note that now the source and target are configurations, rather than individual
states; the path is from its source to its target. All γ2, . . . , γm are called interme-
diate configurations. We also say that configurations γ1, γ2, . . . , γm+1 appear on
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ρ; note that the target of ρ also appears on ρ. Finally, when such a path exists,
the configuration γm+1 is said to be reachable from the configuration γ1.

The projection of a path ρ is the sequence of its transitions t1t2 . . . tm; we
write proj(ρ) = t1t2 . . . tm. We follow the convention of denoting paths by ρ and
sequences of transitions by σ. The effect of a path ρ is eff(ρ) = eff(proj(ρ)). A
sequence of transitions σ = t1t2 . . . tm is fireable in a configuration γ1 if there ex-
ists a path ρ = (γ1, t1)(γ2, t2) . . . (γm, tm). This path ρ is called the fastening of σ
at γ1, denoted ρ = fasten(γ1, σ). Note that in particular proj(fasten(γ, σ)) =
σ for every γ in which σ is fireable.

A sequence of transitions t1t2 . . . tm is consistent if for all i ∈ {1, . . . ,m−1} it
holds that targ(ti) = src(ti+1). Note that a sequence of transitions fireable in
some configuration is always consistent, but the other implication does not hold
in general. We extend the notation src(·) and targ(·) to consistent sequences of
transitions: src(t1t2 . . . tm) = src(t1) and targ(t1t2 . . . tm) = targ(tm). The
sources and targets of the transitions of t1t2 . . . tm are visited on t1t2 . . . tm.

A cycle σ is a consistent sequence of non-zero transitions that starts and
finishes in the same state q. This q is called the base state of the cycle σ. If the
effect of σ is positive (resp. negative), then it is a positive (resp. negative) cycle.
A cycle σ is called simple if every state is visited at most once on σ, except for
the base of σ, which is visited only at the start and at the end.

5 Proof of Theorem 1

5.1 Proof overview and notation

Let us fix the OCS O we work with; let Q be its state set and let n = |Q|.
Suppose ρ0 is a path from α to β, and let ρ0 be chosen such that it has the
smallest possible number of configurations with counter value zero. Note that ρ0

does not have to be the shortest path between α and β. The first step is to divide
ρ0 into subpaths, called arcs, between consecutive configurations with counter
value zero. Then we modify the arcs separately. If a counter value in an arc does
not exceed 5n, then we say that the arc is low, otherwise it is high. The low arcs
will not be changed at all, and the reason is that we can bound quadratically the
total number of configurations with counter value at most 5n using the following
straightforward proposition. It is similar, in the spirit, to pumping lemmas, but
simply removes a part of the path.

Proposition 1. Suppose ρ = (γ1, t1)(γ2, t2) . . . (γm, tm) is a path from α to β.
Suppose further that for some i and j with 1 ≤ i < j ≤ m + 1 it holds that

γi = γj, where γm+1 is such that γm
tm−→ γm+1. Consider

ρ′ = (γ1, t1)(γ2, t2) . . . (γi−1, ti−1)(γj , tj)(γj+1, tj+1) . . . (γm, tm).

Then ρ′ is also a path from α to β.

However, the high arcs will be heavily modified. Roughly speaking, if an arc
is high, then it contains both a positive cycle near its beginning and a negative
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cycle near its end. We can use these cycles to pump the middle part of the path
as much up as we like. Thus, the modified path will consist of a short prefix; then
several iterations of a positive cycle pumping it up; then a so called cap: a part
of the path with only high counter values; then several iterations of a negative
cycle pumping it down; and finally a short suffix. We show in the sequel how to
perform this construction in such a way that the total length of pumping cycles,
short prefixes and suffixes, and caps is quadratic. The construction itself (with
arc-level length estimates) is presented in the following subsection 5.2, and the
upper bound on the length of the entire path is given in subsection 5.3.

Transition multigraph. One can view a transition (p, c, q) ∈ Q×{−1, 0, 1}×Q
also as an edge (p, q) ∈ Q×Q labelled by a number c ∈ {−1, 0, 1}. In the proof
we will many times switch back and forth between these two perspectives. In
order to keep the mathematical precision we introduce a bit of notation.

The transition multigraph G = (V,E, `) of an OCS consists of a set of
nodes V , a multiset of directed edges E, and a labeling ` : E → {−1, 0, 1}.
Set V equals the set of states Q. Every non-zero transition t = (p, c, q) ∈ T>0

in the OCS O gives rise to an edge e = (u, v) ∈ E with `(e) = c. Note that
the definition of the transition multigraph does not take into account the zero
transitions.

In the proof we pay a special attention to strongly connected components
(SCCs) of G. Recall that two vertices p, q ∈ V are said to communicate if G has
a walk from p to q and a walk from q to p. Communication is an equivalence
relation, and its equivalence classes are called the strongly connected components
of G. Let S be the set of all strongly connected components of G. For a strongly
connected component S ∈ S, by nS we denote the number of vertices in S. We
say that a cycle σ is contained in S if each state appearing on σ belongs to S.
Note that every cycle is contained in some SCC, and a simple cycle contained
in S has length at most nS . We say that an SCC S is positively enabled if it
contains a cycle that has a positive effect. Similarly, S is negatively enabled if
it contains a cycle that has a negative effect. Note that an SCC S can be both
positively and negatively enabled.

Lemma 1. Let G be a transition multigraph of an OCS and S a positively (re-
spectively, negatively) enabled SCC. Then there exists a positive (respectively,
negative) cycle σ contained in S that is simple.

Proof. We prove the lemma for positively enabled SCCs; the proof for negatively
enabled SCCs is symmetric. By definition, S contains a positive cycle σ. Choose
σ to be the shortest such cycle; we claim that then σ is simple. Aiming towards a
contradiction, suppose that some state repeats on σ. Then σ can be decomposed
into two cycles σ1, σ2 that are strictly shorter than σ. Since σ is positive and
eff(σ) = eff(σ1) + eff(σ2), we infer that either σ1 or σ2 is positive. This is a
contradiction with the minimality of σ. ut

For every positively enabled SCC S we distinguish one, arbitrarily chosen,
simple cycle with positive effect contained in S; we denote it by σ+

S . Its exis-
tence is guaranteed by Lemma 1. Similarly, for every negatively enabled S we
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distinguish one simple cycle with negative effect contained in S, and we denote
it by σ−S . The base states of these cycles are chosen arbitrarily.

5.2 Normal paths

A path is an arc if both its source and target have counter value zero, but
all its intermediate configurations have counter values strictly larger than zero.
An arc (or a path) is low if all its configurations (including the target) have
counter values strictly smaller than 5n. An arc ρ is (S, T )-normal, where S and
T are some SCCs of the transition multigraph, if it admits the following normal
decomposition (see Figure 1, p. 11):

ρ = ρpref ρup ρcap ρdown ρsuff,

where

– ρpref and ρsuff are low;
– proj(ρup) = (σup)k for some k ∈ N, where σup = σ+

S ;
– proj(ρdown) = (σdown)` for some ` ∈ N, where σdown = σ−T ;
– st(src(ρcap)) is the base state of σup; and
– st(targ(ρcap)) is the base state of σdown.

We say that an arc ρ is normal if it is (S, T )-normal for some S, T ∈ S. Then a
path ρ′ is normal if it is a concatenation of normal arcs (possibly for different
pairs (S, T )) and low arcs.

In the remaining part of the proof we will show that if β is reachable from α,
where cnt(α) = cnt(β) = 0, then there exists a short normal path from α to
β. We start by analyzing a single arc. The following lemma, which is the most
technically involved step in this paper, shows that we can restrict ourselves to
normal arcs that have a very special structure.

Lemma 2. If cnt(α) = cnt(β) = 0 and there exists an arc from α to β, then
there exists an arc ρ from α to β which is either low or normal. Moreover, in
the case when ρ is normal, a normal decomposition ρ = ρpref ρup ρcap ρdown ρsuff
can be chosen such that:

(i) proj(ρup) = (σup)a, eff(σup) = A for some a,A ∈ N;
(ii) proj(ρdown) = (σdown)b, eff(σdown) = −B for some b, B ∈ N;

(iii) a ·A ≤ 2 · len(ρcap) + 2 · lcm(A,B);
(iv) b ·B ≤ 2 · len(ρcap) + 2 · lcm(A,B);
(v) no infix of proj(ρcap) is a cycle with effect divisible by gcd(A,B);

(vi) cnt(targ(ρup)),cnt(src(ρdown)) > n; and
(vii) all configurations appearing on ρpref and ρsuff are pairwise different.

We now explain some intuition behind this statement. First note that, by con-
dition (vii), the total number of configurations appearing on ρpref and ρsuff
is at most 5n · n, since n is the number of states of the OCS O and both
of these paths are low (so counter values 5n and above do not occur). Thus,
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ρup

ρdown

ρsuff

ρpref

ρcap

A

B

σup

σdown

< max(A,B)

Fig. 1. The normal decomposition of an arc together with some notation from the
proof of Lemma 2.

len(ρpref) + len(ρsuff) ≤ 5n2. Second, we can conclude from condition (v)
that every state q ∈ Q can occur in configurations appearing in ρcap at most
gcd(A,B) times; hence, len(ρcap) ≤ n · gcd(A,B) ≤ n2. Finally, condition (i)
implies len(ρup) ≤ a ·n; if, for instance, a ≤ const ·n, then len(ρup) ≤ const ·n2;
similarly, len(ρdown) ≤ const · n2. Combined together, these bounds would in
this case show that len(ρ) is at most quadratic in n.

However, this reasoning would be insufficient for our purposes, since the
number of normal arcs itself can be linear in n. This motivates more subtle
upper bounds (iii) and (iv) and the fine-grained choice of parameter in (v). We
show how to use Lemma 2 to obtain a quadratic upper bound on the size of
the entire path in the following subsection 5.3; the remainder of the present
subsection proves Lemma 2.

Proof. Fix configurations α and β such that cnt(α) = cnt(β) = 0 and there
exists an arc from α to β. If there is a low arc from α to β, then there is nothing
to prove, so assume that all the arcs from α to β are not low. Let ρ◦ be such an
arc of the shortest possible length; then ρ◦ is not low. Let

ρ◦ = (γ1, t1) . . . (γm, tm),

where α = γ1 and γm
tm−→ γm+1 = β. Since ρ◦ is shortest possible, from Propo-

sition 1 we infer that configurations γ1, γ2, . . . , γm+1 are pairwise different.
We start with a short overview. Based on ρ◦ we construct a normal arc ρ

from α to β satisfying the promised conditions. Roughly speaking we proceed
as follows. First, we carefully define ρpref and ρsuff so that condition (vii) is
satisfied; in this step we also fix the components S, T ∈ S for which ρ will
be (S, T )-normal. Then we construct a sequence of transitions σcap that, after
fastening it at some configuration, will form ρcap that satisfies condition (v).
Intuitively, σcap is formed by exhaustively unpumping the middle part of ρ◦.
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As S, T are already fixed, so are also cycles σup = σ+
S and σdown = σ−T . Hence

at this point to completely define ρ it remains to choose numbers a and b. At
the end we show that a, b can be chosen so that ρ is indeed a valid path, and
moreover conditions (iii) and (iv) are satisfied.

Let us carry out this plan. Consider any k with 2n ≤ k ≤ 3n. Let ik be
the smallest index for which cnt(γik) = k, and let jk be the largest index for
which cnt(γjk) = k. Clearly such configurations exist, because ρ◦ is not low. It
moreover holds that i2n < i2n+1 < . . . < i3n < j3n < . . . < j2n+1 < j2n. By the
pigeonhole principle there exist indices k, `, where k < `, such that the state of
γik equals the state of γi` . Let this state be p ∈ Q. Consider the sequence of
transitions

σcyc = tiktik+1 . . . ti`−1.

It follows that σcyc is a positive cycle with effect ` − k and base state p. Let S
be the SCC of G in which σcyc is contained; the existence of σcyc asserts that S
is positively enabled. Let σup = σ+

S .
Let ρ̃pref be the prefix of ρ◦ up to configuration γik (i.e., with targ(ρ̃pref) =

γik). Note that we cannot simply put ρpref = ρ̃pref, because the state p in which
ρ̃pref finishes does not have to be the base state of σup, which is the cycle that
is required to be the one used for constructing ρup. This, however, poses no real
difficulty, because p and σup are contained in the same SCC S, so we can easily
augment ρ̃pref by a path to the base state of σup as follows.

Precisely we do the following. Let q be the base state of σup. As both p and
q belong to S, there exist consistent sequences of non-zero transitions σpq and
σqp, leading from p to q and from q to p, respectively, such that:

(a) states visited on σpq are pairwise different, and the same holds also for σqp;
in particular len(σpq), len(σqp) < nS ;

(b) σpq is fireable in any configuration (p, c) for any c ≥ n; and
(c) σqp is fireable in any configuration (q, c) for any c ≥ n.

Assertion (a) follows from the fact that σpq and σqp can be chosen so that they
correspond to simple paths in G, i.e., walks with no state repeated. Assertion (a)
in particular implies that the effects of prefixes of σpq and σqp are strictly larger
than −n. This implies assertions (b) and (c).

Now we construct a path ρ′′pref as follows. Let ρpq be the fastening of σpq at
the configuration γik . The state of γik is p and its counter value is not smaller
than 2n, so indeed σpq is fireable from γik ; even more, since len(σpq) < n and
cnt(γik) ≥ 2n, all the counter values on ρpq are larger than n. We define then

ρ′′pref = ρ̃prefρpq = (γ1, t1) · · · (γik−1, tik−1) ρpq.

We construct path ρ′′suff in a completely symmetric manner, so we only make
a short summary in order to introduce the notation. By the pigeonhole principle,
for some ¯̀, k̄ with ¯̀< k̄ the state of γj¯̀ and γjk̄ is the same, let it be p̄. The part
of the path between γj¯̀ and γjk̄ projects to a negative cycle, so it is contained
in some negatively enabled SCC T , to which p̄ also belongs. Define σdown = σ−T ,
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and let q̄ be the base state of σdown. As p̄ and q̄ both belong to T , we have σq̄p̄
and σp̄q̄ with similar properties as σpq and σqp. Path ρq̄p̄ can be again defined
as an appropriate fastening of σq̄p̄, so we define

ρ′′suff = ρq̄p̄ (γjk̄ , tjk̄) · · · (γm, tm).

Let A = eff(σup) and B = −eff(σdown). Now, based on ρ′′pref and ρ′′suff
we define ρ′pref and ρ′suff as follows. Observe that cnt(targ(ρ′′pref)) = k +
eff(σpq) > 2n − n = n, and similarly cnt(src(ρ′′suff)) > n. Suppose first that
cnt(targ(ρ′′pref)) ≤ cnt(src(ρ′′suff))− A. Then we take ρ′suff = ρ′′suff, whereas
ρ′pref is obtained from ρ′′pref by appending the cycle σup a number of times so
that cnt(src(ρ′suff)) − A < cnt(targ(ρ′pref)) ≤ cnt(src(ρ′suff)). Similarly, if
cnt(targ(ρ′′pref)) ≥ cnt(src(ρ′′suff)) + B, then we take ρ′pref = ρ′′pref whereas
ρ′suff is constructed from ρ′′suff by appending σdown a number of times in the
front so that cnt(targ(ρ′pref))− B < cnt(src(ρ′suff)) ≤ cnt(targ(ρ′pref)). If
none of these cases holds, we simply take ρ′pref = ρ′′pref and ρ′suff = ρ′′suff. Since
σup, σdown have lengths at most n, and the first one is a positive cycle whereas
the second one is a negative cycle, it can be easily verified that ρ′pref and ρ′suff
are indeed valid paths; here we use the property that cnt(targ(ρ′′pref)) > n
and cnt(src(ρ′′suff)) > n in order to make sure that appending the cycles does
not create nonpositive counter values on the path. Moreover, we achieved the
property that |cnt(targ(ρ′pref))− cnt(src(ρ′suff))| < max(A,B).

Finally, we obtain ρpref by applying Proposition 1 to ρ′pref exhaustively. In
this manner ρpref has still the same source and target as ρ′pref, but no con-
figuration repeats on ρpref. Similarly, ρsuff is obtained from ρ′suff by applying
Proposition 1 exhaustively, so that no configuration repeats on ρsuff.

Let ζ = targ(ρpref) = targ(ρ′pref) and ζ̄ = src(ρsuff) = src(ρ′suff). We
now verify that ρpref and ρsuff are as required.

Claim 1. The following conditions hold:

(1.a) paths ρpref and ρsuff are low;
(1.b) the counter values in configurations appearing on ρpref and ρsuff are always

positive, apart from the source of ρpref (which is α) and the target of ρsuff
(which is β);

(1.c) cnt(ζ),cnt(ζ̄) > n;
(1.d) |eff(ρpref) + eff(ρsuff)| < max(A,B);
(1.e) property (vii) is satisfied.

Proof. By the definition of k, all the configurations appearing on ρ̃pref have
counter values at most 3n. Since the counter value of configuration γik is not
smaller that 2n and not larger than 3n, and |eff(σpq)| ≤ len(σpq) < n, we
infer that the counter value on the path ρ′′pref is always strictly smaller than
4n. As len(σup) < n, it can be easily seen that appending the cycles during
the construction of ρ′pref cannot create counter values larger than 5n− 1. Hence
ρ′pref is low, and consequently ρpref is also low. A symmetric reasoning shows
the same conclusions for ρsuff, and thus condition (1.a) is satisfied.
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Since ρ◦ is an arc, no configuration on ρ̃pref apart from α has nonpositive
counter value. As cnt(γik) ≥ 2n, we have already argued that both after adding
σpq when constructing ρ′′pref, and after adding cycles σup when constructing ρ′pref,
we could not obtain a configuration with a nonpositive counter value. Hence the
only configuration on ρ′pref that has zero counter value is α, and the same holds
also for ρpref. A symmetric reasoning yields a symmetric conclusion for ρsuff,
which proves condition (1.b).

From the construction we have cnt(ζ) ≥ cnt(targ(ρ′′pref)), and we already
argued that cnt(targ(ρ′′pref)) > n. Hence cnt(ζ) > n, and a symmetric rea-
soning shows that cnt(ζ̄) > n. This proves condition (1.c).

Observe that eff(ρpref) = cnt(ζ) and eff(ρsuff) = −cnt(ζ̄). Hence, con-
dition (1.d) follows from |cnt(ζ)− cnt(ζ̄)| < max(A,B).

For condition (1.e), aiming towards a contradiction suppose that some con-
figuration γ appears more than once on ρpref and ρsuff. By construction, no con-
figuration repeats on ρpref and on ρsuff individually, so one of the appearances
of γ is on ρpref and the second is on ρsuff. Define a path ρ1 by concatenating the
prefix of ρpref up to the appearance of γ together with the suffix of ρsuff begin-
ning from the appearance of γ. Clearly, ρ1 is an arc from α to β, and moreover
it is low because both ρpref and ρsuff are low. This contradicts the assumption
that there is no low arc from α to β. y

The intuition now is that by repeating σup and σdown appropriately many
times (i.e., selecting numbers a and b) we can choose any difference of effects of
ρprefρup and ρdownρsuff, as long as this difference belongs to a fixed congruence
class modulo gcd(A,B). This means that the middle part of the path ρ◦ can
be unpumped “modulo gcd(A,B)”: even if we change its effect by a multiple of
gcd(A,B), we will be able to compensate for this change by adjusting a and b.

We now proceed to showing how the middle part of the path, i.e., ρcap, will
be constructed. Intuitively, the idea is to take the part from ρ◦ between indices k
and k̄, augment it with short connectives σqp and σp̄q̄ to link it with the cycles σup
and σdown, and unpump it “modulo gcd(A,B)” exhaustively. However, during
further constructions we need certain divisibility properties of eff(σcap), and
hence the construction of the connections to σup and σdown is more complicated.

Claim 2. There exists a sequence of transitions σcap such that

(2.a) σcap starts in q and finishes in q̄ (base states of σup and σdown respectively);

(2.b) no infix of σcap is a cycle with effect divisible by gcd(A,B); and

(2.c) eff(ρpref) + eff(σcap) + eff(ρsuff) is divisible by gcd(A,B).

Proof. The construction is depicted in Figure 2. Let σpre-conn = σpqσqp and
σpost-conn = σp̄q̄σq̄p̄. We set

σpre = σqp (σpre-conn)c

σpost = (σpost-conn)c σp̄q̄,
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(σdown)b

(σup)a
p

q

q̄
p̄

σp̄q̄

σq̄p̄

ρpref

σpq

S

ρsuff

σqp

T

ρ′cap

Fig. 2. The construction of ρ′cap in the first part of the proof of Claim 2. Note that
cycles (σpre-conn)c and (σpost-conn)c are depicted symbolically as small spirals.

where c = gcd(A,B)− 1. It is easy to verify that σpre, σpost are consistent and

eff(σpre) + eff(σpq) = (c+ 1) · eff(σpre-conn) ≡ 0 mod gcd(A,B), (1)

eff(σpost) + eff(σq̄p̄) = (c+ 1) · eff(σpost-conn) ≡ 0 mod gcd(A,B). (2)

Consider the sequence of transitions

σmidd = tiktik+1 · · · tjk̄−1.

and define σ′cap = σpreσmiddσpost. We now verify that conditions (2.a) and (2.c)
are satisfied for σ′cap. Condition (2.a) follows directly from the construction. For
condition (2.c), observe that from the construction of ρpref and ρsuff we have

eff(ρpref) = eff(ρ′pref) = eff(t1t2 . . . tik−1) + eff(σpq) + x ·A
eff(ρsuff) = eff(ρ′suff) = eff(tjk̄tjk̄+1 . . . tm) + eff(σq̄p̄)− y ·B

for some x, y ∈ N. Hence, from (1), (2) and the fact that eff(ρ◦) = 0, it follows
that

eff(ρpref) + eff(σ′cap) + eff(ρsuff) ≡
eff(ρ◦) + eff(σpq) + eff(σq̄p̄) + eff(σpre) + eff(σpost) ≡ 0 mod gcd(A,B).

So condition (2.c) indeed holds for σ′cap.
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We now take condition (2.b) into consideration. Define σcap to be any of the
shortest possible consistent sequences of transitions satisfying conditions (2.a)
and (2.c); the existence of σ′cap implies that there exists such a sequence, so
σcap is well-defined. Let σcap = t1 . . . tr. Assume towards contradiction that σcap
does not satisfy condition (2.b). Then there is some infix ti+1 . . . tj that is a
cycle and its effect is divisible by gcd(A,B). It is easy to observe that sequence
σ′ = t1 · · · titj+1 · · · tm is consistent, src(σ′) = q, targ(σ′) = q̄ and eff(σ′) −
eff(σ) ≡ 0 mod gcd(A,B). Hence σ′ satisfies conditions (2.a) and (2.c) while
being strictly shorter than σcap. This is a contradiction with the minimality
(shortness) of σcap, which proves that σcap satisfies condition (2.b). y

Note that from condition (2.b) it follows that len(σcap) ≤ gcd(A,B) · n.
In the final construction this condition will directly imply that ρcap will satisfy
property (v), since ρcap will be simply σcap fastened at some configuration.

We denote

L = len(σcap),

K = eff(ρpref) + eff(σcap) + eff(ρsuff).

Recall that gcd(A,B) divides K. Moreover, from condition (1.d) we know that

|K| ≤ |eff(σcap)|+ |eff(ρpref) + eff(ρsuff)| < L+ max(A,B). (3)

Having defined ρpref, ρsuff and σcap, we proceed to defining ρup and ρdown.
For this, we need to define a, b ∈ N: the numbers of times the cycles σup and
σdown are repeated on ρup and ρdown. As described earlier, they have to be chosen
so that the resulting path ρ is valid and has zero effect, but they also need to
be reasonably small so that conditions (iii) and (iv) are satisfied. We now prove
that this is always possible.

Claim 3. There exist a, b ∈ N such that the following conditions hold:

(3.a) a ·A− b ·B = −K;
(3.b) L ≤ a ·A, b ·B ≤ 2L+ 2 · lcm(A,B).

Proof. It is a well-known fact that there exist some integers x0, y0 such that
x0 · A − y0 · B = gcd(A,B). Since K is divisible by gcd(A,B), we can take
x = x0 ·(−K/ gcd(A,B)) and y = y0 ·(−K/ gcd(A,B)) so that x·A−y ·B = −K.
Moreover, by increasing x by M ·B and increasing y by M ·A, for a sufficiently
large integer M , we can further assume that x, y ≥ 0. Suppose then that (x, y)
is a pair of nonnegative integers satisfying x ·A− y ·B = −K for which x+ y is
the smallest possible. We claim that x ·A, y ·B ≤ |K|+ lcm(A,B).

Aiming towards a contradiction, suppose that x·A > |K|+lcm(A,B). Then in
particular x > lcm(A,B)/A = B/ gcd(A,B). Also, y ·B = x·A+K > lcm(A,B),
and hence y > lcm(A,B)/B = A/ gcd(A,B). Consider x′ = x − B/ gcd(A,B)
and y = y′ −A/ gcd(A,B). Then we have x′, y′ ≥ 0 and it can be easily verified
that x′ · A − y′ · B = −K. As x′ + y′ < x + y, this is a contradiction with the
minimality of x + y. Hence indeed x · A ≤ |K| + lcm(A,B), and symmetrically
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we also prove that y · B ≤ |K| + lcm(A,B). Note that by (3) the inequalities
|K|+ lcm(A,B) ≤ L+ max(A,B) + lcm(A,B) ≤ L+ 2 · lcm(A,B) hold.

It remains to define a, b based on x, y so that the lower bound on a · A and
b · B holds. If already x · A, y · B ≥ L, then we can take (a, b) = (x, y); assume
therefore that this is not the case. For i ∈ N, let

ai = x+ i · (lcm(A,B)/A) and bi = y + i · (lcm(A,B)/B).

Clearly ai, bi ≥ 0, and it is easy to verify that ai ·A−bi ·B = −K for each i ∈ N.
It therefore only suffices to show that there exists i such that L ≤ ai ·A, bi ·B ≤
2L+ 2 · lcm(A,B). Let i be the smallest nonnegative integer so that ai · A ≥ L
and bi · B ≥ L; then i > 0. Suppose that K ≥ 0; the other case is symmetric.
As ai ·A− bi ·B = −K ≤ 0, we have ai ·A ≤ bi ·B; by our definition of ai and
bi, similarly ai−1 ·A ≤ bi−1 ·B. Since by the minimality of i either ai−1 ·A < L
or bi−1 ·B < L holds, we deduce that ai−1 ·A < L in both cases, and it follows
that ai ·A < L+ lcm(A,B). Now

bi ·B = K + ai ·A < (L+ max(A,B)) + (L+ lcm(A,B)) ≤ 2L+ 2 · lcm(A,B).

Thus we can take (a, b) = (ai, bi). The case K < 0 is symmetric. y

Let us fix the numbers a, b ∈ N given by Claim 3. We are finally ready
to define the whole path ρ. Define ρup as (σup)a fastened at configuration ζ.
Symmetrically we define ρdown as (σdown)b fastened at (q̄, b · B + cnt(ζ̄)), so
that its target is ζ̄. Finally, let ρcap be σcap fastened at targ(ρup), and define

ρ = ρprefρupρcapρdownρsuff.

Note that in this definition we did not verify properly that appropriate sequences
of transitions are fireable at certain configurations. We perform this check in the
next claim.

Claim 4. ρ is a normal arc from α to β.

Proof. First, condition (1.b) ensures that on ρpref all the configurations have
positive counter values apart from the source configuration α. Similarly, on ρsuff
all the configurations have positive counter values apart from the target config-
uration β. Condition (1.c) asserts that cnt(ζ) > n, so cycle σup is fireable at ζ
because len(σup) ≤ n. Since σup is a positive cycle, it can be easily seen that also
(σup)a is fireable at ζ, and moreover on ρup we do not obtain any configuration
with zero counter value. A symmetric reasoning shows that (σdown)b is fireable
at (q̄, b · B + cnt(ζ̄)) so that its target is ζ̄ and ρdownρsuff is a valid path with
β being the only configuration with zero counter value.

Now observe that cnt(targ(ρup)) = eff(ρpref) + a · A, which is strictly
larger than L by condition (3.b). Since len(σcap) = L and src(σcap) = q =
st(targ(ρup)), we see that indeed σcap is fireable at targ(ρup), and moreover
on ρcap all the configurations have positive counter values.
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To conclude that ρ is an arc from α to β, it remains to verify that targ(ρcap) =
src(ρdown). Both these configurations have state q̄, so we need to verify that their
counter values are equal. However, using condition (3.a) we have the following:

cnt(targ(ρcap)) = eff(ρpref) + eff(ρup) + eff(ρcap)

= a ·A+K − eff(ρsuff) = b ·B − eff(ρsuff)

= −eff(ρdown)− eff(ρsuff) = cnt(src(ρdown)).

Hence indeed ρ is an arc from α to β, normal by construction (as st(src(ρcap))
and st(targ(ρcap)) are the base states of σup and σdown respectively). y

We summarize the properties of ρ that are required in the lemma state-
ment. Properties (i) and (ii) follow directly from the construction. Properties (iii)
and (iv) follow from our choice of a and b, in particular from condition (3.b).
Property (v) follows from condition (2.b) and the fact that σcap = proj(ρcap).
Property (vi) follows from condition (1.c) and the fact that σup and σdown are
a positive and a negative cycle, respectively. Finally, property (vii) follows from
condition (1.e). This concludes the proof of Lemma 2. ut

5.3 Length of shortest paths

Let α and β be such as in the statement of Theorem 1. Let ρ◦ be a path from α
to β that has the minimum possible number of intermediate configurations with
counter value zero. Let all these intermediate configurations with counter value
zero be γ2, . . . , γk, where γ1 = α and γk+1 = β. For i = 1, 2, . . . , k, let ρi◦ be the
subpath of ρ◦ between configurations γi and γi+1. Then ρi◦ is an arc from γi to
γi+1. By Lemma 2, there exists also an arc ρi from γi to γi+1 that is either low
or is normal and admits a normal decomposition satisfying properties (i)–(vii).
In case ρi is low, choose ρi to be the shortest possible low arc from γi to γi+1.
In case ρi is normal, let

ρi = ρipref ρ
i
up ρ

i
cap ρ

i
down ρ

i
suff

be its normal decomposition. Our goal for the rest of the proof (i.e., for this
subsection) is to show that ρ = ρ1 . . . ρk, which is clearly a path from α to β, has
length at most 14n2. Note that ρ has the same number of configurations with
counter value zero as ρ◦. Let N ⊆ {1, 2, . . . , k} be the set of indices i for which
ρi is normal, and let L = {1, 2, . . . , k} \ N be the set of indices i for which ρi is
low.

First we show that the sum of the lengths of low parts of ρ, more precisely,
low arcs, ρipref and ρisuff, is small. For this, Proposition 1 will be very useful.

Lemma 3. The following inequality holds:∑
i∈L

len(ρi) +
∑
i∈N

(len(ρipref) + len(ρisuff)) ≤ 5n2.
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Proof. For every i ∈ L, no configuration appears on ρi more than once, because
in such a case ρi could be made shorter using Proposition 1 without spoiling
the property that it is low, which would contradict the assumption that ρi is
the shortest possible. For every i ∈ N , property (vii) of Lemma 2 ensures that
no configuration appears more than once on the paths ρipref and ρisuff. Suppose
that some configuration γ appears both in ρi and in ρj , for some i < j. Then
by applying Proposition 1 to configuration γ in the path ρ, we would obtain a
path from α to β with a strictly smaller number of intermediate configurations
with counter value zero, a contradiction with the choice of ρ◦.

Hence, we conclude that among configurations appearing on paths from the
set {ρi : i ∈ L} ∪ {ρipref, ρisuff : i ∈ N}, no configuration appears more than
once. Since all these paths are low, all these configurations have counter values
between 0 and 5n − 1. Hence, the total number of configurations appearing on
these paths is at most n · 5n = 5n2, which concludes the proof. ut

Now we will estimate the length of the rest of the path ρ. First, however, we
have to prepare a toolbox of lemmas. We introduce the following notation. For
S, T ∈ S, let N(S,T ) ⊆ N be the set of all those indices i for which ρi is (S, T )-
normal. Moreover, let N(S,·) =

⋃
T ′∈SN(S,T ′) and N(·,T ) =

⋃
S′∈SN(S′,T ).

Lemma 4. Let S, T ∈ S. Suppose i ∈ N(S,·) and j ∈ N(·,T ) for some i, j with
1 ≤ i < j ≤ k. Then there are no two configurations δi and δj appearing on

ρicap and ρjcap respectively, such that st(δi) = st(δj) and cnt(δi) − cnt(δj) is
divisible by gcd(eff(σ+

S ),−eff(σ−T )).

Proof. Denote A = eff(σ+
S ) and B = −eff(σ−T ). Assume towards contradiction

that there exists δi on ρicap and δj on ρjcap such that st(δi) = st(δj) and cnt(δi)−
cnt(δj) is divisible by gcd(A,B). We will show that we can modify ρi and ρj so
that the part between δi and δj can be cut off from ρ. This will be a contradiction
with the assumption that ρ has the minimum possible number of intermediate
configurations with counter value zero.

Let cnt(δj)− cnt(δi) = Z, where Z = z · gcd(A,B) for some integer z. It is
a known fact that there exist a, b ∈ N such that a ·A− b ·B = gcd(A,B); cf. the
proof of Claim 3. If z ≥ 0 then az ·A− bz ·B = z · gcd(A,B) = Z, where az ≥ 0
and bz ≥ 0. If z < 0 then (MB + az) · A− (MA+ bz) · B = z · gcd(A,B) = Z,
where M is large enough so that MB + az ≥ 0 and MA + bz ≥ 0. Therefore,
there always exist numbers a, b ≥ 0 such that a ·A− b ·B = Z.

We modify the path ρ as follows. In the path ρiupρ
i
cap we insert a cycles σ+

S at

the end of ρiup, and in ρjcapρ
j
down we insert b cycles σ−T at the front of ρjdown. By

property (vi), this insertion does not introduce configurations with nonpositive
counter values, since each of the cycles σ+

S and σ−T contains at most n edges.
After this operation, the configuration δi that was originally on ρicap becomes
lifted to the configuration (st(δi),cnt(δi) + a · A). On the other hand, the
configuration δj that was originally on ρjcap becomes lifted to the configuration
(st(δj),cnt(δj) + b ·B). However,

cnt(δi) + a ·A = cnt(δj)− Z + a ·A = cnt(δj) + b ·B.
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Since st(δi) = st(δj), we conclude that these two lifted configurations are equal.
Therefore, we can perform the following operation on ρ: insert the cycles σ+

S

and σ−T as described above, and cut out the entire part of ρ between the lifted
configurations originating in δi and δj by Proposition 1. In this manner we obtain
a path from α to β that has strictly less intermediate configurations with counter
value equal zero than ρ, which is a contradiction. ut

Lemma 5. Let S, T ∈ S. Then |N(S,T )| ≤ gcd(eff(σ+
S ),−eff(σ−T )).

Proof. Let us denote A = eff(σ+
S ) and B = −eff(σ−T ). Assume towards a

contradiction that |N(S,T )| > gcd(A,B). For i ∈ N(S,T ), let δi = targ(ρicap).
By the pigeonhole principle, for some two indices i < j configurations δi and δj
have the same counter value modulo gcd(A,B). Moreover, δi and δj have the
same state, which is the base state of σ−T by our definition of a normal arc. This
contradicts Lemma 4. ut

Total length of caps. We have now all the necessary ingredients to establish
the desired upper bounds on the lengths of caps. Recall that for a strongly
connected component S ∈ S we denote by nS the number of vertices in S.

Lemma 6. Let S, T ∈ S, let AS = eff(σ+
S ) and let BT = −eff(σ−T ). Then:∑

i∈N(S,·)

len(ρicap) ≤ AS · n; (4)

∑
i∈N(·,T )

len(ρicap) ≤ n ·BT ; (5)

moreover,
∑
i∈N

len(ρicap) ≤ n2. (6)

Proof. For (4), assume towards a contradiction that
∑
i∈N(S,·)

len(ρicap) > AS ·n.

Then by the pigeonhole principle there exists two configurations δ and δ′ on the
paths ρicap for i ∈ N(S,·) which have the same state and the same counter value
modulo AS . Assume w.l.o.g. that δ is earlier in the path than δ′. By property (v)
of Lemma 2, configurations δ and δ′ cannot appear in the same path ρicap. Indeed,
otherwise the projection of the part of ρicap between δ to δ′ would be a cycle
with effect divisible by AS , so also by gcd(AS ,−eff(σ−T )), where T is the SCC
for which ρi is (S, T )-normal. Therefore they have to belong to different arcs.
Let δ belong to ρi and δ′ belong to ρj , where j ∈ N(S,T ) for some T ∈ S.
However, by Lemma 4, there are no two configurations δ and δ′ on ρi and ρj ,
respectively, such that their states are the same and the difference in counter
values is divisible by gcd(AS ,−eff(σ−T )). Contradiction, as δ and δ′ are such
configurations: the difference of its counter values is divisible by AS , so also
by gcd(AS ,−eff(σ−T )). Thus (4) is proved, and (5) follows from a symmetric
reasoning. The bound (6) follows by summing (4) through all S ∈ S and using
the facts that eff(σ+

S ) ≤ nS and
∑
S∈S nS = n. ut



21

Total length of positive and negative cycles. We now show that the total
sum of the lengths of ρiup and ρidown is at most 8n2. This is the case where we
need the key estimations (iii) and (iv) in Lemma 2.

Lemma 7. The following inequalities hold:∑
i∈N

len(ρiup) ≤ 4n2,∑
i∈N

len(ρidown) ≤ 4n2.

Proof. We show how to bound the sum of lengths of paths ρiup. For any S ∈ S,
let us denote AS = eff(σ+

S ) and BS = −eff(σ−S ). For each i ∈ N , let Si, Ti ∈ S
be such that ρi is (Si, Ti)-normal, and let Li = len(ρicap). By Lemma 2 we know
that eff(ρiup) ≤ 2Li + 2 · lcm(ASi , BTi). Since proj(ρiup) = (σ+

Si
)a for some

integer a, we have

len(ρiup) = eff(ρiup)·
len(σ+

Si
)

eff(σ+
Si

)
≤ eff(ρiup)· nSi

ASi
≤ (2Li+2·lcm(ASi , BTi))·

nSi
ASi

.

Hence, ∑
i∈N

len(ρiup) ≤ 2
∑
i∈N

Li nSi
ASi

+ 2
∑
i∈N

lcm(ASi , BTi) · nSi
ASi

. (7)

We will separately estimate the first and the second term. First we focus on∑
i∈N

Li nSi
ASi

. Let us fix some specific S ∈ S. We have

∑
i∈N(S,·)

Li nSi
ASi

=
nS
AS
·

∑
i∈N(S,·)

Li ≤
nS
AS
·AS · n = nS · n,

where the inequality follows from Lemma 6(4). Thus

∑
i∈N

Li nSi
ASi

=
∑
S∈S

∑
i∈N(S,·)

Li nSi
ASi

≤
∑
S∈S

nS · n = n2. (8)

In order to estimate the second term, fix some S, T ∈ S. Note that lcm(x,y)
x =

xy
gcd(x,y)·x = y

gcd(x,y) for all positive integers x, y. Now we have

∑
i∈N(S,T )

BTi · nSi
gcd(ASi , BTi)

=
∑

i∈N(S,T )

BT · nS
gcd(AS , BT )

= |N(S,T )| ·
BT · nS

gcd(AS , BT )

≤ gcd(AS , BT ) · BT · nS
gcd(AS , BT )

= BT · nS ≤ nT · nS ,
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where the first inequality follows from Lemma 5 and the second one from the
fact that the effect of a path is bounded by its length. Therefore,∑

i∈N

BTi · nSi
gcd(ASi , BTi)

=
∑

S,T∈S

∑
i∈N(S,T )

BTi · nSi
gcd(ASi , BTi)

≤
∑

S,T∈S

nT · nS =
∑
S∈S

nS ·
∑
T∈S

nT = n2. (9)

By connecting equations (7), (8) and (9) we obtain∑
i∈N

len(ρiup) ≤ 2n2 + 2n2 = 4n2.

The upper bound on the sum of lengths of paths ρidown is obtained analogously,
using Lemma 6(5) instead of Lemma 6(4). ut

Combining the bounds of Lemma 3, Lemma 6(6), and Lemma 7, we conclude
that

len(ρ) ≤ 5n2 + n2 + 4n2 + 4n2 ≤ 14n2,

which completes the proof of Theorem 1.

6 Generalizations

6.1 Proof of Theorem 2

In this section we prove Theorem 2, which provides an upper bound on the
length of the shortest path between any pair of configurations. For convenience,
we recall its statement.

Theorem 2. Let O be a one-counter system with n states. Suppose a configu-
ration β = (pβ , cβ) is reachable from a configuration α = (pα, cα) in O. Then
O has a path from α to β of length at most 14n2 + n ·max(cα, cβ).

Proof. Let a = cnt(α) and b = cnt(β). Assume without loss of generality that
a ≥ b; the second case is symmetric. Let ρ be some path from α to β. We first
formulate the following Claim.

Claim 5. There exists a one counter system Oa with the following property.
For any p, q ∈ Q there is a path from (p, 0) to (q, 0) of length exactly K (so with
K + 1 configurations) in Oa if and only if there is a path from (p, a) to (q, a)
in O which contains exactly K + 1 configurations of counter value at least a.
Moreover Oa and O have the same number of states.

Proof. We construct Oa with the set of states Qa, the set of non-zero transitions
T a>0 and the set of zero tests T a=0 as follows. It has the same set of states as O,
so Qa = Q, and the same set of non-zero transitions, so T a>0 = T>0. Only the set
of zero tests is different. The set T a=0 contains only tuples of the form (q, 0, q′)
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for q, q′ ∈ Qa. Tuple (q, 0, q′) belongs to T a=0 if and only if there is a path in O
from configuration (q, a) to configuration (q′, a) such that all the intermediate
configurations have counter value smaller than a.

We now verify that for such Oa, the claim indeed holds.

Assume that there is a path from (p, 0) to (q, 0) in Oa. Observe that there is
a corresponding path from (p, a) to (q, a) in O. Every non-zero transition from
(r, c) for c > 0 in Oa is simulated by one transition from (r, c + a) in O, as
T a>0 = T>0. Every zero-test from (r, 0) to (r′, 0) in Oa is simulated by a path
from (r, a) to (r′, a) in O, where all the intermediate configurations have counter
value smaller than a. Such a path exists by the definition of T a=0. Note that the
corresponding path of O indeed has exactly as many configurations with counter
value at least a as there are configurations in the original path of Oa.

Assume now that there is a path from (p, a) to (q, a) in O. We construct the
corresponding path of Oa as follows. Every part of the path from some (r, a) to
some (r′, a) where all the configurations in between have smaller counter values
is replaced by a zero-test of Oa. The constructed path of Oa indeed has as many
configurations as there are configurations in the path of O which have counter
value at least a. y

Let γ = (q, a) be the last configuration in ρ which has counter value a.
Assume that α = (p, a). Let us consider the OCS Oa from Claim 5. As there
is a path from (p, a) to (q, a) in O then there is a path from (p, 0) to (q, 0) in
Oa. By Theorem 1 there is a path from (p, 0) to (q, 0) of length at most 14n2.
Now one more time by Claim 5 there is a path from (p, a) to (q, a) which has
at most 14n2 + 1 configurations of counter value at least a. Let us denote by ρ′

concatenation of this path and the suffix of ρ starting in γ and finishing in β.
Since γ is the last configuration in ρ which has counter value at least a then also
in ρ′ there are at most 14n2 + 1 configurations of counter value at least a.

Let ρ′′ be a shortest path from α to β such that there are at most 14n2 + 1
configurations in this path with counter value at least a. There is at least one
such path, namely ρ′, so a shortest one clearly exists. Let us define a set low
as the set of all configurations appearing in ρ′′ whose counter values are smaller
than a. We claim that |low| ≤ an. Indeed, assume otherwise, that |low| > an.
Then, by pigeonhole principle, some two configurations appearing on ρ′′, say
δ and δ′, are equal. Then by Proposition 1, cutting out the part of the path
between δ and δ′ would leave a strictly shorter path from α to β that would
have not more configurations with counter value at least a. This would be a
contradiction with the choice of ρ′′.

We therefore know that there are at most 14n2 + 1 configurations in ρ′′ with
counter value at least a and at most an configurations with counter value smaller
than a. Thus altogether there are at most 14n2 + 1 +an configurations on ρ′′, so
len(ρ′′) ≤ 14n2 +an ≤ 14n2 +n·max(a, b). This finishes the proof of Theorem 2.

ut
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6.2 Generalization to counters with values in Z

In this section we show how our results can be also used to give improved upper
bounds on the length of the shortest path in the model considered by Alur and
Černý [1]. Recall that in this model, the counter can take arbitrary values in Z
and there are no zero-tests. In fact, we can show that a quadratic upper bound
holds in a much more general model, where zero tests are allowed and transitions
fireable at positive counter values may differ from transitions fireable at negative
counter values. We start with defining formally the model we are working with.

A one-Z-counter system (Z-OCS ) O consists of a finite set of states Q, a set
of positive transitions T>0 ⊆ Q × {−1, 0, 1} × Q, a set of negative transitions
T<0 ⊆ Q × {−1, 0, 1} × Q, and a set of zero tests T=0 ⊆ Q × {−1, 0, 1} × Q.
The set of transitions is T = T>0 ∪ T<0 ∪ T=0. The positive transitions are
fireable in configurations where the counter value is positive, negative transitions
are fireable whenever the counter value is negative, and zero tests are fireable
whenever the counter value is equal to zero. We adopt all the notation from
one-counter systems in a natural way. In particular, the configurations of a Z-
OCS O are pairs (q, c), where q ∈ Q is the configuration’s state, and c ∈ Z is
the configuration’s counter value. Observe that one-Z-counter systems generalize
standard one-counter systems, because we can take T<0 = ∅ and disallow zero
tests having effect −1 on the counter.

Again, a path is a sequence of the form

(γ1, t1)(γ2, t2) . . . (γm, tm) ∈ ((Q× Z)× T )∗,

for which some final configuration γm+1 exists, such that for each i = 1, 2, . . . ,m

we have that γi
ti−→ γi+1, i.e., firing transition ti at configuration γi results in

configuration γi+1. We now state formally our result for one-Z-counter systems.

Theorem 3. Let O be a one-Z-counter system with n states. Suppose configura-
tion β is reachable from configuration α in O, where cnt(α) = cα and cnt(β) =
cβ. Then O has a path from α to β of length at most 56n2 + n · (|cα|+ |cβ |).

We remark that one can approach Theorem 3 by following the lines of the
proofs of Theorems 1 and 2, and adjusting the argumentation to the setting
of one-Z-counter systems. The proof, however, would be even more technical,
because having both positive and negative counter values requires performing
the pumping arguments twice: both for very high (positive) values and for very
low (negative) values. Instead, we show how Theorem 3 can be deduced from the
proofs of Theorems 1 and 2 directly, using a similar approach as for Theorem 2.

Proof. Let O be the given Z-OCS, and let Q,T>0, T<0, T=0 be its set of states,
its sets of positive and negative transitions, and its set of zero tests, respectively.
Denote T = T>0 ∪ T<0 ∪ T=0. Let a = cnt(α) and b = cnt(β).

For a transitions t = (q, c, q′), its negation is transition tneg = (q,−c, q′).
For any set of transitions M , let Mneg denote the set of negations of transitions
from M . For a configuration γ = (q, c), the negated configuration γneg is equal
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to (q,−c). For a path ρ, by ρneg we mean a path obtained from ρ by negating
all the configurations and all the transitions.

Let T=0,+ = {(q, c, q′) ∈ T=0 | c ≥ 0} and T=0,− = {(q, c, q′) ∈ T=0 | c ≤ 0}.
Define the following (standard) one counter systems:

– O+ has state set Q, non-zero transition set T>0, and zero tests T=0,+; and
– O− has state setQ, non-zero transition set (T<0)neg, and zero tests (T=0,−)neg.

The following properties are immediate.

Claim 6. The following holds for any sequence ρ ∈ ((Q× N)× T )∗:

(a) ρ is a path of O+ if and only if ρ is a path of O such that no configuration
appearing on ρ has a negative counter value;

(b) ρneg is a path of O− if and only if ρ is a path of O such that no configuration
appearing on ρ has a positive counter value.

Take a path ρ◦ of O that starts in α and finishes in β (by the assumption
such a path exists), has the minimum possible number of configurations with
counter value zero appearing on it, and among such paths has the smallest
possible length. Assume first that there is no configuration appearing on ρ◦ that
has counter value zero. Since counter values in consecutive configurations of ρ◦
change by at most one at a time, we infer that the counter values of configurations
appearing on ρ◦ are either always positive or always negative. Suppose first that
they are always positive. By Claim 6(a), ρ◦ is a path of O+ from α to β. Since
ρ◦ was chosen to be of the minimum possible length, by Theorem 2 applied
to O+ we infer that len(ρ◦) ≤ 14n2 + n · max(a, b) < 56n2 + n · (|a| + |b|),
and we are done. Similarly, if all configurations appearing on ρ have negative
counter values, then from Claim 6(b) we have that ρneg

◦ is a path from αneg

to βneg in O−, and hence by Theorem 2 we infer that len(ρ◦) = len(ρneg
◦ ) ≤

14n2 + n ·max(−a,−b) < 56n2 + n · (|a|+ |b|).
We are left with the case when at least one configuration on ρ◦ has counter

value zero. In the following we suppose that a, b ≥ 0; the other three cases of
the sign of a and b are symmetric. We denote

ρ◦ = (γ1, t1)(γ2, t2) . . . (γm, tm),

and γm
tm−→ γm+1, where γ1 = α and γm+1 = β. Let z and z′ be respectively the

indices of the first and the last configuration on ρ◦ that has counter value zero;
in particular cnt(γz) = cnt(γz′) = 0. Denote ρ◦ = ρprefρmiddρsuff, where

ρpref = (γ1, t1) . . . (γz−1, tz−1),

ρmidd = (γz, tz) . . . (γz′−1, tz′−1),

ρsuff = (γz′ , tz′) . . . (γm, tm).

In case z = 1 or z′ = m + 1, we take ρpref or ρsuff to be an empty path,
respectively.
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By the choice of z and the assumption that a ≥ 0, we have that all the con-
figurations appearing on ρpref have nonnegative counter values. By Claim 6(a),
we infer that ρpref is also a path of O+, starting from α and ending in γz. By
Theorem 2, there is a path ρ′pref of O+ that starts in α and ends in γz, and for
which we have len(ρ′pref) ≤ 14n2 + na = 14n2 + n · |a|. Note that in the case
when a ≤ 0, we could apply a symmetric reasoning to ρneg

pref, which is a path
in O−, and, by negating once more, again obtain a path ρ′pref from α to γz of
length at most 14n2 +n · |a|. A symmetric argument applied to ρsuff shows that
we can find a path ρ′suff from γz′ to β with len(ρ′suff) ≤ 14n2 + n · |b|.

We are left with bounding the length of ρmidd. Let z1, z2, . . . , zk be the
consecutive indices between z = z1 and z′ = zk for which the correspond-
ing configurations γzi have counter value zero. For each i = 1, 2, . . . , k − 1, let
ρi = (γzi , ti) . . . (γzi+1−1, tzi+1−1). Clearly, for each i = 1, 2, . . . , k − 1 we either
have that all the intermediate configurations of ρi have positive counter values,
in which case we call ρi a positive arc, or they all have negative counter values,
in which case ρi is called a negative arc, or ρi has length 1, in which case it is
called a zero arc.

Consider a (standard) one-counter system O′+ obtained from O+ as follows:
we add a zero test (q, 0, q′) for every pair of configurations (q, q′) for which
there exists a path from (q, 0) to (q′, 0) in O such that all its intermediate
configurations have negative counter values. Similarly, let O′− be a (standard)
one-counter system obtained from O− by adding a zero test (q, 0, q′) for every
pair of configurations (q, q′) for which there exists a path from (q, 0) to (q′, 0) inO
such that all its intermediate configurations have positive counter values. Observe
that every positive arc ρi gives rise to a zero test in O′−, and every negative arc ρi

gives rise to a zero test in O′+. Let ρ+ be a path obtained from ρmidd by replacing
every negative arc by a corresponding zero test in O′+. Similarly, let ρ− be a path
obtained from ρmidd by replacing every positive arc by a corresponding zero test
in O′−, and negating the whole path. It is straightforward to verify that ρ+ and
ρ− are paths in O′+ and O′−, respectively. Moreover, they both start in γz and
end in γz′ , and for both the number of appearing configurations with counter
value zero is the same as on ρ◦.

We now claim that ρ+ is a path that has the minimum possible number of
intermediate configurations with counter value zero, among paths from γz to γz′

in O′+. Indeed, if there was such a path ρ′ with a smaller number of intermediate
configurations with counter value zero, then we could modify ρ′ to a path ρ′′ in
O by replacing each usage of any zero test (q, 0, q′) added in the construction
of O′+ by a corresponding negative arc, i.e., a path in O from (q, 0) to (q′, 0) in
which all the intermediate configurations have negative counter values. Then ρ′′

would have the same number of intermediate configurations with counter value
zero as ρ′. Hence ρ = ρprefρ

′′ρsuff would be a path from α to β in O that would
have strictly fewer configurations with counter value zero appearing on it than
ρ◦; this is a contradiction with the choice of ρ◦. A symmetric argument shows
that ρ− has the minimum possible number of intermediate configurations with
counter value zero, among paths in O′− from γz to γz′ .
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We now apply the same substitution scheme to ρ+ as in Section 5.3. That is,
we partition the arcs of ρ+ (which correspond to positive arcs in the decomposi-
tion of ρmidd) into low arcs, where the counter values are always smaller than 5n,
and high arcs, where some counter values are at least 5n. Each low arc is replaced
by the shortest possible low arc that starts and ends in the same configurations,
whereas each high arc is replaced by a normal arc obtained using Lemma 2. Let
ρ′+ be the obtained path from γz to γz′ . The discussion of the previous para-
graph ensures that ρ+ satisfies the same minimality property as the original arc
ρ◦ considered in Section 5.3, i.e., it is a path from γz to γz′ that has the minimum
possible number of intermediate configurations with counter value zero. Hence,
the same analysis as in Section 5.3 applies, yielding that len(ρ′+) ≤ 14n2. In a
symmetric manner we can modify ρ− to a path ρ′− from γz to γz′ in O′− with
len(ρ′−) ≤ 14n2.

Now we consider ρ′midd obtained from ρmidd in the same manner: every positive
arc is replaced as in the construction of ρ′+ from ρ+, and every negative arc is
replaced as in the construction of ρ′− from ρ− (obviously, with the negation
applied). It follows that ρ′midd is a path in O from γz to γz′ with len(ρ′midd) ≤
len(ρ′+) + len(ρ′−) ≤ 28n2. Then define

ρ = ρ′prefρ
′
middρ

′
suff.

We therefore have that ρ is a path from α to β in O, and

len(ρ) = len(ρ′pref) + len(ρ′midd) + len(ρ′suff) ≤ 56n2 + n · (|a|+ |b|).

This finishes the proof of Theorem 3. ut

Finally, we remark that the model used by Alur and Černý [1] corresponds
to setting T>0 = T<0 = T=0 in our definition of a one-Z-counter system. In this
case, one can very easily obtain a marginally better upper bound of 56n2 + n ·
|cα − cβ |. Indeed, since the fireability of transitions of O is independent of the
sign of the counter, on any path in O we can add an arbitrary integer to all
the counter values throughout the path, and we still obtain a path of O. Hence,
by decrementing all the counter values by cα, we can equivalently consider the
problem of bounding the length of the shortest path from α to β when we know
that cα = 0. Then an application of Theorem 3 yields a path from α to β with
length at most 56n2 + n · |cβ |, which translates to the bound 56n2 + n · |cα − cβ |
in the general case before decrementing.
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