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Formal methods have been very successful in analyzing security protocols for reachability properties such
as secrecy or authentication. In contrast, there are very few results for equivalence-based properties, crucial
for studying e.g. privacy-like properties such as anonymity or vote secrecy.

We study the problem of checking equivalence of security protocols for an unbounded number of sessions.
Since replication leads very quickly to undecidability (even in the simple case of secrecy), we focus on a lim-
ited fragment of protocols (standard primitives but pairs, one variable per protocol’s rules) for which the se-
crecy preservation problem is known to be decidable. Surprisingly, this fragment turns out to be undecidable
for equivalence. Then, restricting our attention to deterministic protocols, we propose the first decidability
result for checking equivalence of protocols for an unbounded number of sessions. This result is obtained
through a characterization of equivalence of protocols in terms of equality of languages of (generalized,
real-time) deterministic pushdown automata. We further show that checking for equivalence of protocols is
actually equivalent to checking for equivalence of generalized, real-time deterministic pushdown automata.

Very recently, the algorithm for checking for equivalence of deterministic pushdown automata has been
implemented. We have implemented our translation from protocols to pushdown automata, yielding the
first tool that decides equivalence of (some class of) protocols, for an unbounded number of sessions. As an
application, we have analyzed some protocols of the literature including a simplified version of the basic
access control (BAC) protocol used in biometric passports.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Verifying and Reasoning
about Programs

General Terms: Security

Additional Key Words and Phrases: formal proofs, security protocols, verification, trace equivalence

1. INTRODUCTION
Formal methods have been successfully applied for rigorously analyzing security pro-
tocols. In particular, many algorithms and tools (see [Rusinowitch and Turuani 2003;
Blanchet 2001; Comon-Lundh and Cortier 2003; Basin et al. 2005; Cremers 2008] to
cite a few) have been designed to automatically find flaws in protocols or prove secu-
rity. Most of these results focus on reachability properties such as authentication or
secrecy: for any execution of the protocol, it should never be the case that an attacker
learns some secret (secrecy property) or that an attacker makes Alice think she’s talk-
ing to Bob while Bob did not engage a conversation with her (authentication property).
However, privacy properties such as vote secrecy, anonymity, or untraceability cannot
be expressed as reachability properties. They are instead defined as indistinguishabil-
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ity properties in [Arapinis et al. 2010; Bruso et al. 2010]). For example, Alice’s identity
remains private if an attacker cannot distinguish a session where Alice is talking from
a session where Bob is talking.

Studying indistinguishability properties for security protocols amounts into check-
ing a behavioral equivalence between processes. Processes represent protocols and are
specified in some process algebras such as CSP or the pi-calculus, except that mes-
sages are no longer atomic actions but terms, in order to faithfully represent crypto-
graphic messages. Of course, considering terms instead of atomic actions considerably
increases the difficulty of checking equivalence. As a matter of fact, there are just a
few results for checking equivalence of processes that manipulate terms.

— Based on a procedure developed in [Baudet 2005], it has been shown that trace equiv-
alence is decidable for deterministic processes with no else branches, and for the fam-
ily of convergent subterm equational theories [Cortier and Delaune 2009]. Conver-
gent subterm theories capture most standard primitives including asymmetric and
symmetric encryption, hashes, signatures, and macs. A simplified proof of [Baudet
2005] has been proposed by Y. Chevalier and M. Rusinowitch [Chevalier and Rusi-
nowitch 2012].

— A. Tiu and J. Dawson [Tiu and Dawson 2010] have designed and implemented a
procedure for open bisimulation, a notion of equivalence stronger than the standard
notion of trace equivalence. This procedure only works for a limited class of processes
without else branches, and for symmetric encryption and pairs only.

— V. Cheval et al. [Cheval et al. 2011] have proposed and implemented a procedure for
trace equivalence, and for a quite general class of processes that use standard prim-
itives (symmetric and asymmetric encryption, hashes, signatures, pairs). In particu-
lar, this is the only decidability result that can consider non deterministic processes
and else branches.

However, these decidability results analyse equivalence for a bounded number of ses-
sions only, that is assuming that protocols are executed a limited number of times.
This is of course a strong limitation. Even if no flaw is found when a protocol is exe-
cuted n times, there is absolutely no guarantee that the protocol remains secure when
it is executed n + 1 times. And actually, the existing tools for a bounded number of
sessions can only analyse protocols for a very limited number of sessions, typically 2
or 3. Another approach consists in implementing a procedure that is not guaranteed to
terminate. This is in particular the case of ProVerif [Blanchet 2001], a well-established
tool for checking security of protocols. ProVerif is able to check equivalence although it
does not always succeed [Blanchet et al. 2005]. It can check equivalence of bi-processes,
that is of two processes that have the same structure. ProVerif has been recently ex-
tended [Cheval and Blanchet 2013] to handle more processes, in particular with else
branches but can still not consider processes with very different structures. Of course,
Proverif does not correspond to any decidability result.

Our contribution. We study the decidability of equivalence of security protocols for
an unbounded number of sessions. Even in the case of reachability properties such as
secrecy, the problem is undecidable in general. In the past, several decidable fragments
and semi-decision procedures have been proposed for secrecy and authentication, for
an unbounded number of sessions. Our goal is to obtain analogous results in the case
of equivalence properties. We therefore focus on a class of protocols for which secrecy
is decidable [Comon-Lundh and Cortier 2003]. This class, called ping-pong protocols,
typically assumes that each protocol rule manipulates at most one variable and that
the protocol is formed of a set of independent in/out rules. Intuitively, this corresponds
to the assumption that, at each step of the protocol, upon receiving a message there
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is at most one part of it that is unknown to the agent (typically a key, a nonce, or an
encrypted packet).

Surprisingly, while this class is decidable for reachability, even a fragment of it (with
only symmetric encryption) turns out to be undecidable for equivalence properties.
We consequently further assume our protocols to be deterministic (that is, given an
input, there is at most one possible output). We show that equivalence is decidable for
an unbounded number of sessions and for protocols with randomized symmetric and
asymmetric encryption, and signatures. Since we need to assume our constructors to
be randomized and since we assume “at most one variable”, we can only handle a very
limited notion of (randomized) concatenation that appends atomic values.

Interestingly, we show that checking for equivalence of protocols actually amounts
into checking equality of languages of deterministic pushdown automata. The de-
cidability of equality of languages of deterministic pushdown automata is a difficult
problem, shown to be decidable at ICALP in 1997 [Sénizergues 1997]. We actually
characterize equivalence of protocols in terms of equivalence of deterministic general-
ized real-time pushdown automata, that is deterministic pushdown automata with no
epsilon-transition but such that the automata may unstack several symbols at a time.
More precisely, we show how to associate to a process P an automata AP such that two
processes are equivalent if, and only if, their corresponding automata yield the same
language and, reciprocally, we show how to associate to an automata A a process PA
such that two automata yield the same language if, and only if, their corresponding
processes are equivalent, that is:

P ≈ Q⇔ L(AP ) = L(AQ) and L(A) = L(B)⇔ PA ≈ PB.

Therefore, checking for equivalence of protocols is as difficult as checking equiva-
lence of deterministic generalized real-time pushdown automata.

To transform equivalence of processes into equivalence of pushdown automata, we
first show how to get rid of an active attacker. More precisely, we show that

P ≈ Q⇔ P ′ ≈fwd Q
′

where ≈fwd intuitively represents equivalence of processes when the attacker may only
forward messages. This equivalence is obtained by partially encoding the attacker in
P ′ and Q′, still preserving equivalence.

The decision procedure for checking equivalence of deterministic pushdown au-
tomata has been recently implemented by G. Sénizergues [Henry and Sénizergues
2013]. We have therefore implemented our tranformation from processes to pushdown
automata, yielding the first tool that decides equivalence of (some class of) protocols for
an unbounded number of sessions. As an application, we have analyzed several proto-
cols of the literature, including a simplified version of the basic access control protocol
(BAC) of the biometric passport [ICAO 2008].

We introduce the process algebra and its semantics in Section 2. We characterize
the notion of ping-pong protocols in Section 3 and state our main results. Sections 4
and 5 are devoted to decidability. More precisely, we show in Section 4 how to get rid
of an active attacker by encoding it directly in the process. Next, we show in Section 5
how to encode equivalence between processes (in presence of a forwarder attacker) into
equivalence of pushdown automata, characterizing further which cases may result in
non equivalence. Finally, we study in Section 6 the converse translation and show that
equivalence of pushdown automata can be reduced to equivalence of protocols. We
present our implementation and its application to protocols in Section 7. Concluding
remarks can be found in Section 8.
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2. MODEL FOR SECURITY PROTOCOLS
Security protocols are modeled through a process algebra that manipulates terms. We
first give the syntax of our calculus in Section 2.1, before describing its semantics in
Section 2.2. Then, in Section 2.3, we define the notion of equivalence of processes.

2.1. Syntax
Term algebra. As usual, messages are represented by terms. More specifically, we con-

sider a sorted signature with six sorts rand, key, msg, SymKey, PrivKey and PubKey that
represent respectively random numbers, keys, messages, symmetric keys, private keys
and public keys. We assume that msg subsumes the five other sorts, key subsumes
SymKey, PrivKey and PubKey. We consider six function symbols senc and sdec, aenc and
adec, sign and check that represent symmetric, asymmetric encryption and decryption
as well as signatures. Since we are interested in the analysis of indistinguishability
properties, we consider a randomized encryption scheme:

senc : msg × SymKey × rand → msg sdec : msg × SymKey → msg
aenc : msg × PubKey × rand → msg adec : msg × PrivKey → msg
sign : msg × PrivKey × rand → msg check : msg × PubKey → msg

We discuss in Section 7 how we can handle a limited notion of (randomized) concate-
nation.

We further assume an infinite set Σ0 of constant symbols of sort key or msg, an infinite
set Ch of constant symbols of sort channel, two infinite sets of variables X ,W, and an
infinite set of names N = Npub ]Nprv of names of sort rand: Npub represents the random
numbers drawn by the attacker while Nprv represents the random numbers drawn by
the protocol’s participants.

As usual, terms are defined as names, variables, and function symbols applied to
other terms. We denote by T (F ,N ,X ) the set of terms built on function symbols in F ,
names in N , and variables in X . We simply write T (F ,N ) when X = ∅. We consider
three particular signatures:

Σpub = {senc, sdec, aenc, adec, sign, check, start}
Σ+ = Σpub ∪ Σ0 Σ = {senc, aenc, sign, start} ∪ Σ0

where start /∈ Σ0 is a constant symbol of sort msg. The signature Σpub represents the
functions/data available to the attacker, including a constant start used to start ses-
sions of the protocols. The signature Σ+ is the most general signature, while Σ models
actual messages (with no failed computation). We assume a bijection between elements
of sort PrivKey and PubKey. If k is a constant of sort PrivKey, k−1 will denotes its image
by this function, called inverse. The inverse of the inverse function is also denoted by
−1, so that (k−1)−1 = k. To keep homogeneous notations, we extend this function to

symmetric keys: if k is of sort SymKey, then k−1 = k. The relation between encryp-
tion and decryption is represented through the following rewriting rules, yielding a
convergent rewrite system:

sdec(senc(x, k1, z), k1)→ x

adec(aenc(x, k2, z), k2
−1)→ x check(sign(x, k3, z), k3

−1)→ x

with k1 of sort SymKey, k2 of sort PubKey, and k3 of sort PrivKey. For instance, the
first rule models the fact that the decryption of a ciphertext will return the associated
plaintext when the right key is used to perform decryption. The two last rules are used
to model asymmetric encryption and signatures. We denote by t↓ the normal form of a
term t ∈ T (Σ+,N ,X ).
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Example 2.1. The term m = senc(s, k, r) represents an encryption of the constant s
with the key k using the random r ∈ N , whereas t = sdec(m, k) models the application
of the decryption algorithm on m using k. We have that t↓ = s.

An attacker may build his own messages by applying functions to terms he already
knows. Formally, a computation done by the attacker is modeled by a recipe. i.e. a
term in T (Σpub,Npub,W). The variables inW intuitively refer to variables used to store
messages learnt by the attacker.

Process algebra. The intended behavior of a protocol can be modelled by a process
defined by the following grammar:

P,Q := 0 null process
| in(c, u).P input
| out(c, u).P output
| (P | Q) parallel
| !P replication
| new n.P name generation

where u ∈ T (Σ,N ,X ), n ∈ N , and c ∈ Ch.
The process 0 does nothing, and we sometimes omit it. The process “in(c, u).P ” ex-

pects a message m of the form u on channel c and then behaves like Pθ where θ is a
substitution such that m = uθ. The process “out(c, u).P ” emits u on channel c, and then
behaves like P . The variables that occur in u are instantiated when the evaluation will
take place. The process P | Q runs P and Q in parallel. The process !P executes P some
arbitrary number of times. The process new n.P invents a new name n and continues
as P .

We write fv(P ) for the set of free variables that occur in P , i.e. the set of variables
that are not in the scope of an input. A protocol is a ground process, i.e. a process P
such that fv(P ) = ∅.

Example 2.2. We consider a simplified version of the protocol presented in [Den-
ning and Sacco 1981]. The purpose of this protocol informally described below is to
establish a key kAB betwen two participants A and B using public key encryption and
signature.

1. A→ B : aenc(sign(kAB , skA, r
1
A), pkB , r

2
A)

2. B → A : ack

The agent A sends a symmetric key kAB signed with A’s private key skA (using a fresh
random number r1

A), and the resulting ciphertext is encrypted with B’s public key pkB
(using a fresh random number r2

A). The agent B answers to this request by decrypting
this message, and verifying the signature. If all checks succeed, B informs the agent A
by sending an acknowledgement, i.e. the constant ack. The agents A and B can now
use the symmetric key kAB to communicate.

The role of A is modeled by a process PA while the role of B is modeled by PB . We
have that:

PA
def
= ! in(cA, start).new r

1
A.new r

2
A.out(cA, aenc(sign(kAB , skA, r

1
A), pkB , r

2
A)) (1)

| ! in(c′A, start).new r
1
A.new r

2
A.out(c

′
A, aenc(sign(kAC , skA, r

1
A), pkC , r

2
A)) (2)

PB
def
= ! in(cB , aenc(sign(x, skA, z1), pkB , z2)).out(cB , ack) (3)

The constants cA, c′A and cB are constants of sort channel, ack is a constant of sort
msg, whereas the constants kAB , kAC , skA, skB , skC , pkA, pkB , pkC which are in Σ0 are
such that:
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— kAB , kAC are of sort SymKey,
— skA, skB , skC are of sort PrivKey, and
— pkA, pkB , pkC of sort PubKey.

Moreover, we have that sk−1
X = pkX for X ∈ {A,B,C} whereas k−1

AB = kAB and k−1
AC =

kAC . Finally, r1
A, r

2
A are names of sort rand, and x (resp. z1, z2) is a variable of sort msg

(resp. rand).
Intuitively, PA sends kAB signed with skA and encrypted with pkB to the agent B

(branch 1). More generally, the agent A can start different sessions with different
agents. Thus, the process PA models the agent A initiating a session with B (branch 1)
as well as with C (branch 2). The process PB models the agent B answering a request
from A. We could also consider the scenario where the agent B is also willing to talk
to C or where the initiator, here played by A, is also played by other agents such as B.
We consider here only a simpler case to keep the example reasonably short.

To model the whole protocol, we sent the public key pkA, pkB , pkC in clear, as well as
the private key skC , to model the fact that the attacker may learn the private keys of
some corrupted agents. This is modeled through the following process Pkey:

Pkey
def
= ! in(c1, start).out(c, pkA) | ! in(c2, start).out(c, pkB) |

! in(c3, start).out(c, pkC) | ! in(c4, start).out(c, skC)

Then, the whole protocol is given by P , where PA, PB , and Pkey evolve in parallel:

P
def
= PA | PB | Pkey

This protocol is actually insecure as demonstrated by the following attack:

1. A→ C : aenc(sign(kAC , skA, r
1
A), pkC , r

2
A)

2. C(A)→ B : aenc(sign(kAC , skA, r
1
A), pkB , r

1
C)

3. B → A : ack

A initiates a session with a malicious user C sending him a key kAC . This malicious
user then legally learns kAC but also its signature sign(kAC , skA, r

1
A) under the signing

key of A. He may then resend this key to B in the name of A. The agent B accepts the
key kAC as being a secret key between A and B.

2.2. Semantics
A configuration of a protocol is a pair (P;σ) where:

—P is a multiset of processes. We often write P ∪ P, or P | P, instead of {P} ∪ P.
— σ = {w1.m1, . . . ,wn.mn} is a frame, i.e. a substitution where w1, . . . ,wn are variables

inW, and m1, . . . ,mn are terms in T (Σ,N ). Those terms represent the messages that
are known by the attacker.

The operational semantics of protocol is defined by the relation α−→ over configura-
tions described in Figure 1. For sake of simplicity, we often write P instead of (P ; ∅).

The first rule (IN) allows the attacker to make a process progress by feeding it with
a term he built with publicly available terms and symbols. The second one (OUT) lets
the attacker gain knowledge of a message as soon as it is sent by a process: the corre-
sponding message is added to the substitution of the current configuration. These two
rules are the only observable actions. The two remaining rules are quite standard and
are unobservable (τ action) from the point of view of the attacker.

The relation tr−→ between configurations (where tr is a sequence of actions) is defined
in a usual way as the reflexive and transitive closure of the relation α−→. Given a se-
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(in(c, u).P ∪ P;σ)
in(c,R)−−−−→ (Pθ ∪ P;σ) (IN)

where R is a recipe such that Rσ↓ ∈ T (Σ,N ) and Rσ↓ = uθ for some θ

(out(c, u).P ∪ P;σ)
out(c,wi+1)−−−−−−−→ (P ∪ P;σ ∪ {wi+1 . u}) (OUT)

where i is the number of elements in σ

(!P ∪ P;σ)
τ−→ (P ∪ !P ∪ P;σ) (REPL)

(new n.P ∪ P;σ)
τ−→ (P{n′/n} ∪ P;σ) (NEW)

where n′ is a fresh name in Nprv

Fig. 1. Operational semantics.

quence of observable actions tr, we write K
tr
==⇒ K ′ when there exists tr′ such that

K
tr′−→ K ′ and w is obtained from tr′ by erasing all occurrences of τ . For every configu-

ration K, we define its set of traces as follows:

trace(K) = {(tr, σ) | K tr
==⇒ (P;σ) for some configuration (P;σ)}.

Example 2.3. Going back to the protocol introduced in Example 2.2, we consider
the scenario corresponding to the attack.

(1) The public keys of all the participants are disclosed as well as the secret key skC of
the corrupted agent C. Formally, let K0

def
= (P ; ∅), we have that:

K0
in(c1,start).out(c1,w1).in(c2,start).out(c2,w2).in(c3,start).out(c3,w3)
=========================================⇒

in(c4,start).out(c4,w4)
==============⇒ (P ;σ0)

where σ0 = {w1 . pkA, w2 . pkB , w3 . pkC , w4 . skC}.
(2) The agent A initiates a session with C and sends the corresponding encrypted mes-

sage. More formally, we have that:

(P ;σ0)
in(c′A,start).out(c

′
A,w5)

==============⇒ (P ;σ)

where σ = σ0∪{w5 .aenc(sign(kAC , skA, r
1
A), pkC , r

2
A)} and r1

A, r
2
A are (fresh) names in

Nprv.

Hence, we have that (tr, σ) ∈ trace(K0) where:

tr = in(c1, start).out(c1,w1).in(c2, start).out(c2,w2).in(c3, start).out(c3,w3).
in(c4, start).out(c4,w4).in(c′A, start).out(c

′
A,w5).

In this execution trace, first the keys pkA, pkB , pkC and skC are sent after having
called the corresponding process. Then, branch (2) of P is triggered.

2.3. Trace equivalence
Intuitively, two processes are equivalent if they cannot be distinguished by any at-
tacker. Trace equivalence can be used to formalise many interesting security proper-
ties, in particular privacy-type properties, such as those studied for instance in [Arap-
inis et al. 2010; Bruso et al. 2010]. We first introduce a notion of intruder’s knowledge
well-suited to cryptographic primitives for which the success of decrypting or checking
a signature is visible.

Definition 2.4. Two frames σ1 and σ2 are statically equivalent, σ1 ∼ σ2, when we
have that dom(σ1) = dom(σ2), and:
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— for any recipe R, Rσ1↓ ∈ T (Σ,N ) if, and only if, Rσ2↓ ∈ T (Σ,N ); and
— for all recipes R1 and R2 such that R1σ1↓, R2σ1↓ ∈ T (Σ,N ), we have that
R1σ1↓ = R2σ1↓ if, and only if, R1σ2↓ = R2σ2↓.
Intuitively, two frames are equivalent if an attacker cannot see the difference be-

tween the two situations they represent: if some computation fails in σ1 it should fail
in σ2 as well, and σ1 and σ2 should satisfy the same equalities.

Example 2.5. Consider the two following frames:

(1) σ1
def
= σ0 ∪ {w5 . aenc(sign(kAC , skA, r

1
A), pkC , r

2
A), w6 . kAC},

(2) σ2
def
= σ0 ∪ {w5 . aenc(sign(kAC , skA, r

1
A), pkC , r

2
A), w6 . k}.

where k is a (private) constant in Σ0. We have that σ1 6∼ σ2. Indeed, consider the recipes
R1 = check(adec(w5,w4),w1) and R2 = w6. We have that R1σ1↓ = R2σ1↓ = kAC , whereas
R1σ2↓ = kAC and R2σ2↓ = k thus R1σ2↓ 6= R2σ2↓.

Intuitively, two processes are trace equivalent if, however they behave, the resulting
sequences of messages observed by the attacker are in static equivalence.

Definition 2.6. Let P and Q be two protocols. We have that P v Q if for every
(tr, σ) ∈ trace(P ), there exists (tr′, σ′) ∈ trace(Q) such that tr = tr′ and σ ∼ σ′. They
are trace equivalent, written P ≈ Q, if P v Q and Q v P .

Example 2.7. Continuing Example 2.2, our naive protocol is secure if the key re-
ceived by B remains private. To model this, we modify the process PB as follows:

P lB
def
= ! in(cB , aenc(sign(x, skA, z1), pkB , z2)).out(cB , x)

P rB
def
= ! in(cB , aenc(sign(x, skA, z1), pkB , z2)).out(cB , k)

Then, to model secrecy of the key received by B, we consider the following equivalence:
PA | P lB | Pkey ≈ PA | P rB | Pkey. An attacker should not distinguish between two
instances of the protocol, one where B used the key established through the protocol
and one where a magic key k is used instead.

However, our protocol is insecure. An attacker may easily learn kAC , and sends to
B a message of the expected form (as if it was issued by A) and that will contain this
corrupted key instead of kAB . Formally, we have that:

PA | P lB | Pkey 6≈ PA | P rB | Pkey.

This is reflected by the trace tr′ described below:

tr′
def
= tr.in(cB , aenc(adec(w5, skC),w2, rC)).out(cB ,w6)

where rC is a name in Npub.
We have that (tr′, σ1) ∈ trace(K0) with K0 = (PA | P lB | Pkey; σ1) and σ1 as defined in

Example 2.5. Because of the existence of only one branch using each channel, there is
only one possible execution of PA | P rB | Pkey (up to a bijective renaming of the private
names of sort rand) matching the labels in tr′, and the corresponding execution will
allow us to reach the frame σ2 as described in Example 2.5. We have already seen that
static equivalence does not hold, i.e. σ1 6∼ σ2.

3. PING-PONG PROTOCOLS
We aim at providing a decidability result for the problem of trace equivalence between
protocols in presence of replication. However, it is well-known that replication leads to
undecidability even for the simple case of reachability properties. Thus, we consider a

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



From security protocols to pushdown automata A:9

class of protocols, called Cpp, for which (in a slightly different setting), reachability has
already been proved decidable [Comon-Lundh and Cortier 2003].

3.1. Class Cpp

We basically consider ping-pong protocols (an output is computed using only the mes-
sage previously received in input), and we assume a kind of determinism. Moreover, we
restrict the terms that are manipulated throughout the protocols: only one unknown
message (modelled by the use of a variable of sort msg) can be received at each step.

We fix a variable x ∈ X of sort msg. An input term (resp. output term) is a term
defined by the grammars given below:

u := x | s | f(u, k, z) v := x | s | f(v, k, r)
where s, k ∈ Σ0∪{start}, z ∈ X , f ∈ {senc, aenc, sign} and r ∈ N . Intuitively, no destructor
should be used explicitly. Moreover, we assume that each variable (resp. name) occurs
at most once in u (resp. v).

Definition 3.1. Cpp is the class of protocol of the form:

P =
n

|
i=1

pi

|
j=1

!in(ci, u
j
i ).new r1. . . . .new rkij . out(ci, v

j
i )

such that:

(1) for all i ∈ {1, . . . , n}, and j ∈ {1, . . . , pi}, kji ∈ N, uji is an input term, and vji is an
output term where names occurring in vji are included in {r1, . . . , rkji

};
(2) for all i ∈ {1, . . . , n}, and j1, j2 ∈ {1, . . . , pi}, if j1 6= j2 then for any renaming of

variables, uj1i and uj2i are not unifiable1.

Each subprocess in(ci, u
j
i ).new r1. . . . .new rkij . out(ci, v

j
i ) is called a branch of P .

Item 1 holds for any process representing a protocol: the variables of the output
should be bound by the input. Item 2 enforces a deterministic behavior: a particular
input action can only be accepted by one branch of the protocol. This is a natural re-
striction since most of the protocols are indeed deterministic: an agent should usually
know exactly what to do once he has received a message. Actually, the main limita-
tions of the class Cpp is that we consider a restricted signature (e.g. no pair, no hash
function), and names can only be used to produce randomized ciphertexts.

Example 3.2. The protocols described in Example 2.7 are in Cpp. For instance, we
can check that:

— aenc(sign(x, skA, z1), pkB , z2) is an input term, and
— aenc(sign(kAB , skA, r

1
A), pkB , r

2
A) is an output term.

Moreover, the determinism condition (item 2) is clearly satisfied: each branch of the
protocol PA | P lB | Pkey (resp. PA | P rB | Pkey) uses a different channel.

When studying trace equivalence (or even trace inclusion) we can even safely force
a process to perform an input action followed directly by its associated output action.

We consider a set of “big-step” traces, defined as follows.

traceio∗(K) =

{
(tr, σ)

K
tr
==⇒ (P;σ) for some configuration (P;σ)

with tr sequence of input-output blocks.

}
1i.e. there does not exist θ such that uj1i θ = uj2i θ.
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The notion of trace inclusion (resp. trace equivalence) w.r.t. big-step traces is defined
accordingly.

Definition 3.3. Let P and Q be two protocols. We have that P vio∗ Q if for every
(tr, σ) ∈ traceio∗(P ), there exists (tr′, σ′) ∈ traceio∗(Q) such that tr = tr′ and σ ∼ σ′. They
are trace equivalent, written P ≈io∗ Q, if P vio∗ Q and Q vio∗ P .

Due to the form of protocols in Cpp, any trace made up of inputs and outputs actions
can be first completed with all the available output actions, and then be mapped to a
trace that is made up of input-ouput blocks only. Thus, we have that the two notions
of trace equivalence coincide.

PROPOSITION 3.4. Let P and Q be two protocols in Cpp. We have that P vio∗ Q if,
and only if, P v Q.

This proposition easily follows from that fact that for any process of Cpp, any input is
immediately followed by an output.

3.2. Main results
Our first main contribution is a decision procedure for trace equivalence of processes
in Cpp.

THEOREM 3.5. Let P and Q be two protocols in Cpp. The problem whether P and Q
are trace equivalent, i.e. P ≈ Q, is decidable.

Deciding trace equivalence is done in two main steps.

(1) First, we show how to reduce trace equivalence between protocols in Cpp, to the prob-
lem of deciding trace equivalence (still between protocols in Cpp) when the attacker
acts as a forwarder, that is, when the attacker may only forward messages obtained
through the protocol. This step is detailed in Section 4.

(2) Then, we encode the problem of deciding trace equivalence for forwarding attack-
ers into the problem of language equivalence for real-time generalized pushdown
deterministic automata (GPDA), that is, deterministic pushdown automata with no
epsilon-transition but such that the automata may unstack several symbols at a
time. This step is detailed in Section 5

We also provide an implementation of our translation from protocols to pushdown
automata, yielding a tool for automatically checking equivalence of security protocols,
for an unbounded number of sessions. This contribution is described in Section 7.

Actually, we characterize equivalence of protocols in terms of equivalence of GPDA.
Indeed, Step (2) above shows how to associate to a process P an automata AP such
that two processes are equivalent if, and only if, their corresponding automata yield
the same language. Conversely, we also show how to associate to an automata A a
process PA such that two automata yield the same language if, and only if, their cor-
responding processes are equivalent. This reverse encoding, from pushdown automata
to protocols is explained in Section 6.

Our second contribution is an undecidability result. The class Cpp is somewhat lim-
ited but extending Cpp to non deterministic processes immediately yields undecidability
of trace equivalence. More precisely, we have that trace inclusion of processes in Cpp is
undecidable.

THEOREM 3.6. The following problem is undecidable.

Input. P and Q two protocols in Cpp.
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Output. Whether P is trace included in Q, i.e. P v Q.

A direct encoding of the Post Correspondance Problem (PCP) into an inclusion of
two protocols of this class is given in Appendix A. Alternatively, this undecidability
result is also a consequence of the reduction result established in Section 6 and the
undecidability result established in [Friedman 1976]. Nonetheless, we present in Ap-
pendix A the direct encoding of PCP into protocol equivalence since some ideas might
be reused to show undecidability of trace equivalence for some other classes whereas
the alternative proof required a first encoding to transform a protocol into a pushdown
automaton.

Undecidability of trace inclusion actually implies undecidability of trace equivalence
as soon as processes are non deterministic. Indeed consider the choice operator +
whose (standard) semantics is given by the following rules:

({P +Q} ∪ P;σ)
τ−→ (P ∪ P;σ) ({P +Q} ∪ P;σ)

τ−→ (Q ∪ P;σ)

COROLLARY 3.7. Let P , Q1, and Q2 be three protocols in Cpp. The problem
whether P is equivalent to Q1 +Q2, i.e. P ≈ Q1 +Q2, is undecidable.

Indeed, consider P and Q1, for which trace inclusion encodes PCP, and let Q2 = P .
Trivially, P v Q1 +Q2. Thus P ≈ Q1 +Q2 if, and only if, Q1 +Q2 v P , i.e. if, and only
if, Q1 v P , hence the undecidability result.

4. GETTING RID OF THE FULL ATTACKER
We show in this section how to reduce trace equivalence between protocols in Cpp to the
problem of deciding trace equivalence (still between protocols in Cpp) when the attacker
acts as a forwarder, that is, when the attacker may only forward messages obtained
through the protocols. This new semantics induced a new notion of trace equivalence,
denoted ≈fwd, which is formally defined in Section 4.1.

To counterbalance the effects of this simple forwarder semantics, the key idea con-
sists in modifying the protocols under study by adding new rules that encrypt and de-
crypt messages on demand for the forwarder. Formally, we define a transformation Tfwd
(see Section 4.2) that associates to a pair of protocols in Cpp a finite set of pairs of pro-
tocols (still in Cpp), and we show the following result:

PROPOSITION 4.1. Let P and Q be two protocols in Cpp. We have that:

P ≈ Q if, and only if, P ′ ≈fwd Q
′ for some (P ′, Q′) ∈ Tfwd(P,Q).

4.1. Forwarder semantics
We first define the actions of a forwarder by modifying our semantics. Roughly, we
restrict the recipes R,R1, and R2 that are used in the IN rule and in static equivalence
(Definition 2.4) to be either the public constant start or a variable inW. Intuitively, this
corresponds to the fact that the forwarder attacker should no longer build a message
on his own. This leads us to consider a new relation−→fwd between configurations which
is the relation induced by the rules described in Figure 2.

The relations tr−→fwd and tr
==⇒fwd between configurations where tr is a sequence of ac-

tions (resp. observable actions) are defined as expected. For every configuration K, we
define its set of traces w.r.t. the forwarder semantics as follows:

tracefwd(K) =

{
(tr, σ)

K
tr
==⇒fwd (P;σ) for some configuration (P;σ)
with tr sequence of input-output blocks.

}
We need also to adapt our notion of static equivalence.
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(in(c, u).P ∪ P;σ)
in(c,R)−−−−→fwd (Pθ ∪ P;σ)

where R ∈ {start} ∪W and Rσ↓ = uθ for some θ

(out(c, u).P ∪ P;σ)
out(c,wi+1)−−−−−−−→fwd (P ∪ P;σ ∪ {wi+1 . u})

where i is the number of elements in σ

(!P ∪ P;σ)
τ−→fwd (P ∪ !P ∪ P;σ)

(new n.P ∪ P;σ)
τ−→fwd (P{n′/n} ∪ P;σ) where n′ is a fresh name in Nprv

Fig. 2. Semantics for a forwarder attacker.

Definition 4.2. Two frames σ1 and σ2 are statically equivalent w.r.t. the forwarder
semantics, denoted σ1 ∼fwd σ2, when we have that dom(σ1) = dom(σ2), and for all
recipes R1 and R2 in {start}∪W, we have that R1σ1 = R2σ1 if, and only if, R1σ2 = R2σ2.

This induces a new notion of trace equivalence which is formally defined as follows:

Definition 4.3. Let P and Q be two protocols. We have that P vfwd Q if for every
(tr, σ) ∈ tracefwd(P ), there exists (tr′, σ′) ∈ tracefwd(Q) such that tr = tr′ and σ ∼fwd σ

′.
They are trace equivalent w.r.t. the forwarder semantics, written P ≈fwd Q, if P vfwd Q
and Q vfwd P .

Example 4.4. The trace exhibited in Example 2.3 is still a valid one according to
the forwarder semantics, but the frames σ1 and σ2 described in Example 2.5 are now
in equivalence w.r.t. ∼fwd. Actually, we have that PA | P lB | Pkey ≈fwd PA | P rB | Pkey.
Indeed, the fact that a forwarder simply acts as a relay prevents him to mount the
aforementioned attack.

4.2. Towards a forwarder attacker
As illustrated in Example 4.4, the forwarder semantics is very restrictive: a forwarder
cannot rely on his deduction capabilities to mount an attack. We show however that
we can still restrict ourselves to trace equivalence w.r.t. a forwarder.

Intuitively, we transform any two processes P ,Q into processes P̄ , Q̄ such that P ≈ Q
if and only if P̄ ≈fwd Q̄. Roughly this transformation consists in two steps.

(1) First, we guess among the keys of the protocols P and the keys of the protocols Q
those that are deducible by the attacker, as well as a bijection α between these two
sets. We can show that such a bijection necessarily exists when P ≈ Q.

(2) Then, to compensate the fact that the attacker is a simple forwarder, we give him
access to encryption/decryption oracles for any deducible key k, adding branches in
the processes.

To maintain the equivalence, we do a similar transformation in both P and Q relying
on the bijection α. We ensure that the set of deducible keys has been correctly guessed
by adding of some extra processes. Then the main step of the proof consists of showing
that the forwarder has now the same power as a full attacker, even though he cannot
reuse the same randomness in two distinct encryptions, as a real attacker could.

Example 4.5. To better illustrate this section, we consider a variant of the pro-
cesses introduced in Section 2., where agent A is now willing to talk only to B.

P
def
= P ′A | P lB | Pkey Q

def
= P ′A | P rB | Pkey
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where P lB , P rB are defined in Example 2.7 and Pkey is defined in Example 2.2, whereas
P ′A is defined as follows (only the first branch of PA)

P ′A
def
= ! in(cA, start).new r

1
A.new r

2
A.out(cA, aenc(sign(kAB , skA, r

1
A), pkB , r

2
A)) (1)

This scenario excludes the aforementioned attack and we have that P ≈ Q. This has
been formally checked using our prototype (see Section 7).

4.2.1. Guessing deducible keys. The purpose of this section is to restrict our attention to
protocols that explicitly disclose their deducible keys KP and KQ. Since we do not want
to rely on a particular procedure for computing these two sets, the idea is to guess a
possibly superset of each set, namely K and K ′, and then ensure that these sets K and
K ′ contain at least the deducible keys.

Definition 4.6. Let P be a protocol in Cpp. A term t is deducible in P if there exists a
trace (tr, φ) ∈ trace(P ) and a recipe R (i.e. a term in T (Σpub,Npub,W)) such that Rφ↓ = t.

Example 4.7. Continuing Example 4.5, we have that P and Q are in Cpp. It is
easy to notice that kAB is deducible in P whereas k is deducible in Q since these
keys are revealed at the end of B’s execution. For both P and Q, the trace tr =
in(cA, start).out(cA,w1).in(cB ,w1).out(cB , w2) and the recipe R = w2 is a witness of this
fact.

Two equivalent processes have the same set of deducible keys, up to some bijective
renaming.

LEMMA 4.8. Let P and Q be two protocols in Cpp, KP (resp. KQ) be the set of de-
ducible constants of sort key that occur in P (resp. Q), if P ≈ Q then there exists a
unique bijection α from KP to KQ such that for every trace (tr, φ) ∈ trace(P ) there exists
a trace (tr, ψ) ∈ trace(Q) such that for any recipe R and any k ∈ KP :

—Rφ↓ is of sort s if, and only if, Rψ↓ is of sort s;
where s ∈ {SymKey,PubKey,PrivKey}.

—Rφ↓ = k if, and only if, Rψ↓ = α(k);
—Rφ↓ = k−1 if, and only if, Rψ↓ = (α(k))−1;

and conversely, for every (tr, ψ) ∈ trace(Q) there exists a trace (tr, φ) ∈ trace(P ) satisfying
the same properties.

PROOF. (sketch) The relation α is defined as follows:

for every k ∈ KP of sort s, and every trace (tr, φ) ∈ trace(P ) and recipe R such
that Rφ↓ = k, we define α(k) = Rψ↓ where ψ is the only frame such that
(tr, ψ) ∈ trace(Q).

The existence of such a frame comes from the fact that P ≈ Q, whereas its unicity is a
consequence of the determinism of protocols in Cpp.

Then, we show that this relation α is uniquely defined and satisfied all the re-
quirements exploiting the strong relationship between P and Q through the relation
P ≈ Q.

Example 4.9. Continuing Example 4.5, we have KP = {pkA, pkB , pkC , skC , kAB}
whereas KQ = {pkA, pkB , pkC , skC , k}. The unique bijection α mentioned in the pre-
vious lemma is defined as follows: α(kAB) = k, and α(k′) = k′ otherwise.

Definition 4.10. Let P be a protocol in Cpp, K be a set of constants of sort key
that occur in P . If for every k ∈ K there exist a channel name ck and a branch
!in(ck, start).out(ck, k) in P , then P is said to disclose K.
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Example 4.11. Continuing our running example, P and Q clearly disclose K =
{pkA, pkB , pkC , skC}.

LEMMA 4.12. Let P and Q be two protocols in Cpp, S (resp. S′) the set of keys of P
(resp. Q). Then P ≈ Q if, and only if, there exist two sets K ⊆ S and K ′ ⊆ S′ and a
bijection α : K → K ′ such that P̄ ≈ Q̄ where:

P̄ = P | !in(c0, start).out(c0, 0)|!in(c1, start).out(c1, 1)

| |
k∈K

!in(ck,α(k), start).out(ck,α(k), k)| |
k∈SrK

!in(c, k).out(c, 0)

Q̄ = Q | !in(c0, start).out(c0, 0)|!in(c1, start).out(c1, 1)

| |
k∈K

!in(ck,α(k), start).out(ck,α(k), α(k))| |
k∈S′rK′

!in(c, k).out(c, 1)

and 0, 1 are new constants, c0, c1, the ck,α(k) and c are fresh channels.
Moreover, assuming the existence of such sets and bijection such that P̄ ≈ Q̄, the two

protocols are disclosing their deducible keys.
We call Tkey(P,Q) the set of such pairs (P̄ , Q̄) of modified protocols.

PROOF. Let KP (resp. KQ) be the set of deducible constants of sort key that occur in
P (resp. Q). We prove the two directions separately.

(⇒) If P ≈ Q, by Lemma 4.8, for K = KP and K ′ = KQ, we get the existence of such
a bijection α. Because keys in S r KP and S′ r KQ are not deducible, the branches on
channel c can never be triggered. Moreover, as P ≈ Q, any trace of P (resp.Q) inputting
or outputting on a channel ck,α(k) for k in KP can be matched in Q (resp. P ). Indeed,
for every couple (k, k−1) of deducible keys and for any recipe reducing to k (resp. k−1)
in P , the same recipe reduces to α(k) (resp. α(k)−1) in Q, thanks to the properties of α
described in Lemma 4.8.

(⇐) For the converse implication, we first remark that necessarily we have that
KP ⊆ K and KQ ⊆ K ′. Indeed, suppose there exists, for instance, k ∈ KP r K. Since
k is deducible, there exists a trace (tr, φ) ∈ trace(P ) and a recipe R such that Rφ↓ = k.
Since (tr, φ) is also a trace of P̄ , we consider the trace:

tr′ = tr.in(c,R).out(c,w|φ|+1).in(c0, start).out(c0,w|φ|+2).in(c1, start).out(c1,w|φ|+3)

along with its frame φ′ = φ∪{w|φ|+1 .0,w|φ|+2 .0,w|φ|+3 .1}. If P̄ ≈ Q̄, then there exists
(tr′, ψ′) ∈ trace(Q̄) such that φ and ψ are statically equivalent. But any output on c in
Q leads to the constant 1, breaking static equivalence. We conclude in a similar way in
case k ∈ KQ rK ′.

Finally we need to prove that P̄ ≈ Q̄ implies P ≈ Q. For every trace (tr, φ) ∈ trace(P ),
(tr, φ) ∈ trace(P̄ ), and as P̄ ≈ Q̄, there exists a trace (tr, ψ) ∈ trace(Q̄) such that φ is
statically equivalent to ψ. Because c0, c1, c and the ck,α(k) are new channels, tr does not
use transitions on those, thus (tr, ψ) ∈ trace(Q). The same goes for any trace ofQ, hence
showing the trace equivalence of P and Q.

Example 4.13. Continuing our example, let K = KP and K ′ = KQ, and α the bi-
jection defined in Example 4.9. Checking equivalence of P ≈ Q amounts into checking
whether P̄ ≈ Q̄ where P̄ and Q̄ are defined as follows.

P̄ = P | !in(c0, start).out(c0, 0)|!in(c1, start).out(c1, 1)

| !in(ckAB ,k, start).out(ckAB ,k, kAB)

| !in(c, skA).out(c, 0) | !in(c, skB).out(c, 0)
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Q̄ = Q | !in(c0, start).out(c0, 0)|!in(c1, start).out(c1, 1)

| !in(ckAB ,k, start).out(ckAB ,k, k)

| !in(c, skA).out(c, 1) | !in(c, skB).out(c, 1)

If P̄ ≈ Q̄, then skA and skB cannot be deducible thus P̄ and Q̄ disclose their set of
deducible keys.

4.2.2. Adding oracles. To compensate the fact that the attacker is a simple forwarder,
we give him access to encryption/decryption oracles for any deducible key k, adding
branches in the processes. We rely on the bijection α computed in the previous section
to do this in a compatible way on both sides of the equivalence.

LEMMA 4.14. Let P and Q be two protocols in Cpp respectively disclosing two sets of
keys K and K ′ as in Lemma 4.12. Then P ≈ Q if, and only if, P̄ ≈fwd Q̄ where:

P̄ = P | |
k∈KSymKey

!in(csenck,α(k), x).new n.out(ck,α(k), senc(x, k, n))

| |
k∈KSymKey

!in(csdeck,α(k), senc(x, k, y)).out(csdeck,α(k), x)

| |
k∈KPubKey

!in(caenck,α(k), x).new n.out(caenck,α(k), aenc(x, k, n))

| |
k∈KPrivKey

!in(cadeck,α(k), aenc(x, k, y)).out(cadeck,α(k), x)

| |
k∈KPrivKey

!in(csignk,α(k), x).new n.out(csignk,α(k), sign(x, k, n))

| |
k∈KPubKey

!in(ccheckk,α(k), sign(x, k, y)).out(ccheckk,α(k), x)

Q̄ = Q | |
k∈KSymKey

!in(csenck,α(k), x).new n.out(csenck,α(k), senc(x, α(k), n))

| |
k∈KSymKey

!in(csdeck,α(k), senc(x, α(k), y)).out(csdeck,α(k), x)

| |
k∈KPubKey

!in(caenck,α(k), x).new n.out(caenck,α(k), aenc(x, α(k), n))

| |
k∈KPrivKey

!in(cadeck,α(k), aenc(x, α(k), y)).out(cadeck,α(k), x)

| |
k∈KPrivKey

!in(csignk,α(k), x).new n.out(csignk,α(k), sign(x, α(k), n))

| |
k∈KPubKey

!in(ccheckk,α(k), check(x, α(k), y)).out(ccheckk,α(k), x)

where Ks denotes the keys of sort s of K. We call Toracle the transformation taking a
pair of protocols (P,Q) satisfying the aforementioned condition and returning the pair
(P̄ , Q̄) presently defined.

PROOF. (sketch) First, thanks to Lemma 4.12, we know that P , P̄ , Q and Q̄ disclose
all their deducible keys.

(⇒) Given a witness of non-equivalence for P̄ ≈fwd Q̄, it is quite easy to build a wit-
ness of non-equivalence for P 6≈ Q replacing the use of the oracle by the corresponding
attacker construction. This yields a witness of non-equivalence for P ≈ Q.

(⇐) This direction is actually more involved. The idea is to replace the use of an
attacker construction, e.g. an encryption with a deducible key, by the corresponding
oracle. However, the attacker has the ability to use the same random seed more than
once whereas this is impossible when using the oracles to perform those computations.
Thus, we first show that this additional ability does not give any power to the attacker.
Then, we do the replacement as expected in order to conclude.
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The full proof is provided in Appendix B.2.

Example 4.15. Continuing our example, this last transformation will add 10
branches (2 per deducible key). For instance, regarding the key kAB , the two follow-
ing branches will be be added:

For process P :

!in(csenckAB ,k
, x).new n.out(ckAB ,k, senc(x, kAB , n))

| !in(csdeckAB ,k
, senc(x, kAB , y)).out(csdeckAB ,k

, x)

For process Q:

!in(csenckAB ,k
, x).new n.out(ckAB ,k, senc(x, k, n))

| !in(csdeckAB ,k
, senc(x, k, y)).out(csdeckAB ,k

, x)

Regarding the keys pkA, pkB , pkC and skA, since α(k′) = k′ for each of these keys, we
add the following branches on both sides:

| !in(caencpkA,pkA
, x).new n.out(caencpkA,pkA

, aenc(x, pkA, n))

| !in(caencpkB ,pkB
, x).new n.out(caencpkB ,pkB

, aenc(x, pkB , n))

| !in(caencpkC ,pkC
, x).new n.out(caencpkC ,pkC

, aenc(x, pkC , n))

| !in(cadecskC ,skC
, aenc(x, pkC , y)).out(cadecskC ,skC

, x)

| !in(csignskC ,skC
, x).new n.out(csignskC ,skC

, sign(x, skC , n))

| !in(ccheckpkA,pkA
, sign(x, skA, y)).out(ccheckpkA,pkA

, x)

| !in(ccheckpkB ,pkB
, sign(x, skB , y)).out(ccheckpkB ,pkB

, x)

| !in(ccheckpkC ,pkC
, sign(x, skC , y)).out(ccheckpkC ,pkC

, x)

4.2.3. Transformation Tfwd. Thanks to Lemmas 4.12 and 4.14, we are now able to for-
mally define our transformation that gets rid of a fully active attacker. For every pair
of protocols (P,Q) in Cpp, we consider

Tfwd(P,Q) = {Toracle(P ′, Q′) | (P ′, Q′) ∈ Tkey(P,Q)}
Combination of the two previous results yields to the desired result.

PROPOSITION 4.16. Let P and Q be two protocols in Cpp. We have that:

P ≈ Q if, and only if, P ′ ≈fwd Q
′ for some (P ′, Q′) ∈ Tfwd(P,Q).

5. ENCODING PROTOCOLS INTO REAL-TIME GPDAS
We first introduce the notion of real-time generalized pushdown automaton (GPDA)
(see Section 5.1) before explaining in details (see Sections 5.2 and 5.3) our encoding
from protocols to real-time generalized pushdown automata. More precisely, for any
process P ∈ Cpp, we show that it is possible to define a polynomial-sized real-time
generalized pushdown automaton AP such that trace equivalence w.r.t. the forwarder
semantics coincides with language equivalence of the two corresponding automata.

THEOREM 5.1. Let P and Q in Cpp, we have that:

P ≈fwd Q⇐⇒ L(AP ) = L(AQ).

The proof of this theorem consists of three main steps.

(1) First, we provide a new characterization of trace equivalence w.r.t. the forwarder
semantics. Intuitively, we show that it is not necessary to consider all possible tests
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We illustrate the different steps of our translation of protocols to automata using a
(mock) ping-pong protocol Ptoy. We define io(c,R,w)

def
= in(c,R).out(c,w).

Ptoy =
| ! in(c1, start).new r1.out(c1, senc(a, k2, r1))
| ! in(c2, senc(x, k2, z1)).new r1.out(c2, senc(x, k1, r1))
| ! in(c3, x).new r1.out(c3, senc(x, k2, r1))
| ! in(c4, senc(senc(x, k1, z1), k2, z2)).new r1, r2.out(c4, senc(senc(x, k2, r1), k1, r2))
| ! in(c5, senc(senc(x, k2, z1), k1, z2)).out(c5, x)

For illustrative purpose, we consider different execution traces of this protocol. For
instance, we have that (tr1, σ1) ∈ tracefwd(Ptoy) where:

— tr1 = io(c1, start,w1).io(c2,w1,w2).io(c3,w2,w3).io(c4,w3,w4).io(c5,w4,w5), and
— σ1 = {w1 . senc(a, k2, r1), w2 . senc(a, k1, r2), w3 . senc(senc(a, k1, r2), k2, r3)

w4 . senc(senc(a, k2, r4), k1, r5), w5 . a}.
This execution may be continued as follows:

— tr2 = io(c3,w1,w6).io(c2,w6,w7).io(c5,w7,w8), and
— σ2 = {w6 . senc(senc(a, k2, r1), k2, r6), w7 . senc(senc(a, k2, r1), k1, r7), w8 . a}.
Let σ1/2 = σ1 ∪ σ2. We have that (tr1.tr2, σ1/2) is a trace of Ptoy w.r.t. the forwarder
semantics. We have that the test w5 = w8 is valid in σ1/2. Indeed w5σ1/2↓ = w8σ1/2↓ = a.

We have also that (tr′1, σ
′
1) ∈ tracefwd(Ptoy) with:

— tr′1 = io(c1, start,w1).io(c2,w1,w2).io(c3,w2,w3).io(c4,w3,w4).io(c3,w4,w5), and
— σ′1 = {w1 . senc(a, k2, r1), w2 . senc(a, k1, r2), w3 . senc(senc(a, k1, r2), k2, r3),

w4 . senc(senc(a, k2, r4), k1, r5), w5 . senc(senc(senc(a, k2, r4), k1, r5), k2, r6)}.
This execution may be continued as follows:

— tr′2 = io(c4,w5,w6).io(c5,w6,w7).io(c4,w5,w8).io(c5,w8.w9),
— σ′2 = {w6 . senc(senc(senc(a, k2, r4), k2, r7), k1, r8), w7 . senc(a, k2, r4),

w8 . senc(senc(senc(a, k2, r4), k2, r
′
7), k1, r

′
8), w9 . senc(a, k2, r4).

Let σ′1/2 = σ′1 ∪ σ′2. We have that (tr′1.tr
′
2, σ
′
1/2) is a trace of Ptoy w.r.t. the forwarder

semantics. We have that the test w7 = w9 is valid in σ′1/2.

Fig. 3. Running example.

(when checking static equivalence). Indeed, our Lemma 5.8 states that it is suffi-
cient to check for constant tests (that is, tests of the form x = cwhere c is a constant)
and some specific class of tests that we call guarded and pulled-up.

(2) Then we associate to processes P,Q ∈ Cpp real-time GPDAs that check whether they
satisfy the same constant tests (Lemma 5.9).

(3) And we associate to processes P,Q ∈ Cpp real-time GPDAs that check whether they
satisfy the same guarded tests (Lemma 5.11).

All along this section, we illustrate the definitions with the protocol displayed in
Figure 3. This example should be read step by step, when reading the examples of this
section.

5.1. Generalized pushdown automata
Language equivalence of deterministic pushdown automata (DPA) is known to be de-
cidable [Sénizergues 2001]. We actually encode equivalence of protocols into a frag-
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ment of DPA: real-time GPDA with final-state acceptance. GPDA differ from deter-
ministic pushdown automata (DPA) as they can unstack several symbols at a time.
Real-time automata are automata that do not include epsilon-transitions. Formally,
the class of real-time GPDA is defined as follows.

Definition 5.2. A real-time GPDA is a 7-tuple A = (Q,Π,Γ, q0, ω,Qf , δ) where Q is
a finite set of states, q0 ∈ Q is an initial state, Qf ⊆ Q is a set of accepting states, Π is
a finite input-alphabet, Γ is a finite stack-alphabet, ω is the initial stack symbol, and
δ : (Q×Π× Γ0)→ Q× Γ0 is a partial transition function such that:

— Γ0 is a finite subset of Γ∗; and
— for any (q, a, x) ∈ dom(δ) and y suffix strict of x, we have that (q, a, y) 6∈ dom(δ).

Let q, q′ ∈ Q, u, u′, γ ∈ Γ∗, m ∈ Π∗, a ∈ Π; we note (quγ, am) ;A (q′uu′,m) if (q′, u′) =
δ(q, a, γ). The relation ;∗A is the reflexive and transitive closure of ;A. For every qu,
q′u′ inQΓ∗ andm ∈ Π∗, we note qu m−→A q′u′ if, and only if, (qu,m) ;∗A (q′u′, ε). For sake
of clarity, a transition from q to q′ reading a, popping γ from the stack and pushing u′

will be denoted by q
a;γ/u′−−−−→ q′.

Let A be a GPDA. The language recognized by A is defined by:

L(A) = {m ∈ Π∗ | q0ωstart
m−→A qfu for some qf ∈ Qf and u ∈ Γ∗}.

Note that the language is defined starting with the word ωstart in the stack.
A real-time GPDA can easily be converted into a DPA by adding new states and

ε-transitions. Thus, the problem of language equivalence for two real-time GPDA A1

and A2, i.e. deciding whether L(A1) = L(A2) is decidable [Sénizergues 2001]. Whether
deciding equivalence of real-time GPDA could be easier than deciding equivalence of
DPA is an open question.

5.2. Characterization of trace equivalence
To construct the automaton associated to a process P ∈ Cpp, we need to construct an
automaton that recognizes any execution of P and the corresponding valid tests.

We first propose a new characterization of trace equivalence allowing us to restrict
our attention to executions of P and valid tests that have a special form.

Given an execution trace (tr, σ) and an element w of a frame σ, we can extract from
tr the sequence of actions that conducted to the production of this element w.

Definition 5.3. Let P be a protocol in Cpp, tr be a trace of P w.r.t. the forwarder
semantics, i.e. such that (tr, σ) ∈ tracefwd(P ) for some σ, and w be a variable that occurs
in tr. The sequence associated to w in tr, denoted seqtr(w), is the subsequence of tr of the
following form:

seqtr(w) = io(ci0 , start,wj0).io(ci1 ,wj0 ,wj1) . . . io(cip ,wjp−1
,w).

Example 5.4. Consider the protocol defined in Figure 3. Then,

— seqtr1.tr2(w5) = tr1;
— seqtr1.tr2(w8) = io(c1, start,w1).tr2;
— seqtr′1.tr′2(w7) = tr′1.io(c4,w5.w6).io(c5,w6,w7);
— seqtr′1.tr′2(w9) = tr′1.io(c4,w5,w8).io(c5,w8,w9).

We consider some particular class of tests, called pulled-up tests.

Definition 5.5. Let P be a protocol in Cpp, (tr, σ) ∈ tracefwd(P ), and w,w′ ∈ dom(σ)
such that:
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(1) the test w = w′ is σ-valid, i.e. wσ = w′σ; and
(2) the test w = w′ is σ-guarded, i.e. the head symbol of wσ (or equivalently w′σ) is in
{senc, aenc, sign}.

Let io(ci0 , start,wj0) . . . io(cip ,wjp−1 ,wjp) be the maximal common prefix of seqtr(w) and
seqtr(w

′). The test w = w′ is said to be pulled-up in (tr, σ) if p = 0, or p ≥ 1 and wσ does
not occur as a subterm in wj0σ, . . . ,wjp−1σ.

Intuitively, to perform a test w = w′, the attacker (who acts as a forwarder) relies
on the protocol rules to produce successive outputs, and ultimately the ones stored
in w and w′. The attacker may produce w and w′ independently (the common prefix of
seqtr(w) and seqtr(w

′) is empty), and in such a case the test is pulled-up by definition.
This is not, of course, always possible. In particular, a test w = w′ satisfying conditions
(1) and (2) of the previous definition is necessarily a “forked” test, i.e. a test for which
the common prefix of seqtr(w) and seqtr(w

′) is not reduced to the empty sequence, and
thus p ≥ 1. Indeed, wσ is a term of the form f(u, k, r) with some random r. Since nonces
are uniquely generated, the variables wi that generates it, i.e. the smallest i such that
r occurs in wiσ, occurs both in seqtr(w) and seqtr(w

′). For this kind of “forked” test, we
can restrict the attacker to consider tests that are pulled-up, i.e. we consider tests for
which the size of the common prefix between seqtr(w) and seqtr(w

′) is reduced to the
minimum. This can be done by duplicating some execution steps since all the branches
are under a replication.

Example 5.6. Continuing our running example, we have that w5 = w8 is a test that
is σ1/2-valid but it is not σ1/2-guarded since w5σ1/2 = w8σ1/2 = a.

The test w7 = w9 is a test that is σ′1/2-valid and σ′1/2-guarded. Indeed, we have
that w7σ

′
1/2 = w9σ

′
1/2 = senc(a, k2, r4). The maximal common prefix of seqtr′1.tr′2(w7) and

seqtr′1.tr′2(w9) is actually

tr′1 = io(c1, start,w1).io(c2,w1,w2).io(c3,w2,w3).io(c4,w3,w4).io(c3,w4,w5).

Actually, w7σ
′
1/2 occurs as a subterm in w4σ

′
1/2, thus the test w7 = w9 is not pulled-up

in (tr′1.tr
′
2, σ
′
1/2).

We are now able to state our characterization lemma. Intuitively, we show that for
tests that are valid and guarded, it is sufficient to consider pulled-up tests. We first
illustrate through an example how a test that is valid and guarded can be converted
into a pulled-up one.

Example 5.7. Continuing Example 5.4, we consider the test w7 = w9 which is not
pulled-up in (tr′1.tr

′
2, σ
′
1/2). Consider the execution

tr′ = tr′1.io(c4,w5,w6).io(c5,w6,w7).io(c3,w4,w8).io(c4,w8,w9).io(c5,w9,w10).

This execution is almost similar to tr′1.tr
′
2. The main difference is that the computa-

tion perfomed at the end of tr′1 using channel c3 with input w4 is duplicated. Both
io(c3,w4,w5) and io(c3,w4,w8) occur in tr′. The resulting frame is:

σ′1 ∪ {w6 . senc(senc(senc(a, k2, r4), k2, r7), k1, r8), w7 . senc(a, k2, r4),
w8 . .senc(senc(senc(a, k2, r4), k1, r5), k2, r

′
6),

w9 . senc(senc(senc(a, k2, r4), k2, r
′
7), k1, r

′
8), w10 . senc(a, k2, r4)}.

The terms stored in w5 and w8 differ by their random seeds:

senc(senc(senc(a, k2, r4), k1, r5), k2, r6) and senc(senc(senc(a, k2, r4), k1, r5), k2, r
′
6)
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This frame is almost the same as σ′1/2 with an additional element (w8). The term stored
in w8 is the same as the one stored in w5 up to the choice of some random seeds (r6 is re-
placed by the fresh random r′6). Moreover, the presence of this additional element leads
us to reindex the following elements of the frame, and to replace some occurrences of r6

with r′6. It is important to note that the introduced randoms r′6 and r′8 could potentially
break equality tests. They however do not appear anymore in the last outputted term
stored in w10 that is checked for equality.

This example shows that when considering the trace (tr′1.tr
′
2, σ
′
1/2), we may have to

consider the test w7 = w9 which is not pulled-up. However, this test is essentially the
same than the pulled-up test w7 = w10 issued from the trace given above.

The transformation explained in the previous example can be generalized to any
protocol.

LEMMA 5.8. Let P and Q be two protocols in Cpp, then P ≈fwd Q if, and only if, the
following four conditions are satisfied:

— CONSTP : For all (tr, σP ) ∈ tracefwd(P ), there exists a frame σQ such that (tr, σQ) ∈
tracefwd(Q) and for every w,w′ ∈ dom(σP ) and for every constant c ∈ Σ0 ∪ {start},
wσP = w′σQ = c if, and only if, there exists a constant c′ ∈ Σ0 ∪ {start} such that
wσQ = w′σQ = c′.

— CONSTQ: Similarly swapping the roles of P and Q.

— GUARDEDP : For all (tr, σP ) ∈ tracefwd(P ), there exists a frame σQ such that (tr, σQ) ∈
tracefwd(Q) and every test that is σP -valid, σP -guarded, and pulled-up in (tr, σP ) is
also σQ-valid, σQ-guarded, and pulled-up in (tr, σQ).

— GUARDEDQ: Similarly swapping the roles of P and Q.

PROOF. (sketch)
(⇒) For this direction, when considering CONSTP , the only difficulty is to show that

the test wσQ = w′σQ leads to a constant c′. Actually, such a test can not lead to a
guarded test since otherwise a replay of the entire sequence (this replay is possible
since we consider a class of protocol that allows this) will lead to a different guarded
term in Q and not in P (due to the presence of fresh randoms in guarded terms).

When considering GUARDEDP , the difficulty is to show that the test w = w′ is neces-
sarily pulled-up in (tr, σQ). Let pref = io(ci0 , start,wj0) . . . io(cip ,wjp−1 ,wjp) be the max-
imal common prefix of seqtr(w) and seqtr(w

′). Since w = w′ is pulled-up in (tr, σP ), we
know that the first occurrence of wσP in prefσP is at the very end of the sequence. We
can easily show that w = w′ is σQ-valid and σQ-guarded, and thus wσQ occurs also
as a subterm in prefσQ. The only problem is if wσQ occurs in prefσQ but not at the
very end of this sequence. The idea is that in such a case, we can modify the trace
(tr, σQ) and the test w = w′ to build (tr∗, σ∗Q) and a new test w∗ = w′∗ which will be
pulled-up in (tr∗, σ∗Q). The idea is to split the two sequences seqtr(w) and seqtr(w

′) ear-
lier without compromising the fact that the test will be valid in the resulting frame.
This corresponds to the construction illustrated in Example 5.7. This trace tr∗ is actu-
ally a witness of non-equivalence. Actually, the test w∗ = w′∗ is a fortiori not valid on
the P side, and this contradicts our hypothesis P ≈fwd Q.

(⇐) Actually, for this direction, assume that we have a witness of the fact that P 6≈ Q,
i.e. a trace (tr, σP ) ∈ tracefwd(P ), a trace (tr, σQ) ∈ tracefwd(Q), and a test w = w′ that is
σP -valid but not σQ-valid. In case the resulting term is a constant, we easily conclude
that CONSTP fails. Otherwise, it means that w = w′ is σP -guarded. In order to show
that GUARDEDP fails, we have to ensure that the test w = w′ is pulled-up w.r.t. (tr, σP ).
Since, this is not necessarily the case, we have to build another trace (tr∗, σ∗P ) that will
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Fig. 4. Automaton AP
CONST

lead us to a pulled-up test. Roughly, the transformation consists in splitting the two
sequences seqtr(w) and seqtr(w

′) earlier without compromising the fact that the test will
be valid in the resulting frame. Actually, such a transformation can not transform a
test that was not valid in a valid one, thus this test is still not valid for Q and it is still
a witness of non-equivalence, but a pulled-up one allowing us to conclude.

The detailed proof can be found in Appendix C.1.

5.3. From trace equivalence to language equivalence
Our goal is to associate an automaton AP to a protocol P such that AP recognizes the
words (a sequence of channels) that correspond to a possible execution of the protocol.
The stack of the automaton AP is used to store a (partial) representation of the last
outputted term. This first requires to convert a term into a word.

Given an input term or an output term u (see Section 3.1), we define inductively ū in
the following way:{

ū = v̄.k if u = f(v, k, r) and f ∈ {senc, aenc, sign}
c̄ = ωc for any constant c ∈ Σ0 ∪ {start}
x̄ = ε for any variable x

where ε denotes the empty word. Note that, using this representation, random seeds
are not part of the encoding. We denote by ||u|| the height of the term u which is equal
to the number of occurrence of senc, aenc, and sign in u.

We now consider an arbitrary ping-pong protocol P (using the same notation as the
one introduced in Section 3):

P
def
=

n

|
i=1

pi

|
j=1

!in(ci, u
j
i ).new r1. . . . .new rkji

. out(ci, v
j
i ) (∗)

In the remaining of the section, we denote by ΣP0 the finite set of constants of Σ0 ∪
{start} that actually occur in the protocol P .

5.3.1. Encoding of the conditions CONSTP and CONSTQ. We first build an automaton that
recognizes tests of the form w = w′ such that the corresponding term is actually a
constant. We define APCONST as follows:

APCONST = ({q0, qf} ∪ {qc | c ∈ ΣP0 }, {c1, . . . , cn} ∪ {ctest, cend},ΣP0 , q0, ω, {q0, qf}, δ)
where the transition function δ is defined as follows:
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(1) for every q ∈ {q0} ∪ {qc | c ∈ ΣP0 }, for every i ∈ {1, . . . , n}, for every j ∈ {1, . . . , pi},

there is a transition q
ci; ū

i
j/v

i
j−−−−−→ q;

(2) for every constant c, there is a transition q0
ctest;ω c/ω start−−−−−−−−−→ qc;

(3) for every constant c, there is a transition qc
cend;ω c/ω−−−−−−→ qf .

The automaton is depicted in Figure 4. Intuitively, the basic building blocks (e.g. q0

with the transitions from q0 to itself) mimic an execution of P where each input is fed
with the last outputted term. Then, to recognize the tests of the form w = w′ that are
true in such an execution, it is sufficient to memorize the constant c that is associated
to w (adding a new state qc), and to see whether it is possible to reach a state where
the stack contains c again. More formally, we have the following result.

LEMMA 5.9. Let P and Q be two protocols in Cpp, the two real-time GPDA APCONST

and AQCONST are such that:

P and Q satisfy conditions CONSTP and CONSTQ iff L(APCONST) = L(AQCONST).

The proof can be found in Appendix C.2.

Example 5.10. Going back to our running example, i.e. the protocol P described in
Figure 3, the automaton APCONST is depicted below:

q0

qa

qk1

qk2

qstart

qf

R

R

R

R

R =


c1; start/a k2

c2; k2/k1

c3; ε/k2

c4; k1k2/k2k1

c5; k2k1/ε
ctest

;ω
a/ω

sta
rt

ctest;ω
k1/ω start

ctest;ω k2/ω start

ctest ;ω start/ω start

cend ;ω a/ω

cend;ω k1/ω

cend;ω k2/ω

cend
;ω s

tart/
ω

The word that represents the trace (tr1.tr2, σ1/2) and the test w5 = w8 as given in
Figure 3 is: c1c2c3c4c5ctestc1c3c2c5cend. The fact that this test is a valid one that leads to
a constant a means that the word will be accepted by the automaton given above. The
corresponding run goes through the state qa and halts in state qf .

APCONST has a number of states polynomial in the number of constants in P , and for
each state a number of transitions linear in the number of branches in P . Thus, APCONST
is of size polynomial with respect to the size of P .

5.3.2. Encoding of the conditions GUARDEDP and GUARDEDQ. Capturing tests that lead to
non-constant symbols (i.e. terms of the form f(u, k, r) with f ∈ {senc, aenc, sign}) is more
tricky for several reasons. First, it is not possible anymore to memorize the resulting
term in a state of the automaton. Second, names of sort rand play a role in such a test,
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Fig. 5. Automaton AP
GUARDED

while they are forgotten in our encoding. We rely on our characterization introduced in
Section 5.2 and we construct a more complex automaton that uses some special track
symbols to encode when randomized ciphertexts may be reused.

More precisely, we consider:

— Π = {c1, . . . , cn, ctest, cend} ∪ {cifork | 1 ≤ i ≤ n}, and
— Γ = ΣP0 ∪ {test} ∪ {(fork

j
i , k) | 1 ≤ i ≤ n, 1 ≤ j ≤ pi, and 1 ≤ k ≤ ||uji ||}.

Note that n and pi are induced by the definition of protocol P (see equation (∗)). The
input alphabet contains the channel names c1, . . . , cn, plus some additional symbols,
denoted c1fork, . . . , c

n
fork, that will be used once and whose purpose will be to mark the

end of the common prefix between seqtr(w) and seqtr(w
′).

The stack-alphabet is more involved. We still have one symbol per constant in ΣP0 ,
and a special symbol test that will be put on top of the stack when the stack contains
the target term (i.e. wσ). In such an automaton, the idea is to consider pulled-up tests
only. The tile (forkji , k) is placed on the stack when the automaton has finished to build
the term corresponding to the left hand side of a pulled-up test.

The transition function δ is defined as follows:

(1) for q ∈ {q0, q1, q2}, for every i ∈ {1, . . . , n} and j ∈ {1, . . . , pi}, there is a transition

q
ci;u

j
i/v

j
i−−−−−→ q;

(2) for every i ∈ {1, . . . , n} and j ∈ {1, . . . , pi} such that ||vji || ≥ 1, there is a transition

q0
cifork;u

j
i/ω v

j
i (forkji ,||v

j
i ||)−−−−−−−−−−−−−−−→ q1

(3) for every i ∈ {1, . . . , n} and j ∈ {1, . . . , pi}, for every i′ ∈ {1, . . . , n} and j′ ∈
{1, . . . , pi′}, for every m such that 1 < m ≤ ||vj

′

i′ ||, and for every subterm u0 of uji
of height k ∈ {1, . . . ,m− 1} such that uji = u0.s

′ there is a transition

q1

ci;u0.(fork
j′

i′ ,m).s′/(forkj
′

i′ ,m−k)vji−−−−−−−−−−−−−−−−−−−−−−→ q1.

(4) for every i ∈ {1, . . . , n} and j ∈ {1, . . . , pi}, for every m such that 1 ≤ m ≤ ||vji ||, there

is a transition q1

ctest; (forkji ,m)/test sji,m−−−−−−−−−−−−−−→ q2 where sji,m is the suffix of length ||vji || − m
of vji .

(5) there is a transition q2
cend; test/ε−−−−−−→ qf .

The loop in q0 (item 1) represents the regular execution of the protocol by the at-
tacker: through unstacking and stacking, she builds a term on the stack along a par-

ticular trace. The transitions q0
cifork; z/z

′

−−−−−→ q1 (item 2) enable her to mark a fork when
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building a test in her frame with a particular stack symbol forkji , enriched with some
information. Intuitively, the part of the execution that is performed until here should
correspond to the maximal prefix shared between the sequences seqtr(w) and seqtr(w

′).
By looping in q1, the attacker can continue building the first term of an equality, follow-
ing the usual execution of the protocol, if it were for the presence of the stack symbol
(forkji , k) which can only go down on the stack for at most k−1 times. When the symbol
(forkji , k) appears on top of the stack, the attacker may decide that she has built the
first part of a pulled-up test. Then test will be put on the top of the stack and a part of
the stack (following the instructions memorized in the symbol (forkji , k)) will be regen-
erated. The idea is that the stack has to contain the same term as the one stored just
after forking. Then the attacker tries to build the second member of the test. If this
second term manages to end up exactly as the previous one (the position in the stack
is marked using the tile test), an equality is reached and the word is recognized by the
automata, witnessing the equality induced by the pulled-up test.

What remains now is to prove that P and Q satisfy conditions GUARDEDP and
GUARDEDQ if, and only if, L(APGUARDED) = L(AQGUARDED). This is formally stated in the
following lemma.

LEMMA 5.11. Let P andQ be two protocols in Cpp, the two real-time GPDAAPGUARDED

and AQGUARDED are such that:

P and Q satisfy conditions GUARDEDP and GUARDEDQ iff
L(APGUARDED) = L(AQGUARDED).

The proof can be found in Appendix C.2.

Example 5.12. Going back to our running example, i.e. the protocol P described in
Figure 3, the automaton APGUARDED is depicted below.

q0 q1 q2

qf

R

c1fork; start/ω a k2 (fork1
1, 1)

c2fork; k2/ω k1 (fork1
2, 1)

c3fork; ε/ω k2 (fork1
3, 1)

c4fork; k1k2/ω k2k1 (fork1
4, 2)

R

c2; k2 (fork1
4, 2)/(fork1

4, 1) k1

c4; k1 (fork1
4, 2) k2/(fork

1
4, 1) k2 k1

c5; k2 (fork1
4, 2) k1/(fork

1
4, 1)

ctest; (fork1
1, 1)/test

ctest; (fork1
2, 1)/test

ctest; (fork1
3, 1)/test

ctest; (fork1
4, 1)/test k1

ctest; (fork1
4, 2)/test

R

cend; test/ε

The set of transitions R is the one defined in Example 5.10. The situation where
the stack symbol (forkji , k) goes down occurs for instance when considering the word
c1 c2 c3 c

4
fork c3 c4 c5 ctest c3 c4 c5. The evolution of the stack during the run of the automa-

ton is depicted below. On the second line, we can see that this symbol goes down and k
goes from 2 to 1.
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start
ω

c1c2c3−−−−→ k2

k1

a
ω

c4fork−−→

(fork1
4, 2)

k1

k2

ω
a
ω

c3−→

k2

(fork1
4, 2)

k1

k2

ω
a
ω

c4−→

k1

k2

(fork1
4, 1)

k2

ω
a
ω

c5−→
(fork1

4, 1)
k2

ω
a
ω

ctest−−→

k1

test
k2

ω
a
ω

c3−→

k2

k1

test
k2

ω
a
ω

c4−→

k1

k2

test
k2

ω
a
ω

c5−→
test
k2

ω
a
ω

cend−−→ k2

ω
a
ω

The trace (tr, σ) ∈ tracefwd(P ) and the pulled-up test w = w′ that correspond to this
execution is the ones introduced in Example 5.7, i.e. tr′ together with the test w7 = w10.

We can notice that up to the special stack-symbols, namely test and (forkji , k), the
contents of the stack after reading cifork (here i = 4) and ctest are the same. The stack
actually represents the term obtained after executing the common prefix shared be-
tween seqtr′(w7) and seqtr′(w10), i.e. senc(senc(a, k2, r4), k1, r5) stored in w4. We have also
that the contents of the stack before reading ctest and after reading cend are also the
same (up to some special stack symbols). They actually represent the terms stored
respectively in w7 and w10.

Note that APGUARDED has a fixed number of states, and a polynomial number of tran-
sitions : transitions are added for each branch and suffix of any input term. Thus,
APGUARDED is of size polynomial with respect to the size of P .

6. FROM LANGUAGE EQUIVALENCE TO TRACE EQUIVALENCE
We have seen how to encode trace equivalence between processes in Cpp into langage
equivalence between real-time GPDA. The two problems are actually equivalent. In-
deed, in this section, we show that we can conversely encode any real-time GPDA A
into a process PA in Cpp such that L(A) ⊆ L(B) implies PA v PB.

Consider an automaton A = (Q,Π,Γ, q0, ω,Qf , δ). The process PA associated to A is
built using symmetric encryption only. For the purpose of the encoding, we consider
the following constants of sort SymKey:

— for each q ∈ Q, we denote q its counterpart in Σ0;
— for each α ∈ Γ, we denote kα its counterpart in Σ0;
— a constant kwell.

Let also c0, ca, cf with a ∈ Π be constant symbols of sort channel in Ch. Words in Γ∗, i.e.
stacks, will be represented through nested encryptions with keys representing their
counterparts in Γ. For the sake of brevity, given a word u = α1 . . . αp of Γ∗, we denote
by x.u:

— either the term senc(. . . senc(x, kα1
, z1) . . . , kαp

, zp) where z1 through zp are variables
used for nonces when x.u is used in as an input pattern;

— or the term senc(. . . senc(x, kα1
, r1) . . . , kαp

, rp) where r1 through rp are fresh randoms
when x.u is used as an output pattern.
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Below, we use new r̃ as shortcut for new r1. . . . new rp such that the sequence will bind
every nonce occurring in the following output.

The stack of the automaton A is encoded as a pile of encryptions (where each key
encodes a letter of the stack). Then, upon receiving such a pile of encryptions encrypted
by q on channel ca, the process PA will mimic the transition of A that is triggered when
the automaton is at state q upon reading a with the stack corresponding to that pile of
encryptions.

More formally, the process PA is defined as follows:

PA
def
= ! in(c0, start).new r̃.out(c0, senc(senc(start, kω, r1), kstart, r2), q0, r3)) (0)

| ! in(ca, senc(x.u, q, z)).new r̃.out(ca, senc(x.v, q
′, r)) (1)

| ! in(ca, senc(x.u′, q, z)).new r.out(ca, senc(start, kwell, r)) (1a)
| ! in(ca, senc(start, kwell, z)).new r.out(ca, senc(start, kwell, r)) (1b)

| ! in(cf , senc(x, qf , z)).new r.out(cf , senc(start, qf , r)) (2)

where a quantifies over Π, q over Q, u over words in Γ∗ such that (q, a, u) ∈ dom(δ),
qf over Qf , and (q′, v) = δ(q, a, u). Lastly, u′ ranges over U ′q,a

def
= α · SSq,a r Sq,a where

Sq,a (resp. SSq,a) is the set that contains suffixes (resp. strict suffixes) of some u with
(q, a, u) ∈ dom(δ). This set U ′q,a corresponds intuitively to the set of shortest words
which are not suffixes of any word in {u | (q, a, u) ∈ dom(δ)}, and, thus the shortest
words to unstack to be sure that no transition from q reading a is possible in the
automaton.

Example 6.1. Consider a real-time GPDA such that Γ = {α, β, γ, ω}, q ∈ Q, and
a ∈ Π. Assume that {u | (q, a, u) ∈ dom(δ)} = {βα, βαα}. We have SSq,a = {ε, α, αα},
and Sq,a = SSq,a ∪ {βα, βαα}. Thus, we have that:

U ′q,a = {ω, β, γ, ωα, γα, ωαα, ααα, γαα}.

In the encoding above, the branches (0) and (1) mimic the behaviour of the automa-
ton A. Branch (2) is triggered in case a final state qf is reached. In case we are con-
sidering a behaviour that is not authorized by the automaton, we obtain a message
encrypted with kwell through branches (1a). Then branches (1b) allow to pursue the
execution of the protocol outputting messages that look fresh.

LEMMA 6.2. The protocol PA described above is in Cpp and of size polynomial
w.r.t. A.

PROOF. First, note that because dom(δ) is finite, as the automaton is finitely de-
scribed, the sets {u | (q, a, u) ∈ dom(δ)} and U ′q,a are also finite for any a ∈ Π and q ∈ Q.
Moreover, the automaton being deterministic, given q ∈ Q and a ∈ Π, for every word
s ∈ Γ∗:

— either there exists a unique suffix u of s such that (q, a, u) ∈ dom(δ);
— or there exists a unique suffix u′ of s such that u′ ∈ U ′q,a,

and this disjunction is exclusive. This allows us to ensure that condition (2) of Defini-
tion 3.1 is satisfied, and thus PA belongs to Cpp.

Regarding the size of the protocol, the only non-trivial point is to check that the
number of branches (1a) is polynomially bounded. Let q ∈ Q, and a ∈ Π, and assume

that the maximal length of a word u in a transition q
a;u/v−−−→ q′ of the automaton is `q,a,

we have that the number of branches (1a) for state q and letter a is bounded bounded
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by `q,a×#Γ×#{u | (q, a, u) ∈ dom(δ)} where #S is the cardinality of set S. This allows
us to conclude.

This polynomial encoding preserves inclusion.

PROPOSITION 6.3. Let A and B be two real-time GPDA. We have that:

L(A) ⊆ L(B)⇐⇒ PA v PB.

PROOF. Let A = (Q,Π,Γ, q0, ω,Qf , δ) and B = (Q′,Π,Γ′, q′0, ω,Q
′
f , δ
′). We show the

two implications separately.
(⇐) Assume that there exists a word t ∈ L(A) r L(B). We will build a trace (tr, φ) ∈
trace(PA) such that there exists no trace (tr, ψ) ∈ trace(PB) allowing us to conclude that
PA 6v PB. To build (tr, φ), we will mimick the behaviour of A when reading t. The first
branch to use is (0), enabling the attacker to activate other branches of the process PA.
As t ∈ L(A) and A is deterministic, there exists a unique sequence of transitions lead-
ing to an accepting state qf ∈ Qf . For every such transition the attacker will activate
the corresponding branch (1) in PA. If t = a1 . . . an, we define (tr, φ) as follows:

tr = io(c0, start,w1).io(ca1 ,w1,w2) . . . io(can ,wn,wn+1).io(cf ,wn+1,wn+2)

and φ is defined as expected given our semantics. Because of the definition of the
branch (1), the inputs on the channels cai are possible, the stack of the automaton
upon reading ai and its current state being faithfully represented by the term wiφ.
Thus, (tr, φ) is indeed a trace of PA. When reaching qf , the attacker can use the branch
(2) and output the message senc(start, qf , r). As t 6∈ L(B), the corresponding sequence of
transitions in B does not lead to any accepting state:

— either at some point of the execution of the automaton a transition from state q read-
ing a is not possible with the current stack s. This means that there does not exist a
suffix u of s such that (q, a, u) ∈ dom(δ′), and thus, by definition of U ′q,a, there exists
a suffix u′ of s such that u′ ∈ U ′q,a, enabling a transition (1a) on channel ca for the
attacker, and every subsequent transition is done using branches (1b),

— or the state reached in B after reading t is not an accepting state, i.e. not in Q′f : the
sequence in(cf ,wn+1).out(cf ,wn+2) cannot occur in PB.

Consequently, there exists no trace (tr, ψ) ∈ trace(PB) (for any ψ), thus PA 6v PB.

(⇒) First note that, for every frame φ (resp ψ) such that (tr, φ) ∈ trace(PA) (resp.
(tr, ψ) ∈ trace(PB)), we have that φ (resp. ψ) is of the form

{w1 . senc(m1, k1, r1), . . . ,wn . senc(mn, kn, rn)}

where the ki are non deducible and the ri are “fresh” in the sense that they are all
distinct and non deducible. This means that no equality (but the trivial ones) holds in
such a frame. Now consider the shortest trace (tr, φ) ∈ trace(PA), in terms of number
of transitions, such that there exists no equivalent frame (tr, ψ) ∈ trace(PB). Since
keys are non-deducible, we may assume w.l.o.g that (tr, φ) ∈ tracefwd(PA). Because of
the branches (1), (1a) and (1b) and in particular of the definition of U ′q,a, for any q ∈
Q, for any a ∈ Π, a transition of channel ca is always possible, and we have seen
that the resulting frames are necessarily in static equivalence. Thus, the only shortest
trace where PB will not be able to follow is when tr ends with an input/output on
channel cf . Let w ∈ dom(φ) be the corresponding variable in the frame φ. Consider the
subsequence seqtr(w) of tr and more precisely the sequence of channels that occurs in
this subsequence. Such a sequence is of the form: c0.ca1 . . . can .cf .

Let v = a1 . . . an. We have that v is a word of Π∗, and, in particular,
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— v ∈ L(A): indeed, branches (1) in PA faithfully represent transitions (q, a, u) ∈ dom(δ)
and a branch (2) can only be fired if qf ∈ Qf .

— v /∈ L(B): indeed branch (2) could not be fired, either B cannot read v or, after reading
v, B is not in any state of Q′f .

Hence v ∈ L(A) r L(B), proving that L(A) 6⊆ L(B).

Therefore, checking for equivalence of protocols is as difficult as checking equiva-
lence of real-time generalized pushdown deterministic automata.

7. IMPLEMENTATION
In this section, we detail our tool Cpp2dpa to convert protocols in Cpp into GDPA, avail-
able online at

http://www.lsv.ens-cachan.fr/∼chretien/cpp2dpa.php.

This tool takes two protocols in Cpp as input, turn them into GDPA and, through the
tool lAlBlC [Henry and Sénizergues 2013], outputs whether the two protocols were
in equivalence, yielding a witness of non-equivalence in the negative case in the form
of a sequence of channels leading to an attack. The tool focuses on the encoding as
described in Section 5. In particular, we assume the prior steps of Section 4 were suc-
cessfully applied to the pair of protocols; namely the bijection α as in Lemma 4.12 was
successfully guessed and the oracles of Section 4.2.2 correctly added.

The tool Cpp2dpa is written in Python 3. From pairs of protocols in Cpp, it generates
three pairs of normalized determinisitic pushdown automaton, instead of directly two
pairs of GPDA (as described in Section 5). This was necessary so as to interface with
lAlBlC, and involves no loss of generality, as the former are more expressive than
our GDPA. The normalization process still has the inconvenient, in order to preserve
the determinacy of the result, to output automata that may duplicate actions. More
specifically, when necessary, the channels appearing in the potential witness of non-
equivalence may be doubled. This technical detail does not impair the ability for the
combined tool to prove equivalence or find witnesses, nevertheless.

7.1. Encoding pairs
Most protocols use pairs. While our formalism does not directly support pairs, we may
encode a restricted kind of pairing, when there are only constants (such as identi-
ties) on the right. Formally, this amounts into encoding a pair 〈t, a〉, where t is a term
and a some constant, by an encryption senc(t, a, r) for some random seed r. Provided
constants used in concatenation are disjoint from constants used as keys, this encod-
ing does not introduce any confusion. Note that since encryption is randomized, this
pairing operator also differs as it is randomized.

7.2. Biometric passport
We are interested here in proving the unlinkability of the electronic passport protocol.
A detailed specification of it can be found in [Arapinis et al. 2010]. Here, we only con-
sider the passport’s role and forget about the reader. The first case we consider is the
flawed version corresponding to the French implementation of the passport, in which
an attack arises from the ability for the attacker to observe whether a MAC check
succeeds or not. As our framework does not directly enables us to deal with pairs of
messages with their MAC, we model it by a signature: the attacker is able to obtain the
plaintext of it (which amounts to retrieving the first component of the real pair) but
cannot forge it (the attacker is not a priori able to forge a valid MAC). The resulting
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process is defined as follows.

PA
def
= ! in(c1, start).new r̃

′.
out(c1, sign(senc(senc(senc(nr, kr, r

′
1), np, r

′
2), kE , r

′
3),mackm , r

′
4)) (1)

| ! in(c2, sign(senc(x, kE , z1),mackm , z2)).new r5.out(c2, sign(x,macok, r5)) (2a)

| ! in(c′2, sign(senc(x, np, z1),macok, z2)).new r̃′′.
out(c′2, sign(senc(senc(x, np, r

′′
1 ), kp, r

′′
2 ),mackm , r

′′
3 )) (2b)

where new r̃ is a shortcut of new r1.new r2.new r3.new r4 (and similarly for new r̃′ and
new r̃′′). The protocol is modeled through three rules. Branch (1) corresponds to a mes-
sage from the current session, emitted by the reader. While the original protocol can
check the authenticity of the MAC and the value of the nonce sent to the passport, our
formalism requires us to separate this into two steps: branches (2a) and (2b). Branch
(2a) checks the validity of the MAC: if it is, it send a message signed with macok. On
the other hand, branch (2b) checks the value of the nonce (i.e. np) and finally emits the
last message of the protocol. To retrieve the attack, we introduce the message sent by
the reader from a previous session with a new branch denoted (0):

! in(c0, start).new r̃.
out(c0, sign(senc(senc(senc(n0

r, k
0
r, r1), n0

p, r2), kE , r3),mackm , r4)) (0)

Another protocol PB is obtained by replacing mackm by mack′m in branches (1), (2a)
and (2b). Our tool Cpp2dpa can automatically check that PA 6≈ PB .

Another version P ′A is obtained by replacing branches (2a) and (2b) by the branch

! in(c2, sign(senc(senc(x, np, z1), kE , z2),mackm , z3)).new r̃′′.
out(c2, sign(senc(senc(x, np, r

′′
1 ), kE , r

′′
2 ),mackm , r

′′
3 )) (2)

The protocol P ′B is similarly defined, with mack′m instead of mackm in this branch (2).
This version models the safe implementation of the protocol, where the success or fail-
ure of the MAC check is invisible to the attacker. Our tool Cpp2dpa can automatically
prove that P ′A ≈ P ′B .

7.3. Experiments
We have tested our tool Cpp2dpa on the running example as defined in Example 2.7 and
Example 4.5; as well as on an encoding of the electronic passport protocol, described in
Section 7.2 in two versions, unsafe and safe (see [Arapinis et al. 2010] for more details).

Automata (in ms) Grammars (in s) Equivalence (in s)
Example 2.7 7.1 9.2 3462 (attack)
Example 4.5 7.0 3.1 9788 (proof)
Unsafe passport 7.1 23.2 4.89 (attack)
Safe passport 8.1 15.0 76.1 (proof)

The experiments were conducted on a Intel(R) Xeon(R) CPU X5650 @ 2.67GHz with
47 Go of RAM, using one core only. The first column corresponds to the cumuled time
required to produce the different automata; the second one the time needed to convert
the automata into grammars to be processed by lAlBlC and the third one to the status
of the equivalence (proof or witness of non-equivalence) and the cumuled time spent
to prove the equivalence (when it is the case) or the execution time to find a witness of
non-equivalence, when possible. There is non-equivalence as soon as one of our three
pairs of automata are not in equivalence. Since we execute lAlBlC in parallel for each
of these three pairs, the execution time corresponds to the first pair that is found to
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real-time DPA

GPDA

DPA ping-pong protocols
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Fig. 6. Complexity bounds for equivalence of ping-pong protocols.

be not in equivalence. Converting the automata to grammars required an optimization
of the built-in functionnality in lAlBlC in order to reach reasonable execution times.
Other protocols were considered, namely variants of the Wide Mouthed Frog, Denning-
Sacco and Private Authentication protocols. Unfortunately, for these ones, albeit the
generation of automata was quick, it was impossible to prove (non-)equivalence in
reasonable time with lAlBlC.

8. DISCUSSION AND CONCLUSION
We have shown a first decidability result for equivalence of (deterministic) ping-pong
protocols for an unbounded number of sessions by reducing it to the equality of lan-
guages of deterministic, generalized, real-time pushdown automata (GPDA). We fur-
ther show that deciding equivalence of ping-pong protocols is actually at least as hard
as deciding equality of languages of GPDA. Complexity-wise, the situation is slightly
less clear. While the reduction from GPDA to ping-pong protocols is polynomial, the
reduction from ping-pong protocols to GPDA requires an exponential blow-up. Indeed,
to get rid of the attacker, we guess a correspondance between the keys of P and Q, and
exponentially many such correspondences should be checked. In addition, the complex-
ity of equivalence of various classes of pushdown automata are not very well-known. It
follows that the exact complexity of checking equivalence of protocols is unknown. The
only upper bound is that equivalence is at most primitive recursive. This bound comes
from the algorithm proposed by C. Stirling for equivalence of DPA [Stirling 2002]. The
lower bound comes from the fact that real-time deterministic pushdown automata are
at least NL-hard [Boehm and Goeller 2011]. Whether equivalence of DPA (or even real-
time GPDA) is e.g. at least NP-hard is unknown. The complexity hierarchy known so
far for equivalence of ping-pong protocols is displayed in Figure 6.

Note that the complexity of GPDA and ping-pong protocols is actually quite close
since the reduction from ping-pong protocols to GPDA is “just” exponential. Moreover,
assume now that we consider only procedures that return a witness of non equivalence
(if any). Then the complexity classes of GPDA and ping-pong protocols should actually
coincide. Indeed, assume that there is a procedure for checking equivalence of GPDA
that ends in time f(n) where n is the size of the inputs, and that returns a witness
when two automata are not in equivalence. This witness must be of size at most f(n).
Then given two ping-pong protocols P and Q, we would construct P̄ and Q̄ as defined
in Lemma 4.12 step by step.

Instead of guessing the sets K and K ′, we would start from the emptysets
K = K ′ = ∅. If P̄ 6≈ Q̄, that is if AP̄ 6≈ AQ̄, we consider a witness of non equivalence.
Either it is a witness of P 6≈ Q (and we are done), or there must exist a key k that is
deducible in P and a corresponding key k′ deducible with the same actions in Q. We
start over with K = {k} and K ′ = {k′}.
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This algorithm has at most n steps and each step involve a call to the GPDA proce-
dure (AP̄ ≈ AQ̄) and involves replaying a witness of size f(n). This yields a procedure
of complexity O(f(n)).

Our class of security protocols handles only randomized primitives, namely symmet-
ric/asymmetric encryptions and signatures. Our decidability result could be extended
to handle deterministic primitives instead of the randomized one (the reverse encod-
ing - from real-time GPDAs to processes with deterministic encryption - may not hold
anymore). Due to the use of pushdown automata, extending our decidability result to
protocols with pairing is not straightforward. A direction is to use pushdown automata
for which stacks are terms.

While we consider an unbounded number of sessions, we consider a fixed number
of agents in our examples. We could model an unbounded number of agents, however,
since our class considers protocols rules with at most one variable, we could consider
at most one agent per rule with no key nor nonces, which would be very restrictive.
Another direction is to study whether we can soundly bound the number of agents.

Our tool Cpp2dpa in combination with lAlBlC yields the first implementation of a
decidability procedure for equivalence of protocols, for an unbounded number of ses-
sions. However, the number of protocols covered so far is limited. A first reason yields
in the limitations of the class of ping-pong protocols. However, another reason is the
(too long) time needed to check for equivalence. Our transformation from protocols to
automata using Cpp2dpa remains reasonably fast. Most of the execution time comes
from lAlBlC. Since this tool is still in its early stage of development, we may hope for
significant improvement of lAlBlC’ performance in the next years.
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A. UNDECIDABILITY OF TRACE INCLUSION
The purpose of this section is to establish the following result.

THEOREM 3.6. The following problem is undecidable.

Input. P and Q two protocols in Cpp.
Output. Whether P is trace included in Q, i.e. P v Q.

An instance of the PCP over the alphabet A is given by two sets of tiles U = {ui | 1 ≤
i ≤ n} and V = {vi | 1 ≤ i ≤ n} where ui, vi ∈ A∗. The problem consists of de-
ciding whether there exists a non-empty sequence i1, . . . , ip over {1, . . . , n} such that
ui1 . . . uip = vi1 . . . vip .

To prove the undecidability of trace inclusion in Cpp, we show it is possible to encode
the Post Correspondence Problem into an inclusion of two protocols of this class. Given
a word, one protocol will be meant to unstack the first set of tiles while the other will
try as much as possible to unstack the second set of tiles. While an empty word is not
“simultaneously” reached by the two processes, their traces appear to be equivalent.
Conversely, if a solution to the Post Correspondence Problem does exit, it will lead the
second process to react in a distinct way (by stopping its execution), breaking the trace
inclusion property.

For each i ∈ {1, . . . , n}, we define two (possibly empty) sets of words over A, namely
Wi

def
= A|vi| r {vi}, and W ′i

def
= A0 ∪A1 ∪ . . . ∪A|vi|−1 where |vi| denote the length of the

word vi.

Example A.1. Let A = {a, b} and consider the following pairs of tiles (b, ε), (b, a),
and (a, ba). This instance of PCP admits a solution. Indeed, the non-empty sequence
13 leads to the word u1u3 = v1v3 = ba. We have W1 = W ′1 = ∅, W2 = {b} and W ′2 = {ε},
and lastly W3 = {aa, ab, bb} and W ′3 = {a, b, ε}.
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Words in A∗ will be represented through nested symmetric encryption with private
keys representing their counterparts in A. For the sake of brevity, given a word u =
α1 . . . αp of A∗, we denote by:

— u the term senc(. . . senc(ε, α1, z1) . . . , αp, zp); and
— x.u the term senc(. . . senc(x, α1, z1) . . . , αp, zp)

where z1, . . . , zp are variables of sort rand. Note that if u = ε then u = ε, and x.u = x.
Below, ki, k

′
i with i ∈ {0, 1, 2, 3} are constants in Σ0 of sort SymKey, and for each

α ∈ A, we denote also by α its counterpart in Σ0 (constants of sort SymKey). We denote
ε a constant in Σ0 of sort msg. These constants are initially unknown by the attacker
and actually it is quite easy to see that they will be never revealed. Lastly, c, cα, ci, c′
with α ∈ A and i ∈ {1, . . . , n} are constant symbols of sort channel in Ch.

Let PU and PV be the following protocols.

PU := ! in(c, start).new r.out(c, senc(ε, k0, r)) (start)
| ! in(cα, senc(x, k0, z)).new r1, r2. out(cα, senc(senc(x, α, r2), k0, r1)) (1)

| ! in(ci, senc(x.ui, k0, z)).new r.out(ci, senc(x, k1, r)) (2)
| ! in(ci, senc(x.ui, k1, z)).new r.out(ci, senc(x, k1, r)) (3)

| ! in(c′, senc(ε, k1, z)).new r.out(c′, senc(ε, k2, r)) (4)

where i ranges in {1, . . . , n} and α in A.
The branch (start) is the only way to start an execution, then branches (1)

are used to build a word α1 . . . αn (that could be a Post word in case we con-
sider a positive instance of PCP). This word will be represented through the term
senc(. . . senc(ε, α1, r1), . . . , αn, rn) up to the choice of randoms. Then, branches (2) and
(3) are used to unstack the different tiles u1, . . . , un. Note that the purpose of hav-
ing two similar branches (but using different keys) for this task is to ensure that we
will unstack at least one tile, and thus the sequence i1 . . . ip of indices is not empty.
Then, reaching the empty word when unstacking these tiles will allow us to perform
input/output on channel c′ (branch (4)).

PV := ! in(c, start).new r.out(c, senc(ε, k′0, r)) (start)
| ! in(cα, senc(x, k

′
0, z)).new r1, r2. out(cα, senc(senc(x, α, r2), k′0, r1)) (1)

| ! in(ci, senc(x.vi, k
′
0, z)).new r.out(ci, senc(x, k

′
1, r)) (2′)

| ! in(ci, senc(x.w, k
′
0, z)).new r.out(ci, senc(ε, k

′
3, r)) (2′a)

| ! in(ci, senc(w′, k
′
0, z)).new r.out(ci, senc(ε, k

′
3, r)) (2′b)

| ! in(ci, senc(x.vi, k
′
1, z)).new r.out(ci, senc(x, k

′
1, r)) (3′)

| ! in(ci, senc(x.w, k
′
1, z)).new r.out(ci, senc(ε, k

′
3, r)) (3′a)

| ! in(ci, senc(w′, k
′
1, z)).new r.out(ci, senc(ε, k

′
3, r)) (3′b)

| ! in(c′, senc(x.β, k′1, z)).new r.out(c′, senc(ε, k′2, r)) (4′a)
| ! in(c′, senc(ε, k′3, z)).new r.out(c′, senc(ε, k′2, r)) (4′b)

| ! in(ci, senc(ε, k
′
3, z)).new r.out(ci, senc(ε, k

′
3, r)) (5′)

where i ranges in {1, . . . , n}, α and β in A, and for each i ∈ {1, . . . , n}, w in Wi and w′

in W ′i .
The protocol PV has the same structure as PU . However, it is more complex since we

want PV to follow the execution of PU as soon as the execution does not correspond to a
solution of the PCP problem. In particular, we do not want PV to block in case it is not

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.
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able to unstack a tile vi. To achieve this, some additional branches are added (namely
(2′a) and (2′b), as well as (3′a) and (3′b)). Intuitively, those branches are triggered when
(2′) and (3′) can not, and the resulting term is encrypted with a special key k′3 that will
allow PV to mimic the remaining of the execution using branch (5′). Now, regarding
the branches on channel c′, the idea is to allow PV to mimic the behaviour of PU only
when the trace tr does not correspond to a solution of the PCP. To achieve this, we allow
PV to follow PU only when the term given in input on channel c′ is not a legal encoding
of the empty word. Such a term will go through (4′a) or (4′b).

Note that, on both protocols, the terms that are outputted look like fresh random
numbers due to fresh nonces occurring in every output and ignorance of the keys. In
other words, the two frames resulting from the execution of respectively PU and PV
always remain in static equivalence. Therefore, checking trace equivalence amounts
into checking that any execution trace of PU is a trace of PV , and conversely.

LEMMA A.2. The protocols PU and PV described above are in Cpp.

PROOF. The only non-trivial point is to ensure that condition (2) stated in Defini-
tion 3.1 is satisfied, i.e. to ensure that pattern matching operated by inputs taking
place on the same channel is exclusive. Regarding protocol PU , when two inputs occur
on the same channel ci, we have that the outermost key is different. Regarding proto-
col PV , the result also holds thanks to the exclusivity of the pattern matching obtained
through a careful definition of sets Wi and W ′i . For instance, note that when vi = ε,
Wi = W ′i = ∅, and thus there is no branch (2′a)/(2′b) (resp. (3′a)/(3′b)).

PROPOSITION A.3. Let U/V be an instance of PCP. We have that PU v PV if, and
only if, U/V is a negative instance of PCP (i.e. an instance with no solution).

PROOF. We prove successively the two implications.

(⇒) If U/V is a positive instance of PCP then PU 6v PV . If U/V is a positive instance of
PCP, there exists a non-empty sequence i1 . . . ip over {1, . . . , n} such that ui1 · . . . · uip =
vi1 · . . . · vip .

Let u = α1. . . . .αm be the resulting word over A. From this word and the sequence
i1, . . . , ip, the attacker playing with Pu can build the term senc(u, k0, r) representing
the word u with branches (1) and then remove one by one the tiles uip to ui1 using (2)
and (3). Let tr be the resulting trace of the protocol PU :

tr
def
= io(c, start,w1).io(cα1

,w1,w2). . . . io(cαm
,wm,wm+1)

io(cip ,wm+1,wm+2) . . . io(ci1 ,wp+m,wp+m+1).in(c′,wm+p+1)

where io(c,R,w)
def
= in(c,R).out(c,w).

The trace tr models the fact that, given senc(u, k0, r) (stored in wm+1), PU can remove
one by one the tiles uip to ui1 to reach the empty word and hence output the message
senc(ε, k1, r) (stored in wm+p+1) that can then be accepted as input on c′. In this execu-
tion, no equality holds in the resulting frame φ, as the attacker ignores the keys that
are used to encrypt, and all outputted message use different random seeds; thus all
messages look fresh.

We claim that this trace does exist in PV , i.e. there exists no ψ such that (tr, ψ) ∈
trace(PV ). Indeed, the pattern matching operated by PV is exclusive once the term and
the channel is fixed. Thus, PV has no choice but to remove tiles vip to vi1 using (2′) and
(3′) leading to the term senc(ε, k′1, r) (stored in wm+p+1) as α1 . . . αm is a Post word. Any
other trace would either lead to a mismatch on the channels or an improper filtering
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in PV . Then the action in(c′,wm+p+1) will have no counterpart on PV . So (tr, φ) has no
equivalent trace in PV , i.e. PU 6v PV .

(⇐) If U/V is a negative instance of PCP then PU v PV . Let (tr, φ) ∈ trace(PU ), we
aim at showing that there exists an equivalent trace (tr, ψ) ∈ trace(PV ). Actually, since
terms that are outputted by PU and PV look like fresh random numbers, we simply
have to show that there exists ψ such that (tr, ψ) ∈ trace(PV ). Two cases can occur for
any trace (tr, φ) ∈ trace(PU ):

— tr contains no input on channel c′. In such a case, by construction of PV , the frame
ψ can be built by following the sequence of channels used in tr and choosing the
adequate filtering. It is always possible to do so, as the definition of sets Wi and W ′i
ensure that every term built by the attacker can be handled on any channel ci. Note
that when the term given in input is of the form senc(ε, k′3, r) for some r, it would be
accepted on any channel.

— tr contains an input on channel c′. In such a case, this means that the associated
term senc(α1 . . . αm, k0, r) that has been built using channels cα with α ∈ A is a word
made of tiles in {u1, . . . , un}. Indeed, the only way to activate an input on c′ is to go
through the branches (2) and (3) by unstacking the said tiles. Then, because this par-
ticular instance of PCP has no solution, such a word α1 . . . αm cannot be a Post word
and thus it cannot be decomposed using tiles in {v1, . . . , vn} following the same se-
quence of indices: because the filtering in PV is also exhaustive, messages outputted
by PV from a certain point will be either encrypted by k′3 or will reach the end of the
sequence with a term of the form senc(u, k′1, r) with u different from the constant ε.
Thanks to branches (4′a), (4′b), and (5′), PV will be able to follow PU .

Hence, for any trace (tr, φ) ∈ trace(PU ) there exists a trace (tr, ψ) ∈ trace(PV ). It remains
to show that φ ∼ ψ. This is due to the fact that both φ and ψ are of the form {w1 .
senc(m1, k1, r1), . . . ,wn . senc(mn, kn, rn)} where the ki are non deducible and the ri are
“fresh” in the sense that they are all distinct and non deducible. We therefore conclude
that PU v PV .

Theorem 3.6 directly follows from Proposition A.3 and the undecidability of the Post
Correspondence Problem.

B. GETTING RID OF THE ATTACKER
LEMMA B.1. Let P and Q be two protocols in Cpp, KP (resp. KQ) be the set of de-

ducible constants of sort key that occur in P (resp. Q), if P ≈ Q then there exists a
unique bijection α from KP to KQ such that for every trace (tr, φ) ∈ trace(P ) there exists
a trace (tr, ψ) ∈ trace(Q) such that for any recipe R and any k ∈ KP :

—Rφ↓ is of sort s if, and only if, Rψ↓ is of sort s;
where s ∈ {SymKey,PubKey,PrivKey}.

—Rφ↓ = k if, and only if, Rψ↓ = α(k);
—Rφ↓ = k−1 if, and only if, Rψ↓ = (α(k))−1;

and conversely, for every (tr, ψ) ∈ trace(Q) there exists a trace (tr, φ) ∈ trace(P ) satisfying
the same properties.

PROOF. We can describe α as a relation in the following way:

for every k ∈ KP of sort s, and every trace (tr, φ) ∈ trace(P ) and recipe R such
that Rφ↓ = k, we define α(k) = Rψ↓ where ψ is the only frame such that
(tr, ψ) ∈ trace(Q).
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The existence of such a frame comes from the fact that P ≈ Q, whereas its unicity is a
consequence of the determinism of protocols in Cpp.

We now need to prove that our definition of α is sound and unambiguous. To do so,
we show that:

—Rψ↓ is a constant of sort s. We have that there exists a trace (tr, φ) ∈ trace(P ) such that
Rφ↓ = k ∈ KP . Since P ≈ Q andQ is in Cpp, we consider the trace (tr, ψ) ∈ trace(Q). By
definition of static equivalence, we have that Rψ↓ is a constant of sort s. Otherwise,
we would have that senc(start, R, ri)φ ∈ T (Σ,N ) whereas senc(start, R, ri)ψ 6∈ T (Σ,N )
if s = SymKey (the resulting term is not properly sorted). The same argument applies
with aenc and sign for s equal to PubKey and PrivKey respectively.

— We have that |KP | = |KQ|. Suppose ad absurdum that, for instance, |KP | < |KQ|.
Since every element of KQ is deducible (and due to the shape of the protocols under
study), there exists (tr, ψ) ∈ trace(Q) such that for all k ∈ KQ, there exists a recipe Rk

such that Rkψ↓ = k. In particular, when k 6= k′, we have that Rkψ↓ 6= Rk′ψ↓. Since
P ≈ Q, there exists a frame φ such that (tr, φ) ∈ trace(P ). Thanks to previous item,
we know that Rkφ↓ (resp Rk′φ↓) has the same sort as Rkψ↓ (resp. Rk′ψ↓), i.e. sort key.
As |KP | < |KQ|, there exist two distinct keys k and k′ such that Rkφ↓ = Rk′φ↓. Hence
φ and ψ are not statically equivalent, contradicting the fact that P ≈ Q. The case
where |KQ| < |KP | can be handle similarly.

— α is a function. Suppose there exist a trace (tr, φ) ∈ trace(P ), a recipe Ri and a cor-
responding equivalence trace (tr, ψ) ∈ trace(Q) such that Riφ↓ = k and Riψ↓ = k′; a
trace (tr′, φ′) ∈ trace(P ), a recipe Rj and a corresponding equivalence trace (tr′, ψ′) ∈
trace(Q) such that Rjφ′↓ = k but Rjψ′↓ = k′′ with k′ 6= k′′. Considering the trace
made up of the trace tr followed by tr′, it is then possible to exhibit a witness of non-
equivalence. More precisely, relying on Ri and Rj we can build a test that holds in
the resulting frame when executing P , whereas this test will not hold on the frame
resulting from the execution of Q.

Now we show that α is an injection, i.e. α(k) 6= α(k′) as soon as k, k′ are two distinct
elements of KP . Suppose, as previously, there exist a trace (tr, φ) ∈ trace(P ), a recipe
Ri and a corresponding equivalence trace (tr, ψ) ∈ trace(Q) such that Riφ↓ = k and
Riψ↓ = α(k); a trace (tr′, φ′) ∈ trace(P ), a recipe Rj and a corresponding equivalence
trace (tr′, ψ′) ∈ trace(Q) such that Rjφ′↓ = k′ but Rjψ′↓ = α(k) with k 6= k′. Considering
the trace made up of the trace tr followed by tr′, it is then possible to exhibit a witness
of non-equivalence. More precisely, relying on Ri and Rj we can build a test that holds
in the frame resulting from the execution of P and that does not hold when executing
Q. Thus, we have now prove that α is a bijection.

Note that we have already proved that: Rφ↓ = k if, and only, if Rψ↓ = α(k).
To show that α satisfies the last condition (item 3), suppose that k ∈ KP , and

Rφ↓ = k−1. As previously shown, Rψ↓ = α(k−1). We want to prove that α(k−1) =
(α(k))−1. If k is of sort SymKey, the result is obvious as k−1 = k for any such key.
Suppose k is of sort PubKey. We have now that there exists a trace (tr, φ) ∈ trace(P )
and a recipe R′ such that R′φ↓ = k ∈ KP . Since P ≈ Q, consider the corresponding
equivalence trace (tr, ψ) ∈ trace(Q). Consider the recipes R1 = aenc(start, R′, n) and
R2 = adec(R1, R). Then R2φ↓ = start and R2ψ↓ = start if, and only if, Rψ↓ = (R′ψ)−1. As
we have already proved that α preserves sorts, we get that R2ψ↓ is of sort msg if, and
only if, α(k−1) = Rψ↓ = (R′ψ↓)−1 = (α(k))−1. Hence α is compatible with the inverse
function. The same argument can be used if k is of sort PrivKey with sign and check.

Finally we prove the unicity of such a bijection: suppose there were α′ an adequate
bijection and k ∈ KP such that α(k) 6= α′(k). By definition of α, for every trace (tr, φ) ∈
trace(P ) and every recipe R such that Rφ↓ = k, α(k) = Rψ↓. But as α′ satisfy a similar
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property, we get that Rψ↓ = α′(k), contradicting our hypothesis. Hence α is unique.
Determinism of P and Q then ensures that traces of P and Q are uniquely matched
(as P ≈ Q), thus guaranteeing the converse part of the Lemma.

LEMMA B.2. Let P and Q be two protocols in Cpp respectively disclosing two sets
of keys K and K ′ as in Lemma 4.12. Then P ≈ Q if, and only if, P̄ ≈fwd Q̄ where P̄
and Q̄ are as defined in Lemma 4.14. We call Toracle the transformation taking a pair of
protocols (P,Q) satisfying the aforementioned condition and returning the pair (P̄ , Q̄)
presently defined.

PROOF. Let KP (resp. KQ) be the set of deducible constants of sort key that occur
in P (resp. Q). We recall, that, as a consequence of Lemma 4.12, we necessarily have
that KP ⊆ K and KQ ⊆ K ′. Because protocols P and P̄ (resp. Q and Q̄) disclose all
their deducible keys, their exists a trace (tr0, φ0) of P and P̄ (resp. (tr0, ψ0) a trace of Q
and Q̄) defined as follows:

tr0 = in(ck1,α(k1), start).out(ck1,α(k1),w
0
1) . . . in(ckn,α(kn), start).out(ckn,α(kn),w

0
n)

for k1, . . . , kn ∈ KP , and φ0 = {w0
1 . k1, . . .w

0
n . kn}, and symmetrically for Q and Q̄. In

the following, we will assume that a trace of P or P̄ (resp. of Q or Q̄) starts with the
prefix tr0 and contains the frame φ0.

For sake of clarity of the construction explained below, we actually show that:

P̄ ≈fwd Q̄ if, and only if P+ ≈ Q+

where P+ = P | !in(c, x).out(c, x) and Q+ = Q | !in(c, x).out(c, x) for some fresh channel
name c. Then, it is easy to conclude at the expected result relying on the fact that
P ≈ Q is equivalent to P+ ≈ Q+.

(⇒) First, suppose P̄ 6≈fwd Q̄. Assume that there exists (tr, φ) ∈ tracefwd(P̄ ) such
that there is no equivalent frame ψ such that (tr, ψ) ∈ tracefwd(Q̄). We define (tr′, φ) ∈
trace(P+) as follows:

— every sequence in(csenck,α(k), R).out(csenck,α(k),w
′) in tr is replaced by the sequence

in(c, senc(R,w0
k, n)).out(c,w′) in tr′ where n is a fresh name.

— every sequence in(csdeck,α(k), R).out(csdeck,α(k),w
′) in tr is replaced by the sequence

in(c, sdec(R,w0
k)).out(c,w′) in tr′.

— every sequence in(caenck,α(k), R).out(caenck,α(k),w
′) in tr is replaced by the sequence

in(c, aenc(R,w0
k, n)).out(c,w′) in tr′ where n is a fresh name.

— every sequence in(cadeck,α(k), R).out(cadeck,α(k),w
′) in tr is replaced by the sequence

in(c, adec(R,w0
k)).out(c,w′) in tr′.

— every sequence in(csignk,α(k), R).out(csignk,α(k),w
′) in tr is replaced by the sequence

in(c, sign(R,w0
k, n)).out(c,w′) in tr′ where n is a fresh name.

— every sequence in(ccheckk,α(k), R).out(ccheckk,α(k),w
′) in tr is replaced by the sequence

in(c, check(R,w0
k)).out(c,w′) in tr′.

Note that by definition of a trace being in tracefwd(P̄ ), we have that R is either a
variable w or the constant start. We claim that there exists no frame ψ such that
(tr′, ψ) ∈ trace(Q+) with φ ∼ ψ. Indeed, because the frame are left unchanged, the
input recipes match the same input patterns, and recipes holding true and false keep
their truth values. So if such a frame ψ existed, (tr, ψ) would belong to tracefwd(Q̄) and
be equivalent to (tr, φ).
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(⇐) Now, suppose P 6≈ Q. We have that P+ 6≈ Q+, and we can even assume that
P+ 6≈io∗ Q+. We consider a witness of this non-equivalence, i.e. a trace tr such that
(tr, φ) ∈ traceio∗(P+) and for which there exists no equivalent frame ψ such that (tr, ψ) ∈
traceio∗(Q+). Actually, we can even assume w.l.o.g. that:

— every input recipe in tr on a channel different from c is either a variable w or the
constant start;

— every input recipe in tr on channel c involves at most one function symbol in Σpub;
— φ 6∼fwd ψ, i.e. we consider recipes that are either variables or the constant start.

We consider the shortest trace (tr, φ) ∈ traceio∗(P ), in terms of number of transitions,
such that there is no equivalent frame ψ satisfying (tr, ψ) ∈ traceio∗(Q), and for which
all the requirements listed above are satisfied.

Through recipes of the form senc(u, v, w) on channel c, the attacker has the ability
to use the same random seed more that once. Let us first show that we can always
assume tr uses nonces at most once. If it is not the case, we build a new trace (t̃r, φ̃),
such that φ is statically equivalent to φ̃ for which it is the case.

First, if we consider the case where there exists no ψ such that (tr, ψ) /∈ traceio∗(Q).
Because random seeds are not filtered in protocols of Cpp (every input pattern contains
distinct variables as third argument), we can rename some occurrences of the random
seeds of the attacker (i.e. the random seeds appearing in the recipes on channel c)
by fresh random seeds without changing the status of the trace (i.e. the fact that the
trace is executable or not). Given trρ such a trace obtained by renaming, we have that
(trρ, φρ) ∈ traceio∗(P ) for some frame φρ whereas (trρ, ψρ) /∈ traceio∗(Q) for any frame
ψρ. And it particular, if we choose trρ such that there are no two identical nonces in
its image, we get a witness of non-equivalence with pairwise distinct random seeds for
the attacker.

Now, we consider the case where (tr, ψ) ∈ traceio∗(Q) but φ 6∼fwd ψ. Suppose r is a
random seed which appears twice in tr, in two contexts f(wi,wj , r) and f(w′i,w

′
j , r) for

some f ∈ Σpub with wiφ = w′iφ and wjφ = w′jφ. Because tr is a minimal witness of
non-equivalence, φ−1 ∼fwd ψ−1 where φ−1 (resp. ψ−1) denotes φ (resp. ψ) minus its last
element. Consequently we also have that wiψ = w′iψ and wjψ = w′jψ, as wi,wj ,w

′
i,w
′
j ∈

dom(φ−1) (they are used in input recipes). Let w and w′ be the corresponding outputs
of the recipes f(wi,wj , r) and f(w′i,w

′
j , r) and assume w appears before w′ in tr: we now

have that w = w′ in both φ and ψ, and we can safely replace any occurrence of w′ in
tr by w. The resulting trace is still a witness of non-equivalence as the substitution
replace identical terms in ψ.

Thus, it remains only to consider the case where a random seed appears twice in
tr but such that either the function symbol, the plaintext or the keys are different.
Formally, consider the two contexts f(wi,wj , r) and g(w′i,w

′
j , r) with f, g ∈ Σpub, w and

w′ their respective outputs variables as before; and either wiφ 6= w′iφ, wjφ 6= w′jφ or
f 6= g. Following the same reasoning as before, as φ−1 ∼fwd ψ−1, the same inequality
has to hold in ψ. Consider the test wk = w′k which distinguishes between φ and ψ:
suppose wkφ = w′kφ but wkψ 6= w′kψ. Replacing r by r′ in g(w′i,w

′
j , r) will still lead

to wkψ 6= w′kψ (after replacement) as no equality between subterms is added. But if
wkφ 6= w′kφ (after replacement), it would imply that there were two subterms which
became different, and were identical before: but, because the first step already took
care of recipes introducing the same random seed twice in the same context, and the
protocols in Cpp cannot use a random seed from an input to use it in another encryption,
it is impossible.
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Hence, we showed that modifiying tr into t̃r is a symmetric operation which preserves
equalities in the two protocols: identical plaintexts and keys in (tr, φ) correspond to
identical plaintexts and keys in (tr, ψ), whereas adding fresh nonces does not create
any equality in φ̃ or ψ̃. If (tr, φ) does not have any equivalent trace in Q, neither has
(t̃r, φ̃). If there exists no frame ψ such that (tr, ψ) ∈ trace(Q), then there will exist no
frame ψ̃ such that (t̃r, ψ̃) ∈ trace(Q) as input filtering is not affected by our transfor-
mation. Else, if there exists ψ such that (tr, ψ) ∈ trace(Q) but φ and ψ are not statically
equivalent, because our transformation preserves the terms in the frame, any pair of
recipes which distinguishes between the two of them, will distinguish φ̃ and ψ̃. So we
can always assume than the random seeds occuring in the recipes f(u, v, w) in (tr, φ)
are distinct.

Let us now define a corresponding trace (t̄r, φ̄) ∈ tracefwd(P̄ ).

— each sequence in(ci, R).out(ci,w
′), where ci 6= c, is left unchanged;

— each sequence in(c, f(R,Rk, n)).out(c,w′), where Rkφ↓ = k and f ∈ {senc, aenc, sign}, is
replaced by in(cfk,α(k), R).out(cfk,α(k),w

′);
— each sequence in(c, g(R,Rk)).out(c,w′), where Rkφ↓ = k and g ∈ {sdec, adec, check}, is

replaced by in(cgk,α(k), R).out(cgk,α(k),w
′).

Note that each recipe R and Rk above is a variable w or the constant start. The corre-
sponding frame φ̄ is then defined according to our semantics. Since we have assume
that the random seed occurring in the recipes in tr are distinct, we have that φ̄ = φ.

Finally, because (tr, φ) ∈ traceio∗(P ) has no equivalent in Q, and the definition of
(t̄r, φ̄) does not alter the filtering on inputs nor equalities between terms in the frame,
(t̄r, φ̄) ∈ tracefwd(P̄ ) has no equivalent in Q̄.

C. ENCODING A PROTOCOL INTO A REAL-TIME GPDA
C.1. Characterization of trace equivalence

LEMMA C.1. Let P and Q be two procotols in Cpp, if P ≈fwd Q then for every trace
(tr, σP ) ∈ tracefwd(P ) and every w,w′ ∈ dom(σP ), if wσP = w′σP = c for some constant
c, then wσQ = w′σQ = c′ for some constant c′ where σQ is the frame such that (tr, σQ) ∈
trace(Q).

PROOF. First, note that the frame σQ mentionned in the lemma is unique up to
some alpha-renaming of the randoms that occur in σP . Thus, the choice of the frame
σQ does not change anything regarding the result that we want to prove.

Actually, the only non-trivial point to prove is that if wσP = c, then wσQ is necessarily
a constant too. Since protocols in Cpp have a replication for every branch, consider the
trace obtained by “playing twice” the trace tr in P and Q, i.e. given (tr, σP ) ∈ tracefwd(P )
with

tr = in(ci1 , start).out(ci1 ,w1) . . . in(cil ,wl−1).out(cil ,wl)

build (tr′, σ′P ) ∈ tracefwd(P ) where:{
tr′

def
= tr.t̄r

t̄r
def
= in(ci1 , start).out(ci1 ,w|φ|+1) . . . in(cil ,w|φ|+l).out(cil ,w|φ|+l)

where every occurrence of start in tr is kept in t̄r but occurrences of wk are replaced
by w|σP |+k, |σP | being the cardinal of dom(σP ); and tr.t̄r denotes the concatenation of
the two sequences of labels, which is a valid trace, i.e. (tr′, σ′P ) ∈ tracefwd(P ). We get
symmetrically (tr′, σ′Q) ∈ tracefwd(Q). In particular, there exists w∗ ∈ dom(σ′P ) with
l < ∗ such that wσ′P = w∗σ

′
P = c and the test w = w∗ is disjoint, i.e. seqtr′(w) and
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seqtr′(w∗) share no common prefix. As P ≈fwd Q, necessarily wσ′Q = w∗σ
′
Q. Now, because

the test is disjoint, wσ′Q and w∗σ
′
Q could not share any random nonces. Hence, wσQ is

a constant.

LEMMA C.2. Let P and Q be two procotols in Cpp such that P ≈fwd Q. For every
trace (tr, σP ) ∈ tracefwd(P ), every w,w′ ∈ dom(σP ) such that the test w = w′ is σP -valid,
σP -guarded, and pulled-up in (tr, σP ), we have that w = w′ is σQ-valid, σQ-guarded,
and pulled-up in (tr, σQ) where σQ is the frame such that (tr, σQ) ∈ tracefwd(Q)

PROOF. First, note that the frame σQ mentionned in the lemma is unique up to
some alpha-renaming of the randoms that occur in σP . Thus, the choice of the frame
σQ does not change anything regarding the result that we want to prove.

The only non-trivial point to prove is that if the test w = w′ is σP -valid, σP -guarded,
and pulled-up in (tr, σP ) then it is also σQ-guarded and pulled-up in (tr, σQ). Note that
it is necessarily σQ-valid since P ≈fwd Q. Actually, we can still assume that the test
w = w′ is σQ-guarded (it would otherwise contradict Lemma C.1).

Let pref = io(ci0 , start,wj0) . . . io(cip ,wjp−1
,wjp) be the maximal common prefix of

seqtr(w) and seqtr(w
′). Now, it remains to show that w = w′ is pulled-up in (tr, σQ), i.e.

wσQ does not occur as a subterm in wj−1
σQ,wj0σQ, . . .wjp−1

σQ where wj−1
σQ = start.

Assume that this is not the case, we will show that there exists a trace (tr∗, σ∗Q) ∈
tracefwd(Q), w∗,w′∗ ∈ dom(σ∗Q) such that w∗σ∗Q = w′∗σ

∗
Q whereas w∗σ

∗
P 6= w′∗σ

∗
P , where σ∗P

is the frame such that (tr∗, σ∗P ) ∈ tracefwd(P ). Note that such a frame necessarily exists
since otherwise it trivially contradicts our hyptothesis.

Let p′ ∈ {0, . . . , p − 1} be the smallest indice such that wσQ occurs as a subterm in
wjp′σQ. We have that:

pref = s1.io(cip′ ,wjp′−1
,wjp′ ).s2 and

{
seqtr(w) = pref.s3

seqtr(w
′) = pref.s′3

for some sequence s1, s2, s3, and s′3.
From these sequences we can define (tr∗, σ∗Q) with tr∗ = tr.t̄r. Intuitively, the trace

t̄r is obtained relying on the sequence of channels as indicated in the sequence s2.s
′
3

using systematically the last generated recipe to feed the following input, and wjp′ to
start. More precisely, assuming that

seqtr(w
′) = s1.io(cip′ ,wjp′−1

,wjp′ ).io(ck1 ,wjp′ ,wl1).io(ck2 ,wl1 ,wl2) . . . io(ck` ,wl`−1
,wl`)

we have that:

t̄r = io(ck1 ,wjp′ ,w|σP |+1).io(ck2 ,w|σP |+1,w|σP |+2) . . . io(ck` ,w|σP |+l−1,w|σP |+`)

and σ∗Q defined as expected relying on our semantics. Let w∗ = w and w′∗ = w|σP |+`. We
can now show that:

(1) The test w∗ = w′∗ is σ∗Q-valid and σ∗Q-guarded. Indeed, by definition of tr∗, w′∗σ∗Q and
w′σQ are already equal up to a renaming of random seeds, as the channel compo-
nents of seqtr(w′) and seqtr∗(w

′
∗) match. As w∗σ

∗
Q = wσQ = w′σQ, w∗σ∗Q and w′∗σ

∗
Q are

equal up to a renaming of their random seeds. Lastly, we have that w∗σ∗Q and w′∗σ
∗
Q

are both subterms of wjp′σ
∗
Q, hence w∗σ

∗
Q = w′∗σ

∗
Q.

(2) The test w∗ = w′∗ is pulled-up in (tr∗, σ∗Q). This is by construction of tr∗.

Finally, as P ≈fwd Q, there exists σ∗P such that (tr∗, σ∗P ) ∈ tracefwd(P ). But now w∗ = w′∗
is σ∗Q-valid, σ∗Q-guarded and pulled-up in (tr∗, σ∗Q). Moreover, we are now in a situation
where the top-level random seeds of w∗σ∗P and w′∗σ

∗
P are generated outside the common
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prefix of seqtr∗(w∗) and seqtr∗(w
′
∗), and thus it implies that w∗σ∗P 6= w′∗σ

∗
P , contradicting

the equivalence P ≈fwd Q.

LEMMA C.3. Let P and Q be two protocols in Cpp, then P ≈fwd Q if, and only if, the
following four conditions are satisfied:

— CONSTP : For all (tr, σP ) ∈ tracefwd(P ), there exists a frame σQ such that (tr, σQ) ∈
tracefwd(Q) and for every w,w′ ∈ dom(σP ) and for every constant c ∈ Σ0 ∪ {start},
wσP = w′σQ = c if, and only if, there exists a constant c′ ∈ Σ0 ∪ {start} such that
wσQ = w′σQ = c′.

— CONSTQ: Similarly swapping the roles of P and Q.

— GUARDEDP : For all (tr, σP ) ∈ tracefwd(P ), there exists a frame σQ such that (tr, σQ) ∈
tracefwd(Q) and every test that is σP -valid, σP -guarded, and pulled-up in (tr, σP ) is
also σQ-valid, σQ-guarded, and pulled-up in (tr, σQ).

— GUARDEDQ: Similarly swapping the roles of P and Q.

PROOF. We prove the two directions separately.
(⇒) This implication is a direct consequence of Lemma C.1 and Lemma C.2.
(⇐) Suppose that P 6≈fwd Q. This means that there exists for instance (tr, σP ) ∈

tracefwd(P ) such that either there exists no frame σQ such that (tr, σQ) ∈ tracefwd(Q), in
which case conditions CONSTP and GUARDEDP fail, or σQ is indeed defined and there
exists a test w = w′ such that wσP = w′σP but wσQ 6= w′σQ (or the converse). Let us
assume that wσP = w′σP but wσQ 6= w′σQ.

If wσP = w′σP = c for some constant c, then condition CONSTP is false.
Otherwise, we have that the test w = w′ is σP -valid and σP -guarded. From tr and

w = w′, we will build a new trace (tr∗, σ∗P ) and a new test w∗ = w′∗ which is σ∗P -valid,
σ∗P -guarded, and also pulled-up in (tr∗, σ∗P ). Actually, we proceed as in the proof of the
previous lemma.

Let pref = io(ci0 , start,wj0) . . . io(cip ,wjp−1
,wjp) be the maximal common prefix of

seqtr(w) and seqtr(w
′). Let p′ ∈ {0, . . . , p−1} be the smallest indice such that wσP occurs

as a subterm in wjp′σP . Note that if this indice does not exist then the test w = w′ is
already pulled-up in (tr, σP ) and we are done.

We have that:

pref = s1.io(cip′ ,wjp′−1
,wjp′ ).s2 and

{
seqtr(w) = pref.s3

seqtr(w
′) = pref.s′3

for some sequence s1, s2, s3, and s′3.
From these sequences, we can define (tr∗, σ∗P ) with tr∗ = tr, t̄r. Intuitively, the trace

t̄r is obtained relying on the sequence of channels as indicated in the sequence s2.s
′
3

using systematically the last generated recipe to feed the following input, and wjp′ to
start. More precisely, assuming that

seqtr(w
′) = s1.io(cip′ ,wjp′−1

,wjp′ ).io(ck1 ,wjp′ ,wl1).io(ck2 ,wl1 ,wl2) . . . io(ck` ,wl`−1
,wl`)

we have that:

t̄r = io(ck1 ,wjp′ ,w|σP |+1).io(ck2 ,w|σP |+1,w|σP |+2) . . . io(ck` ,w|σP |+l−1,w|σP |+`)

and σ∗P defined as expected relying on our semantics. Let w∗ = w and w′∗ = w|σP |+`.
Now, either there exists no frame σ∗Q such that (tr∗, σ∗Q) ∈ trace(Q), in which case

condition GUARDEDP fails obviously, or such a frame exists. In this case, by construc-
tion of tr∗, we have that the test w∗ = w′∗ is σ∗P -valid, σ∗P -guarded, and pulled-up in
(tr∗, σ∗P ).
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In order to conclude, it remains to show that w∗σ
∗
Q 6= w′∗σ

∗
Q. We already know that

wσQ = w∗σ
∗
Q. Suppose ad absurdum that w∗σ

∗
Q = w′∗σ

∗
Q. Because the sequences of

channels that occur in seqtr(w
′) and seqtr∗(w

′
∗) are the same, w′σQ and w′∗σ

∗
Q are ei-

ther constant and equal or of the form f(u, k, r) with f ∈ {senc, aenc, sign} and equal up
to a renaming of their random seeds. In the first case, it is enough to conclude that
wσQ = w′σQ, which is absurd. In the second case, w∗σ∗Q and w′∗σ

∗
Q being randomized,

must have equal top-level random seeds, implying that this nonce was introduced be-
fore io(cip′ ,wjp′−1

,wjp′ ) in the common prefix of their respective sequences. As the said
prefix is also common to w and w′ in tr, wσQ and w′σQ share the same top-level random
seed and are thus equal, contradicting our hypothesis. Threfore: w∗σ∗Q 6= w′∗σ

∗
Q. Hence

GUARDEDP is false.
Finally, if wσQ = w′σQ but wσP 6= w′σP , conditions CONSTQ and GUARDEDQ will

similarly fail.

C.2. From trace equivalence to language equivalence
LEMMA C.4. Let P and Q be two protocols in Cpp, the two real-time GPDA APCONST

and AQCONST are such that:

P and Q satisfy conditions CONSTP and CONSTQ iff L(APCONST) = L(AQCONST).

PROOF. We prove the two implications separately.
(⇒) Assume that L(APCONST) 6= L(AQCONST), and consider w.l.o.g. a word u ∈

L(APCONST) r L(AQCONST). We distinguish two cases depending on whether u is accepted
in state q0 or qf .
Case u = ci1 .ci2 . . . cil is accepted in q0: In such a case, we built (tr, σP ) as follows:

tr = io(ci1 , start,w1).io(ci2 ,w1,w2) . . . io(cil ,wl−1,wl)

with σP the substitution defined uniquely as expected from our semantics. We have
that (tr, σP ) ∈ tracefwd(P ) as the transition function δ fully captures input filtering
and output of terms for protocols in Cpp. Since u 6∈ L(AQCONST), we have that (tr, σQ) 6∈
tracefwd(Q) for any substitution σQ, and thus the condition CONSTP fails.
Case u is accepted in qf : In such a case, we also build a trace (tr, σP ) ∈ tracefwd(P )
”corresponding” to u. The construction is a bit more involved. We have that u is of the
form ci1ci2 . . . cikctestcj1cj2 . . . cjlcend. Let tr = tr1.tr2 with tr1 and tr2 defined as follows:

— tr1 = io(ci1 , start,w1).io(ci2 ,w1,w2) . . . io(cik ,wk−1,wk);
— tr2 = io(cj1 , start,wk+1).io(cj2 ,wk+1,wk+2) . . . io(cjl ,wk+l−1,wk+l);

and σP is defined uniquely as expected from our semantics, as P is deterministic. We
have that (tr, σP ) ∈ tracefwd(P ) as the transition function δ fully captures input filtering
and output of terms for protocols in Cpp. We can now define w = wk and w′ = wk+l.
Because the transitions from q0 to qc and then from qc to qf for some constant c were
possible, we get that wσP = w′σP = c.

We know that u = u1ctestu2cend /∈ L(AQCONST), and we may assume that u1 and u2 are
both in L(AQCONST). Indeed, otherwise, this means that there exists no substitution σQ
such that (tr, σQ) ∈ tracefwd(Q), and thus CONSTP fails, and the result holds. From now
one, we assume that there exists σQ such that (tr, σQ) ∈ tracefwd(Q).

Now, let q
c;α/β−−−→ q′ be the first failing transition in the run of u in AQCONST. We distin-

guish several cases:
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(1) Case q = q0 and q′ = qc for some constant c. In such a case wσQ 6= c for any constant
c, and wσQ is thus a guarded term. The condition CONSTP fails.

(2) Case q = qc and q′ = qf for some constant c. In such a case wσQ = c but wσ 6= c,
making CONSTP fail once again.

Hence P and Q do not satisfy CONSTP . Symmetrically, if u ∈ L(AQCONST) r L(APCONST),
the condition CONSTQ will fail.

(⇐) If P and Q do not satisfy CONSTP (or CONSTQ), i.e. there exists a trace (tr, σP ) ∈
tracefwd(P ) such that:

(1) either there exists no σQ such that (tr, σQ) ∈ tracefwd(Q);
(2) or there exist w,w′ ∈ dom(σP ) and a constant c such that wσP = w′σP = c but: either

wσQ is not a constant, or wσQ is a constant but wσQ 6= w′σQ.

We consider such a trace of minimal length `.
In the first case, thanks to minimality, we have that seqtr(w`) = tr. From tr we build a

word u ∈ L(APCONST) by extracting the channels that occur in tr keeping the order. Since
there does not exist σQ such that (tr, σQ) ∈ tracefwd(Q), and the transition function δ of
the automaton fully captures input filtering and output of terms for protocols in Cpp,
we have that u 6∈ L(AQCONST).

In the second case, thanks to minimality, we have that tr is actually made up of
all the actions that occur in seqtr(w) and seqtr(w

′) (note that these two sequences may
share some actions). From tr, we built a word u = u1ctestu2cend ∈ L(APCONST) as follows:

— u1 is obtained by extracting the channels that occur in seqtr(w) preserving the order;
and

— u2 is obtained by extracting the channels that occur in seqtr(w
′) preserving the order;.

As the transition function δ fully captures input filtering and output of terms for pro-
tocols in Cpp, we get that upon reading ctest, APCONST is in q0, the transition q0

ctest;ωc/ω−−−−−−→ qc
is indeed possible as wσP = c; and similarly upon reading the cend, APCONST is in qc, the

transition qc
cend;ωc/ω−−−−−−→ qf is indeed possible as w′σP = c, hence u ∈ L(APCONST). What

remains to show is that u /∈ L(AQCONST). We distinguish two cases:

— Case wσQ is not a constant. In such a case, no transition q0
ctest;ωc/ω−−−−−−→ qc will be possible

after u1

— Case wσQ is a constant c but wσQ 6= w′σQ. In such a case, the transition q0
cend;ωc/ω−−−−−−→ qc

will not be possible after u2.

Hence u cannot belong to L(AQconst). This allows us to conclude.

LEMMA C.5. Let P and Q be two protocols in Cpp, the two real-time GPDA APGUARDED

and AQGUARDED are such that:

P and Q satisfy conditions GUARDEDP and GUARDEDQ iff
L(APGUARDED) = L(AQGUARDED).

PROOF. We prove the two directions separately.

(⇒) Assume that L(APGUARDED) 6= L(AQGUARDED), and consider w.l.o.g. a word u ∈
L(APGUARDED)rL(AQGUARDED). We distinguish two cases depending on whether the word u
is accepted in state q0 or qf .
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Case u = ci1ci2 . . . cil is accepted in q0: In such a case, we built (tr, σP ) as follows:
tr = io(ci1 , start,w1).io(ci2 ,w1,w2) . . . io(cil ,wl−1,wl)

with σP the substitution defined uniquely as expected from our semantics. We have
that (tr, σP ) ∈ tracefwd(P ) as the transition function δ fully captures input filtering
and output of terms for protocols in Cpp. Since u 6∈ L(AQCONST), we have that (tr, σQ) 6∈
tracefwd(Q) for any substitution σQ, and thus the condition GUARDEDP fails.

Case u is accepted in qf : In such a case, we also build a trace (tr, σP ) ∈ tracefwd(P )
“corresponding” to u. The construction is a bit more involved. We have that u is of the
form: ci1ci2 . . . cikc

i0
forkcj1cj2 . . . cjlctestcp1cp2 . . . cpmcend. Let tr = tr0.tr1.tr2 with tr0, tr1 and

tr2 defined as follows:

— tr0 = io(ci1 , start,w1).io(ci2 ,w1,w2) . . . io(cik ,wk−1,wk).io(ci0 ,wk,wk+1);
— tr1 = io(cj1 ,wk+1,wk+2).io(cj2 ,wk+2,wk+3) . . . io(cjl ,wk+l,wk+l+1);
— tr2 = io(cp1 ,wk+1,wk+l+2).io(cp2 ,wk+l+2,wk+l+3) . . . io(cpm ,wk+l+m,wk+l+m+1).

and σP is uniquely defined as expected from our semantics, as P is determinitic. We
have that (tr, σP ) ∈ tracefwd(P ) as the transition function fully captures input filtering
and output of terms for protocols in Cpp. We can now define w = wk+l+1 and w′ =
wk+l+m+1. The test is σP -guarded (the indice k associated to the stack symbol (fork, k)
is indeed stricly positive), σP -valid (since the last transition from q2 to qf requires the
stack to be identical to the stack before reading ctest), and pulled-up in (tr, σP ) (since
the fork tiles allow us to control the first time the top-level random seed of wσP appears
in the frame).

We know that u = u0c
i0
forku1ctestu2cend 6∈ L(AQGUARDED), and we may assume w.l.o.g.

that u0ci0u1 and u0ci0u2 are both in L(AQGUARDED). Indeed, otherwise this means that
there exists no frame σQ such that (tr, σQ) ∈ tracefwd(Q), and thus GUARDEDP fails,
and the result holds. From now on, we assume that there exists σQ such that (tr, σQ) ∈
tracefwd(Q).

Now, let q
c;α/β−−−→ q′ be the first failing transition in the run of u in AQGUARDED. We

distinguish several cases:

(1) Case q = q0 and q′ = q1. Since we have already assume that u0ci0u1 is in
L(AQGUARDED), this means that the required transition does not exist because ||vji || =
0. In such a case, the test w = w′ (even if it was σQ-valid and σQ-guarded) can not
be a pulled-up one in (tr, σQ). Thus the condition GUARDEDP fails.

(2) Case q = q1 and q′ = q1. In such a case, this means that a fork tile cannot be
unstacked, meaning that the corresponding test (even if it was σQ-valid and σQ-
guarded) will not be pulled-up in (tr, σQ), and GUARDEDP is false.

(3) Case q = q1 and q′ = q2. In such a case, the problem occurs due to the fact that
the fork tile is not at the top of the stack upon becoming test. The corresponding
test w = w′ will not be σQ-valid since wσQ will contain a random seed that has
been generated after the “forking point”, and thus this random seed can not occur
in w′σQ. Thus, the condition GUARDEDP fails.

(4) Case q = q2 and q′ = qf . In such a case, the test tile is not at the top of the stack
upon reading the last letter of the word. The test is not σQ-valid. The stack at this
point, without the test tile, is not identical to the stack before the fork tile turning
test, making GUARDEDQ fail.

Hence GUARDEDQ fails as soon as u /∈ L(AQGUARDED).
(⇐) If P and Q do not satisfy conditions GUARDEDP (or GUARDEDQ), i.e. there exists

a trace (tr, σP ) ∈ tracefwd(P ) such that:
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(1) either there exists no σQ such that (tr, σQ) ∈ tracefwd(Q);
(2) or (such a σQ exists) and there exists w,w′ ∈ dom(σP ) such that the test w = w′ is

σP -guarded and σP -valid, and pulled-up in (tr, σP ), and
— either w = w′ is not σQ-valid,
— or w = w′ is not σQ-guarded,
— or w = w′ is not pulled-up in (tr, σQ).

We consider such a trace of minimal length `.
In the first case, thanks to the minimality, we have that seqtr(w`) = tr. From tr we

build a word u ∈ L(APGUARDED) by extracting the channels that occur in tr keeping the
order. Since there does not exist σQ such that (tr, σQ) ∈ tracefwd(Q), and the transi-
tion function δ of the automaton fully captures input filtering and output of terms for
protocols in Cpp, we have that u 6∈ L(AQGUARDED).

In the second case, thanks to minimality, we have that tr is actualy made up of all
the actions that occur in seqtr(w) and seqtr(w

′). These two sequences have a maximal
common prefix pref that is not empty. Actually, we have that:

pref = io(ci1 , start,w1).io(ci2 ,w1,w2) . . . io(cip ,wp−1,wp) for some p ≥ 1.

From tr, we build a word u = ci1ci2 . . . cip−1c
ip
forku1ctestu2cend ∈ L(APGUARDED) as follows:

— u1 is obtained by extracting the channels that occur in seqtr(w) after the prefix
ci1ci2 . . . cip−1

cip ; and
— u2 is obtained by extracting the channels that occur in seqtr(w

′) after the prefix
ci1ci2 . . . cip−1cip .

As the transition function δ fully captures input filtering and output of terms for pro-
tocols in Cpp, and since w = w′ is a test that is σP -guarded, σP -valid and pulled-up in
(tr, σP ), we get that u ∈ L(APGUARDED). What remains to show is that u 6∈ L(AQGUARDED).
We distinguish two cases:

— Case w = w′ is not σQ-valid. In such a case, even if after reading the first part of u,
i.e. ci1ci2 . . . cip−1c

ip
forku1ctest, we reach q2, then we will fail to read the remaining of the

word to end in qf .
— Case w = w′ is σQ-valid but w = w′ is not σQ-guarded. In such a case, this means

that wσQ is a constant, and the run will stop in q0 after reading ci1ci2 . . . cip−1
. This

comes from the fact that it is not possible to go from q0 to q1 adding a tile (forkji , k)
with k = 0.

— Case w = w′ is σQ-valid, σQ-guarded, but not pulled-up in (tr, σQ). The fact that the
test is σQ-valid but not pulled-up means that the run will stop in q1 after reading
because of the presence of a tile (forkji , k) in the stack that can not go down anymore.

Hence u cannot belong to L(AQGUARDED). This allows us to conclude.
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