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Abstract. Security protocols can be successfully analysed using formal meth-
ods. When proving security in symbolic settings for an unbounded number of
sessions, a typical technique consists in abstracting away fresh nonces and keys
by a bounded set of constants. While this abstraction is clearly sound in the con-
text of secrecy properties (for protocols without else branches), this is no longer
the case for equivalence properties.
In this paper, we study how to soundly get rid of nonces in the context of equiv-
alence properties. We show that nonces can be replaced by constants provided
that each nonce is associated to two constants (instead of typically one constant
for secrecy properties). Our result holds for deterministic (simple) protocols and
a large class of primitives that includes e.g. standard primitives, blind signatures,
and zero-knowledge proofs.

1 Introduction

Security protocols are notoriously difficult to design as exemplified by a long history
of attacks. For example, the TLS protocol has been shown once again to be vulnerable
to a new attack called FREAK [4]. Formal methods offer symbolic models to carefully
analyse security protocols, together with a set of proof techniques and efficient tools
such as ProVerif [5], Scyther [17], Maude-NPA [21], or Avispa [3]. Security properties
can be divided into two main categories.

– Trace properties are used to express secrecy or various forms of authentication
properties. They ensure that a certain statement holds for any execution.

– Equivalence properties are typically used to state privacy properties like anonymity,
unlinkability [8], or vote privacy [18]. More generally, equivalence properties may
state indistinguishability properties, such as game-based definitions inherited from
models used in cryptography [22, 15].

When proving security properties, it is important to obtain guarantees for an unlim-
ited number of sessions. Unfortunately, it is well known that even secrecy is undecid-
able [20] in this context. Undecidability comes from two main factors. First, messages
may grow arbitrarily during an execution. Second, even when considering messages of
fixed size, it has been shown that nonces still cause undecidability [2]. Intuitively, nonce
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freshness may be used to create pointers that are used in turns to build chained lists and
thus again arbitrarily large data. Therefore, a standard restriction consists in bounding
the number of nonces (and keys). Under this assumption, several decidability results
have been established for secrecy [20, 7, 13], as well as for trace equivalence [9, 10].

Replacing nonces by constants is sound in the context of secrecy properties. More
precisely, assuming that P is obtained from the security protocol P by replacing nonces
(and keys) by constants, whenever P is secure (w.r.t. a trace property such as secrecy)
then P is secure as well. Indeed, replacing nonces by constants may only introduce
more attacks, since it may only create more equalities, as long as the protocol P under
study does not have else branches. Therefore, the decidability results developed for
secrecy (e.g. [20, 7, 13]) may be seen as proof techniques: if P falls in a decidable class
and can be shown to be secure then the protocol P is secure as well. Unfortunately,
such an approach is no longer valid in the context of equivalence properties. Indeed,
consider the processes:

P = ! new n.out(c, {n}k) and Q = ! out(c, {n}k).
The ! operator denotes the replication. Intuitively, both processes send out an arbitrary
number of messages on the public channel c. The process P sends out each time a
fresh nonce n encrypted by a (secret) key k while Q always sends the same message.
We assume here that encryption is not randomised. Clearly, the processes P and Q are
not in equivalence (denoted P 6≈ Q) since an attacker can easily notice that P sends
distinct messages while Q sends identical messages. However, abstracting away fresh
names with constants, the resulting equivalence holds (denoted P ≈ Q). Indeed, the two
resulting processes are actually identical: P = Q = ! out(c, {n}k). This illustrates that
P ≈ Q 6⇒ P ≈ Q.

Main contribution. We identify a technique to (soundly) get rid of freshly generated
data (e.g. nonces, keys). The main idea consists in introducing an additional copy of
each replicated nonce. More precisely, we show that:

!P | P ? ≈ !Q | Q? ⇒ !P ≈ !Q
where P ? is obtained from P by renaming all fresh nonces and keys to distinct (fresh)
constants. Our result holds for simple processes, a notion that has been introduced
in [15] and used in several subsequent works (e.g. [10]). Roughly, each process commu-
nicates on a distinct channel. This corresponds to the fact that in practice each machine
has its own IP address and each session is characterised by some session identifier. We
consider a large family of primitives, provided that they can be described by a destruc-
tor/constructor theory with no critical pair. In particular, our technique allows one to
deal with standard primitives (asymmetric and symmetric encryption, hash, signatures,
MACs) as well as e.g. blind signatures and zero-knowledge proofs. As an application,
we deduce that the decidability result developed in [10] for tagged protocols without
nonces can be applied to study the security of protocols with nonces. The full proofs of
the results presented in this paper can be found in [11].

Related work. Abstracting nonces and keys by constants is known to be sound for
secrecy properties as part of the “folklore”. We did not find a precise reference for this
result. A related result is a reduction to two agents [14] for trace properties. Reducing
the number of nonces can be obtained in a similar way.
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The tool ProVerif [5, 6] also makes use of an abstraction for fresh data. In case
of secrecy, nonces are abstracted by functions applied to the process inputs. In case
of equivalence properties, nonces are additionally given a counter (termination is of
course not guaranteed). The abstraction technique is therefore more precise than using
only constants but seems dedicated to the internal behaviour of the ProVerif tool.

The only decidability result for equivalence with nonces (for an unbounded num-
ber of sessions) has been recently presented in [12]. For protocols that fall in the class
of [12], it is therefore more direct to use this decidability result than applying our sim-
plification. However, the class of protocols we consider here is more general: we do not
need protocols to be tagged nor to induce an “acyclic dependency graph” and we cover
a much wider class of cryptographic primitives.

2 Model for security protocols

Security protocols are modelled through a process algebra inspired from [1] that ma-
nipulates terms.

2.1 Term algebra

We assume an infinite setN of names, which are used to represent keys and nonces and
an infinite set X of variables. We assume a signature Σ, i.e. a set of function symbols
together with their arity, and we make a distinction between constructor symbols and
destructor symbols: Σ = Σc ] Σd. Given a signature Σ, we denote by T (Σ,A) the
set of terms built from symbols in Σ and atomic data in A. Terms without variables
are called ground. The set T (Σc,X ∪ N ) is the set of constructor terms. Then among
the terms in T (Σc,N ) we distinguish a special subset of terms called messages and
noted MΣ , and that is stable under renaming of names: a message does not contain
any destructor symbol, and m ∈ MΣ implies that mρ ∈ MΣ for any renaming ρ (not
necessarily a bijective one).

In addition to the set of variables X , we consider an infinite disjoint set of vari-
ablesW . Variables inW intuitively refer to variables used to store messages learnt by
the attacker. We denote vars(u) the set of variables that occur in a term u. The appli-
cation of a substitution σ to a term u is written uσ, and we denote dom(σ) its domain.
The positions of a term are defined as usual. Two terms u and v are unifiable if there is
a substitution σ such that uσ = vσ.

The properties of the primitives are expressed using rewriting rules of the form
g(t1, . . . , tn)→ t where g is a destructor, that is g ∈ Σd, and t1, . . . , tn, t are construc-
tor terms. A rewriting rule can only be applied to constructor terms. Formally, we say
that u can be rewritten into v if there is a position p and a rule g(t1, . . . , tn)→ t such
that u at position p is equal to g(t1, . . . , tn)θ and v = u[tθ]p (that is u where the term
at position p has been replaced by tθ) for some substitution θ such that t1θ, . . . , tnθ, tθ
are messages. We only consider sets of rewriting rules that yield convergent rewrite sys-
tems. We denote by u↓ the normal form of a given term u. We refer the reader to [19]
for the precise definitions of rewriting systems, convergence, and normal forms.
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Example 1. A typical signature for representing symmetric encryption and pair is
Σ = {senc, sdec, 〈 〉, proj1, proj2} ]Σ0

where Σ0 is a set of atomic data. The set Σ0 typically contains the public constants
known to the attacker (e.g. agent names a, b, . . . ). The symbols senc and sdec of arity 2
represent symmetric encryption and decryption. Pairing is modelled using 〈 〉 of arity 2,
whereas projection functions are denoted proj1 and proj2 (both of arity 1). The relations
between encryption/decryption and pairing/projections are represented through the fol-
lowing convergent rewrite system:

sdec(senc(x, y), y)→ x, and proji(〈x1, x2〉)→ xi with i ∈ {1, 2}.
We have that proj1(sdec(senc(〈s1, s2〉, k), k))↓ = s1. Note that, since a destruc-

tor can only be applied on messages, no rewriting rule can be applied on the term
sdec(senc(s, proj1(s)), proj2(s)) which is thus in normal form (but not a message).
This signature Σ is split into two parts as follows: Σc = {senc, 〈 〉} ] Σ0 and Σd =
{sdec, proj1, proj2}. Then, we may considerMΣ to beMc = T (Σc,N ) the set of all
ground constructor terms. We may also restrictMΣ to beMatomic, the set of ground
constructor terms that only use atomic data in key position.

Finally, we assume Σ to be split into two parts, and this distinction is orthogonal
the one made between destructor and constructor symbols. We denote by Σpub the set
of function symbols that are public, i.e. available to the attacker, and Σpriv for those that
are private. Actually, an attacker builds his own messages by applying public function
symbols to terms he already knows. Formally, a computation done by the attacker is
modelled by a term in T (Σpub,W), called a recipe. Note that such a term does not
contain any name. Indeed, all names are initially unknown to the attacker.

2.2 Process algebra

Let Ch be an infinite set of channels. We consider processes built using the grammar
below where u ∈ T (Σc,N ∪ X ), v ∈ T (Σ,N ∪ X ), n ∈ N , and c, c′ ∈ Ch:
P,Q := 0 null

| in(c, u).P input
| out(c, u).P output
| let x = v in P evaluation

| (P | Q) parallel
| !P replication
| new n.P restriction
| new c′.out(c, c′).P channel generation

The process 0 does nothing. The process “in(c, u).P ” expects a message m of the
form u on channel c and then behaves like Pσ where σ is a substitution such that
m = uσ. The process “out(c, u).P ” emits u on channel c, and then behaves like P . The
variables that occur in u are instantiated when the evaluation takes place. The process
“let x = v in P ” tries to evaluate v and in case of success the process P is executed;
otherwise the process is blocked. The process “P | Q” runs P and Q in parallel. The
process “!P ” executes P some arbitrary number of times. The restriction “new n” is
used to model the creation of a fresh random number (e.g., a nonce or a key) whereas
channel generation “new c′.out(c, c′).P ” is used to model the creation of a fresh chan-
nel name that shall immediately be made public. Note that we consider only public
channels. It is still useful to generate fresh channel names to let the attacker identify the
different sessions (as it is often the case in practice through sessions identifiers).
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Note that our calculus allows both message filtering as well as explicit applica-
tion of destructor symbols. For example, to represent a process that waits for a mes-
sage, decrypts it with a key k, and sends the plaintext in clear, we may write P =
in(c, senc(x, k)).out(c, x) as well as Q = in(c, y).let x = sdec(y, k) in out(c, x).
However, the choice of filtering or let yields a slightly different behaviour since a mes-
sage will be received in P only if it matches the expected format while any message
will be received in Q (and then the format is checked).

We write fv(P ) for the set of free variables that occur in P , i.e. the set of variables
that are not in the scope of an input or a let construction. We assume Ch = Ch0 ] Chfresh
where Ch0 and Chfresh are two infinite sets of channels. Intuitively, channels of Chfresh,
denoted ch1, . . . , chi, . . . will be used in the semantics to instantiate the channels gen-
erated during the execution of a protocol. They shall not be part of its specification.

Definition 1. A protocol P is a process such that P is ground, i.e. fv(P ) = ∅; and P
does not use channel names from Chfresh.

Example 2. The Yahalom protocol [23] is a key distribution protocol using symmetric
encryption and a trusted server. The Paulson’s version of this protocol can be described
informally as follows:

1. A→ B : A, Na
2. B → S : B, Nb, {A,Na}Kbs

3. S → A : Nb, {B,Kab, Na}Kas
, {A,B,Kab, Nb}Kbs

4. A→ B : {A,B,Kab, Nb}Kbs
, {Nb}Kab

where {m}k denotes the symmetric encryption of a messagemwith key k,A andB are
agents trying to authenticate each other, S is a trusted server, Kas (resp. Kbs) is a long
term key shared between A and S (resp. B and S), Na and Nb are nonces generated
by A and B, whereas Kab is a key generated by S.

We propose a modelling of the Yahalom protocol in our formalism using the signa-
ture given in Example 1. We use restricted channels to model the use of unique session
identifiers used along an execution of the protocol. Below, kas, kbs, na, nb, kab are
names, whereas a and b are constants from Σ0 and cA, cB , and cS are (public) channel
names for respectively the role of A, B, and S. We denote by 〈x1, . . . , xn−1, xn〉 the
term 〈x1, 〈. . . 〈xn−1, xn〉〉〉.
PYah =! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB | ! new c3.out(cS , c3).PS

where the processes PA, PB , and PS are given below:
PA = new na. out(c1, 〈a, na〉). in(c1, 〈xnb, senc(〈b, xab, na〉, kas), xbs〉).

out(c1, 〈xbs, senc(xnb, xab)〉);
PB = in(c2, 〈a, yna〉). new nb. out(c2, 〈b, nb, senc(〈a, yna〉, kbs)〉).

in(c2, 〈senc(〈a, b, yab, nb〉, kbs), senc(nb, yab)〉);
PS = in(c3, 〈b, znb, senc(〈a, zna〉, kbs)〉). new kab.

out(c3, 〈nb, senc(〈b, kab, zna〉, kas), senc(〈a, b, kab, znb
〉, kbs)〉).

2.3 Semantics

The operational semantics of a process is defined using a relation over configurations.
A configuration is a pair (P;φ) where:
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– P is a multiset of ground processes.
– φ = {w1 . m1, . . . ,wn . mn} is a frame, i.e. a substitution where w1, . . . ,wn are

variables inW , and m1, . . . ,mn are messages, i.e. terms inMΣ .

We often write P instead of ({P}; ∅), and P ∪ P or P | P instead of {P} ∪ P .
The terms in φ represent the messages that are known by the attacker. The operational
semantics of a process is induced by the relation α−→ as defined below.

(in(c, u).P ∪ P;φ) in(c,R)−−−−→ (Pσ ∪ P;φ) where R is a recipe such that Rφ↓
is a message and Rφ↓ = uσ for some σ with dom(σ) = vars(u)

(out(c, u).P ∪ P;φ) out(c,wi+1)−−−−−−−→ (P ∪ P;φ ∪ {wi+1 . u})
where u is a message and i is the number of elements in φ

(new c′.out(c, c′).P ∪ P;φ) out(c,chi)−−−−−−→ (P{chi/c′} ∪ P;φ)
where chi is the “next” fresh channel name available in Chfresh

(let x = v in P ∪ P;φ) τ−→ (P{v↓/x} ∪ P φ) where v↓ is a message

(new n.P ∪ P;φ) τ−→ (P{n′
/n} ∪ P;φ) where n′ is a fresh name in N

(!P ∪ P;φ) τ−→ (P ∪ !P ∪ P;φ)
The first rule allows the attacker to send to some process a term built from publicly

available terms and symbols. The second rule corresponds to the output of a term: the
corresponding term is added to the frame of the current configuration, which means that
the attacker can now access the sent term. Note that the term is outputted provided that
it is a message. The third rule corresponds to the special case of an output of a freshly
generated channel name. In such a case, the channel is not added to the frame but it is
implicitly assumed known to the attacker, as all the channel names. These three rules
are the only observable actions. The fourth rule corresponds to the evaluation of the
term v; if this succeeds, i.e. if v↓ is a message then x is bound to the result and P is
executed; otherwise the process is blocked. The two remaining rules are quite standard
and are unobservable by the attacker.

The relation α1...αn−−−−−→ between configurations (where α1 . . . αn is a sequence of
actions) is defined as the transitive closure of α−→. Given a sequence of observable
actions tr, we write K tr

==⇒ K ′ when there exists a sequence α1 . . . αn such that
K

α1...αn−−−−−→ K ′ and tr is obtained from α1 . . . αn by erasing all occurrences of τ . For
every protocol P , we define its set of traces as follows:

trace(P ) = {(tr, φ) | P tr
==⇒ (P;φ) for some configuration (P;φ)}.

Example 3. The Yahalom protocol as presented in Example 2 is known to be flawed as
informally described below.

(i) 1. I(A)→ B : A, Ni
(i) 2. B → I(S) : B, Nb, {A,Ni}Kbs

(ii) 1. I(A)→ B : A, B, Ki, Nb
(ii) 2. B → I(S) : B, N ′b, {A, B, Ki, Nb}Kbs

(i) 4. I(A)→ B : {A,B,Ki, Nb}Kbs
, {Nb}Ki

Intuitively, the attacker opens two sessions with B. In the second session (ii), the at-
tacker uses B as an encryption oracle. This attack can be reflected by the following
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sequence tr.
tr = out(cB , ch1).in(ch1, 〈a, ni〉).out(ch1,w1).out(cB , ch2).in(ch2, 〈a,b, ki, Rb〉).

out(ch2,w2).in(ch1, 〈proj2(proj2(w2)), senc(Rb, ki)〉)
where ki and ni are public constants from Σ0, and Rb = proj1(proj2(w1)). This se-
quence tr allows one to reach the frame:

φ = {w1 . 〈b, nb, senc(〈a, ni〉, kbs)〉, w2 . 〈b, n′b, senc(〈a, 〈b, ki, nb〉〉, kbs)〉}.
We have that (tr, φ) ∈ trace(PYah). Roughly, agent b has completed a session ap-

parently with agent a, and has established a session key ki. However, the agent a has
never participated to this execution, and ki is actually a key known to the attacker.

2.4 Trace equivalence

Intuitively, two protocols are equivalent if they cannot be distinguished by any attacker.
Trace equivalence can be used to formalise many interesting security properties, in par-
ticular privacy-type properties, such as those studied for instance in [8, 18]. We first de-
fine symbolic indistinguishability of sequences of messages, called static equivalence.

Definition 2. Two frames φ1 and φ2 are statically equivalent, φ1 ∼ φ2, when we have
that dom(φ1) = dom(φ2), and:

– for any recipe R, Rφ1↓ ∈ MΣ if, and only if, Rφ2↓ ∈ MΣ; and
– for all recipes R1 and R2 such that R1φ1↓, R2φ1↓ ∈ MΣ , we have that

R1φ1↓ = R2φ1↓ if, and only if, R1φ2↓ = R2φ2↓.

Intuitively, two frames are equivalent if an attacker cannot see the difference be-
tween the two situations they represent. If some computation fails in φ1 for some
recipeR, i.e.Rφ1↓ is not a message, it should fail in φ2 as well. Moreover, the frames φ1
and φ2 should satisfy the same equalities. In other words, the ability of the attacker to
distinguish whether a recipe R produces a message, or whether two recipes R1, R2

produce the same message should not depend on the frame. The choice ofMΣ as well
as the choice of public symbols allow to fine-tune what an attacker can observe. The
set of public function symbols tell exactly which functions the attacker may use. Then
the choice MΣ defines when computations fail. For example, if MΣ represents the
set of terms with atomic keys only, then an attacker may potentially observe that some
computation fails because he was able to inject a non atomic key.

Example 4. Consider φ1 = {w1 . senc(m1, ki)}, and φ2 = {w1 . senc(m2, ki)}. As-
suming that m1, m2 are public constants from Σ0, we have that φ1 6∼ φ2. An attacker
can observe that decrypting the message of φ1 with the public constant ki leads to the
public constant m1. This is not the case in φ2. Consider the recipes R1 = sdec(w1, ki)
and R2 = m1. We have that R1φ1↓ = R2φ1↓ whereas R1φ2↓ 6= R2φ2↓.

Intuitively, two protocols are trace equivalent if, however they behave, the resulting
sequences of messages observed by the attacker are in static equivalence.

Definition 3. Let P and Q be two protocols. We have that P v Q if for every (tr, φ) ∈
trace(P ), there exists (tr′, φ′) ∈ trace(Q) such that tr = tr′ and φ ∼ φ′. They are in
trace equivalence, written P ≈ Q, if P v Q and Q v P .
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Example 5. We wish to check strong secrecy of the key received by B for the Yahalom
protocol. A way of doing so is to check that P 1

Yah ≈ P 2
Yah where P iYah (with i ∈ {1, 2})

is as PYah but we add the instruction out(c2, senc(mi, yab)) at the end of the process PB .
The terms m1 and m2 are two distinct public constants from Σ0. The idea is to check
whether an attacker can see the difference when the key that has been established is
used to encrypt different public constants. Actually, this equivalence does not hold.

Let tr′ = tr.out(ch1,w3), and φ′j = φ ∪ {w3 . senc(mj , ki)} (with j ∈ {1, 2})
where (tr, φ) is as described in Example 3. We have that (tr′, φ′1) ∈ trace(P 1

Yah) and
(tr′, φ′2) ∈ trace(P 2

Yah). However, we have that φ′1 6∼ φ′2 (as explained in Example 4).
Thus, P 1

Yah and P 2
Yah are not in trace equivalence. An attacker can observe the encrypted

message sent at the end of the execution and see which constant has been encrypted
since he knows the key ki.

3 Main contribution: getting rid of nonces

As explained in introduction, our main contribution is to provide a transformation that
soundly abstracts nonces. Informally, we prove an implication of the following form:

!P | P ? ≈ !Q | Q? ⇒ !P ≈ !Q

where P is obtained from P by replacing nonces by constants, and P ? is a copy of P .
Before defining formally this transformation in Section 3.2, we introduce in Section 3.1
which hypotheses are required for the soundness of our transformation.

3.1 Our hypotheses

Our technique soundly abstracts nonces and keys for trace equivalence, for simple pro-
tocols and for a large family of security primitives, namely adequate theories, that we
define in this section. We first introduce the class of simple protocols, similar to the one
introduced e.g. in [15, 10].

Definition 4. A simple protocol P is a protocol of the form:
!new c′1.out(c1, c

′
1).B1 | ... | !new c′m.out(cm, c

′
m).Bm | Bm+1 | . . . | Bm+p

where each Bi with 1 ≤ i ≤ m + p is a basic process on ci, that is a ground process
built using the following grammar:

B := 0 | in(ci, u).B | out(ci, u).B | let x = v in B | new n.B
where u ∈ T (Σc,N ∪ X ), v ∈ T (Σ,N ∪ X ), and n ∈ N . Moreover, we assume that
c1, . . . , cm, cm+1, . . . , cm+p are pairwise distinct.

Even if considering simple processes may seem to be restricted, in practice it is
often the case that an attacker may identify processes through e.g. IP addresses and
even sessions using sessions identifiers. Therefore, encoding protocols in such a class
may be considered as a good practice since it allows to potentially discover more flaws.
Indeed, it gives more power to the attacker and allows him to know from which agent
he receives a message.
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Example 6. The protocol PYah (see Example 2), as well as P 1
Yah and P 2

Yah as described
in Example 5, are simple protocols.

In order to establish our result, we have to ensure that considering two distinct
constants instead of fresh nonces is sufficient. We need this property to hold on terms
first. Intuitively, when a term cannot be reduced further, it should be possible to isolate
two nonces that cause the reduction to fail. This is indeed the case for a large class of
primitives. We formalise this notion as follows:

Definition 5. Given a signature Σ = Σc ] Σd, a convergent rewriting system R, and
a set of messagesMΣ , we say that the theory (Σ,R) is adequate w.r.t.MΣ when for
any term t ∈ T (Σ,N )rMΣ in normal form, there exist n1, n2 ∈ N such that for any
renaming ρ with ρ(n1) 6= ρ(n2) then tρ↓ 6∈ MΣ .

Intuitively, we require that whenever a term t is not a message, it is possible to fix
two names of t such that any renaming of t (preserving these two names) is still not a
message. We could generalise our criterion to n-adequate theories where the number of
names that need to fixed is bounded by n but two names are actually sufficient to deal
with most of the theories.

Example 7. The theory described in Example 1 is adequate w.r.t. to the two notions of
messagesMc andMatomic that have been introduced. Intuitively, when a term is not a
message, either this property is actually stable for any renaming (e.g. sdec(n, k)) or is
due to the failure of a decryption (e.g. sdec(senc(n, k), k′)). In such a case, maintaining
the disequality between the terms modelling the encryption and the decryption keys is
sufficient to ensure that the resulting term will not become a message.

Since proving a theory to be adequate may be a bit tedious, we develop in Section 4.2 a
criterion that allows us to conclude for the theory given above and many others.

3.2 Our transformation

We now explain how to formally get rid of nonces. Our transformation is actually mod-
ular w.r.t. which nonces shall be abstracted. Let P be a simple process in which any
name is bound at most once. This means that any name that does not occur explicitly in
the scope of a restriction is distinct from those introduced by the new operator. More-
over, a same name can not be introduced twice by the operator new. Our transformation
is parametrised by a set of names N which correspond to the new instructions that we
want to remove (typically those under a replication).

We denote by P
N

(or simply P when N is clear from the context) the process ob-
tained from P by removing every instruction new n for any n ∈ N. Given B(c) a basic
process built on channel c, we denote byB?(c?) the process obtained fromB by apply-
ing a bijective alpha-renaming on each name bound by a new instruction and replacing
each occurrence of the channel c with the channel c? (that is assumed to be fresh).

Example 8. Consider the process P = !new c′.out(c, c′).B where B is a basic process
built on channel c′. Let B = new n.out(c′, senc(n, k)), and N = {n}. We have that:
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1. P = !new c′.out(c, c′).out(c′, senc(n, k)), and
2. B?(c?) = new n?.out(c?, senc(n?, k)).

Note that B and B?(c?) are identical up to the fact that they proceed on different chan-
nel. The transformation ? applied on the basic process is just here to emphasise the fact
that bound names are renamed to avoid some confusion due to name clashes.

Now, our transformation consists of combining these two building blocks. When
removing fresh names from a process P , we keep a copy of one of the replicated basic
processes of P , identified by its channel c. More formally, given a simple process P
of the form P = ! new c′.out(c, c′).B | P ′, and a set of names N, the resulting pro-
cess P

N,c
is defined as follows:

P
N,c def

= P
N | B?(c?).

Sometimes we simply write P
c

instead of P
N,c

when N is clear from the context.

Example 9. Continuing Example 8, we have that:

P
N,c

= ! new c′.out(c, c′).out(c′, senc(n, k)) | new n?.out(c?, senc(n?, k)).

3.3 Main result

We are now able to state our main result. We consider a signatureΣ = Σc]Σd together
with a convergent rewriting system R, and a notion of messages MΣ such that the
theory (Σ,R) is adequate w.r.t.MΣ . Given a simple process P , we note Ch(P ) the set
of public channel names occurring under a replication in P .

Theorem 1. Let P and Q be two simple protocols such that Ch(P ) = Ch(Q), and N
be a set of names (intuitively those that we want to abstract away). We have that:

[∀c ∈ Ch(P ). P
N,c ≈ QN,c

] ⇒ P ≈ Q

Note that, in case Ch(P ) 6= Ch(Q), we trivially have that P 6≈ Q since one process
is able to emit on a channel whereas the other is not.

This theorem shows that whenever two processes are not in trace equivalence, then
it is possible to find a witness of non-equivalence when nonces are replaced by constants
provided that one basic process under a replication has been duplicated.

Example 10. Continuing the example developed in introduction and pursued in Sec-
tion 3.2, we consider

1. P = !new c′.out(c, c′).new nP .out(c
′, senc(nP , k)), and

2. Q = !new c′.out(c, c′).out(c′, senc(nQ, k)).

Let N = {nP }. We have that:

1. P
c
= !new c′.out(c, c′).out(c′, senc(nP , k)) | new n?P .out(c?, senc(n?P , k)), and

2. Q
c
= !new c′.out(c, c′).out(c′, senc(nQ, k)) | out(c?, senc(nQ, k)).

Clearly P
c 6≈ Q

c
since an attacker can observe that P

c
may send two distinct mes-

sages while Q
c

cannot. Intuitively, the attack reflecting that P 6≈ Q can be reflected
in P

c 6≈ Qc. Another choice for N is to consider the set {nP , nQ} but this would lead
exactly to the same result.

10



3.4 Sketch of proof

To establish our result, we first establish how to map traces from P to P
N

. Given a
simple process P , and a trace (tr, φ) ∈ trace(P ), we denote by ρP,N(tr,φ) the replacement
that associates to each name r ∈ N generated during the execution under study and
occurring in the frame φ, the name n ∈ N that occurs in the instruction new n of P
and that is responsible of the generation of this fresh name. This amounts in losing
freshness of all the new n instructions with n ∈ N. Indeed all nonces induced by such
an instruction are collapsed into a single nonce n. Our transformation is parametric
in N: we may replace all new instructions or simply part of them. Note that, for simple
processes, once (tr, φ) is fixed, this replacement is uniquely defined.

Lemma 1. Let P be a simple protocol, N be a set of names, and (tr, φ) ∈ trace(P ).
We have that (tr, φρP,N(tr,φ)) ∈ trace(P

N
).

This proposition is shown by induction on the length of the trace under study and
by case analysis on the rule of the semantics that is applied to allow the process to
evolve. The crucial point is that the lack of freshness induced by considering P

N
instead

of P only generates more equalities between terms, and thus more behaviours. Now, it
remains to ensure that the disequality that is needed to witness the non-equivalence still
remains, and this is the purpose of considering a fresh copy, namely B?(c?).

Sketch of proof of Theorem 1. The idea is to show that a witness of non-equivalence for
P 6≈ Q can be converted into a witness of non-equivalence for P

c 6≈ Qc for at least one
c ∈ Ch(P ) = Ch(Q). Due to the fact that we consider simple processes, three main
cases may occur (the three other symmetric cases can be handled similarly). We have
that (tr, φ) ∈ trace(P ), and

1. there exists ψ such that (tr, ψ) ∈ trace(Q) and two recipes R1, R2 such that R1φ↓,
R2φ↓, R1ψ↓ and R2ψ↓ are messages; R1φ↓ = R2φ↓ and R1ψ↓ 6= R2ψ↓; or

2. there exists ψ such that (tr, ψ) ∈ trace(Q) and a recipe R such that Rφ↓ is a
message but Rψ↓ is not; or

3. there exists no frame ψ such that (tr, ψ) ∈ trace(Q).

Each case is proved separately, following the same lines. First, thanks to Lemma 1,
in case (tr, φρP,N(tr,φ)) is still a witness of non-equivalence, we easily conclude. This
roughly means that we do not even need the fresh copy to exhibit the non-equivalence.
Otherwise, we need to maintain a disequality to ensure that the distinguishing test will
not hold on the Q side. Since we consider adequate theories, we know that this dise-
quality can be maintained through the use of two distinct names. This is exactly why a
fresh copy is needed. The other cases can be handled similarly.

4 Scope of our result

In this section, we explain why we need to assume simple processes and adequate the-
ories and we discuss which class of protocols and primitives can be covered.
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4.1 Simple processes

Simple processes are really necessary for our simplification result to hold. We provide
below a small counter example to our result for non simple processes.

Example 11. We consider symmetric encryption and pairs as in Example 1 with ok ∈ Σ0.
We define the two following processes.
P = ! new c.out(c1, c).new n.out(c, senc(n, k)) (1)
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(x, k), senc(y, k)〉).out(c, ok) (2)
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(x, k)〉).out(c, ok) (3)
| ! new c.out(c2, c).in(c, 〈senc(y, k), senc(x, k), senc(x, k)〉).out(c, ok) (4)

Q = ! new c.out(c1, c).new n.out(c, senc(n, k))
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(z, k)〉).out(c, ok).

Intuitively P expects a list of three ciphertexts among which two must be identical,
whileQ expects any three ciphertexts. The processQ is simple but P is not since several
processes in parallel proceed on channel c2. We have that P 6≈ Q: it is possible using (1)
to generate distinct ciphertexts, concatenate them, and send the resulting message on c2.
This message will not be accepted in P , but it will be accepted in Q.

Now, consider the process P
c1 andQ

c1 with N = {n}, that is the processes obtained
by applying our transformation on channel c1 (the only branch that contains nonce gen-
eration) with the goal of getting rid of the instruction new n on both sides. We obtain:

P
c1

= ! new c.out(c1, c).out(c, senc(n, k))
| new n?. out(c?, senc(n?, k))
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(x, k), senc(y, k)〉).out(c, ok)
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(x, k)〉).out(c, ok)
| ! new c.out(c2, c).in(c, 〈senc(y, k), senc(x, k), senc(x, k)〉).out(c, ok)

Q
c1

= ! new c.out(c1, c).out(c, senc(n, k))
| new n?. out(c?, senc(n?, k))
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(z, k)〉).out(c, ok).

It is quite easy to see that the witness of non-equivalence given above is not a valid
one anymore. Actually, we have that P

c1 and Q
c1 are in trace equivalence since only

two distinct ciphertexts may be produced.

Note that it is easy to express standard protocols as simple processes. As explained
previously, encoding security protocols as simple processes is a good practice, and gives
power to the attacker. However, it prevents the modeling of unlinkability properties.

4.2 Adequate theories

The fact that we consider adequate theories may seem to be a proof artefact. We could
probably go beyond adequate theories, but this would be at the price of considering a
more complex transformation, and in particular additional constants. We provide below
an example of a theory that reflects the same kind of issues than the ones illustrated by
the processes presented in Example 11.
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Example 12. In addition to the signature introduced in Example 1, we consider an ad-
ditional destructor symbol g together with the following rewriting rules:

g(〈senc(x, z), senc(x, z), senc(y, z)〉)→ ok
g(〈senc(x, z), senc(y, z), senc(x, z)〉)→ ok
g(〈senc(y, z), senc(x, z), senc(x, z)〉)→ ok

Assume for instance that MΣ is Mc = T (Σc,N ) the set of all ground construc-
tor terms. The resulting theory is not adequate. For instance, we have that the term
t = g(〈senc(n1, k), senc(n2, k), senc(n3, k)〉) is in normal form and not a message.
However, any renaming ρ that preserves distinctness between only two names among
n1, n2, n3, will be such that tρ↓ ∈ MΣ . This yields a counter-example to our result,
illustrated by the two following processes.
P ′ = ! new c.out(c1, c).new n.out(c, senc(n, k))
| in(c2, 〈senc(x1, k), senc(x2, k), senc(x3, k)〉).

let y = g(〈senc(x1, k), senc(x2, k), senc(x3, k)〉) in out(c2, y).

Q′ = ! new c.out(c1, c).new n.out(c, senc(n, k))
| in(c2, 〈senc(x1, k), senc(x2, k), senc(x3, k)〉).out(c2, ok).

The process P ′ expects three ciphertexts and returns the result of applying g to them
while Q′ directly returns ok. For the same reasons as those explained in Example 11,
we have that P ′ 6≈ Q′ whereas P ′

c1 ≈ Q′c1 .

The equational theory above is contrived, and actually most of the equational theo-
ries useful to model cryptographic protocols can be shown to be adequate. An example
of a non-adequate theory is tdcommit as described in [18] which does not fit the struc-
ture of our rules. Since the adequacy hypothesis might be cumbersome to prove by
hand for each theory, we exhibit a simple criterion that ensures adequacy: the absence
of critical pair.

Definition 6. Given a signature Σ = Σc ] Σd, and a convergent rewriting system R,
we say that the theory (Σ,R) has no critical pair if `1 and `2 are not unifiable for any
distinct rules `1 → r1, and `2 → r2 inR.

Our notion of critical pairs actually coincide with the usual one for the theories we
consider. Indeed, rewrite rules are all of the form ` → r such that the head symbol
of ` is a destructor symbol and destructors may not appear anywhere else in ` nor r.
Theories without critical pairs are convergent and adequate.

Lemma 2. Given a signature Σ = Σc ] Σd, a convergent rewriting system R, and a
set of messagesMΣ such that T (Σc,N ) rMΣ is stable by renaming. If the theory
(Σ,R) has no critical pair, then (Σ,R) is convergent and adequate w.r.t.MΣ .

This lemma allows us to conclude that many theories used in practice to model se-
curity protocols are actually adequate. This is the case of the theory given in Example 1,
and the theories that are presented below.

Standard cryptographic primitives. We may enrich the theory described in Example 1
with function symbols to model asymmetric encryption, and digital signatures.
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Σ+ = Σ ∪ {aenc, adec, sign, checksign, getmsg, pub, priv, ok}.
Symbols adec/aenc and sign/checksign of arity 2 are used to model asymmetric encryp-
tion and signature, whereas pub/priv of arity 1 will be used to model key pairs, and the
symbol priv will be part of the signature Σpriv. The symbol getmsg may be used in case
we want to consider a signature algorithm that does not protect the signed message. The
corresponding rewrite rules are defined as follows:
checksign(sign(x, priv(y)), pub(y))→ ok

getmsg(sign(x, priv(y))→ x
adec(aenc(x, pub(y)), priv(y)) → x

Regarding the notion of messages, a reasonable choice forMΣ+ is to considerM+
c =

T (Σc ]{aenc, sign, pub, priv, ok},N ) the set of all ground constructor terms. We may
also restrictMΣ+

in various ways to only allow some specific terms in key positions.

Blind signatures. The following theory is often used to model blind signatures (see
e.g. [18]), checksign and unblind are the only destructor symbols.

checksign(sign(x, priv(y)), pub(y))→ x
unblind(blind(x, y), y)→ x

unblind(sign(blind(x, y), priv(z)), y)→ sign(x, priv(z))

Zero-knowledge proofs. A typical signature for representing zero-knowledge proofs is
ΣZKP = {Verify,ZKP, ok} where ZKP represents a zero-knowledge proof and Verify
models the verification of the proof. To ease the presentation, we present how to model
the proof of a particular statement, namely the fact that a ciphertext is the encryption
of either 0 or 1. Such proofs are thoroughly used for example in the context of e-voting
protocols such as Helios. In particular, the theory we consider here has been introduced
in [16]. Specifically, letΣ+

ZKP = ΣZKP]{raenc, radec, pub, priv, 0, 1} and consider the
following rewrite rules.

radec(raenc(x, z, pub(y)), priv(y))→ x
Verify(ZKP(x, raenc(0, x, pub(y)), pub(y)), raenc(0, x, pub(y)), pub(y))→ ok
Verify(ZKP(x, raenc(1, x, pub(y)), pub(y)), raenc(1, x, pub(y)), pub(y))→ ok

The symbol raenc represents randomised asymmetric encryption as reflected by the first
rewrite rule. The two last rules ensure that a proof is valid only if the corresponding
ciphertext contains either 0 or 1 and nothing else. Many variants of zero-knowledge
proofs can be modelled in a very similar way.

5 Application of our result

Abstracting nonces with constants (as done in Theorem 1) may introduce false attacks.
A typical case is when protocols make use of temporary secrets.

Example 13. Consider the signature described in Example 1. Let P and Q be:
P = ! new c′.out(c, c′).in(c′, x).new n.out(c′, senc(ok, n)).

let y = sdec(x, n) in out(c′, y);
Q = ! new c′.out(c, c′).in(c′, x).new n.out(c′, n).

14



The two processes are in equivalence: P ≈ Q. Now, consider the processes P
c

and Q
c

with N = {n}, that is, the processes obtained by applying our transformation on chan-
nel c to get rid of the fresh nonces.

P
c
= ! new c′.out(c, c′).in(c′, x).out(c′, senc(ok, n)).let y = sdec(x, n) in out(c′, y)
| in(c?, x).out(c?, senc(ok, n?)).let y = sdec(x, n?) in out(c?, y)

Q
c

is defined similarly. It is easy to notice that the output of the constant ok is now
reachable, yielding P

c 6≈ Qc.

5.1 Is our abstraction precise enough?

Our transformation may in theory also introduce false attacks for protocols without
temporary secrets. In this section, we review several (secure) protocols of the literature
and study whether a false attack is introduced by our transformation. To perform this
analysis we rely on the ProVerif tool. For each protocol, we first consider a scenario
with honest agents only as for the Yahalom protocol (Section 2). We then consider a
richer scenario where honest agents are also willing to engage communications with a
dishonest agent. In each case, we check whether ProVerif is able to establish:
1. the equivalence between the original processes (left column);
2. all the equivalences obtained after getting rid of all the nonces using our transfor-

mation (right column).
The results are reported on the table below: a X means that ProVerif succeeded and a 7
means that it failed. Actually, on most of the protocols/scenarios we have considered,
our abstraction does not introduce any false attack. ProVerif models of our experiments
are available online at http://www.lsv.ens-cachan.fr/˜chretien/prot.tar.

Protocol name original
(with nonces)

our transformation
(no nonce)

YAHALOM (corrected version)
- simple scenario X X
- with a dishonest agent X X

OTWAY-REES
- simple scenario X X
- with a dishonest agent X X

KAO-CHOW (tagged version)
- simple scenario X X
- with a dishonest agent X X

NEEDHAM-SCHROEDER-LOWE
- simple scenario (secrecy of Na) X 7
- simple scenario (secrecy of Nb) X X
- with a dishonest agent (secrecy of Nb) X X

DENNING-SACCO (asymmetric)
- simple scenario X X
- with a dishonest agent X X

Needham Schroeder Lowe protocol. We briefly comment on the false attack introduced
by our transformation on the Needham Schroeder Lowe protocol.

1. A→ B : {A,Na}pub(B)

2. B → A : {Na, Nb, B}pub(A)

3. A→ B : {Nb}pub(B)

1. I(A)→ B : {A,Ni}pub(B)

2. B → I(A) : {Ni, Nb, B}pub(A)

3. I(A)→ B : {Nb}pub(B)
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The protocol is given on the left, and the (false) attack depicted on the right. This
attack scenario (and more precisely step 3 of this scenario) is only possible when nonces
are abstracted away with constants. Indeed, the attacker will not be able to decrypt the
message {Ni, Nb, B}pub(A) he has received to retrieve the nonce Nb. Instead he will
simply replay an old message coming from a previous honest session betweenA andB.
Since nonces have been replaced by constants, B will accept this old message, and will
assume that Ni is a secret shared between A and B, while Ni is known by the attacker.
Unfortunately, this abstraction does not seem to help ProVerif prove the security of new
protocols. Nonetheless it can still be used as a proof technique to prove the security of
protocols in classes defined in [9] and [10].

5.2 Proof technique

Our result can be used as a proof technique to show that two simple protocols are in
trace equivalence. In particular, we have that the decidability result developed in [10]
for tagged protocols without nonces can now, thanks to our transformation, be applied
to study the security of protocols with nonces.

The decidability result given in [10] applies on type-compliant protocols. This roughly
means that ciphertexts cannot be confused and this can be achieved by adding some
identifier (a tag that is re-used in all sessions) in each ciphertext.

Applying our transformation to a simple, type-compliant protocol yields a process
that belongs to the decidable class of [10].

Proposition 1. Let (Σ,R) be the theory given in Example 1 withMΣ =Matomic. Let
P and Q be two simple and type-compliant protocols built on (Σ,R), and such that
Ch(P ) = Ch(Q). Let N be the set of names that occur in P or Q.

The problem of deciding whether P
N,c

and Q
N,c

are in trace equivalence is decid-
able (for any c ∈ Ch(P )).

6 Conclusion

Our simplification result allows to soundly reduce the equivalence of processes with
nonces to the equivalence of processes without nonce. This can be seen as a proof tech-
nique. For example for tagged simple protocols with symmetric encryption, the result-
ing protocols fall in the decidable class of [10]. Similarly, we could use the decidability
result of [9] for ping-pong protocols with one variable per transition.

Our result assumes protocols to be simple processes. Otherwise, to prevent some
transition, it could be necessary to maintain several disequalities. We plan to go slightly
beyond simple processes and simply require some form of determinacy. More generally,
we plan to study whether such a reduction result can be obtained for arbitrary processes,
that is, study whether it is possible to compute a bound on the number of fresh copies
from the structure of the processes.

Regarding adequate theories, we believe that our criterion is general enough to cap-
ture even more theories like exclusive or, or other theories with an associative and com-
mutative operator. This would however require to extend our formalism to arbitrary
terms (not just destructor/constructor theories).
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A Appendix

Lemma 1 is a direct corollary of Lemma 3 which we state below. In the following, we
will only consider theories adequate w.r.t.MΣ . Given a frame φ (resp. ψ) and a name r
in φ (resp. ψ), let n(r) be the nonce in P (resp. Q) such that r is an instance of n(r)
and let c(r) be the channel of the protocol’s branch which generated it. Actually, it can
be computed as the channel on which r appeared first in trφ↓ (resp. trψ↓). We note
Dφ = {r ∈ φ | n(r) ∈ N} and for anyA ⊆ Dφ, we denote n(A) the application having
A as domain, and such that n(A)(r) = n(r) for any r ∈ A. To each nonce n ∈ N, we
can associate a new name n?: we can then define the function n?(·) to be the function
mapping any r ∈ Dφ to (n(r))?. Similarly, for any A ⊆ Dφ, we denote n?(A) the
function mapping any r ∈ A to (n(r))?.

Lemma 3. We have the two following properties.

1. Let (tr, φ) ∈ trace(P ), Dφ = {r ∈ φ | n(r) ∈ N} and ρ0 = n(Dφ). Then

(tr, φρ0) ∈ trace(P
N
).

2. Moreover, let ch be a channel such that tr = tr1.out(c, ch).tr2, D̃φ = {r ∈
φ | n(r) ∈ N ∧ c(r) = ch} and ρ = n(Dφ r D̃φ) ∪ n?(D̃φ). Then (tr?, φρ) ∈
trace(P

N,c
), where tr? = tr1.tr2{c

?

/ch}.

Proof. The proof of case 2 is done by induction on the length of the execution of tr
in P . For any rule in our semantics, we prove that the renaming ρ does not prevent the
action from being executed as it only introduces new equalities and that the resulting
multiset of processes and frame are similar, up to application of ρ. Finally, case 1 can
be seen as a special instance of case 2. ut

Theorem 1. Let P and Q be two simple protocols such that Ch(P ) = Ch(Q), and N
be a set of names (intuitively those that we want to abstract away). We have that:

[∀c ∈ Ch(P ). P
N,c ≈ QN,c

] ⇒ P ≈ Q

Proof. Let us assume there exists a witness of non-equivalence (tr, φ) ∈ trace(P ).
Three main cases can occur:
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1. there exists ψ such that (tr, ψ) ∈ trace(Q) and two recipes R1, R2 such that R1φ↓,
R2φ↓, R1ψ↓ and R2ψ↓ are messages; R1φ↓ = R2φ↓ and R1ψ↓ 6= R2ψ↓;

2. or there exists ψ such that (tr, ψ) ∈ trace(Q) and a recipe R such that Rφ↓ is a
message but Rψ↓ is not;

3. or, finally, there exists no frame ψ such that (tr, ψ) ∈ trace(Q).

Note that the remaining symmetric cases are handled by considering a witness (tr, ψ) ∈
trace(Q) instead, as P and Q are both simple. We will deal with each case separately,
with the same intermediate goal: define a renaming ρ on Dψ such that any test failing
in ψ still fails in ψρ while the successful tests in φ remain so; then translate it into a
valid trace of P

N,c
for some c ∈ Ch(P ).

Case 1: Let us examine R1ψ↓ and R2ψ↓. If the two terms do not share the same
constructors, then for any renaming ρ,R1(ψρ)↓ 6= R2(ψρ)↓, while for any renaming ρ′,
R1(φρ

′)↓ = R2(φρ
′)↓ (as the constructors are left unchanged, because every term

is a message). Now, if the two terms share the same constructors, there must exist a
leaf position p in them such that R1ψ↓|p 6= R2ψ↓|p. Let us call t and s these terms
respectively. If s or t is not an element of Dψ , then sρ 6= tρ for any ρ with dom(ρ) =
Dψ . As in the previous case, we get that R1(ψρ)↓ 6= R2(ψρ)↓, while R1(φρ

′)↓ =
R2(φρ

′)↓ for any renaming ρ′. Else, assume s = r1 and t = r2 are two nonces of Dψ
such that n(r1) = n1 ∈ N (resp. n(r2) = n2 ∈ N). If n1 6= n2, consider the renaming
ρQ0 mapping any r ∈ Dψ to n(r). Then sρQ0 6= tρQ0 and we get that R1(ψρ

Q
0 )↓ 6=

R2(ψρ
Q
0 )↓. By Lemma 3, (tr, ψρQ0 ) ∈ trace(Q

N
).

Similarly, by defining ρP0 as the function mapping any name r ∈ Dφ to n(r), we

have that (tr, φρP0 ) ∈ trace(P
N
). andR1(φρ

P
0 )↓ = R2(φρ

P
0 )↓. Hence we get a witness

of non-equivalence between P
N

and Q
N

, which can translate into a witness between
P

N,c
and Q

N,c
for any c ∈ Ch(P ).

Else, if n(r1) = n(r2) = n, we need to be more precise to define a proper ρ.
Let out(c, ch) be the action of tr such that tr = tr1.out(c, ch).tr2 and c(r2) = ch. Let
D̃ψ = {r ∈ ψ | n(r) ∈ N∧c(r) = ch} and D̃φ = {r ∈ φ | n(r) ∈ N∧c(r) = ch}. r1 ∈
DψrD̃ψ but r2 ∈ D̃ψ Consider now ρQ = n(DψrD̃ψ)∪n?(D̃ψ). In particular, r1ρQ =
n while r2ρQ = n?. Then sρQ 6= tρQ and we get that R1(ψρQ)↓ 6= R2(ψρQ)↓ and

Lemma 3 ensures (tr?, ψρQ) ∈ trace(Q
N,c

). Similarly, by defining ρP = n(DφrD̃φ)∪
n?(D̃φ), Lemma 3 ensures (tr?, φρP ) ∈ trace(P

N,c
) and R1(φρP )↓ = R2(φρP )↓

(only equalities have been introduced by removing the name restriction in P ). Hence
we get a witness of non-equivalence between P

N,c
and Q

N,c

Case 2: Because Rψ↓ is not a message and our signature is adequate (see Defini-
tion 5), there must exist a, b ∈ N such that a 6= b and for any renaming σ : N → N ,
aσ 6= bσ ⇒ tσ↓ /∈ MΣ . If a /∈ Dψ or b /∈ Dψ , consider the renaming ρQ0 mapping
any name r ∈ Dψ to n(r): as aρQ0 = a and n(r) 6= a for any r ∈ Dψ , R(ψρQ0 )↓
is still not a message. On the other hand, if ρP0 = n(Dφ), as Rφ↓ is a message,

Rφ↓ρP0 = R(φρP0 )↓ is a message. Hence, Lemma 3 ensures (tr, φρP0 ) ∈ trace(P
N
)

while (tr, ψρQ0 ) /∈ trace(Q
N
), leading to a witness of non-equivalence between P

N

and Q
N

.
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Else, assume a = r1 and b = r2 are two nonces in Dψ . If n(r1) 6= n(r2), r1ρ
Q
0 6=

r2ρ
Q
0 and we can apply the same exact reasoning as before. So let us consider the

case where n(r1) = n(r2) = n. Let out(c, ch) be the action of tr such that tr =
tr1.out(c, ch).tr2 and c(r2) = ch. Let D̃ψ = {r ∈ ψ | n(r) ∈ N ∧ c(r) = ch} and
D̃φ = {r ∈ φ | n(r) ∈ N∧c(r) = ch}. r1 ∈ DψrD̃ψ but r2 ∈ D̃ψ Consider now ρQ =

n(Dψr D̃ψ)∪n?(D̃ψ). In particular, r1ρQ = n while r2ρQ = n?. Definition 5 ensures
R(ψρQ0 )↓ is still not a message. On the other hand, if ρP = n(Dφ r D̃φ) ∪ n?(D̃φ),
as Rφ↓ is a message, Rφ↓ρP = R(φρP )↓ is a message. Hence, Lemma 3 ensures
(tr?, φρP ) ∈ trace(P

N,c
) while (tr?, ψρQ) ∈ trace(Q

N,c
), leading to a witness of

non-equivalence between P
N,c

and Q
N,c

.

Case 3: if tr ends with an output out(c,w) such that wψ is not a message, we can
define ρQ and ρP as in case 2 and obtain a witness of non-equivalence. Similarly, if
tr ends with an input or output out(c,w) which cannot be executed in Q because a let
action did not reduce to a message, we can define ρQ and ρP as in case 2 and obtain
a witness of non-equivalence. Consider now the subcase where tr = tr′.in(c,R) for
some tr′ such that (tr′, φ) ∈ trace(P ) and (tr′, ψ) ∈ trace(Q) for some frame ψ.
Because P and Q are both simple protocols, there exists a unique term uP (resp. at
most one term uQ) in the multiset P (resp. Q) of processes from the execution of tr′ in
P (resp. inQ) such that in(c, uP ).M ∈ P for someM (resp. in(c, uQ).N ∈ Q for some
N ). Moreover, there exists σP such that Rφ↓ = uPσP while there is no σ such that
Rψ↓ = uQσ. As before, we consider the renamings ρQ0 = n(Dψ) and ρP0 = n(Dφ).
As (tr, φρP0 ) ∈ trace(P

N
) and (tr, ψρQ0 ) ∈ trace(Q

N
) by Lemma 3, if there exists no

σ such that uQρ
Q
0 σ = Rψ↓ρQ0 , tr is a witness of non-equivalence between P

N
and Q

N

and we are done. So let us then assume there exists σ0 such that uQρ
Q
0 σ0 = Rψ↓ρQ0

while uQσ 6= Rψ↓ for every σ. There exist two leaves with positions p1 and p2 in Rψ↓
which corresponds to positions below variables in uQ such that Rψ↓|p1 6= Rψ↓|p2 but
R(ψρQ0 )↓|p1 = R(ψρQ0 )↓|p2 and Rψ↓|p1 = r1 and Rψ↓|p2 = r2 such that n(r1) =
n(r2) = n ∈ N. As repeatedly before, let out(c, ch) be the action of tr such that
tr = tr1.out(c, ch).tr2 and c(r2) = ch. Let D̃ψ = {r ∈ ψ | n(r) ∈ N ∧ c(r) = ch}
and D̃φ = {r ∈ φ | n(r) ∈ N ∧ c(r) = ch}. We have that r1 ∈ Dψ r D̃ψ but r2 ∈ D̃ψ .
Consider now ρQ = n(DψrD̃ψ)∪n?(D̃ψ). In particular, r1ρQ = n while r2ρQ = n?.
As Rψ↓ is a message (by virtue of our semantics), Rψ↓ρQ = R(ψρQ)↓ and now
R(ψρQ)↓|p1 6= R(ψρQ)↓|p2 . As such, uQρQσ 6= RψρQ↓ for any σ. By defining ρP =

n(Dφr D̃φ)∪n?(D̃φ), asRφ↓ is a message,Rφ↓ρP = R(φρP )↓ is a message. Hence,

Lemma 3 ensures (tr?, φρP ) ∈ trace(P
N,c

) while (tr?, ψ) /∈ trace(Q
N,c

) for any ψ,
leading to a witness of non-equivalence between P

N,c
and Q

N,c
. ut
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