
Accepting Zeno words:

a way toward timed re�nements

B�eatrice B�erard and Claudine Picaronny

LSV, CNRS URA 2236, ENS de Cachan, 61 av. du Pr�es. Wilson,

F-94235 Cachan Cedex, France, Fax: +33 (0)1 47 40 24 64

E-mails: Beatrice.Berard@lsv.ens-cachan.fr,

Claudine.Picaronny@lsv.ens-cachan.fr

Abstract. Timed models were introduced to describe the behaviors of

real-time systems and they were usually required to produce only exe-

cutions with divergent sequences of times. However, some physical phe-

nomena, as the movements of a damped oscillator, can be represented

by convergent executions, producing Zeno words in a natural way. More-

over, time can progress if such an in�nite execution can be followed by

other ones.

Therefore, in a �rst part, we extend the de�nition of timed automata,

allowing to generate sequences of in�nite convergent executions, while

keeping good properties for the veri�cation of systems: emptiness is still

decidable.

In a second part, we de�ne a new notion of re�nement for timed systems,

in which actions are replaced by recognizable Zeno (timed) languages.

We study the properties of these timed re�nements and we prove that

the class of trans�nite timed languages is the closure of the usual one

(languages accepted by Muller or B�uchi timed automata) under re�ne-

ment.

1 Introduction

The framework of timed systems. Timed models have been intensively

studied for the speci�cation and veri�cation of real-time systems. Contrary to

classical (untimed) transition systems, these models provide an explicit notion

of time and thus allow to describe time requirements. For instance, timed Petri

nets [18], timed transition systems [17,14], timed automata [1,2] or timed I/O

automata [16] have been discussed. Timed models have been successfully used

for the veri�cation of real-time systems [10,15].

In these systems, executions are witnessed by �nite or in�nite sequences of

timed actions (a

1

; t

1

)(a

2

; t

2

) � � �, where t

i

is the date at which action a

i

takes

place. Surprisingly, executions for which the time sequence t

1

t

2

� � � is convergent

appear in these models. The corresponding sequences, called Zeno words in ref-

erence to Zeno's paradox, are usually forbidden: the values t of time exceeding

the limit cannot be reached and the state of the system at this time t is thus

unde�ned. Of course, such a remark can also be made for �nite sequences. In

these cases, time is said not to progress any more.

Zeno words and trans�nite automata. Nevertheless, Zeno words are needed

to describe some physical phenomena that produce convergent time sequences:

for instance when a continuous action is represented by an in�nite discrete se-

quence or, from another point of view, when an in�nite number of actions takes

place within a �nite interval of time. Of course, time does not stop, and other

phenomena can be observed later on. This idea was already expressed in [12],

where systems, in which the state can change in�nitely often in a �nite time, are

investigated within the framework of the duration calculus. Di�erent examples,

like the fall of a satellite towards a planet, are proposed there and the Car-Bee

problem is studied in details: two cars move towards each other at uniform and

equal speed and they will collide after r time units. A bee is ying repeatedly

from one car to the other at twice their speed, until it is �nally squashed between

them. As an other illustration, consider an elastic ball which is dropped on an

horizontal plane, bounces while losing amplitude, stops after some time and can

then be dropped again or trigger the beginning of another observation. If action

a represents the movement of the ball between two contacts, we obtain an in�nite

sequence (a; t

1

)(a; t

2

) � � � with convergent time, followed by other sequences, thus

producing what is called a trans�nite timed word. In fact, in the usual timed

models, a Zeno word makes time stop only because executions only contain one

in�nite sequence. Indeed, automata producing trans�nite untimed words have

already been studied ([8,9,20,13]). Even though they do not take explicitely into

account the notion of time, these automata suppose implicitely that an in�nite

number of actions may occur in a �nite interval of time, in order to be followed

by other actions. From this point of view, adding an explicit notion of time in

such models is interesting in itself.

Plan of the paper. In this paper, our �rst purpose is to de�ne equivalent

versions of timed automata generating trans�nite timed words (Sections 2, 3,

4). We then study the class, denoted by TL, of timed languages accepted by

these automata (Section 5). We prove that this class has convenient closure

properties, particularly under the concatenation and the derived star and !-

power operations, which become possible with Zeno words. Moreover, we show

that emptiness remains decidable in the class TL, which is an important issue

regarding the veri�cation of systems.

The second part of the paper is devoted to the important notion of timed

re�nement (Sections 6, 7). A re�nement consists in the replacement of a single

action (intended to represent some high level abstract action) by a language.

Although many results have been obtained in the classical framework of transi-

tion systems, only a few cases have been investigated for timed models [7]. We

introduce a special class of timed automata, which can be used to describe timed

re�nement and include the cases in [7].

Finally, the main result of the paper is the following: the class of languages

accepted by timed trans�nite automata is exactly the closure under re�nement

of the class of languages accepted by classical timed automata.

2

2 Preliminaries

In this section, we introduce all background, notations and de�nitions we shall

use along the paper.

2.1 Ordinals

We use ordinals mainly in order to number sequences. Recall that the �nite ordi-

nals are the natural numbers and the �rst non-�nite ordinal is denoted by !. In

general, an ordinal � represents a linearly well-ordered set (up to isomorphism)

and two ordinals �; � may be summed (�+ �) by considering (the isomorphism

class of) the union � [�, where all elements of � are (strictly) less than all

elements of �. The ordinal � + 1 is called the successor of �. This addition

de�nes a product (as for the natural numbers): for instance, !:2 = ! + ! and

!

2

= ! + ! + ::::, ! times.

In this work, we consider only ordinals smaller than !

!

: such an ordinal has

a so called \polynomial" decomposition � =

P

0

k=p

!

k

:n

k

, where p; n

0

; n

1

� � � are

natural numbers and the type of � is the least integer k such that n

k

6= 0. If the

type of � is positive, i.e. � does not have a greatest element, then it is called a

limit ordinal. Thus, a limit ordinal of type k can be written � = � + !

k

, where

� = 0 or � is an ordinal of type greater than k.

All facts concerning ordinals in this paper can be found in [19].

2.2 Timed �-words and concatenation

Let � be an ordinal, � < !

!

, and let � be a �nite alphabet of actions. We de�ne

timed words of length � over � and we extend the basic operations for languages

of timed words.

Recall that an �-word over � is an �-sequence u = (a

i

)

i<�

, where a

i

is in �

for each i < �. A timed �-word (or simply timed word) over � is an �-sequence

w = ((a

i

; t

i

))

i<�

, where a

i

is in � for each i < � and (t

i

)

i<�

is a non decreasing

sequence of non negative real numbers. The value t

i

represents the time at which

the action a

i

ends, and t

�

= sup(t

i

; i < �) is called the ending time of w and

denoted by � (w). A Zeno (timed) word is a timed �-word for which the ending

time is �nite.

As time progresses, such a word can be followed by other timed actions, so

that we extend the usual operation of concatenation after Zeno words:

if w = (a

i

; t

i

)

i<�

and w

0

= (a

0

i

; t

0

i

)

i<�

0

are timed words such that the ending

time of w is �nite, then

ww

0

= ((a

00

i

; t

00

i

))

i<�+�

0

with

�

(a

00

i

; t

00

i

) = (a

i

; t

i

) for each i < �

(a

00

�+i

; t

00

�+i

) = (a

0

i

; � (w) + t

0

i

) for each i < �

0

.

If we write " for the (timed) empty word, then of course, "w = w.

A timed language is a set of timed words. For two timed languages L and L

0

,

3

the concatenation (with the associated star and !-product operations) becomes

possible after Zeno words:

{ the concatenation of L and L

0

is the set of timed words of the form ww

0

,

where w 2 L and w

0

2 L

0

, when the concatenation of w and w

0

is de�ned,

{ the star and !-power operations are de�ned as usual from the concatenation.

3 Automata accepting trans�nite untimed words

Di�erent models of automata accepting trans�nite untimed words have been

studied ([9,20,13,4]), since B�uchi ([8]) �rst introduced them to prove the decid-

ability of monadic second order logics. Restricted to ordinals less than !

!

, these

models have the same expressive power: they accept tran�nite languages having

regular expressions. We recall their de�nitions.

3.1 Choueka n-automata

If n is a natural number, a Choueka n-automaton is a �nite automaton with a

global set of states split into n + 1 layers. A state in the k

th

layer is called a

state of type k and, for k > 0, such a state is in fact a set of states of type k� 1.

An execution begins as in a usual automaton in the �rst layer of states. After an

in�nite (!) sequence of actions, the set of in�nitely repeated states in the path

is considered as a state of the second layer. A new action may then be performed

to get down to the �rst layer and the execution can go on. A state of the third

layer will be reached after !

2

actions, and so on.

Example. The C-2-automaton in Figure 1, with initial state 1 and �nal state 3,

accepts the single word a

!

b

!

c with length !:2+ 1. After an in�nite (!) number

of a's in state 1, the new state becomes f1g. From this point, an in�nite number

of b's is possible, yielding f2g as new state, and c allows to reach the �nal state

3.

1

��

��

-

�

a

f1g

��

��

2

��

��

�

b

f2g

��

��

3

��

��

--

b

- - -

c

Fig. 1. A C-2-automaton for a

!

b

!

c

More precisely, for a �nite set Q, we de�ne inductively [Q]

0

= Q and, for

any natural number k, [Q]

k+1

is the powerset of [Q]

k

without the empty set. We

write [Q]

k

0

= Q [[Q]

1

[� � � [[Q]

k

.

A Choueka n-automaton (or C-n-automaton) is a tuple A = (�;Q; I; F;�),

where

4

� is a �nite alphabet of actions,

Q is a �nite set of states (of type 0),

I � Q is a subset of initial states,

F � [Q]

n

0

is a set of �nal states,

� � [Q]

n�1

0

� � �Q is the transition relation.

Note that the total set of states of A is S = [Q]

n

0

.

A continuous run of A on a �-word u = (a

i

)

i<�

is an �-sequence (q

i

)

i��

of

states such that:

� q

0

2 [Q]

n�1

0

� if i is the successor of some ordinal i�1, there is a transition (q

i�1

; a

i�1

; q

i

) 2

�,

� if i is a limit ordinal of type k > 0, recall that i = j + !

k

, where j = 0 or j

is an ordinal of type greater than or equal to k. In this case, q

i

is a state of

type k de�ned by: q

i

= inffq

j+!

k�1

:p

=p 2 Ng, where inffz

1

; z

2

; � � �g is the

set of elements z

i

which appear in�nitely often in the sequence.

The run is accepting if q

0

2 I and q

�

2 F and in this case, the word w is accepted

by A. The language L(A) is the set of words accepted by A. As F � [Q]

n

0

, the

words in L(A) have a length smaller than !

n

.

Remark 1. The third point above explains why such a run is called continuous:

the state corresponding to a limit ordinal is itself a limit state (of the same

type), which is reached in an implicit way, when an execution has gone in�nitely

often through some set of states of the type just below. In particular, a Choueka

1-automaton is a Muller automaton, where a usual Muller acceptance condition

is just a �nal state of type 1.

3.2 Wojciechowski automata

A Wojciechowski automaton, or W-automaton for short, is a �nite automaton

with a global set of states split into only two layers. An execution begins as in

a usual automaton in the �rst layer of states. After a sequence of actions with

length a limit ordinal, a state of the second layer is reached. A new action may

then be performed to get down to the �rst layer and the execution can go on.

A W-automaton is a tuple A = (�;Q; I; F;�), where

�, Q, I � Q are as in a C-automaton,

F � [Q]

1

0

is a set of �nal states,

� � [Q]

1

0

�� � Q is the transition relation.

The total set of states of A is S = [Q]

1

0

= Q[[Q] and a continuous run of A on

a �-word u = (a

i

)

1�i<�

is an �-sequence (q

i

)

1�i��

of states such that:

� q

1

2 [Q]

1

0

� if i is the successor of some ordinal i�1, there is a transition (q

i�1

; a

i�1

; q

i

) 2

�,

5

� if i is a limit ordinal, then q

i

, in [Q], is the set of states q such that there

exists a strictly increasing sequence of non limit ordinals (j

p

)

p2N

having i as

limit and such that q = q

j

p

, for all p in N. This set is written lim(r) and

called the limit set of the run r.

As above, the run is accepting if q

0

2 I and q

�

2 F and in this case, the word w

is accepted by A. The language L(A) is the set of words accepted by A.

To avoid, among these automata, those accepting words of any countable length,

we add the following condition : For any s in [Q] , q in Q such that there exists

a in � with (s; a; q) 2 �, then q =2 s. With this additional condition, all words

accepted have length less or equal to !

n

where n is the cardinal of Q and we

can call A a n-automaton.

Remark 2. As in the Choueka model, a continuous run is completely determined

by its non limit states. In particular, the notion of continuity, for runs of length

!, is the same in a C-automaton and in a W-automaton.

4 Timed trans�nite automata

Combining the de�nitions above and classical timed automata, as introduced in

[1], we obtain di�erent de�nitions of timed trans�nite automata. Actually, we

show that, as in the untimed case, all these models have the same expressive

power. Therefore, in the rest of the paper, we choose the de�nition which is the

more convenient with respect to the readability of the presentation or of the

proof.

A timed trans�nite automaton is obtained from an untimed one, using a �nite

set X of variables called clocks. Recall that a constraint (over X) is a propo-

sitional formula using the logical connectives f_;^;:g over atomic formulae of

the form x # c, for x 2 X, c some constant in Q, and # 2 f<;=; >g. For the

global time and the time values of clocks, we use non-negative real numbers. If

x is a clock in X, we denote by x(t) 2 R

+

the clock value of x at time t 2 R

+

,

and by X(t) the tuple (x(t))

x2X

of all clock values of X. As usual, for a real

number d, X(t)+ d is the tuple (x(t)+ d)

x2X

. If the number of clocks in X is p,

we may identify a constraint A with the subset of R

p

+

of all the tuples of clock

values satisfying A.

4.1 Timed C-n-automata

De�nition 3. A timed C-n-automaton (over R

+

) is a tuple

A = (�;Q; I; F;�;X), where

�, Q, I and F are as in an untimed C-n-automaton,

X is a �nite set of clocks and

the transition relation � contains elements of the form (q; A; a; �; q

0

), also

written q

A;a;�

���!

q

0

, where q 2 [Q]

n�1

0

, A is a constraint, a 2 �, � � X, and

q

0

2 Q.

6

Let us explain the execution of a transition q

A;a;�

���!

q

0

, when q

0

is a state of

type 0. Assume the automaton has entered state q at time t with clock values

X(t), the pair (q;X(t)) is called an extended state of A. Then, the automaton

may execute the transition at time t

0

� t, if the constraint A is satis�ed by the

clock values x(t)+ (t

0

� t) for all clocks x 2 X. The automaton switches to state

q

0

and enters this state at time t

0

. Moreover, the clocks in � are reset, so that the

new clock values are x(t

0

) = 0 for all x 2 � and x(t

0

) = x(t) + (t

0

� t) otherwise,

and the automaton has reached the extended state (q

0

; X(t

0

)).

As for timed automata, we wish to de�ne a (continuous) run of the timed

C-n-automaton A as an �-sequence of extended states:

(q

0

; X(t

0

)) (q

1

; X(t

1

)) (q

2

; X(t

2

))
� � �

(q

�

; X(t

�

))

-

A

0

; a

0

; �

0

-

A

1

; a

1

; �

1

-

t

0

-

t

1

-

However, in order to do this, it must be possible to determine the clock

values obtained when reaching a limit state after an in�nite convergent run. The

following lemma (for which the proof is rather natural) gives the answer.

Remark 4. Note that, as in classical timed automata, it is not necessary to de�ne

limits of clock values for divergent sequences of times.

Lemma 5. Let i be a limit ordinal of type k > 0, i = j + !

k

with j = 0 or j is

an ordinal of type greater than or equal to k. Assume that t

i

is �nite and let x

be a clock in X. According to the possible positions where the clock x has been

reset, one of these two cases is veri�ed:

{ Case 1: There exists some integer N such that, for each ordinal h, !

k�1

:N <

h < !

k

, x(t

j+h

) 6= 0. Then, the sequence (x(t

j+!

k�1

:p

))

p2N

is non decreasing

for p � N , bounded by t

i

, so that it is convergent.

{ Case 2: For each integer N , there exists an ordinal h, !

k�1

:N < h < !

k

,

such that x(t

j+h

) = 0. In this case, the sequence (x(t

j+!

k�1

:p

))

p2N

is the

term of a convergent series, so that its limit is zero.

Finally, a run of a timed C-n-automaton on a �-timed word w = ((a

i

; t

i

))

i<�

is

an �-sequence of extended states (q

i

; X(t

i

))

i��

, such that:

� the �rst state is q

0

2 [Q]

n�1

0

, at time t

0

2 R

+

, with values X(t

0

),

� if i � 1 is the successor of some ordinal i�1, there is a transition q

i�1

A

i

;a

i

;�

i

�����!

q

i

, executed at time t

i

, with t

i�1

� t

i

. The clock values X(t

i�1

) + t

i

� t

i�1

satisfy the constraint A

i

and x(t

i

) = 0 if x 2 �

i

, x(t

i

) = x(t

i�1

) + t

i

� t

i�1

otherwise.

� if i = j + !

k

is a limit ordinal of type k > 0, with j = 0 or j is of type � k,

q

i

is de�ned as in the untimed case. Moreover, thanks to Lemma 5, we have:

x(t

i

) = lim

p

x(t

j+!

k�1

:p

), for all x 2 X, if t

i

is �nite, and X(t

i

) is unde�ned

otherwise.

The run is convergent if the ending time t

�

is �nite. It is accepting if q

0

2 I,

t

0

= 0, the initial valuation is X(0), with x(0) = 0 for each clock x 2 X and

q

�

2 F . The word w is then accepted and the timed language L(A) is the set of

accepted words.

7

Examples.

1. Let A be the timed 2-automaton in Figure 2, with initial state 0 and �nal

(type 2) state ff1g; f2gg, and let (a

i

; t

i

)

i<!

2
be a word in the language

L = L(A).

� From the untimed point of view, we can compare A with the (untimed)

automaton in Figure 1: it is then easy to see that a factor of the form

a

!

b

!

c is obtained here through the sequence of states 01

!

f1g2

!

f2g0.

Therefore, when the state ff1g; f2gg is reached, the automaton accepts

an in�nite sequence of such factors and (a

i

)

i<!

2
= (a

!

b

!

c)

!

.

� Now look at the time constraints. The clock y has initial value zero in

the initial state 0 and it is reset at each occurrence of c, when returning

in this state. With the condition y = 1 in the next transition, this means

that the �rst action a occurs at time 1 and the time di�erence between

a c and the following a is equal to 1. Moreover, the clock x is reset each

time a �rst a appears and must be less than 1 at the time of the next

b, while the clock y must be less than 3 at the following occurrence of

c. So, for each factor of the form a

!

b

!

c, the time di�erence between the

�rst a and the �rst b is less than 1 and the time di�erence between this

a and the c is less than 2.

0

��

��?

1

��

��

s

a

2

��

��

s

b

f2g

��

��

f1g

��

��

ff1g;f2gg

"!

-

�

x < 1; b

�

�

�

�

�=

y = 1; a; fxg

Z

Z

Z

Z

Z}

y < 3; c; fyg

j

*

*

j

Fig. 2. A timed C-2-automaton A accepting L

2. The timed 2-automaton in Figure 3 can be used to describe the successive

steps in testing the resisting power of a spring: after it has been extended,

the spring oscillates an in�nite number of times (states 1 and 2) until it stops

in the state f1; 2g. If the oscillation time is too short (compared with some

time unit, taken to be 1 here), the spring is faulty (state F1). Otherwise,

the operation is repeated until the spring breaks. If it breaks too early, it is

again faulty (state F2), else the test is successful (state S).

4.2 Timed W-automata

De�nition 6. A timed W-automaton is a tuple A = (�;Q; I; F;�;X), where

8

0

��

��

-

1

��

��

2

��

��

f1; 2g

��

��

F1

��

��

F2

��

��

S

��

��

-

�

�

�

�

�

�*

ext;fx; yg

�

backward

�

forward

j

*

�

x � 1; ext;fxg

�

�

�

�

�

�

�

�

�

�*

x < 1; stop

-

y < 50; break
H

H

H

H

H

H

H

H

H

Hj

y � 50; break

Fig. 3. A timed 2-automaton for testing a spring

�, Q, I and F are as in an (untimed) W-automaton,

X is a �nite set of clocks and the transition relation � contains elements

of the form (q; A; a; �; q

0

), also written q

A;a;�

���!

q

0

, where q 2 [Q]

1

0

, A is a

constraint, a 2 �, � � X, and q

0

2 Q.

The execution of a transition q

A;a;�

���!

q

0

, when q

0

is a state of type 0 is the

same as in a timed C-automaton. As above, in order to de�ne a continuous run

of the timedW-automaton A, we need the clock values obtained when reaching

a limit state after an in�nite convergent run. These values are determined by

the following lemma (which is exactly lemma 5 above, just not stated the same

way) :

Lemma 7. Let i be a limit ordinal, with t

i

�nite, and let x be a clock in X. One

of the two following cases is veri�ed:

{ Case 1: There exists an ordinal j < i such that, for each ordinal h, j < h < i,

x(t

h

) 6= 0. Then, the sequence (x(t

h

))

j<h<i

is non decreasing and bounded

by t

i

, so that it is convergent.

{ Case 2: For each ordinal j < i, there exists an ordinal h, j < h < i, such that

x(t

h

) = 0. In this case, the sequence (x(t

h

))

j<h<i

is the term of a convergent

series, so that its limit is zero.

A run of a timedW-automaton on a �-timed word w = ((a

i

; t

i

))

1�i<�

is an

�- sequence (q

i

; X(t

i

))

0�i��

, such that:

� the �rst state is q

0

2 [Q]

1

0

, at time t

0

2 R

+

, with values X(t

0

),

� if i � 1 is the successor of some ordinal i�1, there is a transition q

i�1

A

i

;a

i

;�

i

�����!

q

i

, executed at time t

i

, with t

i�1

� t

i

. The clock values X(t

i�1

) + t

i

� t

i�1

satisfy the constraint A

i

and x(t

i

) = 0 if x 2 �

i

, x(t

i

) = x(t

i�1

) + t

i

� t

i�1

otherwise.

� if i is a limit ordinal, q

i

is de�ned as in the untimed case. Moreover, thanks

to lemma 7, we have: x(t

i

) = lim

h!i

x(t

h

), for all x 2 X, if t

i

is �nite, and

X(t

i

) is unde�ned otherwise (see Remark 4).

9

The de�nitions of convergent or accepting run is the same as before, as well

as the de�nition of the timed language L(A) of accepted words.

For example, the timedW-2-automaton in Figure 4, with initial state 0 and

�nal state f0; 1; 2g, accepts the same language L as in Figure 2. However, in

this case, any run with length !

2

is reached by crossing in�nitely often state 0

(respectively states 1 and 2), at a sequence of ordinals having !

2

as limit.

0

��

��?

1

��

��

�

a

2

��

��

�

b

f2g

��

��

f1g

��

��

f0; 1; 2g

"!

�

�

x < 1; b

�

�

�

�

�=

y = 1; a; fxg

Z

Z

Z

Z

Z}

y < 3; c; fyg

s

3

+

k

�

Fig. 4. A timed W-2-automaton for L

4.3 Reduced timed automata

For some further constructions, the previous models may appear too heavy to

manipulate : taking some copies of zero-type states of a same automaton (in

order to include in them some kind of information) will increase exponentially

the number of states of bigger type unusefully. This phenomenon may even hide

the information we want in the states. So it may be clearer if states of positive

type, playing a same goal, are merged.

Reduced timed C-n-automata.

De�nition 8. A reduced timed C-n-automaton (over R

+

) is a tuple

A = (�;S; ; I; F;�;X), where

S is a �nite set of states, disjoint union of n+ 1 subsets Q

[0]

; � � � ; Q

[n]

; each

Q

[i]

is the set of states of type i

10

 = (

i

)

1;:::;n

; each

i

is a mapping from [Q

[i�1]

] to Q

[i]

�, I � Q

[0]

, F � Q, � and X are as in a C-automaton.

As explained above, the role of the mapping

i

is to merge a set of type i�1

states, into a same type i state. Therefore, such an automaton works exactly as

a Choueka's one except for one thing: a run (q

i

; X(t

i

))

i��

is continuous if for

each ordinal i of type k > 0, decomposed as i = j + !

k

, where j = 0 or is an

ordinal of type greater than or equal to k, then q

i

=

i

(inffq

j+!

k�1

:p

=p 2 Ng),

instead of q

i

= inffq

j+!

k�1

:p

=p 2 Ng in the other de�nition.

Note that a timed C-n-automaton A = (�;Q; I; F;X;�) is a reduced one when

it is denoted by A = (�; [Q]

n

0

; ; I; F;X;�) with each

i

the identity map of

[Q]

i

.

Reduced timedW-automata.

De�nition 9. A reduced timed W-automaton (over R

+

) is a tuple

A = (�;S; ; I; F;�;X), where

S is a �nite set of states, disjoint union of two sets Q

[0]

and Q

[1]

,

 is a map from [Q

[0]

] to Q

[1]

,

�, I � Q

[0]

, F � Q, � and X are as in a W-automaton.

Reduced W-automata work as W's one except that a run (q

i

; X(t

i

))

i��

is con-

tinuous if for each limit ordinal i, then q

i

= (s) (instead of s itself in the other

de�nition) where s is the set of states q such that there exists a strictly increasing

sequence of non limit ordinals (j

n

)

n2N

having i as limit and such that q = q

j

n

,

for all n in N.

As above, a timed W-automaton A = (�;Q; I; F;�;X) is a reduced one when

it is denoted by A = (�; [Q]

1

0

; ; I; F;�;X) with the identity map of [Q].

4.4 Equivalence between trans�nite timed automata

A covering lemma. We �rst give a su�cient condition for two timed au-

tomata to recognize the same language. Let A = (�;Q; ; I; F;�;X) and B =

(�;S; �; J;G;
;X) be reduced timed C- or W-automata.

As usual, we say that A covers B if there exists a subset U (set of useful

states) of the set of total states containing all states appearing in continuous

pathes in A beginning in I and a map c from Q to S (covering) such that

cmaps�(u; a) (the set of transitions from state uwith label a) onto
(c(u); a)

for each u in U and a in �

c is continuous

c(I) = J

F = c

�1

(G)

Lemma 10. If A covers B, then L(A) = L(B).

11

Proof. Let (q

0

; X(t

0

))

(A

0

;a

0

;�

0

)

������!

(q

1

; X(t

1

))::::(q

�

; X(t

�

)) be a continuous run

in A. Then all states q

i

are in U and

(c(q

0

); X(t

0

))

(A

0

;a

0

;�

0

)

������!

(c(q

1

); X(t

1

))::::(c(q

�

); X(t

�

))

is a continuous run in B with the same label. The hypothesis made on c ensures

that this map sends the set of accepted runs in A onto the set of accepted runs

in B. �

Simulation properties between timed automata. Using Lemma 10 above,

we now proceed to prove that all the notions of trans�nite timed automata

presented above have the same expressive power.

Proposition 11. A reduced timed C- (respectivelyW-) automaton is covered by

a timed C- (respectively W-) automaton.

Proof. If � is a mapping from a set Q to a set S, we write [�] the mapping

from [Q] to [S] de�ned for q in [Q] by [�](q) = f�(q); q 2 qg and inductively

[�]

i+1

= [[�]

i

].

Let B = (�;S; ; I; F;�;X) be a reduced C-n-automaton (respectively a re-

duced W-automaton). Let m take the value n in the C case and 1 in the W

case. De�ne a mapping c from [S

[0]

]

m

0

onto S by c =

i

� [

i�1

] � � � � � [

1

]

i

from [S

[0]

]

i

onto S

[i]

for i 2 f0; :::;mg. Let A = (�;Q; I; F

0

;�

0

; X) be the

timed C-n-automaton (respectively W-automaton) de�ned by Q = S

[0]

, �

0

=

f(s; A; a; �; q)=s 2 [Q]

m

0

; q 2 S

[0]

; (c(s); A; a; �; q) 2 �g and F

0

= c

�1

(F). Then c

is a covering from A to B. �

Proposition 12. Any C-n-automaton is covered by a W-automaton.

Proof. The proof is the same as in the untimed case (see [4]).

Let A = (�;Q; I; F;�;X) be a C-n-automaton. We de�ne a W-automaton B =

(�;S; J;G;
;X) (on the same alphabet and same set of clocks) and a covering

c from B onto A by :

� S = Q [[Q]

n

1

�Q

The type of a state s in [S] is the smallest integer i in f1; : : : ; ng such that

s 2 [Q[[Q]

i�1

0

�Q]

� The map c from S [[S] into [Q]

n

0

is de�ned case by case :

If q 2 Q, then c(q) = q.

If (q; q) 2 [Q]

n

1

�Q, c((q; q)) = q.

If s 2 [S] is of type i, then c(s) = fq 2 [Q]

i�1

; 9q 2 Q (q; q) 2 sg.

� J = I

� G = c

�1

(F)

� Let � = (q; A; a; �; q

0

) be a transition in �.

If q; q

0

2 Q, then � 2

12

If q; q

0

2 Q and q 2 [Q]

n

1

, then ((q; q); A; a; �; q

0

) 2

If q 2 [Q]

n

1

, then 8s 2 c

�1

(q), (s; A; a; �; (q; q

0

)) 2

�

Proposition 13. Any W-automaton is covered by a reduced C-n-automaton.

Proof. Again, the proof is as in the untimed case (see [4]).

Let B = (�;S; J;G;
;X) be a W-automaton. Let n be the cardinal of S. We

de�ne a reduced C-n-automatonA = (�;Q; ; I; F;�;X) (on the same alphabet

and same set of clocks) and a covering c from A onto B by :

� Q

[0]

= S � [S]

n�1

� Q

[i]

= [S]� [S]

n�i

, for 0 < i � n

� The map c from Q into S [[S] is de�ned for i 2 f0; :::; ng and q in Q

[i]

by :

If i = 0, q = (s; s

1

; :::; s

n�1

) in S � [S]

n�1

, then c(q) = s

If i > 0, q = (s; s

i

:::; s

n�1

) in [S]� [S]

n�i

, then c(q) = s

{ If fq

1

; :::; q

r

g 2 [Q

[i]

] with q

j

= (s

j

; s

j

i

:::; s

n�1

j

) then

If for k > i, all s

k

j

's are equal to a same s

k

,

then (fq

1

; :::; q

r

g) = (f[

j

s

j

i

; s

i+1

; :::; s

n�1

)

Otherwise, (fq

1

; :::; q

r

g) is unde�ned

{ I = J � f;g

n�1

{ G = c

�1

(F).

{ If � = (s; A; a; �; s

0

) 2
, then

if s 2 S, then for any q

1

; :::;q

n

in [S],

((s;q

1

; :::;q

n�1

); A; a; �; (s

0

;q

1

[fsg; :::;q

n�1

[fsg) 2 �

if s 2 [S], then for any i > 0 and q

i

; :::;q

n�1

in [S],

((s;q

i

; :::;q

n�1

); A; a; �; (s

0

; fsg; :::fsg;q

i

[fsg; :::;q

n�1

[fsg) 2 �

Consider a continuous run of length

P

i

j=n�1

!

j

:n

j

entering the state (s; s

i+1

:::; s

n

)

in A and the corresponding run, via c, in B. By construction, s

i

is the set of

states visited by the last !

i

executions and, for k in fi+1; :::; n�1g, s

k

is the set

of states visited by the last

P

i

j=k

!

j

:n

j

executions of the run in B. This shows

the continuity of c by induction on the length of the run. �

Timed state-reset automata. A timed n-automaton is state-reset if all tran-

sitions entering a state of type 0 reset the same set of clocks, and the same

property is true when a state of type k � 1 is reached in an implicit way.

Lemma 14. Let A be a timed automaton. There exists a state-reset timed au-

tomaton A

0

, accepting the same language.

13

Proof. For a W-automaton , as for a Muller automaton, it su�ces to split each

state into several copies according to the set of clocks reset by the transitions

entering it, as it is in done in [3]. Note that it would not be enough for a C-

automaton.Nevertheless, the proof of proposition 13 provides a state-reset timed

C-automaton from a a state-reset timed W-automaton. �

Remark 15. This transformation will be useful in some of the following construc-

tions. Indeed, the information needed when reaching a limit state is the set of

in�nitely repeated transitions, which is more precise than only the set of in-

�nitely repeated states. A de�nition of limit states based on transitions instead

of states would allow to get rid of lemma 14. However, we chose to stay in the

usual framework.

5 Properties of the class TL

5.1 Closure properties

In the rest of the paper, we denote by TL(n) the family of timed languages

accepted by timed n-automata, for each n � 1, and we write TL =

S

n�1

TL(n).

As in the usual case of timed automata, the class TL is closed under union and

intersection.

The interesting new fact about using Zeno words is the closure under con-

catenation, as well as under star and !-power operations:

Theorem 16. The family TL is closed under union, intersection, concatena-

tion, star and !-power.

Proof. Let L and L

0

be two timed languages accepted respectively by a timed

W-n-automaton A = (�;Q; I; F;�;X) and a timed W-n

0

-automaton A

0

=

(�

0

; Q

0

; I

0

; F

0

;�

0

; X

0

).

1. The closure under (disjoint) union is straightforward, because the automata

are non deterministic, and yields a timed W-max(n; n

0

)-automaton.

2. In a similar way, a timedW-min(n; n

0

)-automaton accepting the intersection

of L and L

0

is obtained as in the untimed case by a cartesian product of A

and A

0

. On a synchronized transition, the constraint is the disjunction of

the two original constraints and the set of clocks to be reset is the union of

the two original sets.

3. The concatenation LL

0

is accepted by a timedW-h-automaton,where h = n

0

if n < n

0

and h = n+1 otherwise. The new automaton is built in the following

way: any transition (q

1

; A; a; �; q

2

) from A is replaced by (q

1

; A; a; �[X

0

; q

2

)

and the transitions of A

0

stay unchanged. Moreover, if q

0

is a state of Q

0

such that there is a transition (q

0

0

; A; a; �; q

0

) in A

0

, with q

0

0

2 Q

0

0

, then for

each �nal state q of A, the transition (q; A; a; �; q

0

) is added. The set of �nal

states is F

0

if Q

0

0

\F

0

= ; and F [F

0

otherwise.

14

4. For the star and the !-power operations, We use two copies of A, and reset

all clocks of one copy in the other one. Added to the transitions of A in

each copy, each transition leaving a starting state in one copy is doubled

from all �nal states of the other copy. Hence, a run in this automaton may

be decomposed into a concatenation of runs in A in a unique way, just by

looking at the transitions from one copy to the other. Precisely, we de�ne a

W-automaton B = (�;S; J;G;
; Y) by:

{ S = Q� f0; 1g

{ J = I � f0; 1g

{ Y = X

0

[X

1

consists of two disjoint copies ofX, namelyX

0

andX

1

. Any

constraint B on Y may be considered as a conjunction B

0

^ B

1

where

B

0

(respectively B

1

) is a constraint on X identi�ed to X

0

(respectively

X

1

). In the same way, any subset � of Y may be considered as a disjoint

union �

0

[�

1

where �

0

(respectively �

1

) is a subset of X identi�ed to X

0

(respectively X

1

).

{ Let i be in f0; 1g and let j be such that fi; jg = f0; 1g.

� Let q be in Q.

� for each (q; A; a; �; q

0

) 2 �, ((q; i); B; a; �; (q

0

; i)) 2
 with B

i

=

A, B

j

= True, �

i

= � and �

j

= X

� 8q 2 F , q

0

2 I and (q

0

; A; a; �; q

0

) 2 �, ((q; i); B; a; �; (q

0

; j)) 2

with B

i

= True, B

j

= A , �

i

= X and �

j

= �

� Let q = fq

1

; :::; q

m

g be in [Q]. and s = f(q

1

; i):::; (q

m

; i)g be in [S].

� 8(q; A; a; �; q

0

) 2 �, (s; B; a; �; (q

0

; i)) 2
 with B

i

= A, B

j

=

True, �

i

= � and �

j

= X

� If q 2 F , q

0

2 I and (q

0

; A; a; �; q

0

) 2 �, (s; B; a; �; (q

0

; j)) 2

with B

i

= True, B

j

= A , �

i

= X and �

j

= �

We �nally de�ne the set G of �nal states.

{ If

G = (F \Q)� f0; 1g

[ff(q

1

; i):::; (q

m

; i)g 2 [S]; fq

1

; :::; q

m

g 2 F and i 2 f0; 1gg;

then the language accepted by the automaton B is exactly L

+

. To add

the empty word, we simply add a new starting and accepting state.

{ If L does not contain the empty word and

G = ff(q

1

; i

1

):::; (q

m

; i

m

)g 2 [S]; fq

1

; :::; q

m

g 2 F and fi

1

; :::i

m

g = f0; 1gg;

then the language accepted by this automaton is exactly L

!

.

{ If L contains the empty word, we have to take

G = (F \Q) � f0; 1g [ff(q

1

; i

1

):::; (q

m

; i

m

)g 2 [S]; fq

1

; :::; q

m

g 2 Fg

and add a new starting and accepting state.

�

5.2 Decidability of emptiness

In the evaluation of a model, the test for emptiness is an important question.

Indeed, a positive answer allows the design of veri�cation algorithms. Thus,

15

Theorem 17 shows that our extension of timed automata retains the property of

the original class.

Theorem 17. Emptiness is decidable in the class TL.

The proof follows the standard technique introduced in [1] and extended

in [5]. For a timed language L, Untime(L) is the (untimed) language obtained

from L by removing the dates of actions, with the property that Untime(L) is

empty if and only if L is empty. From a timed automaton A accepting L, we

must then build an untimed automaton A

0

, called a region automaton, accept-

ing Untime(L). The result follows from the decidability of emptiness for the

corresponding class of untimed languages [9].

Step 1: On Time Divergence. The �rst step consists in removing the unuseful

executions which arrive on a non accepting state at in�nite time, thus cannot

be pursued. This is done by next lemma.

Lemma 18. Let A be a timed automaton. There is a timed automaton A

0

ac-

cepting the same language, with the following property called On Time Divergence

(OTD): if q is a state of type k > 0, such that there exists a transition going

out from q in A

0

, then, for any run of A

0

entering the state q, the corresponding

sequence of time is convergent.

Note that On Time Divergence is true for a timed 1-automaton, if there is no

transition going out of the states of type 1. Moreover, since the OTD property

is preserved by the transformations between C- and W-automata, we chose to

explain the construction with C-automata.

Proof. We use several copies of A and add enough clocks to make sure that all

executions with in�nite ending time arrive on a dead state. The construction

is illustrated (for n = 4) in Figures 5 and 6 for the simplest case of a timed

n-automaton B

n

, accepting all timed words with length less than or equal to !

n

,

producing B

0

n

.

In order to ensure On Time Divergence, the automaton B

0

n

= (�;Q; I; F;�;X)

has n states of type 0, Q = f1; : : : ; ng, and n�1 clocks X = fx

2

; : : : ; x

n

g. Again,

the initial state is 1 and all states are �nal. For each k � 1, the states k, fkg,

. . . (with respective type 0, . . . , k � 1) and the clock x

k

are used to produce

only convergent time sequences reaching the ordinal !

k�1

, while the dead �nal

state (of type k) f� � �fkg � � �g accepts words with a possibly divergent sequence

of length !

k

(but all the subsequences of length !

k�1

are convergent).

The automaton A

0

can then be obtained either in a similar way, or by the

classical construction of intersection for A and B

0

n

, thus ensuring that the OTD

property also holds for A

0

. �

16

1

��

��

-

��

��

?

�

�

f1g

"!

?

ff1gg

"!

?

fff1ggg

"!

?

ffff1gggg

"!

?

- - - -

I

�

o

�

]

�

Fig. 5. The automaton B

4

1

��

��

6

��

��

6

j

fx

2

; x

3

; x

4

g f1g

��

��

6

2

��

��

6

j

x

2

<= 1; fx

3

; x

4

g f2g

��

��

6

ff2gg

��

��

6

3

��

��

6

j

x

3

<= 1; fx

4

g f3g

��

��

6

ff3gg

��

��

6

fff3ggg

"!

6

4

��

��

6

j

x

4

<= 1 f4g

��

��

6

: : :

-

- -

- - -

- -

�

�

�

�

�

��

x

2

<= 1; fx

3

; x

4

g

�

�

�

�

�

��

x

3

<= 1; fx

4

g

�

�

�

�

�

��

x

4

<= 1

C

C

C

C

C

CO

y

Fig. 6. The automaton B

0

4

17

Step 2: De�nition of limit zones. We now assume A = (�;Q; I; F;�;X)

is a timed state-reset W-automaton, for which the OTD property of �rst step

holds.

Let p = card(X) and let M be the largest constant appearing in the clock

constraints of A. Recall ([2]) that a clock constraint, called here a zone, can

be considered as a union of equivalence classes, for an equivalence relation �

M

de�ned on R

p

+

(the set of all clock values). For this relation, the quotient set

V = R

p

+

= �

M

is �nite. The equivalence class of a point z = (z

i

)

1�i�p

in R

p

+

is written [z]

�

and is called a region. A time-successor relation between regions

(corresponding to the iterated Post function) is de�ned by: v � v

0

if for each

point z = (z

i

)

1�i�p

in v, there is a real number d � 0 such that z

0

= (z

i

+d)

1�i�p

belongs to v

0

. The (�nite) set of zones is written Z.

As usual, we shall build new states of type 0, as pairs of the form (q; v),

consisting of a state q of A and a region v in V. The main problem to adapt

the classical construction to W-automata is to de�ne in a consistent way the

reachable states of type 1 : given a limit set s = f(q

1

; v

1

); � � � ; (q

m

; v

m

)g of type

0 states, we already know that the limit state is q = fq

1

; : : : ; q

m

g and we have

to describe precisely which zone, denoted by lim(fv

1

; � � � ; v

m

g), is e�ectively

reached. First notice that Z = lim(fv

1

; � � � ; v

m

g) is a subset of the intersection

of the closures of the v

j

's, which is itself a union of regions containing the limits

of sequences of clock values.

From the automaton A, it is possible to know the subset X

0

of clocks, which

are reset in�nitely often in any execution r for which the limit set is R. For a

clock in X

0

, we already know that the limit value is 0. The clocks in X nX

0

are

not reset any more from a certain time on. For such a clock x, we consider the

intersection of all the constraints appearing in the v

j

's. There are three cases,

de�ning three additional subsets of clocks :

� the resulting constraint is of the form x = a

x

, a

x

� 0 and x 2 X

s

, where the

subscript s stands for "single value",

� it is of the form x 2]a

x

; b

x

[, 0 � a

x

< b

x

(where b

x

is possibly in�nite) and

x 2 X

oi

, where oi means "open interval",

� it reduces to false and x 2 X

e

, where e is for "empty".

We are now ready to de�ne the limit zone of a set of regions.

De�nition 19. Let fv

1

; � � � ; v

m

g) be a set of regions and let X = X

0

[X

s

[

X

oi

[X

e

be the corresponding partition of the set of clocks, as introduced above.

We consider four basic zones (with the usual convention:

V

x2Y

A

x

is true if Y

is empty)

� Z

0

=

V

x2X

0

(x = 0),

� Z

s

=

V

x2X

s

(x = a

x

),

� v[X

oi

] =

V

m

j=1

v

j

jX

oi

is the open region obtained by the intersection of the

restrictions to X

oi

of the v

j

's.

The region v[X

oi

] yields an ordering on the fractional parts fract(x) of the

clocks x in X

oi

, and we consider the subset X

m

of X

oi

, containing the clocks

18

x such that (i) fract(x) is maximal in this ordering and (ii) b

x

is �nite.

Then, the last zone is:

� Z

m

=

V

x2X

m

(x = b

x

).

The limit zone Z = lim(fv

1

; � � � ; v

m

g) is then de�ned by:

1. if the subset X

e

is not empty, i.e. for some clock, one of the constraints is

false, then Z = ;.

2. if X

s

is not empty, then Z = Z

0

^ Z

s

^ v[X

oi

], and time does not progress

along the cycle. In the particular case where X

oi

is empty, Z = Z

0

^ Z

s

is

reduced to a single point.

3. if X

s

= ;, then there are two subcases: if X

oi

is empty, then Z = [0]

�

is

reduced the origin point. IfX

oi

is not empty, then Z = Z

0

^Z

s

^(v[X

oi

]_Z

m

).

Step 3: Construction of the region automaton. We �nally de�ne a reduced

W-automaton A

0

= (�;S; ; I

0

; F

0

;�

0

) in the following way.

{ S = S

[0]

[S

[1]

, where S

[0]

= Q� V and S

[1]

= [Q]�Z,

{ I

0

= I � f[0]

�

g

{ F

0

= F � Z

{ if s = (q; Z) 2 S, with Z 6= ;, and a 2 �, then Z = V

1

[: : : [V

k

is

a �nite union of regions. A transition ((q; Z); a; (q

0

; V

0

)) is in �

0

if there

exist a transition (q; A; a; �; q

0

) in �, a time-successor V

00

of one of the V

j

's,

satisfying A (i.e. contained in A), such that V

0

is obtained from V

00

by the

reset of the clocks in �.

{ the mapping is de�ned for a limit state s = f(q

1

; v

1

); � � � ; (q

m

; v

m

)g by:

(s) = (fq

1

� � � ; q

m

g; lim(fv

1

; � � � ; v

m

g))

The correction of this construction is ensured by the following lemma:

Lemma 20. Let A be a timed W-automaton, P a path in A starting from an

initial state, and s a state of type 1 reached by this path. Then

1. Let x be a clock in X and c > 0 a constant, such that for any run r along

the path P , the constraint x = c is satis�ed when reaching s. Then the same

constraint x = c is satis�ed in an in�nite number of states having lim(r) = s

as limit.

2. Let r = (q

h

; X(t

h

))

h��

be a run through P such that the state s = q

i

=

fq

h

1

; � � � ; q

h

m

g is reached at �nite time t

i

. If v

h

= [X(t

h

)]

�

, for each state

q

h

of type 0, then Z

i

= lim(fv

h

1

; � � � ; v

h

m

g).

Proof. 1. This property is just another formulation of Lemma 26, which is

proved later (independently of this result) in Section 7.

2. The proof consists in looking at all the cases in the de�nition of the limit

zone above.

�

19

Example. Figure 7 shows a timed automaton accepting the language

L = f(a

!

b; (t

i

)

i�!+1

) such that 0 < t

0

< t

1

< : : : < t

!

� t

!+1

< 1g;

for which Untime(L) = fa

!

bg.

In Figure 8, which illustrates the construction of the region automaton ac-

cepting Untime(L), the (type 1) state (f1g; x = 0 ^ 0 < y � 1) is the limit

state obtained when the (type 0) state (1; x = 0 ^ 0 < y < 1) is repeated in-

�nitely often. This corresponds to the third subcase in De�nition 19 of the limit

zone: for the region v = (x = 0) ^ (0 < y < 1), we have Z

0

= (x = 0),

X

oi

= fyg, so that v[X

oi

] = 0 < y < 1 and Z

m

= (y = 1). Therefore,

Z = lim(fvg) = Z

0

^ (v[X

oi

] _Z

m

) = (x = 0 ^ 0 < y � 1).

The second type 1 state (f1g; x = 0 ^ y > 1) also corresponds to this same

subcase, but this time, with b

y

=1. Thus, for the region v

0

= (x = 0)^ (y > 1),

the limit zone is Z

0

= lim(fv

0

g) = v

0

.

1

��

��

-

�

x > 0; a; fxg

f1g

��

��

2

��

��

--

y < 1; b

-

Fig. 7. A timed 2-automaton for L

Step 4: proof of theorem 17. Finally, we verify that Untime(L) = L(A

0

)

and the result holds by applying the decidability result of [9].

Note that, like A, the automaton A

0

is state-reset and On Time Divergence

holds.

(i) Let u = (a

i

)

1�i<�

be a word in Untime(L). There exists a timed word

w = (a

i

; t

i

)

1�i<�

in L and a run r = (q

i

; X(t

i

))

0�i��

in A, accepting w,

with the transitions (q

i

; A

i+1

; a

i+1

; �

i+1

; q

i+1

) in �, for each i < �. We build

inductively a run r

0

= (q

i

; Z

i

)

0�i��

of A

0

accepting u, such that X(t

i

) 2 Z

i

.

� If i is of type 0, Z

i

is simply the equivalence class [X(t

i

)]

�

of X(t

i

), as

usual, and the transition ((q

i

; Z

i

); a

i+1

; (q

i+1

; Z

i+1

)) is in �

0

.

� If i < � is a limit ordinal, then t

i

�nite (because of OTD) and Lemma 7

gives X(t

i

) = lim

h!i

X(t

h

).

Consider now s

i

= (q

i

; Z

i

) = (f(q

h

1

; Z

h

1

); � � � ; (q

h

k

; Z

h

k

)g). By induc-

tion hypothesis, from some point on, each X(t

h

) belongs to one of

the regions Z

h

j

's. From Lemma 20 above, X(t

i

) belongs to Z

i

. Write

Z

i

= v

1

[: : :[v

m

. From the de�nition ofX(t

i+1

), there is a time-successor

v of one of the v

j

's, satisfying A

i+1

, such that [X

i+1

]

�

is obtained from

v by the reset of the clocks in �

i+1

. Thus, setting Z

i+1

= [X

i+1

]

�

, the

transition ((q

i

; Z

i

); a

i+1

; (q

i+1

; Z

i+1

)) is in �

0

, with X(t

i+1

) 2 Z

i+1

.

20

1

x=0

y=0

"!

-

1

x=0

0<y<1

"!

a

1

x=0

y=1

"!

1

x=0

y>1

"!

�

a

f1g

x=0

0<y�1

"!

"!

2

x=0

0<y<1

"!

-

2

x>0

0<y<1

"!

-

f1g

x=0

y>1

"!

"!

�

�

�

�

�

�>

a

-

a

Z

Z

Z

Z

Z

Z~

a

?

a

?

a

-

b

Z

Z

Z

Z

Z

Z~

b

-

-

Fig. 8. The region automaton accepting Untime(L)

(ii) Conversely, let u = (a

i

)

i<�

be a word in L(A

0

) and let r

0

= (q

i

; Z

i

)

i��

be a run accepting u. From the construction of A

0

, we have a sequence of

transitions (q

i

; A

i+1

; a

i+1

; �

i+1

; q

i+1

), in A, for all i. Starting from t

0

= 0, we

build inductively a time sequence (t

i

)

0�i��

and a sequence of clock values

X(t

i

)

0�i��

, such that X(t

i

) 2 Z

i

, for all i.

� Let i > 0 be of type 0 and assume that q

i

has been reached at time t

i

,

with clock values X(t

i

) in the region Z

i

. There is a time-successor v of

Z

i

, satisfying A

i+1

, such that Z

i+1

is obtained from v by the reset of

the clocks in �

i+1

. Using the de�nition of the time-successor relation, we

can �nd some real number d such that X(t

i

) + d 2 v. In this case, we

set t

i+1

= t

i

+ d and, for each clock x, x(t

i+1

) = x(t

i

) + d if x =2 �

i+1

,

x(t

i+1

) = 0 otherwise.

� Let i be a limit ordinal, with i < �. We obtain (Lemma 18) a �nite

time t

i

= lim

h!i

t

h

and (Lemma 7) limit values X(t

i

) = lim

h!i

X(t

h

),

with X(t

h

) 2 Z

h

by induction hypothesis. From the construction of A

0

,

(q

i

; Z

i

) = (f(q

h

1

; Z

h

1

); � � � ; (q

h

k

; Z

h

k

)g), where the Z

h

j

's are regions.

Again, Lemma 20 ensures that X(t

i

) belongs to Z

i

. The only di�cult

case appears when the limit zone Z

i

is not reduced to a single region,

but contains a closed region v obtained by the limitsX(t

i

) of increasing

sequences of clock values, i.e.

� Z

i

= Z

0

^ Z

s

^ (v[X

oi

] _ Z

m

), and

� there is some clock x 2 X

oi

such that x(t

i

) = b

x

belongs to Z

m

.

In this case, maybe no transition from A is possible from this particular

region v, so that we must use point 1 in Lemma 20 to build another

partial run for which the maximal values in Z

m

are not reached by the

21

maximal clocks in X

oi

. This is possible because the time sequence does

not verify x = b

x

in�nitely often. For this new run, the limit X(t

i

)

belongs to the region Z

i

= Z

0

^Z

s

^ v[X

oi

] and there is now a transition

from A. We can then conclude this case as for an ordinal of type 0.

6 Timed re�nement

6.1 A tool for re�nement: generalized transitions

In the framework of untimed automata, the re�nement of some action a corre-

sponds to the replacement of each transition labeled by a, by some �nite au-

tomaton describing the details of the operations performed by a.

When dealing with timed executions, the re�nement of an action may also

contain time requirements, so that a transition with label a should be replaced

by a timed automaton, say A

a

. Moreover, as a transition, the automaton A

a

is accessed at some time t, with (possibly non zero) values X(t) of the clocks.

Starting from these values, a convergent run of A

a

assigns a new value to each

clock. Each execution of such an automaton is thus used as a function on clock

values and must therefore behave like a transition. For this reason, we de�ne a

subclass, denoted by GT , of timed automata which we shall use in the re�nement

operations.

De�nition 21. A generalized transition is a timed n-automaton

A = (�;Q; I; F;�;X), such that:

1. the empty word " does not belong to L(A), and

2. for each convergent run of A, starting at some time t

0

in a state (q

0

; X(t

0

))

with q

0

2 Q

0

and ending in a state (q

�

; X(t

�

)), with q

�

2 F , for each clock

x in X, if x was reset at least once along the run, then its �nal value is zero.

Remark 22. � Point 1 is required because we do not allow "-transitions in

timed n-automata. Timed automata, where the empty word " may label a

transition, have been studied recently and proved to be strictly more expres-

sive than the usual model ([6], [11]).

� Point 2 expresses the fact that a run in the timed automaton simulates

a transition if the �nal clock values are either 0 if there was a reset, or

x(t

�

) = x(t

0

) + t

�

� t

0

otherwise.

� Given a timed n-automaton A, it can be decided if A is a generalized tran-

sition, by looking at the region automaton (see e.g. [2] and Theorem 17) or

at the state-reset automaton obtained by the construction of lemma 14.

Examples.

1. An automaton is reset-free ([3]) if the transitions do not reset any clock.

Clearly, a reset-free automaton is a generalized transition and we denote by

RF the corresponding subclass of GT . Figure 9 shows two basic examples

of reset-free automata. The �rst one is only a Muller timed automaton and

the second one accepts a language of �nite timed words.

22

1

��

��

-

�

x < 1; a

f1g

��

��

--

1

��

��

-

2

��

��

3

��

��

--

x < 1; a

-

x > 2; b

Fig. 9. Two reset-free timed automata

2. Another useful subclass of GT is the set of state-reset cycles: a state-reset

cycle is a state-reset 1-automaton A = (�;Q; I; F;�;X) such that F =

fQg 2 [Q]

1

. The �nal condition is a Muller condition of acceptance: an

accepting run goes in�nitely often through each state of the automaton.

From the de�nition of state-reset automata, a clock which is reset at least

once is reset in�nitely often, so that its �nal value is zero (see lemma 5).

0

��

��

-

1

��

��

2

��

��

3

��

��

f0;1;2;3g

"!

6

a; fxg

�

�

�

�

�3

a; fxg

Q

Q

Q

Q

Qs

x > 0; b

�

�

�

�

�+

1 < y � 2; c

Q

Q

Q

Q

Qk

a

-

Fig. 10. A state-reset cycle

3. In [7], two particular cases of generalized transitions were considered.

� The �rst one corresponds to instantaneous actions, which must be re�ned

into sequences of actions, all of them occurring at the same time. The

replacement is realized by a �nite timed automaton, in which all initial

transitions reset a single clock x and all subsequent transitions contain

the constraint x = 0, to ensure a simultaneous execution of the re�ne-

ment. Point 2 is true in a trivial way because the value of the only clock

is permanently equal to zero. Figure 11 shows a generalized transition,

corresponding to instantaneous executions.

� The second case, where actions are assumed to have some duration,

corresponds to the following time requirement: an action a with duration

d, is re�ned into some sequence a

1

a

2

� � �a

p

with same global duration,

i.e.

P

p

i=1

d

i

= d, where d

i

is the delay associated with a

i

. This time,

the replacement is realized by a �nite automaton with an empty set of

clocks, which makes also Point 2 true.

23

0

��

��

-

1

��

��

�

x = 0; a

2

��

��

3

��

��

-

�

�

�

�

�3

a; fxg

Q

Q

Q

Q

Qs

b; fxg

�

�

�

�

�3

x = 0; c

Q

Q

Q

Q

Qs

x = 0; b

Fig. 11. An \instantaneous" �nite automaton

A generalized transition associates with each tuple of initial clock values X(t)

the language L(A)

X(t)

, obtained by starting the executions of A at time t, with

clock values (x(t))

x2X

. Note that, again from lemma 5, each run over a Zeno

word w = ((a

i

; t

i

))

i<�

in the language L(A)

X(t)

yields �nal clock values de�ned,

for each x 2 X, by x(� (w)) = x(t) + � (w) � t if x has not been reset and

x(� (w)) = 0 otherwise (recall that � (w) = t

�

is the ending time of w). For a

Zeno word w 2 L(A)

X(t)

, we write X (w;X(t)) for the �nite set of clock values

obtained by all runs of A over w starting from X(t).

6.2 Re�nement of recognizable timed languages

When applied to recognizable languages, a good notion of re�nement must pre-

serve this property of being recognizable. As in [7], the question we are mainly

interested in, is the closure of the class TL under re�nement.

Let L be a language in TL over an alphabet � and A a timed n-automaton,

with a set X of clocks, accepting L.

De�nition 23. A re�nement of L is given by a family (A

a

)

a2�

of generalized

transitions over some other alphabet �

0

, with X as set of clocks, represented

by a mapping � : � �! GT such that �(a) = A

a

. The re�nement of a timed

action (a; t), denoted by �(a; t), is then de�ned for given clock values X(t

0

),

t � t

0

, by:

�(a; t)

X(t

0

)

= fw 2 (L(A

a

))

X(t

0

)

=� (w) = tg

It should be noticed that, if we want to be able to re�ne the last timed action

(a; t) of a timed word, by a non Zeno timed word, then we must allow its ending

time to be in�nite.

In order to de�ne the re�nement of a timed word, we introduce an operation

denoted by �, similar to a concatenation between words, and (abusively) called

composition by: if w = (a

i

; t

i

)

i<�

and w

0

= (a

0

i

; t

0

i

)

i<�

0

, with � (w) � t

0

0

, then

w �w

0

= ((a

00

i

; t

00

i

))

i<�+�

0

with

�

(a

00

i

; t

00

i

) = (a

i

; t

i

) for each i < �

(a

00

�+i

; t

00

�+i

) = (a

0

i

; t

0

i

) for each i < �

0

.

24

Note that the execution of two consecutive transitions over (a; t) and (b; t

0

)

respectively, accepts (a; t) � (b; t

0

), if t

0

� t. If these transitions are replaced

respectively by A

a

and A

b

, the corresponding executions, starting from clock

values X(t

0

), accept what we call the re�nement of (a; t) � (b; t

0

), de�ned by:

�((a; t)� (b; t

0

))

X(t

0

)

= fw�w

0

=w 2 (L(A

a

))

X(t

0

)

; � (w) = t; w

0

2 (L(A

b

))

X(t)

for some X(t) 2 X (w;X(t

0

)) and � (w

0

) = t

0

g

The operation � composes, in fact, runs of the automata A

a

and A

b

.

We extend this de�nition to a timed word w 2 L, inductively on its length.

Finally, the re�nement of L is: �(L) = [

w2L

�(w)

X(0)

. Note that, for a language,

the initial time is chosen as t

0

= 0 and the initial values of the clocks are all

equal to zero: x(0) = 0, for each clock x 2 X.

If L and L

0

are two languages of trans�nite words, we say that L

0

is a re�ne-

ment of L if there exists a timed re�nement � such that L

0

= �(L). As already

remarked in Subsection 6.1, this de�nition of re�nement generalizes those intro-

duced in [7].

Remark 24. Besides its interest as a new tool, this notion of re�nement allows

us to obtain with another point of view the result of [3]: it may be used to �nd

a timed regular expression (up to renaming) for a recognizable timed language.

First note that, for the operation �, we clearly have an equivalent of Kleene

theorem for the familyRFL of timed languages accepted by reset-free automata:

Proposition 25. For a letter a in � and an interval I of time, we consider

the timed language a

I

= f(a; t)=t 2 Ig. The class RFL is the smallest family

containing the languages a

I

, and closed under union, composition (�) and the

star and !-power operations derived from �.

Now, let L be a timed language in TL(1). As in [3], we can write L = �(

T

p

i=1

L

i

),

where � is a renaming and each L

i

is a timed language accepted by an automaton

with only one clock. Moreover, L

i

= �

i

(M

i

) is a re�nement of a regular (untimed)

language M

i

and, for a 2 �, the timed automaton �

i

(a) reset his single clock

only in the �nal states, which are assumed to be dead states. This result gives

a regular expression for L (with renaming), based on two di�erent operations :

the usual concatenation and the composition �.

7 The main results about timed re�nement

Before stating precisely the results, we describe a problem arising in the con-

structions of re�nements.

7.1 Basic cases of timed re�nement

Consider again the language (introduced in Section 6) a

I

= f(a; t)=t 2 Ig, where

a is a letter and I an interval of time, and let � be the mapping sending a to

25

some timed automaton A

a

over an alphabet �, with L

a

= L(A

a

). Then, the

re�nement of the language a

I

is the set of words in L

a

with ending time in I:

�(a

I

) = L

a

\ fw=w is a timed word over � such that � (w) 2 Ig

It is easy to see that fw=w is �nite and � (w) 2 Ig is recognizable. Hence, if L

a

contains only �nite words, then �(a

I

) is also recognizable.

However, this is not the case when L

a

contains in�nite words because L

inf

I

=

fw=w is in�nite and � (w) 2 Ig is not recognizable in general. In fact, Lemma 26

and 27 below give precise results.

Lemma 26. The language L

inf

I

= fw=w is in�nite and � (w) 2 Ig is not ac-

cepted by a timed automaton if the interval I is of the form [c

1

; c

2

[, fc

2

g or

[c

2

;1[, for real numbers c

1

; c

2

such that 0 � c

1

< c

2

.

Proof. It is proved in [11] that L

inf

I

cannot be accepted by a timed automaton,

when I = [0; c

2

[. It remains now to prove that the language L

inf

fcg

is not recogniz-

able for any positive real number c. Assume there is a Muller timed automaton

A accepting L

inf

fcg

. Then, there exists a path in A accepting a timed word with

a stricly increasing time sequence (t

i

)

i<!

convergent to c:

(q

0

; X(t

0

)) (q

1

; X(t

1

)) (q

2

; X(t

2

))
� � �

(q

!

; X(t

!

))

-

A

0

; a

0

; �

0

-

A

1

; a

1

; �

1

-

t

0

-

t

1

-

After a �nite number of steps, say k, all transitions occur in�nitely often

along this path.

{ Let x be a clock reset after this k

th

step. Then, it is reset in�nitely often

along the path. The constraints veri�ed by x after the k

th

step cannot be of

the form x > a > 0 because the run would not accept a Zeno word, neither

x = 0 because the run would not accept a strictly increasing sequence, so

they must be of the form x > 0, or x < a, or x � a or conjunctions of these.

Anyway, they are veri�ed by any strictly increasing convergent sequence of

times, after a while.

{ Let x be a clock which is not reset after this k

th

step, so it is not reset

anymore along the rest of the path. All constraints veri�ed by x after this

k

th

step must accept an in�nite number of the values x(t

k

)+t

i

�t

k

. Therefore,

they must be conjunctions of constraints of the form x 2 I where I is an

interval containing an open interval]x(t

k

)+ b� t

k

; x(t

k

)+ c� t

k

[with b < c.

Since there are only a �nite numbers of transitions and a �nite number of

clocks involved, we may even suppose that b is independent of x and of the

transitions considered.

So the automaton accepts on the same path timed words w such that � (w) < c

(� (w) = (b+ c)=2 for instance), which is a contradiction.

Lemma 27. Let L be any timed language in TL. Then L

I

= fw ; w 2 L= � (w) 2

Ig is in TL for any interval I of the form]c

1

; c

2

] , [0; c

2

] ,]c

1

;1[, for real numbers

c

1

; c

2

such that 0 � c

1

< c

2

.

26

Proof. � To obtain an automaton accepting L

[0;c

2

]

, we start from an automa-

ton accepting L and we add a new clock x, with the additional constraint

x � c

2

on each transition.

� To obtain an automaton accepting L

]c

1

;1[

, we consider two distinct copies of

an automaton accepting L (but on the same set of clocks) and a new clock

x. All transitions of the �rst copy are also sent in the second one with the

addition of the clock constraint x > c

1

. The new set of initial states is the

set of initial states of the �rst copy and the new set of �nal states is the set

of �nal states of the second copy.

�

7.2 Closure of the class TL under re�nement

We now give a positive answer for the closure of TL under re�nement: starting

from a suitable Muller timed automaton and replacing recursively some transi-

tions by Muller timed automata in GT , we obtain a Choueka timed automaton.

Therefore the re�nement, when de�ned, preserves the recognizability of timed

languages. Moreover, each class TL(n) is closed under re�nements using only

�nite timed automata in GT , so the notion of re�nement proposed here is in-

teresting in the usual class of timed languages TL(1).

Theorem 28. Let L be a language in TL(n) over an alphabet �, accepted by a

timed W-automaton A with a set X of clocks, and let � be a timed re�nement.

For each a 2 �, we consider the generalized transition �(a) = A

a

, the language

L

a

= L(A

a

) and �

a

, the subset of clocks of X reset in A

a

. If, for each a 2 �,

1. for each transition � = (A; a; �) in A labelled by a, we have �

a

� � and,

2. (a) either the language L

a

contains only �nite words,

(b) or for each transition � in A labelled by a, for each clock x 2 X, the

clock constraint associated with � is a disjunction of subformulas of the

form x 2 I, where I =]c

1

; c

2

] or I = [0; c

2

] or I =]c

1

;1[,

then �(L) belongs to TL.

Remark 29. 1. We may intuitively explain the �rst condition for a transition �

labelled by a. In the subset � of clocks to be reset, there is a part reset by

the action and another part reset by the system. Of course, the part reset

by the action a must be the same for all transitions labelled by a.

2. Lemma 26 explains why condition 2(b) in Theorem 28 is necessary to build

a re�nement, when condition 2(a) does not hold.

Proof. Re�ning an action a by a language L

a

, we have to replace in A =

(�;Q; I; F;�;X) each transition with label (A; a; �) by a timed automaton ac-

cepting L

a

\ fw=X(� (w)) 2 Ag. Write �

a

the subset of transitions labeled by

a in �. We may suppose that no transitions in �

a

are loops and we consider a

27

W-automaton A

a

= (�;R; J;G; !;X) accepting L

a

. We may also suppose that

J is reduced to a single state j with no loops and that G is reduced to a single

state g which is a dead state. We give the construction of the timed automaton

accepting �(L) in the two cases of Theorem 28.

First case: g 2 R, i.e. L

a

only contains �nite words.

In this case, the construction is straigthforward.

For all � in �, let A

a;�

= (�;R

�

; fj

�

g; fg

�

g; !

�

; X) be distinct copies of A

a

. The

W-automaton B = (�;S;K;H;
;X), de�ned below, accepts �(L).

{ S = Q [

�2�

a

R

�

and

{
 = (� � �

a

) [

�2�

a

!

�

[�!

�

where �!

�

, for � = (q; A; a; �; r) is de�ned as

the set of the following transitions :

� if (g

�

; B; b; �; h

�

) 2 !

�

, then (q; B; b; �; h

�

) 2 �!

�

� if (h

�

; B; b; �; j

�

) 2 !

�

, then (h

�

; B ^A; b; �; r) 2 �!

�

� if T 2 [Q] contains q and r, if (T;B; b; �; s) 2 � , then for each subset U

of S such that U \Q = T , (U;B; b; �; s) 2 �!

�

{ K = I

{ H = F [fU � S such that U \Q 2 Fg

Second case: g 2 [R].

In this case, the construction is more involved : we replace a transition

(q; A; a; �; r) by A

a

. But a transition leaving A

a

to return in r is an implicit

one. A clock x in �, which is not reset in A

a

, cannot be reset, except if we reset

it all along the path in A

a

. We then have to use inside A

a

a copy of x. Thus,

reaching r, these two copies have no more the same value and this would make

impossible for a run to go through A

a

again. For this reason, we shall use two

copies of each clock and split the states according to their use of one or the

other. This is done in the �rst step.

(i) FIRST STEP.

For each clock x in X, we consider two distincts copies of x denoted by x

0

and

x

1

, and for any subset � of X, we write �

0

= fx

0

;x 2 �g and �

1

= fx

1

;x 2 �g.

We consider the reduced W-automaton

A

0

= (�;Q

0

; I

0

; F

0

;

0

;�

0

; X

0

= X [X

0

[X

1

)

de�ned by :

{ Q

0[0]

= Q� f0; 1g

X

{ Q

[1]

= [Q]� f0; 1g

X

{ I

0

= I � f(0)

x2X

g

{ F

0

= F � f0; 1g

X

{ In �

0

, clocks of X

0

[X

1

are not submitted to any constraint, so that a

constraint on X

0

may be identi�ed to a constraint on X without ambiguity.

� For all (q; B; b; �; r) in � n �

a

(i.e. b 6= a) and for all " in f0; 1g

X

,

((q; "); B; b; �[fx

"

x

;x 2 �g; (r; ")) 2 �

0

28

� For all (q; A; a; �; r) in �

a

and for all " = ("

x

)

x2X

in f0; 1g

X

, de�ne

"

0

= ("

0

x

)

x2X

by

� "

0

x

= "

x

if x =2 �

� f"

0

x

; "

x

g = f0; 1g if x 2 �

Then ((q; "); A; a; �[fx

"

0

x

;x 2 �g; (r; "

0

)) 2 �

0

� If f(q

j

; "

j

) ; j 2 f1; :::; kg is a subset of [Q

0

], with "

j

= ("

j

x

)

x2X

, de�ne

" = ("

x

)

x2X

by : Let x be in X

� If all "

j

x

are equal, "

x

is their common value.

� Otherwise "

�

= 0 by default.

�

0

(f(q

j

; "

j

) ; j 2 f1; :::; kgg) = (fq

j

; j 2 f1; :::; kgg; ")

Then the �rst projection from Q

0

onto Q de�nes a covering from A

0

onto A

and L(A

0

) = L(A). From the construction, we have:

Lemma 30. Let (q; ") be a state of A

0

with " = ("

x

)

x2X

. For any run in A

0

and any clock x in X, x and x

"

x

have the same value when the run enters (q; ").

(ii) SECOND STEP.

Let �

0

= ((q; "); A; a; � [fx

"

x

;x 2 �g; (r; "

0

)) in �

0

a

de�ned as above from a

transition � = (q; A; a; �; r) of �

a

. We consider the generalized transition A

�

0

=

(�;R

�

0

; J

�

0

= fj

�

0

g; G

�

0

= fg

�

0

g; !

�

0

;

�

0

; X

0

= X [X

0

[X

1

) which is obtained

from A

a

by the following di�erent operations:

{ we take a copy of A

a

in which we replace each clock x of � by its copy x

"

x

.

Then each clock x in � and its other copy x

"

0

x

are reset on each transition.

{ the automaton is modi�ed according to Lemma27 to accept instead of L

a

the

language L

a

\fw=X

�

(� (w)) 2 Ag where X

�

= fx 2 X;x =2 �g[fx

"

x

;x 2 �g.

The reduced timed automatonB = (�;S;K;H; �;
;X

0

= X[X

0

[X

1

), de�ned

below, accepts �(L).

{ S

[0]

= Q

0[0]

[

�

0

2�

0

a

R

[0]

�

0

{ S

[1]

= Q

0[1]

[

�

0

2�

0

a

R

[1]

�

0

{ K = I

0

[fj

�

0

; �

0

= (q; A; a; �; r) 2 �

0

a

such that q 2 I

0

g

{ H = F

0

[[fg

�

0

; �

0

= (q; A; a; �; r) 2 �

0

a

such that r 2 F

0

g

{
 = (�

0

� �

0

a

) [

�

0

2�

0

a

!

�

0

[�!

�

0

where, for �

0

= (q; A; a; �; r) in �

0

, �!

�

0

is

the set of the following transitions :

� If �

00

= (s; B; b; �;q) with b 6= a, then s; B; b; �; j

�

) 2 �!

�

0

.

� If �

00

= (s; B; a; �;q) 2 �

0

, then (g

�

00

; B; a; �; j

�

0

) 2 �!

�

0

.

� If �

00

= (r; B; b; �; s) 2 �

0

with b 6= a, then (g

�

0

; B; b; �; s;) 2 �!

�

0

.

{ � (T) for T � [S

[0]

] is de�ned by :

� � (T) = (T) if T � Q

0[0]

� � (T) =

�

0

(T) if there exists �

0

in �

0

a

such that T � R

[0]

�

0

� � (T) = T \Q

0[0]

[fq; r ; 9�

0

= (q; A; a; �; r) 2 �

0

a

such that fj

�

0

; g

�

0

g �

Tg

�

29

As a simple example, consider again the automaton in Figure 2, accepting

the language L and suppose we want to build the automaton accepting �(L),

where � is the mapping which leaves a and b unchanged and associates with c

the timed language

L

c

= f(a

i

; t

i

)

i<!

/ the time sequence (t

i

)

i<!

is strictly increasing and

a

i

= d for each ig:

Two generalized transitions A

c

and B

c

corresponding to L

c

are represented in

Figure 13, where B

c

is the modi�cation required fromA

c

to remove the self-loop.

The timed automaton accepting �(L) is represented in Figure 14.

0

��

��
?

1

��

��

s

a

2

��

��

s

b

f2g

��

��

f1g

��

��

ff1g;f2gg

"!

-

�

x < 1; b

�

�

�

�

�=

y = 1; a; fxg

Z

Z

Z

Z

Z}

y < 3; c; fyg

j

*

*

j

Fig. 12. A timed automaton A accepting L

3

��

��

-

�

z > 0; d; fzg

f3g

��

��

--

3

��

��

-

4

��

��

f3; 4g

"!

-

6

z > 0; d; fzg

?

z > 0; d; fzg

1

q

A

c

B

c

Fig. 13. Generalized transitions for �

30

0

��

��
?

1

��

��

s

a

2

��

��

s

b

f2g

��

��

f1g

��

��

ff3g;f4gg

"!

3

��

��

3

��

��

�

x < 1;

b; fz; y

0

g

?

y = 1;

a; fx; z; y

0

g

:

z > 0 ^ y

0

< 3;

d; fz; yg

"

"

"

"

"

"

"

"+

y = 1;

a; fx; z; y

0

g

?

z > 0 ^ y

0

< 3;

d; fz; yg

6

z > 0 ^ y

0

< 3;

d; fz; yg

s

3

)

i

Fig. 14. A timed automaton accepting �(L)

7.3 A decomposition theorem

The last result indicates a property of decomposition: any language in TL(n+1)

is obtained from a language (in TL(1)) accepted by a Muller timed automaton,

using successive re�nements.

Theorem 31. Let n be an integer, n � 1. Any timed language in TL(n+ 1) is

the re�nement of some language in TL(n).

Note that conditions of Theorem 28 holds for the re�nement constructed in

Theorem 31.

Proof. We use here C-automata for practical reasons. Let L

0

be a language in

TL(n + 1), L

0

= L(A), for some n + 1-automaton A

0

= (�

0

; Q

0

; I

0

; F

0

;�

0

; X

0

).

From Lemma 14, we assume that A

0

is state-reset. The idea underlying the

construction is to introduce new transitions, that can be taken instead of runs

leading to states of type 1. We �rst associate with each non empty subset P of

Q

0

:

{ the state-reset cycle A

P

= (�

0

; P; P; fPg;�

0

; X),

{ the set �

0

P

= fD � �

0

=st(D) = Pg, where st is de�ned for a transition

� = (q; A; a; �; q

0

) by st(�) = q

0

and st(D) = fst(�)=� 2 Dg,

{ the clock constraint A

P

=

W

D2�

0

P

A

D

, with A

D

=

V

�2D

A

�

, for D 2 �

0

P

,

where A

�

is the constraint associated with the transition � (recall that A is

the upper closure of the constraint A, i.e. the constraint obtained from A by

adding the limits of non-decreasing sequences of elements in A),

31

{ the subset of clocks �

P

= [

D2�

0

P

[

�2D

�

�

, where �

�

is the constraint asso-

ciated with the transition �,

{ a new letter a

P

, not in �

0

.

We consider the new alphabet �

1

= fa

P

; P 2 [Q

0

]

1

g and � = �

0

[�

1

and we

build a new automaton that will contain transitions of the form (q; A

P

; a

P

; �

P

; P),

so that P becomes a state of type 0. More precisely, we de�ne a n-automaton

over the alphabet �, A = (�;Q; I; F;�;X), accepting L, with:

{ Q = Q

0

[[Q

0

]

1

and I = I

0

{ if (q; A; a; �; q

0

) is a transition of �

0

, with q 2 Q and q

0

2 Q

0

, then it is also

a transition in �

{ (q; A

P

; a

P

; �

P

; P) is in � for all q 2 P , P 2 [Q

0

]

1

{ in order to de�ne the transitions from states of type i, 1 � i � n in �, we

de�ne inductively a sequence of mappings

i

from [Q]

i

into [Q

0

]

i+1

, 1 � i � n

by:

1

(q) = q \ [Q

0

]

1

for q 2 [Q]

1

and for i � 2, if q = fq

1

; � � � ; q

k

g is in [Q]

i

,

then

i

(q) = f

i�1

(q

1

); � � � ;

i�1

(q

k

)g. A transition (q; A; a; �; q

0

), q 2 [Q]

i

,

q

0

2 Q belongs to � if and only if (

i

(q); A; a; �; q

0

) belongs to �

0

.

{ the set F of �nal states of A is de�ned in the following way: with the conven-

tion

0

= id on Q, a state q 2 [Q]

i

belongs to F if and only if

i

(q) belongs

to F

0

.

Finally, we de�ne a re�nement � by the mapping from � into GT : for a

P

2

�

1

, �(a

P

) = A

P

, and for a 2 �

0

, �(a) is the elementary untimed transition (in

GT) labelled by a:

k k-

a

Finally, it is easy from the construction above to prove that �(L) = L

0

.

�

Note that this theorem gives in fact an algorithm to �nd a regular expres-

sion (with renaming) for a timed language in TL. We can also use the method

proposed in Remark 24.

8 Conclusion

In this work, we developed two original studies.

The �rst one is devoted to timed automata accepting sequences of Zeno

words. We believe that some physical phenomena deserve to be described by

such sequences: those where an in�nite number of actions occur in a �nite lapse

of time. We proved that the corresponding class of languages (TL) retains nice

properties of the usual class (TL(1)): closure properties and decidability of empti-

ness. Furthermore, concatenation of Zeno words becomes a meaningful operation

inside the class TL.

32

The second one concerns a new and general de�nition of timed re�nement.

Apart from a few particular cases of untimed re�nement for timed languages,

there was, up to now, no such systematic study in the framework of recognizable

timed languages. The main result is the following: the class TL is the closure

under timed re�nement of the class TL(1). Moreover, as an application, we

obtain an exhaustive description of timed re�nement (by �nite timed automata

in a special set GT) inside the lowest class TL(1), as well as a new algorithm to

�nd a timed regular expression (with renaming).

References

1. R. Alur and D.L. Dill. Automata for modeling real-time systems. In Proceedings

of ICALP'90, number 443 in Lecture Notes in Computer Science, pages 322{335.

Springer Verlag, 1990.

2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183{235, 1994.

3. E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata. In

Proceedings of LICS'97, 1997.

4. N. Bedon. Finite automata and ordinals. Theoretical Computer Science, 156:119{

144, 1996.

5. B. B�erard. Untiming timed languages. Information Processing Letters, 55:129{135,

1995.

6. B. B�erard, P. Gastin, and A. Petit. On the power of non observable actions in

timed automata. In Proceedings of STACS'96, number 1046 in Lecture Notes in

Computer Science, pages 257{268. Springer Verlag, 1996.

7. B. B�erard, P. Gastin, and A. Petit. Re�nement and abstraction for timed lan-

guages. Technical report, LSV, CNRS URA 2236, ENS de Cachan, 1997.

8. R. B�uchi. On a decision method in restricted second order arithmetic. In Proceed-

ings of the International Congress on Logic, Methodology and Philosophy, pages

1{11. Stanford University Press, 1962.

9. Y. Choueka. Finite automata, de�nable sets and regular expressions over !

n

-tapes.

Journal of Computer and System Sciences, 17:81{97, 1978.

10. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems

in real-time systems. In Proceedings of CAV'91, number 575 in Lecture Notes in

Computer Science, pages 399{409. Springer Verlag, 1991.

11. V. Diekert, P. Gastin, and A. Petit. Removing �-transitions in timed automata.

In Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer

Science (STACS'97), number 1200 in Lecture Notes in Computer Science, pages

583{594. Springer Verlag, 1997.

12. M.R. Hansen, P.K. Pandya, and C. Zhou. Finite divergence. Theoretical Computer

Science, 138:113{139, 1995.

13. J. C. Hemmer and P. Wolper. Ordinal �nite automata and languages. Technical

report, University of Liege, 1992.

14. T.A. Henzinger, Z. Manna, and A. Pnueli. Temporal proofs methodologies for

real-time systems. In Proceedings of POPL'91, pages 353{366, 1991.

15. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking

for real-time systems. Information and Computation, 111(2):193{244, 1994.

16. N. Lynch and H. Attiya. Using mappings to prove timing properties. In Proceedings

of PODC'90, pages 265{280, 1990.

33

17. J. Ostro�. Temporal Logic of Real-time Systems. Research Studies Press, 1990.

18. C. Ramchandani. Analysis of asynchronous concurrent systems by Petri nets.

Technical report, Massachusetts Institute of Technology, 1974.

19. J.G. Rosenstein. Linear orderings. Academic Press, New York, 1982.

20. J. Wojciechowski. Finite automata on trans�nite sequences and regular expres-

sions. Fundamenta Informaticae, 8.3-4:379{396, 1985.

34

