
ar
X

iv
:1

50
1.

07
13

1v
2 

 [
cs

.F
L

] 
 2

8 
Ju

l 2
01

5

Consensus Game Acceptors
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Abstract We study a game for recognising formal languages, in which
two players with imperfect information need to coordinate on a common
decision, given private input strings correlated by a finite graph. The
players have a joint objective to avoid an inadmissible decision, in spite
of the uncertainty induced by the input.
We show that the acceptor model based on consensus games characterises
context-sensitive languages, and conversely, that winning strategies in
such games can be described by context-sensitive languages. We also
discuss consensus game acceptors with a restricted observation pattern
that describe nondeterministic linear-time languages.

1 Introduction

The idea of viewing computation as an interactive process has been at the ori-
gin of many enlightening developments over the past three decades. With the
concept of alternation, introduced around 1980 by Chandra and Stockmeyer,
and independently by Kozen [6], computation steps are attributed to conflicting
players seeking to reach or avoid certain outcome states. This approach relies
on determined games with perfect information, and it lead to important and
elegant results, particularly in automata theory. Around the same time, Peter-
son and Reif [18] initiated a study on computation via games with imperfect
information, also involving teams of players. This setting turned out to be even
more expressive, but also overwhelmingly difficult to comprehend. (See [3, 10],
for more recent accounts.)

In this paper, we propose a game model of a language acceptor based on
coordination games between two players with imperfect information. Compared
to the model of Reif and Peterson, our setting is extremely simple: the games are
played on a finite graph, plays are of finite duration, they involve only one yes/no
decision, and the players have no means to communicate. Moreover, they are
bound to take their decisions in consensus. Given an input word that may yield
different observations to each of the players, they have to settle simultaneously
and independently on a common decision, otherwise they lose.

We model such systems as consensus game acceptors, a particular case of
coordination games with perfect recall, also described as multiplayer concurrent
games or synchronous distributed games with incomplete information in the
computer-science literature. Our motivation for studying the acceptor model is
to obtain lower bounds on the complexity of basic computational problems re-
garding these more general games, specifically (1) solvability: whether a winning
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strategy exists, for a given game, and (2) implementability: which computational
resources are needed to implement a winning strategy, if any exists.

Without the restrictions to consensus and to a single decision per play, the
solvability problem for coordination games with safety winning conditions is
known to be undecidable for two or more players [18, 19]. Furthermore, Janin [11]
points out that there exist two-player safety games that admit a winning strategy
but none that can be implemented by a Turing machine.

Our first result establishes a correspondence between context-sensitive lan-
guages and winning strategies in consensus games: We prove that every context-
sensitive language L corresponds to a consensus game in which the characteristic
function of L describes a winning strategy, and conversely, every consensus game
that admits a joint winning strategy also admits one characterised by a context-
sensitive language. Games with imperfect information for one player against the
environment (which, here we call Input) display a similar correspondence with
regular languages; they correspond to consensus games where the two player
receive identical (or functionally dependent) observations. In extension, we con-
sider consensus games where the observations of the two players can be ordered,
and we show that the resulting acceptor model subsumes context-free languages
and moreover allows to describe languages decidable in nondeterministic time.

The correspondence has several consequences in terms of game complexity.
On the one hand, it reveals that consensus games preserve surprisingly much
of the computational complexity found in games with imperfect information, in
spite of the restriction to a single decision and to consensus. Consensus games are
relevant because they represent coordination games in the limiting case where
signalling is impossible. The classical constructions for proving undecidability
of synchronous distributed games typically simulate a communication channel
that may lose one message and involve an unbounded number of non-trivial
decisions by which the players describe configurations of a Turing machine [19,
2, 22]. In contrast, our undecidability argument for acceptor games relies on the
impossibility to attain common knowledge when knowledge hierarchies can grow
unboudedly, and this can be witnessed by a single decision. Apart of this, we
obtain a simple game family in which winning strategies are PSpace-hard to run,
in the length of the play, or, in a positive perspective, where winning strategies
can be implemented by a linear-bounded automata whenever they exist.

2 Preliminaries

For classical notions of formal languages, in particular context-sensitive lan-
guages, we refer, e.g., to the textbook of Salomaa [21]. We use the characterisa-
tion of context-sensitive languages in terms of nondeterministic linear-bounded
automata, given by Kuroda [12] and the following well-known results from the
same article: (1) For a fixed context-sensitive language L over an alphabet Σ,
the problem whether a given word w ∈ Σ∗ belongs to L is PSpace-hard. (2) The
problem of determining whether a given context-sensitive language represented
by a linear-bounded automaton contains any non-empty word is undecidable.
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2.1 Consensus game acceptors

Consensus acceptors are games between two cooperating players 1 and 2, and an
additional agent called Input. Given a finite observation alphabet Γ common to
both players, a consensus game acceptor G = (V,E, (β1, β2), v0, Ω) is described
by a finite set V of states, a transition relation E ⊆ V × V , and a pair of
observation functions βi : V → Γ that label every state with an observation,
for each player i = 1, 2. There is a distinguished initial state v0 ∈ V with no
incoming transition. States with no outgoing transitions are called final states;
the admissibility condition Ω : V → P({0, 1}) maps every final state v ∈ V to a
nonempty subset of admissible decisions Ω(v) ⊆ {0, 1}. The observations at the
initial and the final states do not matter, we may assume that they are labelled
with the same observation # for both players.

The game is played as follows: Nature chooses a finite path π = v0, v1, . . . , vn+1

in G from the initial state v0, following transitions (vℓ, vℓ+1) ∈ E, for all ℓ ≤ n, to
a final state vn+1. Then, each player i receives a private sequence of observations
βi(π) := βi(v1), β

i(v1), . . . , β
i(vn) and is asked to take a decision ai ∈ {0, 1},

independently and simultaneously. The players win if they agree on an admis-
sible decision, that is, a1 = a2 ∈ Ω(vn+1); otherwise they lose. Without risk of
confusion we sometimes write Ω(π) for Ω(vn+1).

We say that two plays π, π′ are indistinguishable to a player i, and write
π ∼i π′, if βi(π) = βi(π′). This is an equivalence relation, and its classes,
called the information sets of Player i, correspond to observation sequences
βi(π). A strategy for Player i is a mapping si : V ∗ → {0, 1} from plays π

to decisions si(π) ∈ {0, 1} such that si(π) = si(π′), for any pair π ∼i π′ of
indistinguishable plays. A joint strategy is a pair s = (s1, s2); it is winning, if
s1(π) = s2(π) ∈ Ω(π), for all plays π. In this case, the components s1 and s2

are equal, and we use the term winning strategy to refer to the joint strategy
or either of its components. Finally, a game is solvable, if there exists a (joint)
winning strategy.

In the terminology of distributed systems, consensus game acceptors corre-
spond to synchronous systems with perfect recall and known initial state. They
are a particular case of distributed games with safety objectives [16], coordina-
tion games with imperfect information [4], or multi-player concurrent games [1].

Strategies and knowledge. We say that two plays π and π′ are connected, and
write π ∼∗ π′, if there exists a sequence of plays π1, . . . , πk such that π ∼1 π1 ∼2

· · · ∼1 πk ∼2 π′. Then, a mapping f : V ∗ → {0, 1} from plays to decisions is
a strategy that satisfies the consensus condition if, and only if, f(π) = f(π′),
for all π ∼∗ π′. In terms of distributed knowledge, this means that, for every
play π, the events {π ∈ V ∗ | f(π) = 1} and {π ∈ V ∗ | f(π) = 0} are common
knowledge among the players. (For an introduction to knowledge in distributed
systems, see the book of Fagin, Halpern, Moses, and Vardi [9, Ch. 10, 11].) Such
a consensus strategy — or, more precisely, the pair (f, f)— may still fail, due to
prescribing inadmissible decisions. We say that a decision a ∈ {0, 1} is safe at a
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play π if a ∈ Ω(π′), for all π′ ∼∗ π. Then, a consensus strategy f is winning, if
and only if, it prescribes a safe decision f(π), for every play π.

It is sometimes convenient to represent a strategy for a player i as a func-
tion f i : Γ ∗ → {0, 1}. Every such function describes a valid strategy, because
observation sequences identify information sets; we refer to an observation-based

strategy in contrast to the state-based representation si : V ∗ → {0, 1}. Note
that the components of a joint winning strategy need no longer be equal in the
observation-based representation. However, once the strategy for one player is
fixed, the strategy of the other player is determined by the consensus condition,
so there is no risk of confusion in speaking of a winning strategy rather than a
joint strategy pair.

As an example, consider the game depicted in Figure 1, with observation
alphabet Γ = {a, b, ⊳, ⊲,�}. States v at which the two players receive different
observations are split, with β1(v) written in the upper part and β2(v) in the
lower part; states at which the players receive the same observation carry only
one symbol. The admissible decisions at final states are indicated on the outgoing
arrow. Notice that upon receiving the observation sequence a2b2, for instance,
the first player is constrained to choose decision 1, due to the following sequence
of indistinguishable plays that leads to a play where deciding 0 is not admissible.




a, a

a, ⊳

b, ⊲

b, b


 ∼2




a, a

⊳, ⊳

⊲, ⊲

b, b


 ∼1




a, ⊳

⊳, ⊲

⊲, ⊳

b, ⊲


 ∼2




⊳, ⊳

⊲, ⊲

⊳, ⊳

⊲, ⊲


 ∼1




⊳,�

⊲,�

⊳,�

⊲,�


 ∼2




�,�

�,�

�,�

�,�




In contrast, decision 0 may be safe when Player 1 receives input a3b2, for instance.
Actually, the strategy s1(w) that prescribes 1 if, and only if, w ∈ {anbn : n ∈ N}
determines a joint winning strategy. Next, we shall make the relation between
games and languages more precise.

3 Describing languages by games

We consider languages L over a letter alphabet Σ. The empty word ε is excluded
from the language, and also from its complement L̄ := (Σ∗\{ε})\L. As acceptors
for such languages, we consider games over an observation alphabet Γ ⊇ Σ,
and we assume that no observation sequence in Σ+ is omitted: for every word
w ∈ Σ+, and each player i, there exists a play π that yields the observation
sequence βi(π) = w. Every consensus game acceptor can be modified to satisfy
this condition without changing the winning strategies.

Given an acceptor game G, we associate to every observation-based strategy
s ∈ S1 of the first player, the language L(s) := {w ∈ Σ∗ : s(w) = 1}. We say
that the game G covers a language L ⊆ Σ∗, if G is solvable and

– L = L(s), for some winning strategy s ∈ S1, and
– L ⊆ L(s), for every winning strategy s ∈ S1.
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10, 1

Figure 1. A consensus game acceptor

If, moreover, L = L(s) for every winning strategy in G, we say that G charac-

terises L. In this case, all winning strategies map L to 1 and L̄ to 0.
As suggested above, the consensus game acceptor represented in Figure 1

covers the language {anbn : n ∈ N}. To characterise a language rather than
covering it, we need to add constraints that require to reject inputs.

Given two games G,G′, we define the conjunction G ∧ G′ as the acceptor
game obtained by taking the disjoint union of G and G′ and identifying the
initial states. Then, winning strategies of the component games can be turned
into winning strategies of the composite game, if they agree on the observation
sequences over the common alphabet.

Lemma 1. Let G, G′ be two acceptor games over observation alphabets Γ , Γ ′.

Then, an observation-based strategy r is winning in G∧G′ if, and only if, there

exist observation-based winning strategies s, s′ in G, G′ that agree with r on Γ ∗

and on Γ ′∗, respectively.

Whenever a language and its complement are covered by two acceptor games,
we can construct a new game that characterises the language. The construction
involves inverting the decisions in a game, that is, replacing the admissible deci-
sions for every final state v ∈ V with Ω(v) = {0} by Ω(v) := {1} and vice versa;
final states v with Ω(v) = {0, 1} remain unchanged.

Lemma 2. Suppose two acceptor games G, G′ cover a language L ⊆ Σ∗ and its

complement L̄, respectively. Let G′′ be the game obtained from G′ by inverting

the admissible decisions. Then, the game G ∧G′′ characterises L.
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3.1 Domino frontier languages

We use domino systems as an alternative to encoding machine models and formal
grammars (See [23] for a survey.). A domino system D = (D,Eh, Ev) is described
by a finite set of dominoes together with a horizontal and a vertical compatibility
relation Eh, Ev ⊆ D×D. The generic domino tiling problem is to determine, for a
given system D, whether copies of the dominoes can be arranged to tile a given
space in the discrete grid Z × Z, such that any two vertically or horizontally
adjacent dominoes are compatible. Here, we consider finite rectangular grids
Z(ℓ,m) := {0, . . . , ℓ+ 1} × {0, . . . ,m}, where the first and last column, and the
bottom row are distinguished as border areas. Then, the question is whether
there exists a tiling τ : Z(ℓ,m) → D that assigns to every point (x, y) ∈ Z(ℓ,m)
a domino τ(x, y) ∈ D such that:

– if τ(x, y) = d and τ(x+ 1, y) = d′ then (d, d′) ∈ Eh, and
– if τ(x, y) = d and τ(x, y + 1) = d′ then (d, d′) ∈ Ev.

The Border-Constrained Corridor tiling problem takes as input a domino
system D with two distinguished border dominoes # and �, together with a
sequence w = w1, . . . , wℓ of dominoes wi ∈ D, and asks whether there exists a
height m such that the rectangle Z(ℓ,m) allows a tiling τ with w in the top row,
# in the first and last column, and � in the bottom row:

– τ(i, 0) = wi, for all i = 1, . . . , ℓ;
– τ(0, y) = τ(ℓ + 1, y) = #, for all y = 0, . . . ,m− 1;
– τ(x,m) = �, for all x = 1, . . . , ℓ.

Domino systems can be used to recognise formal languages. For a domino
system D with side and bottom border dominoes as above, the frontier lan-

guage L(D) is the set of words w ∈ D∗ that yield positive instances of the
border-constrained corridor tiling problem. We use the following correspondence
between context-sensitive languages and domino systems established by Latteux
and Simplot.

Theorem 3 ([13, 14]). For every context-sensitive language L ⊆ Σ∗, we can

effectively construct a domino system D over a set of dominoes D ⊇ Σ with

frontier language L(D) = L.

Figure 2 describes a domino system for recognising the language anbn also
covered by the game in Figure 1. In the following, we show that domino systems
can generally be described in terms of consensus game acceptors.

3.2 Uniform encoding of domino problems in games

Game formulations of domino tiling problems are standard in complexity theory,
going back to the early work of Chlebus [7]. However, these reductions are typi-
cally non-uniform: they construct, for every input instance consisting of a domino
system together with a border constraint, a different game which depends, in
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particular, on the size of the constraint. Here, we use imperfect information to
construct a uniform reduction that associates to a fixed domino system D a
game G(D), such that for every border constraint w, the question whether D, w

allows a correct tiling is reduced to the question of whether decision 1 is safe in
a certain play associated to w in G(D).

# a a a a ⊳ a b ⊲ b b b b #

# ⊳ ⊳ ⊲ ⊲ ⊳ ⊲ # # � � � � #

#

#

a

a

a

⊳

b

b

b

⊲

⊳

�

⊲

�

⊲

⊳

⊳

⊲

(a) domino system for an

b
n

# a a a b b b #
# a a ⊳ ⊲ b b #
# a ⊳ ⊲ ⊳ ⊲ b #
# ⊳ ⊲ ⊳ ⊲ ⊳ ⊲ #
# � � � � � � #

(b) tiling a
3
b
3

Figure 2. Characterising a language with dominoes

Proposition 4. For every domino system D, we can construct, in polynomial

time, a consensus game acceptor that covers the frontier language of D.

Proof. Let us fix a domino system D = (D,Eh, Ev) with a left border domino #
and a bottom domino �. We construct an acceptor game G for the alphabet
Σ := D \ {#,�} to cover the frontier language L(D).

The game is built as follows. There are domino states of two types: singleton
states d for each d ∈ D \ {#} and pair states (d, b) for each (d, b) ∈ Ev. At
singleton states d, the two players receive the same observation d.

At states (d, b), the first player observes d and the second player b. The
domino states are connected by moves d → d′ for every (d, d′) ∈ Eh, and (d, b) →
(d′, b′) whenever (d, d′) and (b, b′) are in Eh. There is an initial state v0 and two
final states ẑ and z, all associated to the the observation # for the border domino.
From v0 there are moves to all compatible domino states d with (#, d) ∈ Eh,
and all pair states (d, b) with (#, d) and (#, b) ∈ Eh. Conversely, the final state z
is reachable from all domino states d with (d,#) ∈ Eh, and all pair states (d, b)
with (d,#) and (b,#) ∈ Eh; the final ẑ is reachable only from the singleton
bottom domino state �. Finally, admissible decisions are Ω(z) = {0, 1} and
Ω(ẑ) = {1}. Clearly, G is an acceptor game, and the construction can be done
in polynomial time.

Note that any sequence x = d1, d2, . . . , dℓ ∈ Dℓ that forms a horizon-
tally consistent row in a tiling by D corresponds in the game to a play πx =
v0, d1, d2, . . . , dℓ, z or πx = v0,�

ℓ, ẑ. Conversely, every play in G corresponds
either to one possible row, in case Nature chooses a single domino in the first
move, or to two rows, in case it chooses a pair. Moreover, a row x can appear on
top of a row y = b1, b2, . . . , bℓ ∈ Dℓ in a tiling if, and only if, there exists a play ρ

in G such that πx ∼1 ρ ∼2 πy, namely ρ = v0, (d1, b1), (d2, b2), . . . (dℓ, bℓ), z.
Now, we claim that, at an observation sequence π = w for w ∈ Σℓ the decision

0 is safe if, and only if, there exists no correct corridor tiling by D with w in the
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top row. According to our remark, there exists a correct tiling of the corridor
with top row w, if and only if, there exists a sequence of rows corresponding
to plays π1, . . . , πm, and a sequence of witnessing plays ρ1, . . . , ρm−1 such that
w = π1 ∼1 ρ1 ∼2 π2 · · · ∼

1 ρm−1 ∼2 πm = �
ℓ. However, the decision 0 is unsafe

in the play �
ℓ and therefore at w as well. Hence, every winning strategy s for

G must prescribe s(w) = 1, for every word w in the frontier language of D,
meaning that L(s) ⊆ L(D).

Finally, consider the mapping s : D∗ → A that prescribes s(w) = 1 if, and
only, if w ∈ L(D). The observation-based strategy s in the acceptor game G

is winning since s(�∗) = 1, and it witnesses the condition L(s) = L(D). This
concludes the proof that the constructed acceptor game G covers the frontier
language of D. ⊓⊔

4 Characterising context-sensitive languages

Theorem 5. For every context-sensitive language L ⊆ Σ∗, we can construct

effectively a consensus game acceptor that characterises L.

Proof. Let L ⊆ Σ∗ be an arbitrary context-sensitive language, represented, e.g.,
by a linear-bounded automaton. By Theorem 3, it is possible to construct a
domino system D with frontier language L. Then, by Proposition 4, we can
construct an acceptor game G that covers L(D) = L. Due to the Immerman-
Szelepcsényi Theorem, context-sensitive languages are effectively closed under
complement, so we construct an acceptor game G′ that covers L̄ following
the same procedure. Finally, we combine the games G and G′ as described in
Lemma 2 to obtain an acceptor game that characterises L. ⊓⊔

One interpretation of the characterisation is that, for every context-sensitive
language, there exists a consensus game that is as hard to play as it is to de-
cide membership in the language. On the one hand, this implies that winning
strategies for consensus games are in general PSpace-hard. Indeed, there are in-
stances of acceptor games that admit winning strategies, however, any machine
that computes the decision to take in a play requires space polynomial in the
length of the play.

Theorem 6. There exists a solvable consensus game acceptor for which every

winning strategy is PSpace-hard.

Proof. There exist context-sensitive languages with a PSpace-hard word prob-
lem [12]. Let us fix such a language L ⊆ Σ∗ together with a consensus game G

that characterises it, according to Theorem 5. This is a solvable game, and every
winning strategy can be represented as an observation-based strategy s for the
first player. Then, the membership problem in L reduces (in linear time) to the
problem of deciding the value of s in a play in G: For any input word w ∈ Σ∗,
we have w ∈ L if, and only if, s(w) = 1. In conclusion, it is PSpace-hard to
decide whether s(π) = 1, for every winning strategy s in G. ⊓⊔

8



On the other hand, it follows that determining whether a consensus game
admits a winning strategy is no easier than solving the emptiness problem of
context-sensitive languages, which is well known to be undecidable.

Theorem 7. The question whether an acceptor game admits a winning strategy

is undecidable.

Proof. We reduce the emptiness problem for a context-sensitive grammar to the
solvability problem for a acceptor game.

For an arbitrary context-sensitive language L ∈ Σ∗ given as a linear bounded
automaton, we construct an acceptor game G that characterises L, in polynomial
time, according to Theorem 5. Additionally, we construct an acceptor game G′

that characterises the empty language over Σ∗: this can be done, for instance,
by connecting a clique over letters in Σ observable for both players to a final
state at which only the decision 0 is admissible. Now, for any word w ∈ Σ∗, the
game G′ requires decision 0 at every observation sequences w ∈ Σ∗, whereas
G requires decision 1 whenever w ∈ L. Accordingly, the acceptor game G ∧ G′

is solvable if, and only if, L is empty. As the emptiness problem for context-
sensitive languages is undecidable [12], it follows that the solvability problem is
undecidable for consensus game acceptors. ⊓⊔

We have seen that every context-sensitive language corresponds to a con-
sensus game acceptor such that language membership tests reduce to winning
strategy decisions in a play. Conversely, every solvable game admits a winning
strategy that is the characteristic function of some context-sensitive language.
Intuitively, a strategy should prescribe 0 at a play π whenever there exists a
connected play π′ at which 0 is the only admissible decision. Whether this is the
case can be verified by a nondeterministic machine using space linear in the size
of π.

Theorem 8. Every solvable acceptor game admits a winning strategy that is

implementable by a nondeterministic linear bounded automaton.

5 Games for weaker language classes

The relation between the observation sequences received by the players in a syn-
chronous game on a finite graph can also be explained in terms of letter-to-letter
transducers, that is, finite-state automata where the transitions are labelled with
input and output letters (See, e.g., [20, Ch. IV]). For a game G, the relation
{(β1(π), β2(π)) ∈ Γ ∗ × Γ ∗ : π a play in G } and its inverse are recognised by
letter-to-letter transducers with the same transition structure as G. Conversely,
every transducer τ can be turned into a game by letting one player observe the
input and the other player the output letter of every transition. The consensus
condition requires decisions to be invariant under the transitive closure τ∗ of
the described relation over Γ ∗, which corresponds to iterating letter-to-letter
transductions. Denoting by Lacc ⊆ Γ ∗ the language of observation sequences for
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plays in which only the decision 1 is admissible, the Σ-language covered by G is
L := Σ∗τ∗Lacc. To characterise L, we additionally need to ensure L̄ = Σ∗τ∗Lrej,
for the language Lrej of observation sequences for plays in which only decision 0
is admissible. Thus, every consensus game acceptor can be described as a col-
lection of three finite-state devices: two automata recognising the accepting and
rejecting seed languages Lacc and Lrej, and a (nondeterministic) letter-to-letter
transducer τ relating the observation sequences of the players.

Properties of iterated letter-to-letter transductions, or equivalently, length-
preserving transductions, have been investigated in [15], also leading to the con-
clusion that iterated transducers capture context-sensitive languages. In the fol-
lowing, we investigate restrictions of consensus game acceptors towards capturing
weaker language classes.

Firstly, we remark that regular languages correspond to games where the two
players receive the same observation at every node.

Proposition 9. Every regular language L ⊆ Σ∗ is characterised by a consensus

game acceptor with identical observations for the players.

Here, the consensus condition is ineffective, the model reduces to one-player
games with imperfect information. To characterise a regular language L, we can
build a game from a deterministic automaton for L, by moving symbols from
transitions into the target states and allowing Nature to go from every accepting
state in the automaton to a final game state vacc with Ω(vacc) = {1}, and from
every rejecting state to a final state vrej with Ω(vrej) = {0}. Conversely, given
a consensus game acceptor G with identical observations, the accepting seed
language Lacc mentioned above yields the language characterised by G. Clearly,
winning strategies in such games are regular.

We say that a consensus game acceptor has ordered observations if its al-
phabet Γ can be ordered so that β1(v) ≥ β2(v), for every state v ∈ V . One
consequence of this restriction is that the implementation complexity of winning
strategy drops from PSpace to NP.

Proposition 10. Every solvable acceptor game with ordered observations ad-

mits a winning strategy that is characterised by a language in NP.

Without loss of generality we can assume that the symbols occurring in Lrej or
Lacc are disjoint from the input alphabet Σ and order them below. Then, given
a sequence of observations π ∈ Σ∗, any sequence of indistinguishable plays that
starts with observation π and leads to Lrej or Lacc is of length at most |Γ | × |π|.
To decide whether to prescribe 0 or 1 at π, a nondeterministic machine can guess
and verify such a sequence in at most cubic time.

Despite this drop of complexity, games with ordered observations are suffi-
ciently expressive to cover context-free languages.

Lemma 11. Every context-free language is covered by a consensus game accep-

tor with ordered observations.

Firstly, any Dyck language over a finite alphabet Σ of parentheses, possibly
with extra neutral symbols, can be covered by a consensus game acceptor over
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Σ extended with one additional � symbol ordered below Σ. The accepting seed
language is Lacc = �

∗, and the plays allow to project either a neutral symbol
or an innermost pair of parentheses from the observation sequence of the first
player by replacing them with � observations for the second player. Next, we
observe that the class of languages covered by consensus game acceptors with
ordered observations is effectively closed under intersection and letter-to-letter
transductions, and thus particularly under letter-to-letter homomorphisms. The
statement then follows by the Chomsky-Schützenberger [8] representation theo-
rem, in the non-erasing variant proved by Okhotin [17]: every context-free game
is the letter-to-letter homomorphic image of a Dyck language with neutral sym-
bols with a regular language.

Since it is undecidable whether two context-free languages have non-empty
intersection [21], the above lemma also imples that the solvability problem for
consensus game acceptors is undecidable, already when observations are ordered.
Concretely, we can represent the standard formulation of Posts Correspondence
Problem as a solvability problem for such restricted consensus games.

Corollary 12. The question whether a consensus game acceptor with ordered

observations admits a winning strategy is undecidable.

Due to the characterisation of nondeterministic linear-time languages as ho-
momorphic images of intersections of three context-free languages due to Book
and Greibach [5], we can draw the following conclusion.

Theorem 13. For every language L decidable in nondeterministic linear time,

we can effectively construct a consensus game acceptor with ordered observations

that covers L.
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