
Verification of database-driven systems
via amalgamation

Mikołaj Bojańczyk∗
Univ. of Warsaw

Luc Segoufin
INRIA and ENS Cachan

Szymon Toruńczyk∗
Univ. of Warsaw

ABSTRACT
We describe a general framework for static verification of
systems that base their decisions upon queries to databases.
The database is specified using constraints, typically a schema,
and is not modified during a run of the system. The system
is equipped with a finite number of registers for storing inter-
mediate information from the database and the specification
consists of a transition table described using quantifier-free
formulas that can query either the database or the registers.

Our main result concerns systems querying XML databases
– modeled as data trees – using quantifier-free formulas with
predicates such as the descendant axis or comparison of data
values. In this scenario we show an ExpSpace algorithm for
deciding reachability.

Our technique is based on the notion of amalgamation and
is quite general. For instance it also applies to relational
databases (with an optimal PSpace algorithm).

We also show that minor extensions of the model lead to
undecidability.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic

General Terms
Logic, automata

Keywords
Database-driven Systems, Register Automata, Amalgama-
tion, Fräıssé classes

1. INTRODUCTION
In this paper we describe a general framework for static

verification of database-driven systems. Such a system bases
its decisions upon queries to databases. Typical examples

∗Authors supported by ERC Starting Grant “Sosna”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2066-5/13/06 ...$15.00.

are web services, web applications, or data-centric business
processes. These systems can be complex and error prone.
Computer-aided static analysis can improve their robustness
and correctness.

In order to perform static analysis, the behavior of the
database-driven system is specified in a suitable formalism;
the desired properties of its executions are also specified
in a suitable formalism. The computer then automatically
checks whether all runs of the system verify the expected
properties.

As advocated in [10], classical software verification tech-
niques have serious limitations when applied to such systems
– the main reason is that they abstract away data values,
resulting in serious loss of semantics for both the system and
the properties being verified.

For this reason, several specific formalisms have been de-
signed allowing meaningful specification of relational database-
driven systems. See for instance [8, 6, 4, 5, 9]. As demon-
strated in [9], for these scenarios, the system can be de-
scribed using a register automaton whose transition rules
are quantifier-free first-order formulas querying the database
and the registers. The correctness criterion for executions
of the system is specified using a language mixing queries
to the database and temporal behavior that can easily be
translated into the same register automata model. Alto-
gether the static analysis problem boils down to testing the
existence of a database such that the register automaton has
an accepting run driven by that database.

In this paper we develop general techniques for testing
reachability of such automata models. These techniques
encompass the examples cited above concerning relational
databases, but also apply to XML databases, and – in gen-
eral – to any kind of structures having “good” model prop-
erties.

Following [9], we specify database-driven systems using
transition rules controlling their workflow. Each such rule
may be based on the result of quantifier-free queries to the
database. The database is not fixed and may vary from
run to run. It is however restricted to range over a certain
class of databases typically specified using a schema and
possibly several other constraints. Moreover the system has
only read access to the database and the database does not
change during a run.

To give an idea of the setting we are dealing with, let us
describe a toy example of a database-driven system S that
fits into our framework. The system S is equipped with one
register capable of storing nodes of XML documents. We
specify the transitions of S as follows:

The node stored in the register after the transi-
tion is a descendant of the node stored in the reg-
ister before the transition and the attribute a of
both nodes (before and after) contains the same
data value.

Furthermore, we specify that in the initial configuration of
the system, the register stores the root of the tree, and in an
accepting configuration, it must store some leaf of the tree.
Note that the transitions of the system do not modify the
database.

We are interested in the following question: is there some
XML document t such that the described system has an
accepting run driven by t? We may ask more detailed ques-
tions: is there some XML document t satisfying a certain
XML schema such that the described system has an accept-
ing run driven by t?

In general our goal is to give an algorithm for the following
problem, parametrized by a class C of databases.

– Input. A database-driven system.

– Output. Does the system have some finite accepting
run driven by some database in C?

We show that if the class C of databases satisfies a certain
model-theoretic assumption – namely, it is a computable
Fräıssé class – then there exists an algorithm for the de-
scribed problem.

Our main technical result shows that many natural classes
of databases are Fräıssé. Examples include: all databases
over a given relational schema, three-colorable graphs (more
generally, any property of databases expressed as a Con-
straint Satisfaction Problem), XML documents viewed as
data trees satisfying a given XML schema (more generally,
any property of trees recognized by a tree automaton).

The most interesting and most difficult result is the XML
case. In this scenario the database is an XML document
that must verify a certain XML schema. The system can
query the XML document using the descendant axis, the
document order and the closest common ancestor relation.
It can also test equality or inequality between attribute val-
ues. Our generic technique shows that in this setting the
above problem is decidable in ExpSpace.

In the setting of relational databases, we derive from our
generic technique an optimal PSpace decision procedure.

We also show how extending slightly the expressive power
of these systems quickly leads to undecidability. For in-
stance, in the XML setting, allowing the system to use the
sibling axis or the child axis in its queries leads to undecid-
ability.

Comparison with previous work. The model described
in this paper generalizes the previous existing models of au-
tomata introduced for relational database-driven systems [8,
6, 4, 5, 9]. In particular, the domain can be linearly ordered
and the specification of the database-driven system may use
this order within the quantifier-free formulas. In this paper
we notice that the key is the Fräıssé property, which holds
for linear orders, and show that the XML setting is also
Fräıssé.

In terms of results, this paper considers only finite runs
and generalizes all the previous known results concerning
the existence of finite runs. As shown in several of the

above cited papers, the existence of infinite runs lead to ad-
ditional challenges which are not solved by the Fräıssé prop-
erty alone. However, in all the practical cases mentioned
here the existence of infinite runs can be reduced to the ex-
istence of finite runs using a Ramsey argument as described
in [9].

2. DATABASE-DRIVEN SYSTEMS
We model databases as finite structures over finite schemas

containing relation and function symbols. We use standard
terminology from model theory (see [7] for a reference); we
briefly recall the relevant notions below.

Basic notions.
A schema Σ is a finite set of relation symbols and function

symbols, each with a given arity (0-ary function symbols are
constant symbols). A model, or structure, A over a schema Σ
is a set dom(A) – the domain of A – together with an inter-
pretation sA for each symbol s ∈ Σ as a relation or function
over the domain of an appropriate arity, as described by the
schema. A structure is said to be finite if its domain is finite.
A database is a finite structure over a given schema.

By substructure we always mean in this paper an induced
substructure, i.e. a restriction of the initial structure to a
subset of its domain, which is closed under the function sym-
bols from the schema.

A homomorphism from a structure A to a structure B, is
a mapping h : dom(A) → dom(B) that preserves the rela-
tions and functions from Σ, i.e. (a1, . . . , ak) ∈ RA implies
h(a1, . . . , ak) ∈ RB, and h(fA(a1, . . . , ak)) = fB(h(a1, . . . , ak)),
for all tuples a1, . . . , ak of elements of dom(A) and func-
tion/relation symbols of arity k. An isomorphism is a bi-
jective homomorphism whose inverse mapping is also a ho-
momorphism. An automorphism is an isomorphism from A
to itself. Finally an embedding is a mapping h that is an
isomorphism onto the substructure induced by the image
of h.

We assume familiarity with first-order logic. We write
A |=val ϕ to express the fact that a first-order formula ϕ
holds in the structure A with the valuation val for its free
variables.

Database-driven systems.
A database-driven system over a schema Σ is described by

the following components.

– A finite set of control states Q = {p, q, . . .}

– A finite set of registers X = {x, y, . . .}

– A subset of initial states I ⊆ Q

– A subset of accepting states F ⊆ Q

– Finitely many transition rules of the form:

p
δ→ q

where p, q are control states and δ is a quantifier-free first-
order formula over the schema Σ with free variables in the
set X × {new, old}. The formula δ is called the guard of
the transition and relates the values of the registers before
and after the transition.

Fix a database-driven system as described above. A config-
uration is a triple (D, q, val), where:

– D is a database over the schema Σ;

– q is a control state;

– val : X → D is a valuation, which maps the registers to
elements in the domain of D.

We say that there is a transition between configurations
(Dold, qold, valold) and (Dnew, qnew, valnew), if

– Dold = Dnew (transitions do not modify the database)

– There is a transition rule qold
δ→ qnew such that

Dold |=val δ

where val(x, i) = vali(x) for x ∈ X, i ∈ {old,new}.

A run of the system is a sequence of configurations that
begins in a configuration with an initial state, and where two
consecutive configurations are connected by a transition. In
this paper, we are interested in finite runs. A run is accepting
if the control state in its last configuration is accepting. It
follows from the definition that for each run, there is some
database D that is shared by all configurations in the run.
We say that the run is driven by D. Note that different runs
of the same system may be driven by different databases.

Example 1. Consider directed graphs, where some of the
nodes are colored red, and the remaining nodes are white.
This corresponds to a schema with one binary edge predicate
E and one unary predicate red.

We describe a database-driven system whose accepting
runs trace odd-length cycles of red nodes. The system has
the following components.

– The control states are {start , q0, q1, end}. The initial
state is start and the accepting state is end .

– The registers are x, y.

– There is a transition rule q0
δ→ q1, where the guard δ is

(xold = xnew) ∧ E(yold, ynew) ∧ red(ynew).

There is also a transition rule q1
δ→ q0, with the same

guard. This means that the system alternates between
the states q0 and q1, each time moving the content of
register y along an edge to some red node (the content of
register x stays in place).

There is a transition rule start
α→ q0, where the guard α

is

xold = xnew = yold = ynew

There is also a transition q1
α→ end , with the same guard.

This means that, in order to exit the initial state, both
registers need to point to the same vertex; likewise, in
order to enter the accepting state, both registers need to
point to the same vertex.

Here is an example run of the system. The run is driven by
the database that is the graph G depicted below. The nodes
of the graph are colored red or white; the numbers are not
part of the database, they are used to identify the nodes.

1

2
3

5
4

An accepting run of the system, driven by G is:

(G, start , [1, 1])→ (G, q0, [1, 1])→ (G, q1, [1, 2])→ (G, q0, [1, 3])→
→ (G, q1, [1, 4])→ (G, q0, [1, 5])→ (G, q1, [1, 1])→ (G, end , [1, 1]),

where [i, j] denotes the valuation that maps x to the node
marked with i and y to the node marked with j.

In general, the described system has an accepting run
driven by a graph G if and only if there is a cycle in G
of odd length, consisting only of red nodes.

The emptiness problem. In this paper, we study the fol-
lowing decision problem, which is parametrized by a class C
of databases over a common schema Σ, and called emptiness
of database-driven systems over C.

– Input. A database-driven system over Σ.

– Output. Does the system have some finite accepting
run driven by some database in C?

Actually, in some of our results also a finite description of
the class C will be given on input. The following observa-
tion shows that the problem is PSpace-hard for almost any
choice of parameter C.

Lemma 1. The emptiness problem for database-driven sys-
tems over C is PSpace-hard if C contains at least one database
with at least two elements.

Existential guards. Before describing our results in more
detail, we point out that replacing quantifier-free formulas
by existential formulas in the guards when specifying the
system does not affect the expressive power nor the decid-
ability results, as quantified variables can be simulated by
using extra registers and nondeterminism.

Fact 2. For every database-driven system with existen-
tial guards one can compute in linear time a database-driven
system with quantifier-free guards accepting the same runs
driven by the same databases.

However, as we shall show later on, further extensions
of the guards, such as boolean combinations of existential
formulas, break decidability.

3. DECIDABILITY RESULTS
In this section, we present the main results of the paper,

which show that emptiness of database-driven systems is
decidable over certain classes of databases.

3.1 XML documents and regular tree languages
This class is motivated by XML databases. We work with

vertex-labeled, unranked and sibling-ordered trees. We use
the standard terminology for trees: root, leaf, descendant,
ancestor, child, parent, sibling. The next sibling of a node
x is the first (and therefore unique) sibling after x in docu-
ment order, which might not exist if x is a rightmost sibling.
The following sibling is the transitive (but not reflexive) clo-
sure of the next sibling relation. Likewise, each node has at
most one previous sibling, but possibly many preceding sib-
lings. We use the standard notion of regular languages for
unranked trees. The automaton model is presented in Sec-
tion 5.3.

It is easy to see that in the presence of a successor rela-
tion database-driven systems can simulate counters and are
therefore undecidable. See also Section 6.1. For this reason
we disallow in our model the use of the child, parent, next
sibling and previous sibling relations and only allow rela-
tions such as ancestor, descendant, following and preceding
sibling. As a matter of fact we can also include the docu-
ment order and the closest common ancestor function that
maps x, y to the node that is a descendant of all common
ancestors of both x and y.

We model a tree t as a database, denoted by Treedb(t),
whose domain is the nodes of the tree, and which is equipped
with the following predicates and functions:

– A unary predicate for every possible node label (there are
finitely many labels);

– Binary predicates for document order (denoted by ≤doc)
and descendant order (denoted by �v);

– A binary function for closest common ancestor, which is
denoted by x ∧ y. Observe that the descendant relation
is defined in terms of this function by a quantifier-free
formula:

x �v y iff x = x ∧ y

If the set of node labels is A, then the schema above is
denoted by TreeSchema(A).

Our main result on trees is that emptiness of database-
driven systems is decidable over any regular tree language,
even when the description of the regular language is also
part of the input.

Theorem 3. The following problem is decidable:

– Input. A tree automaton defining a language L of
trees labeled by an alphabet A, and a database-driven
system over TreeSchema(A).

– Output. Is there a tree t ∈ L and an accepting run of
the system driven by Treedb(t)?

For a fixed tree automaton, the problem is PSpace-complete.
When both the tree automaton and the system are given on
input, the problem is in ExpSpace.

The database-driven systems are only allowed to access
the trees through quantifier-free formulas that use the pred-
icates included in TreeSchema(A). By Fact 2, we could also
allow the systems to use existential formulas defined in terms
of the predicates in TreeSchema(A). Some navigation pred-
icates for trees, such as child, next sibling, or even simply

sibling are not definable this way. We will later show (Sec-
tion 6) that adding any one of the above three predicates
leads to undecidability.

The proof of Theorem 3 will be given in Sections 4 and 5.

Adding data values. We show in Section 4.4 a composi-
tion method implying that our results extend to databases
storing data values allowing equality tests. In particular,
the result of Theorem 3 remains valid if each node of the
tree also carries a data value in N and the query can test
these values using equalities or inequalities. The complexity
bound is not affected by this extension.

3.2 Homomorphims
In this section, we consider schemas with relations only,

and no functions. Suppose that G and H are two databases
over the same schema. Suppose that H is some database.
By HOM(H) we denote the class of all databases over the
schema of H that map homomorphically to H. In other
words, G ∈ HOM(H) if and only if there is a homomor-
phism f : G→ H.

The database H is called the template for the classHOM(H).
Examples of HOM(H) include n-colorable graphs for every
n (when H is a n-clique).

We show that if a class of databases can be defined as
HOM(H) for some H, then it admits an algorithm for empti-
ness of database-driven systems. As for Theorem 3, we ac-
tually prove a stronger result where the template is also part
of the input.

Theorem 4. The following problem is PSpace-complete.

– Input. A template database H and a database-driven
system over the schema of H

– Output. Does the system have an accepting run driven
by some database in HOM(H)?

Example 2. Let H be the graph below, with nodes colored
red or white.

Then a graph G maps homomorphically to H if and only if
there is no red cycle of odd length in G. On the other hand,
the system from Example 1 has a G-driven run if and only if
there is some red cycle of odd length in G. Therefore, there
is no database G ∈ HOM(H) such that the system has an
accepting run driven by G.

The proof of Theorem 4 will be given in Section 4.

Adding data values. As for the previous case, the result of
Theorem 4 remains valid if each node of the tree also carries
a data value in N and the query can test these values using
equalities or inequalities.

4. THE METHOD
Both decidability results stated in the previous section,

namely Theorems 3 and 4, are proved using the same method.
The method is presented in this section. The general idea is

to add some more predicates or functions to the databases,
so that the resulting class of databases has good closure
properties, of which the most important is closure under
amalgamation.

4.1 Fraïssé classes and amalgamation
An instance of amalgamation consists of two embeddings

of the same database C into two other databases:

α1 : C→ A1 α2 : C→ A2.

A solution to the instance is a database D, together with
embeddings

β1 : A1 → D β2 : A2 → D.

such that the diagram above commutes, i.e. β1◦α1 = β2◦α2.
Following [7, Chapter 6, Section 6.1] a Fräıssé class is a

class C of databases over a common schema such that:

– C is closed under embeddings: if C is a database in C and
D is any database over the same schema that embeds into
C, then D ∈ C;

– C is closed under amalgamation: every instance of amal-
gamation, where the databases A1,A2,C all belong to C,
has a solution D that belongs to C; and

– C has the joint embedding property : every two databases
from C can be embedded into a single database from C.

Example 3. Consider a schema with one binary relation.
The reader can verify that Fräıssé classes over this schema
include: all finite linear orders, all finite directed graphs,
and all equivalence relations over finite sets. The class of
forests (understood as directed graphs) is not closed under
amalgamation: the instance depicted below does not have a
solution which is a forest.

We will show that, under weak assumptions, emptiness
for database-driven systems is decidable over Fräıssé classes.
The weak assumptions are that membership in the Fräıssé
class is decidable, and that if the schema contains function
symbols, then sets of elements of bounded size cannot gen-
erate databases of unbounded size via images of functions.

Let C be a database and S a subset of its domain. We
say that S generates C if there is no proper substructure
C′ (C that contains S. A database is called n-generated
if its domain has a subset of size n that generates it. The
blowup function of a Fräıssé class C is the function

blowupC : N→ N ∪ {∞}

that maps n ∈ N to the least upper bound on the size of
n-generated databases in C. Note that in the absence of
function symbols in the schema, any n-generated database
has size n and therefore blowupC(n) = n.

Theorem 5. Let C be a Fräıssé class with membership in
PSpace. Emptiness of database-driven systems is decidable
for C in space

log(n) · poly(blowupC(2k))

where n is the number of control states and k is the number
of registers in the database-driven system.

Proof. We describe a nondeterministic algorithm for the
emptiness problem. A configuration (A, q, val) of the system
is called small if the database A belongs to C and is gen-
erated by the contents of the registers as described by val.
Note that the size of A is bounded by blowupC(k) and by
our assumption on membership in C, testing A ∈ C requires
space polynomial in blowupC(k). Consider two small config-
urations

(Aold, qold, valold) (Anew, qnew, valnew).

We say that there is a sub-transition between them if there
is a database A ∈ C and two embeddings

fold : Aold → A fnew : Anew → A

such that

(A, qold, fold ◦ valold) (A, qnew, fnew ◦ valnew)

is a transition of the system. Checking if there is a sub-
transition requires space polynomial in blowupC(2k) because
the class is closed under embeddings and we can therefore
assume that the database A is generated by the images of
the valuations fold ◦ valold and fnew ◦ valnew. This leads to
the following nondeterministic algorithm.

1. Nondeterministically guess a small configuration where
the state is initial.

2. If the state of the current configuration is final, then
terminate and accept. Otherwise, nondeterministically
guess a new small configuration accessible from the
previous one by a sub-transition. Repeat step 2.

The space consumption of the algorithm is as required
by the theorem. The proof of its correctness is based on
the fact that the class C is closed under embeddings and
under amalgamation. In particular, from a run of our al-
gorithm we construct a run of the system by amalgamating
the databases that appear in the small configurations.

Completeness. Consider an accepting run of the system,
driven by some database A ∈ C:

(A, q0, val0)(A, q1, val1) · · · (A, qn, valn)

Let Bi be the substructure of A generated by the content of
the registers at step i. By closure under embedding, Bi ∈ C

for all i. Moreover A witnesses the fact that there is a sub-
transition from (Bi, qi, vali) to (Bi+1, qi+1, vali+1). Hence
our algorithm has an accepting run.

Soundness. Assume that our algorithm has a run:

(B0, q0, val0)(B1, q1, val1) · · · (Bn, qn, valn)

By induction on n we exhibit a database B and embeddings
fi : Bi → B such that

(B, q0, f0 ◦ val0)(B, q1, f1 ◦ val1) · · · (B, qi, fn ◦ valn)

is a valid run of the database-driven system. For n = 0 we
take B = B0 and f0 the identity.

Assume we have B for the run until step (n − 1) and
consider (Bn, qn, valn). By definition there is a database
A and embeddings gn−1 : Bn−1 → A and gn : Bn → A
such that there is a transition from (A, qn−1, gn−1 ◦ valn−1)
to (A, qn, gn ◦ valn). But we also have an embedding fn−1 :
Bn−1 → B. By closure under amalgamation, we get a database
A′ and embeddings f : A → A′ and g : B → A′ with good
commuting properties. It is now easy to verify that A′ is
the database we where looking for with embeddings g ◦ fi
for i < n and f ◦ gn for i = n.

This proves the correctness of the algorithm.

Observe that the algorithm does not use the joint embed-
ding property. There are two (related) reasons why we use
the joint embedding property: first, it is part of the classical
definition of a Fräıssé class; second it is necessary for the
Fraenkel-Mostowski approach described in the Section 4.5.

4.2 Semi-Fraïssé classes
For some of the classes we are interested in, Theorem 5

will not work, because the classes are not closed under amal-
gamation.

Example 4. Consider graphs that are 2-colorable or, equiv-
alently, have no odd-length cycle. This class is HOM(H)
where H is a 2-clique, over the schema Σ consisting of one
binary relation.

This class is not closed under amalgamation. Indeed,
there is an odd-length cycle in every solution of the instance
of amalgamation depicted in Example 3.

A solution to the problem is to consider not 2-colorable
graphs, but 2-colored graphs, i.e. graphs with a 2-coloring.
This corresponds to considering an extended schema Γ, with
the original binary edge relation, and two unary predicates
denoting the colors. The 2-clique H lifts to a canonical graph
H̃ over this schema, where each node gets a different color.
The class HOM(H̃) is now closed under amalgamation, and
is Fräıssé.

In the example above, we added some structure to the
databases in order to recover amalgamation. We formalize
this strategy below. Let G be a database over a schema Γ
and let Σ be a subset of the schema Γ. The Σ-projection
Σ(G) of G is the same as G, only the interpretation is re-
stricted to the smaller schema. The Σ-projection of a class C
of databases over Γ, denoted by Σ(C), is defined pointwise.

The proof of the following lemma is fairly simple as quantifier-
free formulas are invariant under extending the domain or
the schema. For a class of databases C, by substructures(C)
we denote the smallest class of databases containing C that
is closed under embeddings.

Lemma 6. Let C be a class of finite databases over a schema
Σ. Suppose that D is a Fräıssé class over a schema Γ ⊇ Σ,
such that

C ⊆ Σ(D) ⊆ substructures(C).

Then emptiness of database-driven systems over C is decid-
able with the same complexity bounds as over D.

A class C for which there exists a Fräıssé class D that satisfies
the assumptions of the above lemma will be called a semi-
Fräıssé class. In Example 4, the class HOM(H) is semi-

Fräıssé, as witnessed by HOM(H̃).

4.3 HOMs are Semi-Fraïssé
As a simple application of the method, we prove Theo-

rem 4. By Theorem 5 and Lemma 6 it is a consequence of
the following lemma:

Lemma 7. If H is a finite database, then HOM(H) is a
semi-Fräıssé class.

Proof. The schema Γ is the schema Σ extended by a
family {h}h∈H of unary predicates, one for each element
of the domain of H. We may view the database H as a
database H̃ over the extended schema Γ, where a node h ∈ H
gets the color h. It is easy to see that HOM(H) is the Σ-

projection of HOM(H̃). To complete the lemma, we prove

that HOM(H̃) is Fräıssé.
We only show here amalgamation, the other two proper-

ties being trivial. Consider an instance A1,A2,C of amal-
gamation. The desired structure D is simply constructed
from the disjoint union of A1 and A2 by identifying the im-
ages of C. It remains to show that D ∈ HOM(H̃). This
is witnessed by the mapping sending each node of D to its
color. The reader can verify that this mapping is a homo-
morphism.

Note that the schema of H̃ in the proof of Lemma 7 contains
no function symbols, hence we have blowupHOM(H̃)(n) = n,
and the complexity is PSpace as desired.

4.4 Data values
In this section we show how Theorems 3 and 4 extend to

databases whose nodes are additionally equipped with data
values, and where the transition systems may test equality
and inequality of data values. The method is again very gen-
eral – the data values themselves may carry some structure;
we only require that the data values come from a homoge-
neous relational structure. After introducing some prelimi-
nary notions, we describe this general setting.

Homogeneous structures. The notion of homogeneity comes
from model theory. An infinite structure F over a schema
Σ is called homogeneous if every isomorphism f : F1 → F2

between two finite substructures F1,F2 of F can be extended
to an automorphism f̃ of F.

Homogeneous structures abound; important examples in-
clude:

– The set of natural numbers, with the equality relation
denoted ∼, denoted 〈N,∼〉;

– The rational numbers, with the linear ordering, denoted
〈Q, <〉.

A theorem of Fräıssé (see [7, Chapter 6] and also Sec-
tion 4.5) says that we can associate to every Fräıssé class an
infinite countable structure, called the Fräıssé limit of the
Fräıssé class which is a homogeneous structure.

Data values. Fix a homogeneous structure F, whose ele-
ments will model data values. We assume that the schema
of F is purely relational, i.e. does not contain function sym-
bols. For instance F could be the structure 〈N,∼〉 or 〈Q, <〉.

Consider a finite database A over a schema Σ. Let λ :
A → F be any labeling of the nodes of A by elements of
F. We denote by A ⊗ λ the (finite) database extending A
by symbols from the schema of F, which are interpreted in
A⊗λ via the mapping λ: if R is a relation symbol in F, then

(A⊗ λ) |= R(x1, . . . , xk) ⇐⇒ F |= R(λ(x1), . . . , λ(xk)).

The schema of A ⊗ λ is therefore the union of the schema
of A and the schema of F. The database A⊗ λ can be seen
as a database whose nodes are additionally labeled by data
values, and the database contains relation symbols from F
allowing to compare the data values. If C is a class of finite
databases, then by C ⊗ F we denote the class of databases
of the form A⊗ λ, where A ∈ C and λ is a mapping from A
to F. By C �F we denote subset of C ⊗F consisting of those
databases A⊗ λ, where the mapping λ is injective, i.e. each
node gets a different data value1.

Example 5. Let t be a finite tree and let Treedb(t) be
the corresponding database. Let λ : t→ N be a labeling
of the nodes of t by natural numbers. Then the database
Treedb(t)⊗ λ can be seen as a tree equipped with data val-
ues (or attributes); two nodes x, y store the same attribute
if x ∼ y.

Example 6. Let G be a finite graph and let λ : G→ N be
an injective labeling of G by natural numbers. Then the
database G⊗ λ can be seen as a graph whose nodes are
natural numbers: because λ is injective, we can identify a
node x with the number λ(x). If G denotes the class of all
graphs, then the structures in G � 〈N,∼〉 can be interpreted
as graphs on natural numbers. Similarly, the structures in
G�〈Q, <〉 can be interpreted as graphs on rational numbers;
in particular, their nodes are linearly ordered.

Using the theorem of Fräıssé and a construction for com-
bining two Fräıssé classes into one class, we can obtain the
following proposition whose proof is omitted here.

Proposition 1. Let F be a purely relational homogeneous
structure, such that deciding whether a finite database em-
beds into F can be done in PSpace. Then, for any Fräıssé
class C (over any schema), the classes C ⊗ F and C � F are
Fräıssé classes, with the same blowup function as C.

As a consequence of Proposition 1 and Lemma 7 we get
the following extension of Theorem 4.

1We consider the two variants ⊗ and � because in relational
databases, we want every value to be unique – to avoid re-
dundancy – while in XML databases, attributes are used for
identifying distinct nodes. See Examples 5 and 6.

Corollary 8. The following problem is decidable in PSpace:

– Input. A relational database H a database-driven sys-
tem over the union of the schemas of H and F.

– Output. Is there a database (A⊗ λ) ∈ HOM(H)� F
and an accepting run of the system driven by A?

Special cases of this result – without the condition A ∈
HOM(H) – have been proved earlier for F = 〈N,∼〉 in [5]
and F = 〈Q, <〉 in [4].

Our abstract machinery applies also to database-driven
systems, where the databases are trees with data values.

Theorem 9. The following problem is decidable:

– Input. A tree automaton defining a language L of
trees labeled by an alphabet A, and a database-driven
system over the schema TreeSchema(A) ∪ {∼}.

– Output. Is there a tree t ∈ L, a labeling λ of t by ele-
ments of N, and an accepting run of the system driven
by Treedb(t)⊗ λ?

For a fixed tree automaton, the problem is PSpace-complete.
When both the tree automaton and the system are input, the
problem is in ExpSpace.

Remark 1. Theorem 9 works for any countable homoge-
neous structure F such that testing whether a given finite
database A embeds into F can be done in PSpace. For in-
stance 〈N,∼〉 could be replaced by 〈Q, <〉. Actually it only
matters that substructures(F) is a Fräıssé class. In particu-
lar, as

substructures(〈N, <〉) = substructures(〈Q, <〉),

the result also hold for F = 〈N, <〉. Similarly, by considering
semi-Fräıssé classes instead of Fräıssé, the result also works
with 〈N, <〉 augmented with constants, thus capturing the
setting of [9].

4.5 Fraenkel-Mostowski sets
In this section, we comment on a bigger picture that con-

tains Theorem 5, but also implies other results, such as
emptiness of database-driven systems with pushdowns. To
simplify the discussion, we only focus on decidability and not
on complexity. The bigger picture is called nominal sets, or
Fraenkel-Mostowski sets.

The Fraïssé limit. We begin by observing that instead of
talking about a class of finite databases, we can talk about
a single limit structure (which is usually infinite so it should
not be called a database). The theorem of Fräıssé says that
if C is a Fräıssé class, then there exists a single countable
(but usually infinite) homogeneous structure F – the Fräıssé
limit of C – such that the databases in C are exactly the
finitely generated substructures of F. Fräıssé limits have
many good model-theoretic properties, for instance they are
ω-categorical.

What is the connection with database-driven systems? A
run of a database-driven system is finite, and therefore visits
only finitely many elements of a database with its registers.
It follows that a database-driven system has a run driven by
some finite database in C if and only if it has a run driven

by the Fräıssé limit of C. Therefore, instead of studying
emptiness over a class C, we could study emptiness of a
system that uses registers to store elements of the Fräıssé
limit.

Fraenkel-Mostowski sets and their automata. Automata
that store values from a Fräıssé limit in their registers have
already been studied in [2], as part of a more general frame-
work called Fraenkel-Mostowski sets. From the results in [2]
it follows that emptiness for such automata is decidable,
which implies the decidability result in Theorem 5. (We
included a proof of Theorem 5 to make this paper self-
contained, and also to get the precise complexity.) Apart
from finite automata with registers, the Fraenkel-Mostowski
framework contains other computational devices with decid-
able emptiness, which can then be used to get decidability
results for extensions of database-driven systems. The re-
sults concerning these devices include:

– Emptiness is decidable for pushdown automata, which
are allowed to store elements of a Fräıssé limit both in
their state and on the pushdown, see [2]. This implies
decidable emptiness for a natural pushdown extension of
database-driven systems.

– Emptiness is decidable for tree automata, where a config-
uration can have more than one successor configuration.
This implies decidable emptiness for a natural branching
extension of database-driven systems.

– Under additional assumptions, which hold for regular tree
languages but not for equivalence relations and HOMs,
even certain alternating automata have decidable empti-
ness [1]. This implies decidable emptiness for a certain
alternating extension of database-driven systems.

We would like to point out that the first two results (push-
down automata and tree automata) can be easily obtained
without using the abstract framework of Fraenkel-Mostowski
sets (this is no longer true for alternating automata, where
the proof is quite involved and follows the lines of [3]). We
believe, however, that seeing database-driven systems as a
special case of automata in Fraenkel-Mostowski sets gives a
uniform explanation for the decidability results. We plan to
given a more detailed discussion of the Fraenkel-Mostowski
connection, including a precise definition of the extended
database-driven models, in the full version of this paper.

5. REGULAR TREE LANGUAGES
In this section, we prove Theorem 3, which is the main

technical result of the paper. The theorem says that empti-
ness is decidable for database-driven systems over regular
tree languages. Since the proof is quite technical, we begin
by illustrating the main ideas in the case of words.

5.1 Regular Word Languages
Like in the case of trees, to a word w over an alphabet A,

we associate a database Worddb(w), where the domain is the
positions of the word, there are unary predicates {a(x)}a∈A
for the labels, and a binary predicate x < y for the natural
order on word positions. Call WordSchema(A) the schema
of this database.

Theorem 10. The following problem is PSpace-complete.

– Input. A regular word language L ⊆ A∗, given by an
NFA, and a database-driven system over the schema
WordSchema(A).

– Output. Is there a word w ∈ L and an accepting run
of the system driven by Worddb(w)?

The rest of Section 5.1 is devoted to showing the above
theorem. Fix a regular word language L ⊆ A∗. Let Q be
the states of an NFA that recognizes L. Define

Worddb(L) = {Worddb(w) : w ∈ L}.

For a class of databases C, let C∗ denote the closure of C
under disjoint unions. The point of studying C∗ is that it
is guaranteed to have the joint embedding property. In the
specific case of C = Worddb(L), the disjoint union is defined
so that positions from different words are incomparable with
respect to <.

We will prove that Worddb(L)∗ is a semi-Fräıssé class, and
therefore has decidable emptiness for database-driven sys-
tems. The following lemma reduces emptiness from Worddb(L)
to Worddb(L)∗.

Lemma 11. For every database-driven system S, there is
a database-driven system S∗, such that emptiness of S over
Worddb(L) is equivalent to emptiness of S∗ over Worddb(L)∗.

Proof sketch. Define the system S∗ as extending S
with a new register. The idea is that this new register stores
some position of the word. The new register does not change
contents during the whole run, and all other registers are re-
quired to be comparable with the new register in the order
<. Apart from this, the other registers behave as in the sys-
tem S. Even when driven by a disjoint union of words, the
registers will only use positions from one of the words.

From this point, our aim is to prove that Worddb(L)∗ is a
semi-Fräıssé class. In particular, we do not consider database-
driven systems any more.

Fix an automaton A recognizing the language L. We as-
sume the automaton does not contain useless states: every
state in the automaton is reachable from some initial state,
and that from every state an accepting state can be reached.
We also assume that for each state q of the automaton, there
is a unique letter a that can be read in that state, i.e. a
unique letter such that the automaton contains transitions
of the form p

a→ q (the state q is not unique, of course).
This assumption can be enforced by splitting each state into
one copy for each letter of the input alphabet. Denote by→
the one-step reachability relation on states in the automa-
ton, i.e. p → q holds if there is a transition p

a→ q. Let
→+ be the transitive closure of this relation, i.e. reachabil-
ity via nonempty words. We will be interested in strongly
connected components of this relation, which we call com-
ponents. We adopt the convention that if a state q is not
reachable from itself, then it is also in a component, which
contains only the state q. Thanks to this convention, the
components form a partition of the states of the automaton.
We denote components by Γ.

We define a pre-run of the automaton to be an input word,
together with a labeling of positions by states, where posi-
tion x gets the state after reading it. (In particular, the first
state of the run, before reading any position, does not ap-
pear in the labeling.) A pre-run, call it ρ, is interpreted as
a database, denoted by Rundb(ρ) as follows:

– There are the original predicates {a(x)}a∈A and x < y
for the input word. In other words, Rundb(ρ) extends
the database Worddb(w), where w is the input word in
the run.

– There are unary state predicates {q(x)}q∈Q for the states
in the run.

– For each component Γ of the automaton, there is a unary
function leftmostΓ(x) that maps a position x to the left-
most position before x that has a state in component
Γ. If there is no such appearance, then leftmostΓ(x) is
x. Likewise, we have a rightmostΓ(x) unary function2.
We use the name pointers for the leftmost and rightmost
functions.

Define C to be the closure under substructures of

{Rundb(ρ) : ρ is a run.}.

Proposition 2. C is closed under amalgamation.

Before showing the proposition, we show how it implies
Theorem 10.

Proof of Theorem 10. The theorem will follow from
the items below thanks to Lemmas 6 and 11.

1. It is not difficult to see that the projection assump-
tion (when projecting a pre-run to its input word) in
Lemma 6 is satisfied:

Worddb(L)∗ ⊆WordSchema(C)∗ ⊆
⊆ substructures(Worddb(L)∗)

2. C∗ is a Fräıssé class. The class C∗ is closed under sub-
structures by definition. It is also closed under iso-
morphism. The joint embedding property is easy be-
cause we can simply take disjoint unions3. Closure of
a class under amalgamation is preserved by the opera-
tion C 7→ C∗, and therefore C∗ is closed under amalga-
mation by Proposition 2. In conclusion, C∗ is a Fräıssé
class, and so Worddb(L)∗ is a semi-Fräıssé class.

3. The blowup of C∗ is small. There are at most |Q| com-
ponents in the automaton. Since we have two unary
functions per component, the blowup function for C∗
is at most n 7→ 2|Q| · n. This gives the PSpace com-
plexity bound.

We now resume the proof of Proposition 2. We will use
the following characterization of C.

Lemma 12. Let ρ be a pre-run, where the states are q1, . . . , qn
listed from left to right. Then Rundb(ρ) ∈ C if and only if

q1 →+ q2 →+ · · · →+ qn

2It would seem more natural to define leftmostΓ and
rightmostΓ as nullary functions, i.e. constants. We choose
unary functions for two reasons: to make the tree case more
similar, and to make disjoint unions of runs easier.
3The joint embedding property is the reason why we work
with C∗ and Worddb(L)∗ instead of C and Worddb(L).

Instead of proving that C is closed under amalgamation,
we prove that it is closed under inclusion amalgamation. An
instance of inclusion amalgamation consists of two databases
A and B that are consistent, i.e. the functions and predicates
are defined the same way on the elements that appear in
both domains. A solution of inclusion amalgamation is a
database C that contains both A and B as substructures.

Lemma 13. Let C be a class of structures closed under
isomorphism. Then C is closed under amalgamation if and
only if it is closed under inclusion amalgamation.

Proof of Proposition 2. The proof is more wordy than
it needs to be, because we want it to have the same structure
as the proof for the more complicated case of trees.

Consider an instance of inclusion amalgamation in the
class C, i.e. two pre-runs ρ1 and ρ2 such that the databases
Rundb(ρ1) and Rundb(ρ2) are consistent and in C. Define
Rundb(ρ) to be the common part, i.e. the intersection of
the two databases, which is a substructure of both, so it
also belongs to C.

We need to show a database in C that contains both
Rundb(ρ1) and Rundb(ρ2) as substructures. The proof is by
induction on the number of elements in ρ1 not in ρ. In the
induction base Rundb(ρ1) is a substructure of Rundb(ρ2),
and we already have a solution to amalgamation.

For the induction step, suppose that y is in the domain of
ρ1, but not in ρ. Choose y so that its preceding position in
ρ1, call it x, is already in ρ. The situation is illustrated in
the following picture:

... ...

In the picture, the positions of ρ1 are colored, the positions
of ρ2 have a black border, the positions of ρ are colored and
have a black border. To advance the induction, we add y to
ρ2, as in the following picture:

... ...

Define a pre-run ρ′2, by adding position y (with its state and
input label) to ρ2 right after x, with the same state as y.
We claim that

1. Rundb(ρ′2) ∈ C;

2. Rundb(ρ2) ⊆ Rundb(ρ′2);

3. Rundb(ρ1) and Rundb(ρ′2) are consistent.

If we prove the claims above, then we are done. This is
because Rundb(ρ1) and Rundb(ρ′2) are an instance of in-
clusion amalgamation with a smaller induction parameter.
The induction assumption says that some database in C con-
tains both Rundb(ρ1) and Rundb(ρ′2), and therefore it also
contains Rundb(ρ1) and Rundb(ρ2).

Let Γ be the component of the state in y. Consider the
values of the pointers leftmostΓ that are assigned to the
position x in the three databases Rundb(ρ), Rundb(ρ1) and

Rundb(ρ2). Because the databases are consistent, these are
all the same position, i.e.

leftmostρΓ(x) = leftmostρ1Γ (x) = leftmostρ2Γ (x)

Call the position above yleft, it is before y in ρ1. Likewise,
we define a position yright.

To prove Rundb(ρ′2) ∈ C, we use Lemma 12. By this
lemma, in the run ρ2, all positions between yleft and yright

have states in component Γ. The position y is added between
these positions, so it does not violate the condition from
Lemma 12.

To prove Rundb(ρ2) ⊆ Rundb(ρ′2), we only need to show
that the functions in Rundb(ρ′2) are defined the same way
for the positions from Rundb(ρ2). This is not difficult to
see, because in Rundb(ρ′2) there is one new position, which
is both followed and preceded by states in the same com-
ponent. The same argument shows that Rundb(ρ1) and
Rundb(ρ′2) are consistent.

5.2 Proof Strategy for Regular Tree Languages
We now resume the proof of Theorem 3, which says that

emptiness is decidable for database-driven systems over reg-
ular tree languages. We use the same proof strategy as for
words. For a tree language L, define

Treedb(L) = {Treedb(t) : t ∈ L}.

Like in the case of words, we will have a class C that repre-
sents substructures of runs.

5.3 Tree automata and their components
We begin by presenting the model of tree automata that

we use. Out of the many equivalent models of automata on
unranked trees, we choose a model where the runs are easier
to pump.

A tree automaton consists of:

– An input alphabet A. The automaton is used to accept
or reject trees labeled by A.

– A set of states Q. A run of the automaton over an input
tree is a labeling of the tree nodes by states from Q,
subject to some local consistency requirements described
below.

– As in the word case, we assume that for each state q,
there is a unique input letter a that can be used in that
state.

– The automaton has distinguished subsets of: leaf states,
which are the only states allowed for leaves, root states,
which are the only states allowed for the root, and right-
most states, which are the only states allowed for right-
most children.

– A binary first-child relation→firstchild on states. In a run,
if a node has state q and its leftmost child has state p,
then p→firstchild q holds.

– A binary next-sibling relation →nextsibling on states. In a
run, if a node has state q and its next sibling has state p,
then p→nextsibling q holds.

A tree is accepted by the automaton if it admits some run
(we do not distinguish between runs and accepting runs).
Let us fix for the rest of Section 5 a tree automaton as de-
scribed above, which recognizes a tree language L.

Components. Define two binary relations on states of the
automaton: a relation

→h
def
= →+

nextsibling

that corresponds to following sibling, and a relation

→v
def
=

(
→firstchild ◦ →∗nextsibling

)+

that corresponds to descendant. We use the name descen-
dant component for strongly connected components of the
relation→v, and the name horizontal component for strongly
connected components of the relation →h. Again, we adopt
the convention that when a state is not reachable from itself
by →v, then it still forms a (singleton) descendant compo-
nent, likewise for horizontal component. We distinguish two
kinds of descendant components:

– A descendant component Γ is called branching if in some
run, some node with state in Γ has two children with
states in Γ.

– A descendant component Γ is called linear otherwise.
This means that in every run, every node with state in Γ
has at most one child with a state in Γ.

For a descendant component, define a set of states left(Γ)
as follows. Suppose that in some run, a node x has two
descendants y and z, such that z is before y in document
order, and is not on the path from x to y. If the states in
x and y are in Γ, then we put the state in z into the set
left(Γ). The set right(Γ) is defined similarly.

5.4 The class C
We are now ready to define the class C, which contains

databases representing runs.

The pointers. Define a pre-run to be any tree where each
node is labeled by a letter a ∈ A, as well as a state q ∈ Q
such that a is the unique letter that can be read in state q.
A pre-run need not satisfy the consistency conditions in the
definition of a tree automaton run. A node x in a pre-run
is called component maximal if none of its children have a
state in the same descendant component. For a pre-run ρ,
we define Rundb(ρ) to be the following database.

– We have the standard database Treedb(t) for the input
tree t: the node labels, the descendant order, the docu-
ment order, and the closest common ancestor function.

– For each state q, there is a unary function leftmostq(x)
defined as follows. If x is a component maximal node,
then leftmostq(x) maps x to the leftmost child with a
state in q. If x is not component maximal, or it has no
children with state q, then the function is “undefined”,
which is encoded by leftmostq(x) = x.

– In the same way, we define a function rightmostq(x), but
for the rightmost child with a state in Γ.

– For each descendant component Γ, there is a unary func-
tion ancestormostΓ(x), whose value is the last node on
the path from x to the root that has label q. If there is
no such node, then the function is “undefined”, which is
encoded by ancestormostΓ(x) = x.

– Suppose that x is a node whose state is in a linear de-
scendant component Γ. Then descendantmost(x) maps x

to the unique descendant of x that has a state in Γ, and
has no children with states in Γ. If the state of x is not
in a linear descendant component, then the function is
“undefined”, which is encoded by down(x) = x.

The class C. Define C to be the closure under substructures
of the class

{Rundb(ρ) : ρ is a run of the automaton}.

In other words, a database belongs to C if it can be extracted
from a run (not a pre-run) so that nodes are extracted to-
gether with the values of their pointers. Following the same
proof as in Theorem 10, to prove Theorem 3, it will be suffi-
cient to prove the following results, whose proofs are omitted
here.

Lemma 14. The blowup function for C∗ is n 7→ c·n, where
the constant c is exponential in the state space Q.

Proposition 3. C is closed under amalgamation.

6. UNDECIDABLE MODELS
We consider in this section several ways of extending the

model. In most cases, the extensions lead to undecidabil-
ity. For instance, if the trees are additionally equipped with
the child relation or the sibling relation, then the emptiness
problem becomes undecidable, even for a fixed tree language.
A more interesting question is what happens if we extend the
expressive power of the logics used for describing the tran-
sitions of the system. These extensions also quickly lead to
undecidability.

6.1 Child and sibling axes
Adding axes such as next sibling or child leads to unde-

cidability. The reason is that already for unary words with
the successor relation on positions, we get undecidability.
More precisely, a unary word w can be viewed as a struc-
ture whose domain is the set 1, 2, . . . , |w| of positions of w,
and succ(x, y) holds if y − x = 1.

Fact 15. Let L be any infinite set of words over the unary
alphabet, viewed as structures over the schema consisting
of the binary symbol succ. Then, the following problem is
undecidable.

– Input. A database-driven system over the schema
consisting of succ.

– Output. Is there a word w ∈ L and an accepting run
of the system driven by the word w?

Proof sketch. Using one register, the system can sim-
ulate a counter of a counter machine: a transition can in-
crement or decrement the counter using the relation succ.
There are no zero tests, but this can be simulated by keep-
ing one register z that is never changed (using zold = znew

as a conjunct in all rules); then a zero test of the counter is
simulated by the formula x = z. Since the halting problem is
undecidable for two-counter machines, the fact follows.

It follows immediately from Fact 15 that in the presence of
the child or next sibling axis it is undecidable whether a
database-driven has an accepting run.

The sibling axis.
We show that even extending the set of predicates by the

sibling relation also leads to undecidability. Formally, we
model a tree t as a database with two predicates: the clos-
est common ancestor ∧ and the transitive, symmetric and
irreflexive binary sibling relation (the document order nor
the unary predicates are needed for this undecidability re-
sult).

Fact 16. There exists a regular tree language L over a
unary alphabet, such that the following problem is undecid-
able:

– Input. A database-driven system over the schema
consisting of ∧ and sibling.

– Output. Is there a tree t ∈ L and an accepting run of
the system driven by the tree t?

Proof sketch. The language L is defined as the set of
trees of the form tn, where n ∈ N and tn is the tree depicted
in the left-hand side of the figure below, of height n.

The reduction is again from counter machines. We show
that a system can simulate a counter using a register x.

To simulate incrementation of the counter, the machine
uses an auxiliary register y (see right-hand side of the figure
above), and follows a transition whose guard is the following
formula:(

xold = (xnew ∧ ynew)
)
∧ sibling(xnew, ynew)

These conditions guarantee that xnew is a child of xold (they
do not guarantee that xnew is the left child, as is the case in
the figure, but this is not necessary).

Decrementation of a counter is obtained by swapping“old”
with “new” in the guard. As in the proof of Fact 15, using
additional counters, one can simulate zero tests. This way,
a database-driven system using the predicates ∧ and the
successor relation can simulate a counter machine.

Remark 2. We don’t know whether emptiness is decidable
for database-driven systems over the schema consisting of
the sibling relation, the document order and the vertical
order, but not the closest common ancestor.

6.2 Rules that are not existential
A legitimate question is whether one can extend the ex-

pressivity of our model by extending the power of the for-
mulas defining the transitions of the system, for instance by
allowing first-order formulas, while preserving the decidabil-
ity of the emptiness problem.

We have seen in Fact 2 that systems with transitions
guarded by existential formulas can be simulated by sys-
tems where the transitions are guarded by quantifier-free

formulas. However, already allowing boolean combinations
of existential formulas quickly leads to undecidability. For
instance, in the tree case, this is a consequence of Fact 15.
Indeed, using boolean combinations of existential formulas,
one can define the child axis:

child(x, y) ⇐⇒ x �v y ∧ ¬∃z : x ≺v z ≺v y

6.3 Data tree patterns
We also considered the setting where the queries are data

tree patterns. A data tree pattern selects data values within
a tree, depending on the existence of nodes whose positions
verify the tree pattern (we use an injective semantics for tree
patterns, where each node of the tree pattern must match
a different node of the tree). With our terminology, a tree
pattern is a special case of an existential formula; the hope
being that systems using boolean combination of tree pat-
terns would be decidable.

To make this setting fit into our formalism, we assume the
system is over DataTreeSchema(A) and has rules guarded
by boolean combinations of formulas of the following form
(called tree pattern formulas):

δ(x̄new, x̄old) : ∃ 6=v1, v2, . . . , vl φ(v1, . . . , vl),

where the notation ∃6= implies that the nodes v1, . . . , vl are
pairwise distinct (to reflect the injective semantics of tree
patterns), and φ is a conjunction of conjuncts of the follow-
ing three possible forms:

vi ∼ xj , vi �v vj , λ(vi).

Note that the restriction on φ implies that a formula δ can-
not (directly) tell whether two registers x and y of the system
point to the same node; it can only test whether they have
the same datavalue.

Example 7. Consider trees labeled by {a, b, r}. The fol-
lowing tree pattern:

∃6=v, la, lb, ra, rb.
(
a(la) ∧ b(lb) ∧ a(ra) ∧ b(rb) ∧ r(v)

)
∧

(v �v la �v lb) ∧ (v �v ra �v rb) ∧ (ua ∼ xold) ∧ (ua ∼ xnew)

can be graphically represented as follows (dashed lines rep-
resent descendant relationships):

r

a ∼ xold a ∼ xnew

b b

Theorem 17. There is a language of A-labeled trees L
such that the following decision problem is undecidable.

– Input. A database-driven system over the schema
{�v,∼, {a}a∈A} where transitions are boolean combi-
nations of tree pattern queries.

– Output. Is there a tree t ∈ L and an accepting run of
the system driven by the tree t?

Having described the applications and limitations of our
framework, we end this paper.

7. REFERENCES
[1] Miko laj Bojańczyk, Laurent Braud, Bartek Klin, and

Slawomir Lasota. Towards nominal computation. In
Symp. on Principles of Programming Languages
(POPL), pages 401–412, 2012.

[2] Miko laj Bojańczyk, Bartek Klin, and Slawomir Lasota.
Automata with group actions. In Symp. on Logic in
Computer Science (LICS), pages 355–364, 2011.

[3] Stéphane Demri and Ranko Lazic. LTL with the freeze
quantifier and register automata. In Symp. on Logic in
Computer Science (LICS), pages 17–26, 2006.

[4] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor
Vianu. Automatic verification of data-centric business
processes. In Intl. Conf. on Database Theory (ICDT),
2009.

[5] Alin Deutsch, Liying Sui, and Victor Vianu.
Specification and verification of data-driven web
applications. J. Comput. Syst. Sci., 73(3):442–474,
2007.

[6] Alin Deutsch, Liying Sui, Victor Vianu, and Dayou
Zhou. A system for specification and verification of
interactive, data-driven web applications. In Intl.
Conf. on Management of Data (SIGMOD), 2006.

[7] W. Hodges. A shorter model theory. Cambridge
Univerity Press, 1997.

[8] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng.
Semantic web services. IEEE Intelligent Systems,
16(2):46–53, 2001.

[9] Luc Segoufin and Szymon Toruńczyk. Automata based
verification over linearly ordered data domains. In
Intl. Symp. on Theoretical Aspects of Computer
Science (STACS), 2011.

[10] Victor Vianu. Automatic verification of
database-driven systems: a new frontier. In Intl. Conf.
on Database Theory (ICDT), pages 1–13, 2009.

APPENDIX
A. PROOF OF LEMMA 1

Proof. We reduce from the termination problem for Tur-
ing Machines working in linear space. We use a register y to
store one element of the domain. This value is decided via
the initial transition and remains unchanged during the run
of the system. We use n registers xi, · · · , xn for encoding
the content of the tape of the Turing Machine: cell i of the
tape is equal to 1 iff the value of xi is equal to the value
of y. Using quantifier free formulas of length n, it is easy
to simulate the transitions of a Turing Machine working in
linear space.

B. PROOF OF LEMMA 6
Consider a database-driven system S over C.
Because C ⊆ Σ(D), if S has a run driven by a database in
C then it has a run driven by a database in Σ(D).

But adding extra relations to the database does not af-
fect the run of the system. Hence S has a run driven by a
database in Σ(D) iff it has a run driven by a database in D.

As Σ(D) ⊆ substructures(C) if S has a run driven by a
database in Σ(D) then it has a run driven by a database in
substructures(C).

But as use only quantifier-free guards, expanding the database
does not affect the run: S has a run driven by a database in
substructures(C) iff it has a run driven by a database in C.

Hence it is enough to test whether S has a run driven by
a database in D which is decidable by Theorem 5 as D is
Fräıssé.

C. THE AMALGAMATION ALGORITHM
In this section, we prove the correctness of the algorithm

presented Section 4, in the course of the proof of Theorem 5.

Proof. Completeness. Consider an accepting run of
the system, driven by some database A ∈ C:

(A, q0, val0)(A, q1, val1) · · · (A, qn, valn)

Let Bi be the substructure of A generated by the content of
the registers at step i. By closure under embedding, Bi ∈ C
for all i. Moreover A witnesses the fact that there is a sub-
transition from (Bi, qi, vali) to (Bi+1, qi+1, vali+1). Hence
our algorithm has an accepting run.
Soundness. Assume that our algorithm has a run:

(B0, q0, val0)(B1, q1, val1) · · · (Bn, qn, valn)

By induction on n we exhibit a database B and embeddings
fi : Bi → B such that

(B, q0, f0 ◦ val0)(B, q1, f1 ◦ val1) · · · (B, qi, fn ◦ valn)

is a valid run of the database-driven system. For n = 0 we
take B = B0 and f0 the identity.

Assume we have B for the run until step (n − 1) and
consider (Bn, qn, valn). By definition there is a database
A and embeddings gn−1 : Bn−1 → A and gn : Bn → A
such that there is a transition from (A, qn−1, gn−1 ◦ valn−1)
to (A, qn, gn ◦ valn). But we also have an embedding fn−1 :
Bn−1 → B. By closure under amalgamation, we get a database
A′ and embeddings f : A → A′ and g : B → A′ with good
commuting properties. It is now easy to verify that A′ is

the database we where looking for with embeddings g ◦ fi
for i < n and f ◦ gn for i = n.

This proves the correctness of the algorithm.

D. PROOF OF PROPOSITION 1
In this appendix, we prove Proposition 1. We start by

defining some auxiliary notions.
If A and B are structures over the same schema, then we

write

A ↪→ B
if the domain of A is contained in the domain of B, and
the inclusion mapping is an embedding of structures. The
following lemma – in fact a restatement of Lemma 13 – shows
that in the definition of a Fräıssé class, one could equally well
restrict to inclusions.

Lemma 18. Let C be a class of structures which is closed
under isomorphisms. Then, the following conditions are
equivalent.

– C is closed under amalgamation.

– For any amalgamation instance in C

C ↪→ A1 C ↪→ A2, (1)

there exists a solution

A1 ↪→ C A2 ↪→ C. (2)

Proof (sketch). This follows from the fact that Fräıssé
classes are closed under isomorphisms, so any embedding
α : A→ B is equivalent (up to isomorphism) to an inclusion
A′ ↪→ B′.

We now turn to the proof of Proposition 1. We prove the
more general case of C � F. The case of C ⊗ F can be easily
reduced to this case, by observing that for the homogeneous
structure

F̃ = F× 〈N,∼〉,

the class C ⊗ F is equivalent to the class C � F̃.
Let F denote the class of finite substructures of the ho-

mogeneous structure F. In particular, F is a class of fi-
nite databases over a purely relational schema Σ. Assuming
that F is nonempty, F contains at least one structure with
a nonempty domain (the case of Proposition 1 when F is
empty is easy).

Lemma 19. Consider an amalgamation instance in F

C ↪→ A1 C ↪→ A2, (3)

in which the mappings are inclusions. Let D be a finite set
such that

|A1| ∪ |A2| ⊆ D.
Then the instance (3) has a solution D, where

D = |D|,

and the solution consists of inclusions:

A1 ↪→ D A2 ↪→ D.
Proof (sketch). The proof of the lemma uses the fact

that in relational structures, any subset induces a substruc-
ture, so one can easily restrict a solution to the amalgama-
tion instance (3) to one whose domain is equal to |A1|∪|A2|.
Further, one can extend any structure in F to a structure
in F whose domain contains some additional elements.

We now continue with the proof of Proposition 1. Let Σ
denote the schema of the databases in the class F ; and let
T denote the schema of the databases in the class C. We
assume that Σ and T are disjoint.

By C �F we denote the class of structures over the union
schema Σ ∪ T , whose Σ-projection belongs to F and T -
projection belongs to C. It is easy to see that C � F is the
same class as C � F (up to isomorphisms of the databases).
We now prove that the class C � F is a Fräıssé class, and
compute its blowup function.

Proof. It is obvious that C �F is a class which is closed
under embeddings (this does not require the assumption that
Σ is a purely relational schema).

We prove that C � F is closed under amalgamation. The
joint embedding property can be proved similarly.

Consider an amalgamation instance

C ↪→ A1 C ↪→ A2 (4)

with A1,A2,C ∈ C�F . This instance induces amalgamation
instances in F and in C, respectively:

Σ(C) ↪→ Σ(A1) Σ(C) ↪→ Σ(A2) (5)

T (C) ↪→ T (A1) T (C) ↪→ T (A2). (6)

Since C is a Fräıssé class, by Lemma 18 there exists a solution
to the second instance (6),

T (A1) ↪→ DT T (A2) ↪→ DT (7)

We now apply Lemma 19 to the first instance (5), and to
D = |DT |, yielding a solution

Σ(A1) ↪→ DΣ Σ(A1) ↪→ DΣ (8)

in which the domain of DΣ is equal to D. In particular, DΣ

and DT have the same domain. We can therefore naturally
combine these two relational structures into one relational
structure D over the schema Σ ∪ T . It is obvious by con-
struction that D ∈ C � F and that

Σ(D) = DΣ , T (D) = DT .

It follows from (7) and (8) that

A1 ↪→ D A2 ↪→ D

is a solution to (4).
We now argue that the blowup function for C � F is the

same as the blowup function for C. For any A ∈ C �F , if A
is generated by S, then T (A) is generated by S. This shows
that for all n ∈ N,

blowupC(n) ≤ blowupC�F (n).

Conversely, if AT ∈ C is a structure generated by S, then
there is a structure A ∈ C � F such that AT = T (A). Then
A is also generated by S. This shows that for all n ∈ N,

blowupC(n) ≥ blowupC�F (n).

E. AMALGAMATION OF TREES
In this part of the Appendix, we give the missing proofs

for results from Section 5.

E.1 Proof of Lemma 14
In this section, we show Lemma 14, which says that the

blowup function for C∗ is n 7→ c · n, where the constant c is
exponential in the state space Q. It is easy to see that the
classes C∗ and C have the same blowup functions. Therefore,
we concentrate on the blowup function for C

Let F be the functions available in the schema, i.e. F is
the closest common ancestor function cca, as well as the
pointer functions

leftmostq, rightmostq, descendantmost , ancestormostΓ

for the possible choices of q and Γ. Let us write P ⊆ F
for the pointer functions, and partition P into two parts:
the part P↑ which contains the ancestormostΓ pointer func-
tions, and the part P↓ which contains the remaining pointer
functions.

Fix a pre-run ρ. For a set X of nodes in ρ and a subset
G ⊆ F , we write [X]G for the set smallest set of nodes that
contains X and is closed under applying functions from G.
Our goal is to prove that for the set F of all functions, the
size of [X]F is at most c times the size of X, where the
multiplicative constant c is at most exponential in the state
space of the automaton.

We use the two following lemmas which show that there
is a natural order in applying the functions. The proofs are
straightforward.

Lemma 20. [X]F = [[X]cca]P

Lemma 21. [X]P = [[X]P↑]P↓ .

Combining the two lemmas, we see that [X]F is obtained by
first closing X under cca, then closing the resulting set under
P↑, and finally closing the resulting set under P↓. Closing
a set under cca makes it grow by at most a multiplicative
factor of two. Closing a set under P↑ makes a set grow by
at most a multiplicative factor of the number of descendant
components. Finally, closing a set under P↓ makes a set
grow by at most a multiplicative factor that is exponential
in the state space of the automaton. The second and third
statements are because applying a function from P↑ or P↓
that is not a self-loop requires a change of component.

E.2 Proof of Proposition 3
In this section, we prove Proposition 3, which says that C

is closed under amalgamation.

E.2.1 A local characterization
The goal of Section E.2.1 is to prove Lemma 23, which

gives a local characterization of C. We begin with an obser-
vation about branching components.

Lemma 22. When Γ is a branching descendant compo-
nent, then left(Γ) = right(Γ).

Proof. Suppose that r ∈ left(Γ), which is witnessed by
a run as in the definition of left(Γ). Because the vertical
component Γ is branching, there exists a run which contains
the following pattern:

By combining the two runs, we get a run which contains the
following pattern:

which proves that r ∈ right(Γ).

Suppose that x, y are nodes of a tree, such that the tree
is implicit from the context, and therefore also the states
labelling x and y, call them p and q, are implicit from the
context. Then we write x →v y instead of p →v q, and
likewise for the other relations on states in the automaton,
such as

→+
v →h →+

h →leftmost .

We now present the local characterization of C.

Lemma 23. Let ρ be a pre-run. Then Rundb(ρ) belongs
to C if and only if the root has a root state, and every node
x of ρ satisfies the following condition.

Condition (*) Let x1, . . . , xn be the states in the children
of x, listed in document order. Then

1. If x is a leaf, then it has a leaf state.

2. If x is a component maximal node, then

x→leftmost x1 →+
h x2 →+

h x3 →+
h · · · →

+
h xn.

3. Suppose that x is not component maximal, and its state
belongs to a linear component Γ. Then for some i ∈
{1, . . . , n}:

– The states in x1, . . . , xi−1 are in left(Γ).

– The state in xi is in Γ.

– The states in xi+1, . . . , xn are in right(Γ).

4. Suppose that x is not component maximal, and its state
belongs to a branching component Γ. Then x →v xi
holds for every i ∈ {1, . . . , n}.

Proof. By definition of components, using Lemma 22 for
item 4.

Amalgamation. The following lemma shows that, the no-
tion of a component maximal node is preserved in substruc-
tures.

Lemma 24. Let ρ be a pre-run. Let Rundb(τ) be a sub-
structure of Rundb(ρ), and let x be a node in Rundb(τ).
Then x is component maximal in Rundb(τ) if and only if it
is component maximal in Rundb(ρ).

Proof. A node x is component maximal if and only if
either:

– The state in x is a leaf state; or

– For every state q, the pointers leftmostq(x) and rightmostq(x)
point to x.

This information is preserved in substructures.

Let τ and ρ be pre-runs. We say that τ is a sub-run of ρ
if the nodes of τ are a subset of the nodes of ρ, and the two
pre-runs agree on the labels and states, the root node, the
closest common ancestor function, the document order, and
the descendant order. This almost means that

Rundb(τ) ⊆ Rundb(ρ),

the only thing missing is that the pointers

leftmostq rightmostq ancestormost descendantmost

might be defined differently in ρ and τ . Lemma 25 gives
sufficient conditions for the pointers to be defined the same
way.

Before proving Lemma 25, we introduce some terminol-
ogy. When τ is a sub-run of ρ, the common nodes agree on
the descendant, document order, closest common ancestor,
but not necessarily for sibling, next sibling, previous sibling,
parent and child. To avoid confusion, we will talk about
the τ -parent of a node, or the ρ-parent, and likewise for the
other terminology of tree structure.

Figure 1: The pre-runs τ and ρ in Lemma 25. The
node x is the parent of y and the node x′ is the
node of ρ that is after y in document order. The
left picture is when y has no ρ-descendants in τ , and
the right picture is when y has ρ-descendants. In
the right picture, there can only be one ρ-child from
τ , namely x′, since otherwise y would be a closest
common ancestor of two nodes from τ .

Lemma 25. Let τ be a pre-run that is a sub-run of a pre-
run ρ, such that both Rundb(τ),Rundb(ρ) ∈ C. Assume
further that the difference ρ−τ contains exactly node y with
a ρ-parent in τ , call this ρ-parent x. (See Figure 1.)

To prove Rundb(ρ) ⊆ Rundb(τ), it is sufficient to show
the following implications:

1. If x is a maximal component node in τ , then:

– x is also a maximal component node in ρ; and

– y has both a ρ-preceding sibling and a ρ-following
sibling with the same state.

2. If y has ρ-children in τ then x, y have states in the same
descendant component.

Proof. How can Rundb(ρ) ⊆ Rundb(τ) fail? This can
happen if the pointer functions are defined differently in
Rundb(ρ) than in Rundb(τ). Let us deal with the pointer
functions one by one.

– Consider first the leftmostq functions. Except for x,
which is the ρ-parent of y, all nodes in τ have the same
children in ρ as they have in τ . For the node x, the
value leftmostq(x) is the same in τ and ρ because of
the assumption.

– The same argument works for rightmostq.

– Consider the ancestormostΓ functions. If y is has no
ρ-children from τ , then all nodes in τ keep the same
ancestors in the pre-run ρ, and therefore have the same
values for ancestormostΓ. Suppose than that y has ρ-
children in τ . By the second implication, the states
of x, y are in the same descendant component. This
means that the values of the ancestormostΓ will not be
affected, because no pointer will be redirected to y.

– Finally, consider the descendantmostΓ function, for some
linear descendant component Γ. We need to show that

descendantmostτΓ(z) 6= descendantmostρΓ(z) (1)

holds for every node z from τ . We only need to check
the case when z has a state in Γ, otherwise both point-
ers in (1) are self-loops. It is easy to see that (1) holds
when z is not a ρ-ancestor of y in ρ, or when z has a
state in a different descendant component than y. As-
sume then that z is a ρ-ancestor of y, and both y and
z have states in component Γ. Consider the two cases
as in Figure 1:

– The first case is when y has no ρ-children in τ ,
which is the first picture in Figure 1. If x is a
component maximal node in τ , then by the first
implication in the assumption of the lemma, it is
also a component maximal node in ρ, and therefore
both pointers in (1) are self-loops. If x is not a
component maximal node in τ , then y cannot have
a state in Γ, since otherwise x would have two ρ-
children in Γ, contradicting the assumption that
Rundb(ρ) ∈ C.

– The second case is when y has a ρ-child in τ , call
it x′, which is the second picture in Figure 1. Ob-
serve that y cannot have any other ρ-children from
τ , since otherwise y would be a closest common an-
cestor of two nodes from τ . By the second impli-
cation in the assumption of the lemma, the states
of x and y are in in Γ. This means that x is not
component maximal in ρ, and therefore it cannot
be component maximal in τ by the first implication
in the assumption of the lemma. Therefore, some
τ -child of x has a state in Γ. This child must be
x′, as shown in the caption of Figure 1. Therefore,
both pointers in (1) point to x′ or some descendant
of x′.

We are now ready to prove that C is closed under amal-
gamation. By Lemma 13, it suffices to show that C is closed
under inclusion amalgamation.

Consider an instance of inclusion amalgamation in the
class C, i.e. two pre-runs ρ1 and ρ2 such that the databases
Rundb(ρ1) and Rundb(ρ2) are consistent and in C. Define
Rundb(ρ) to be the common part, i.e. the intersection of
the two databases, which is a substructure of both, so it
also belongs to C.

We need to show a database in C that contains both
Rundb(ρ1) and Rundb(ρ2) as substructures. The proof is
by induction on the number of elements in ρ1 but not in
ρ. In the induction base, Rundb(ρ1) is a substructure of
Rundb(ρ2), and we already have a solution to amalgama-
tion.

For the induction step, suppose that node y is in ρ1, but
not in ρ. Choose y so that its ρ1-parent, call it x, is already
in ρ. Let x1, . . . , xn be the ρ-children of x, listed in document
order.

Choose i ∈ {1, . . . , n + 1} so that xi is the first node in
ρ after y in ρ1-document order. (We adopt the convention
that i = n + 1 means that y is after xn). Depending on
whether y is an ancestor of xi or not, we get one of the two
situations illustrated in Figures 2 and 3.

......

Figure 2: y is an ancestor of xi

...
...

Figure 3: y is not an ancestor of xi

Define a pre-run ρ′2 as follows:

– Case of Figure 2. If y is an ancestor of xi, then add
y, but not the subtree of y, to ρ2 so that y becomes the
first node on the path from x to xi.

– Case of Figure 3. If y is not an ancestor of xi, then
add y, together with its subtree, to ρ2 so that y becomes
the previous sibling of xi−1. (When i = n + 1, y and
its subtree are added so that y is the last child of x.)

To complete the induction step, we need to show that

1. Rundb(ρ′2) ∈ C;
2. Rundb(ρ2) ⊆ Rundb(ρ′2);

3. Rundb(ρ1) and Rundb(ρ′2) are consistent.

If we prove the claims above, then we are done. This is
because Rundb(ρ1) and Rundb(ρ′2) are an instance of in-
clusion amalgamation with a smaller induction parameter.
The induction assumption says that some database in C con-
tains both Rundb(ρ1) and Rundb(ρ′2), and therefore it also
contains Rundb(ρ1) and Rundb(ρ2).

Lemma 26. In case of Figure 2, the nodes x, y and xi
have states in the same descendant component.

Proof. Let Γ be the descendant component of the state
in y. If Γ does not contain the state in x, then

ancestormostρΓ(xi)

would need to point a node between x and xi, but there is
no such in ρ. It follows that

To prove the three items 1,2,3, we do a case distinction
on the node x.

– x is not a maximal component node in ρ, and the com-
ponent of x is branching.

1. To prove Rundb(ρ′2) ∈ C, we show that every node
in ρ′2 satisfies condition (*) from Lemma 23. We
consider three kinds of nodes: the node y, the node
x, and the remaining nodes.

– Condition (*) is satisfied for y. If ρ′2 was con-
structed according to the case in Figure 3, then
y has the same children in ρ′2 as it had in ρ1,
and condition (*) was satisfied for y in ρ1. If ρ′2
was constructed according to the case in Fig-
ure 2, then y has only one child in ρ′2, namely
the first node, call it z, which appears in the
tree ρ2 on the path from x to xi. By Lemma 26,
the node z has a label in the same descendant
component as y, and therefore condition (*)
holds for y.

– Condition (*) is satisfied for x. Since the state
of x is in a branching component, condition (*)
is very easy to satisfy: every ρ′2-child of x, call
it z, must satisfy x →v z. This holds, because
every ρ′2-child of x is either a ρ1-child of x, or
a ρ2-child of x.

– Condition (*) is satisfied for the remaining nodes
y. For these nodes, their sequence of children
is either the same as in ρ1 (for descendants of
y) or the same as in ρ1 (the remaining nodes).
In both cases, condition (*) is satisfied.

2. To prove Rundb(ρ2) ⊆ Rundb(ρ′2), we use Lemma 25.
The first implication in the lemma is vacuously sat-
isfied, because its assumption fails. The second im-
plication is satisfied thanks to Lemma 26.

3. To prove that Rundb(ρ1) and Rundb(ρ′2) are con-
sistent, we need to that they agree on their common
part, call this common part ρ′:

Rundb(ρ′) ⊆ Rundb(ρ1)

Rundb(ρ′) ⊆ Rundb(ρ′2).

This is proved the same way as item 2.

– x is not a maximal component node in ρ, and the de-
scendant component of x is linear. Call this component
Γ.

1. To prove Rundb(ρ′2) ∈ C, we show that every node
in ρ′2 satisfies condition (*) from Lemma 23. The
only interesting case is for node x (the others are
shown the same way as previously.) Since the de-
scendant component of x is linear, and x is not a
maximal component node in ρ, then

descendantmostρ(x)

is an ρ-descendant of x. It follows that some ρ-
child of x is an ancestor of, or equal to, the node
above, and therefore has a state in component Γ.
Since x1, . . . , xn are all the ρ-children of x, it fol-
lows that some node xj ∈ {x1, . . . , xn} has a state
in Γ. By Lemma 23 applied to ρ1, we know that if

j ∈ {1, . . . , i− 1} then the state of y is in right(Γ),
and if j ∈ {i, . . . , n} then the state of y is in left(Γ).
In either case, the condition of Lemma 23 holds for
node x in ρ′2.

2,3. Here the argument is the same as in the branching
case.

– x is a maximal component node in ρ.

1. To prove Rundb(ρ′2) ∈ C, we show that every node
in ρ′2 satisfies condition (*) from Lemma 23. The
only interesting case is for node x (the others are
shown the same way as previously.) The only dif-
ference between the children of x in ρ2 and in ρ′2
is that in ρ′2, the node y is inserted. Let yprev be
the previous sibling of y in ρ′2, and let ynext be the
next sibling of y in ρ′2. To prove condition (*), we
need to show

yprev →+
h y →

+
h ynext. (2)

Lemma 27. There are

j ∈ {1, . . . , i− 1} and k ∈ {i, . . . , n}

such that xj and xk have the same state as y.

Proof. Let q be the state in y. We only show
the existence of j, the proof for k is the same. The
node leftmostρ1q (x) must be a preceding sibling of
y in ρ1. Because Rundb(s) ⊆ Rundb(ρ1), and x
belongs to ρ, we have

leftmostρq(x) = leftmostρ1q (x). (3)

The node on the left side of the equality is one of
the nodes x1, . . . , xi−1.

The node xj is before ynext in ρ2, and therefore by
Lemma 23 applied to the tree ρ2, we have

xj →+
h ynext.

Because xj has the same state as y, we have

y →+
h ynext.

In a similar way we show

yprev →+
h y.

This completes the proof of (2).

2. To prove Rundb(ρ2) ⊆ Rundb(ρ′2), we use Lemma 25.
For the first implication in the lemma, we need to
show that y has both a preceding sibling and a
following sibling in ρ2 with the same label. This
follows from Lemma 27. The second implication is
satisfied thanks to Lemma 26.

3. This is proved the same was as item 3.

F. TREE PATTERNS
In this section, we prove Theorem 17 – that using tree

patterns leads to undecidability.

Proof Proof of Theorem 17. The language L consists
of trees of the following form.

r

a a . . . a a

b b . . . b b

The general idea is to encode runs of counter (or Minsky)
machines. More precisely, for a given counter machine M
with counters C we will construct a system SM over the
schema {�v,∼, {a}a∈A} such that

M has an accepting run if and only if SM has an
accepting run driven by some tree t ∈ L.

Since the halting problem for counter machines is undecid-
able (even with two counters), this will imply that emptiness
of our systems is also undecidable.

We will describe a mechanism which allows to simulate
each counter from C separately in SM – this simulation al-
lows increasing and decreasing counters, and testing whether
two counters are equal to each other.

The states Q of SM are precisely the states of the machine
M . For simplicity, we assume that the transition relation of
the machine M is such that at each step, only one counter
is accessed (i.e. its value is incremented, decremented, or
checked for equality with 0).

Consider a tree t ∈ L. Let t1, t2, . . . , tn be all the maximal
subtrees of t not containing the root of t (these trees have
roots labeled by a).

We will say that tj is a successor of ti (equivalently, that
ti is a predecessor of tj), if the a-node u of tj and the b-node
v of ti have the same datavalues, i.e.

u ∼ v.

Note that a priori, ti may have many successors and many
predecessors.

For each counter c ∈ C, the system SM will store in its
variables, at any moment, two nodes xc, yc. The invariant
maintained during the run is:

– There is precisely one subtree ti of t whose a-node has
the same value as xc;

– This unique subtree ti has b-node whose value is the
same value as yc;

– There is precisely one subtree tj of t whose a-node has
the same value as in yc.

Because of the uniqueness described in the first item above,
we can say that the nodes (xc, yc) define the subtree ti. We
will now describe how the system SM can enforce, by per-
forming a suitable transition incc, that if the values (xc, yc)
before the transition incc define the subtree ti, then after
performing the transition incc, the new values (x′c, y

′
c) will

define a subtree tj such that tj is the unique successor of
ti and ti is the unique predecessor of tj . This is done by
verifying the matching in t of the following boolean combi-
nation of conjunctive queries (with the natural semantics,
as illustrated in Example 7):

r

a ∼ xc a ∼ x′c

b ∼ yc b ∼ y′c

∧

r

a ∼ xc a

∧ ¬
∼ xc

r

b ∼ yc b

∧ ¬
∼ yc

r

a ∼ x′c a

∧ ¬
∼ x′c

r

b ∼ y′c b

∧ ¬
∼ y′c

Satisfaction of the above formula guarantees that (x′c, y
′
c)

encodes the successor of the tree encoded by (xc, yc), and
that the invariant is maintained. This way, we simulate an
increment of the counter c. In a very similar way, we can sim-
ulate decrementing counter c. Zero tests can be simulated by
comparing to an extra counter which is never incremented
nor decremented.

It is easy to verify that the system SM has an accepting
run (driven by some database t ∈ L) if and only if M has
an accepting run. Therefore, by using boolean combinations
of conjunctive queries and six variables – one pair for each
counter, where a third counter is used to simulate zero tests
– our systems can simulate two-counter machines.

