
Logical Methods in Computer Science
Vol. 6 (4:1) 2010, pp. 1–26
www.lmcs-online.org

Submitted Sep. 17, 2010
Published Oct. 20, 2010

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE

QUANTIFIER ALTERNATION

MIKO LAJ BOJAŃCZYK a AND LUC SEGOUFIN b

a Warsaw University
e-mail address: bojan@mimuw.edu.pl

b INRIA - LSV
URL: http://www-rocq.inria.fr/˜segoufin

Abstract. We study tree languages that can be defined in ∆2. These are tree languages
definable by a first-order formula whose quantifier prefix is ∃∗∀∗, and simultaneously by a
first-order formula whose quantifier prefix is ∀∗∃∗. For the quantifier free part we consider
two signatures, either the descendant relation alone or together with the lexicographical
order relation on nodes. We provide an effective characterization of tree and forest lan-
guages definable in ∆2. This characterization is in terms of algebraic equations. Over
words, the class of word languages definable in ∆2 forms a robust class, which was given
an effective algebraic characterization by Pin and Weil [11].

1. Introduction

We say a logic L1 has a decidable characterization inside a logic L2 if the following
decision problem is decidable: “given as input a formula of the logic L2, decide if it is
equivalent to some formula of the logic L1”. We are interested in the case when the logic
L2 is MSO on words or trees, and L1 represents some fragment of L2.

This type of problem has been successfully studied in the case when L2 is MSO on finite
words. In other words L2, represents the class of regular word languages. Arguably best
known is the result of McNaughton, Papert and Schützenberger [13, 9], which says that the
following two conditions on a regular word language L are equivalent: a) L can be defined in
first-order logic with order and label tests; b) the syntactic semigroup of L does not contain
a non-trivial group. Since condition b) can be effectively tested, the above theorem gives a
decidable characterization of first-order logic. This result demonstrates the importance of
this type of work: a decidable characterization not only gives a better understanding of the
logic in question, but it often reveals unexpected connections with algebraic concepts. Dur-
ing several decades of research, decidable characterizations have been found for fragments

1998 ACM Subject Classification: F.4.3,F.4.1.
Key words and phrases: first-order logic on trees, forest algebra.

a Supported by Polish government grant no. N206 008 32/0810.
b Work partially funded by the AutoMathA programme of the ESF.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (4:1) 2010
c© M. Bojańczyk and L. Segoufin
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. BOJAŃCZYK AND L. SEGOUFIN

of first-order logic with restricted quantification and various signatures (typically subsets of
the order relation and the successor relation), as well as a large group of temporal logics,
see [10] and [17] for references.

An important part of this research has been devoted to the quantifier alternation hier-
archy, where each level counts the alterations between ∀ and ∃ quantifiers in a first-order
formula in prenex normal form. The quantifier free part of such a formula is built using
a binary predicate < representing the linear order on the word. Formulas that have n − 1
alternations (and therefore n blocks of quantifiers) are called Σn(<) if they begin with ∃,
and Πn(<) if they begin with ∀. For instance, the word property “some position has label
a” can be defined by a Σ1(<) formula ∃x. a(x), while the language “nonempty words with
at most two positions that do not have label a” can be defined by the Σ2(<) formula

∃x1∃x2∀y (y 6= x1 ∧ y 6= x2) ⇒ a(y) .

A lot of attention has been devoted to analyzing the low levels of the quantifier alter-
nation hierarchy for word languages. The two lowest levels are easy: a word language is
definable in Σ1(<) (resp. Π1(<)) if and only if it is closed under inserting (removing) let-
ters. Both properties can be tested in polynomial time based on a recognizing automaton, or
semigroup. However, just above Σ1(<),Π1(<), and even before we get to Σ2(<),Π2(<), we
already find two important classes of languages. A fundamental result, due to Simon [15],
says that a language is defined by a Boolean combination of Σ1(<) formulas if and only if
its syntactic monoid is J -trivial. Above the Boolean combination of Σ1(<), we find ∆2(<),
i.e. languages that can be defined simultaneously in Σ2(<) and Π2(<). As we will describe
later on, this class turns out to be surprisingly robust, and it is the focus of this paper.
Another fundamental result, due to Pin and Weil [11], says that a regular language is in
∆2(<) if and only if its syntactic monoid is in DA. The limit of our knowledge is level
Σ2(<): it is decidable if a language can be defined on level Σ2(<) [1, 11], but there are no
known decidable characterization for Boolean combinations of Σ2(<), for ∆3(<), for Σ3(<),
and upwards.

For trees even less is known. No decidable characterization has been found for what
is arguably the most important proper subclass of regular tree languages, first-order logic
with the descendant relation, despite several attempts. Similarly open are chain logic and
the temporal logics CTL, CTL* and PDL. However, there has been some recent progress.
In [5], decidable characterizations were presented for some temporal logics, while Benedikt
and Segoufin [2] characterized tree languages definable in first-order logic with the successor
relation (but without the descendant relation).

This paper is part of a program to understand the expressive power of first-order logic
on trees, and the quantifier alternation hierarchy in particular. The idea is to try to under-
stand the low levels of the quantifier alternation hierarchy before taking on full first-order
logic (which is contrary to the order in which word languages were analyzed). We focus
on two signatures. The first signature contains unary predicates for label tests and the
ancestor order on nodes, denoted <. The second signature assumes that the trees have an
order on siblings, which induces a lexicographical linear order on nodes, denoted <lex. Both
signatures generalize the linear order on words. As shown in [4], there is a reasonable notion
of concatenation hierarchy for tree languages that corresponds to the quantifier alternation
hierarchy. Levels Σ1(<) and Π1(<) are as simple for trees as they are for words. A recent
result [7] extends Simon’s theorem to trees, by giving a decidable characterization of tree

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 3

languages definable by a Boolean combination of Σ1(<) formulas, and also a decidable char-
acterization of Boolean combinations of Σ1(<,<lex) formulas. There is no known decidable
characterization of tree languages definable in Σn(<) for n ≥ 2.

The contribution of this paper is a decidable characterization of tree languages de-
finable in ∆2(<), i.e. definable both in Σ2(<) and Π2(<). We also provide a decidable
characterization of tree languages definable in ∆2(<,<lex).

As we signaled above, for word languages the class ∆2(<) is well studied and important,
with numerous equivalent characterizations. Among them one can find [11, 16, 14, 8]: a)
word languages that can be defined in the temporal logic with operators F and F−1; b)
word languages that can be defined by a first-order formula with two variables, but with
unlimited quantifier alternations; c) word languages whose syntactic semigroup belongs to
the semigroup variety DA; d) word languages recognized by two-way ordered deterministic
automata; e) a certain form of “unambiguous” regular expressions.

It is not clear how to extend some of these concepts to trees. Even when natural tree
counterparts exist, they are not equivalent. For instance, the temporal logic in a) can
be defined for trees—by using operators “in some descendant” and “in some ancestor”.
This temporal logic was studied in [3], however it was shown to have an expressive power
incomparable with that of ∆2(<). A characterization of ∆2(<) was left as an open problem,
one which is solved here.

We provide an algebraic characterization of tree languages definable in ∆2(<) and in
∆2(<,<lex). This characterization is effectively verifiable if the language is given by a tree
automaton. It is easy to see that the word setting can be treated as a special case of the
tree setting. Hence our characterization builds on the one over words. However the added
complexity of the tree setting makes both formulating the correct condition and generalizing
the proof quite nontrivial.

2. Trees forests and languages

In this section, we present some basic definitions regarding trees. We also present the
formalism of forest algebra, which is used in our characterizations.

2.1. Trees, forests and contexts. In this paper we work with finite, unranked, ordered
trees and forests over a finite alphabet A. Formally, these are expressions defined inductively
as follows: If s is a forest and a ∈ A, then as is a tree. If t1, . . . , tn is a finite sequence of
trees, then t1 + · · ·+tn is a forest. This applies as well to the empty sequence of trees, which
is called the empty forest, and denoted 0 (and which provides a place for the induction to
start). Forests and trees alike will be denoted by the letters s, t, u, . . . When necessary, we
will remark which forests are trees, i.e. contain only one tree in the sequence.

The notion of node, as well as the descendant and ancestor relations are defined in the
usual way. We write x < y to say that x is a strict ancestor of y or, equivalently, that y is
a strict descendant of x. As usual, we write x ≤ y when x = y or x < y. The parent of
a node x is its immediate ancestor. Two nodes x and y are siblings if they have the same
parent. We also use the lexicographic order on nodes, written <lex. Recall that x <lex y
holds if either x < y, or there are nodes x′ ≤ x and y′ ≤ y such that x′ is a sibling to the
left of y′.

If we take a forest and replace one of the leaves by a special symbol �, we obtain a
context. Contexts will be denoted using letters p, q, r. A forest s can be substituted in

4 M. BOJAŃCZYK AND L. SEGOUFIN

place of the hole of a context p, the resulting forest is denoted by ps. There is a natural
composition operation on contexts: the context qp is formed by replacing the hole of q with
p. This operation is associative, and satisfies (pq)s = p(qs) for all forests s and contexts p
and q.

We say a forest s is an immediate piece of a forest s′ if s, s′ can be decomposed as s = pt
and s′ = pat for some context p, some label a, and some forest t. The reflexive transitive
closure of the immediate piece relation is called the piece relation. We write s � t to say
that s is a piece of t. In other words, a piece of t is obtained by removing nodes from t.
We extend the notion of piece to contexts. In this case, the hole must be preserved while
removing the nodes. The notions of piece for forests and contexts are related, of course.
For instance, if p, q are contexts with p � q, then p0 � q0. Also, conversely, if s � t, then
there are contexts p � q with s = p0 and t = q0. (For instance, one can take p = �+ s and
q = � + t.) The picture below depicts two contexts, the left one being a piece of the right
one, as can be seen by removing the white nodes.

??

We will be considering three types of languages in the paper: forest languages i.e. sets of
forests, denoted L; context languages, i.e. sets of contexts, denoted K, and tree languages,
i.e. sets of trees, denoted M . Note that a forest language can contain trees.

2.2. Forest algebras. Forest algebras were introduced by Bojańczyk and Walukiewicz as
an algebraic formalism for studying regular tree languages [6]. Here we give a brief summary
of the definition of these algebras and their important properties. A forest algebra consists of
a pair (H,V) of finite monoids, subject to some additional requirements, which we describe
below. We write the operation in V multiplicatively and the operation in H additively,
although H is not assumed to be commutative. We accordingly denote the identity of V
by � and that of H by 0. We require that V act on the left of H. That is, there is a map
(h, v) 7→ vh ∈ H such that w(vh) = (wv)h for all h ∈ H and v, w ∈ V. We further require
that this action be monoidal, that is, � ·h = h for all h ∈ H, and that it be faithful, that is,
if vh = wh for all h ∈ H, then v = w. Finally we require that for every g ∈ H, V contains
elements (� + g) and (g + �) defined by (� + g)h = h+ g, (g + �)h = g + h for all h ∈ H.

A morphism α : (H1, V1)→ (H2, V2) of forest algebras is actually a pair (αH , αV) where
αH is a monoid morphism between H1 and H2 and αV is a monoid morphism between V1

and V2, such that αH(vh) = αV (v)αH(h) for all h ∈ H, v ∈ V. However, we will abuse
notation slightly and denote both component maps by α.

Let A be a finite alphabet, and let us denote by HA the set of forests over A, and
by VA the set of contexts over A. Each of these is a monoid, with the operations being
forest concatenation and context composition, respectively. The pair (HA, VA), with forest
substitution as action, forms a forest algebra, which we denote A∆.

We say that a forest algebra (H,V) recognizes a forest language L ⊆ HA if there is a
morphism α : A∆ → (H,V) and a subset X of H such that L = α−1(X). A forest language
is regular, i.e. recognized by any of the many equivalent notions of automata for unranked

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 5

trees that can be found in the literature, if and only if it is recognized by a finite forest
algebra [6].

Given any finite monoid M , there is a number ω(M) (denoted by ω when M is under-
stood from the context) such that for all elements x of M , xω is an idempotent: xω = xωxω.
Therefore for any forest algebra (H,V) and any element u of V and g of H we will write
uω and ωg for the corresponding idempotents. The element uω is idempotent with respect
to the operation in V . The element ωg, which is the same as (� + g)ω0 and the same as
(g + �)ω0, is idempotent with respect to the operation in H.

Given a forest language L ⊆ HA we define an equivalence relation ∼L on HA by setting
s ∼L s′ if and only if for every context p ∈ VA, the forests ps and ps′ are either both in
L or both outside of L. We further define an equivalence relation on VA, also denoted ∼L,
by setting p ∼L p′ if for all s ∈ HA, ps ∼L p′s. This pair of equivalence relations defines a
congruence of forest algebras on A∆, and the quotient (HL, VL) is called the syntactic forest
algebra of L. Each equivalence class of ∼L is called a type.

We now extend the notion of piece to elements of a forest algebra (H,V). The general
idea is that a context type v ∈ V is a piece of a context type w ∈ V if one can construct
a term (using elements of H and V) which evaluates to w, and then take out some parts
of this term to get v. Let (H,V) be a forest algebra. We say v ∈ V is a piece of w ∈ V ,
denoted by v � w, if there is an alphabet A such that α(p) = v and α(q) = w hold for some
morphism

α : A∆ → (H,V)

and some contexts p � q over A. The relation � is extended to H by setting g � h if g = v0
and h = w0 for some context types v � w.

3. Logic

The focus of this paper is the expressive power of first-order logic on trees. A forest can
be seen as a logical relational structure. The domain of the structure is the set of nodes. (We
allow empty domains, which happens when an empty forest 0 is considered.) We consider
two different signatures. Both of them contain a unary predicate Pa for each symbol a of
the alphabet A, as well as a binary predicate < for the ancestor relation. Furthermore,
the second signature also contains a binary predicate <lex for the lexicographic order on
nodes. A formula without free variables over these signatures defines a set of forests, these
are the forests where it is true. We are particularly interested in formulas of low quantifier
complexity. A Σ2 formula is a formula of the form

∃x1 · · ·xn ∀y1 · · · ym γ ,

where γ is quantifier free. Languages defined in Σ2 are closed under disjunction and con-
junction, but not necessarily negation. The negation of a Σ2 formula is called a Π2 formula,
equivalently this is a formula whose quantifier prefix is ∀∗∃∗. A forest property is called ∆2

if it can be expressed both by a Σ2 and a Π2 formula. We will use Σ2(<) and Σ2(<,<lex)
to specify which predicates are used in the signature, similarly for Π2 and ∆2.

With limited quantification, the choice of signature is a delicate question. For instance,
adding a child relation changes the expressive power.

6 M. BOJAŃCZYK AND L. SEGOUFIN

3.1. The problem. We want an algorithm deciding whether a given regular forest language
is definable in ∆2(<,<lex) and another one for deciding whether it is in ∆2(<).

As noted earlier, the corresponding problem for words was solved by Pin and Weil [11]:
a word language L is definable in ∆2(<) if and only if its syntactic monoid M(L) belongs
to the variety DA, i.e. it satisfies the identity

(mn)ω = (mn)ωm(mn)ω

for all m,n ∈M(L). The power ω means that the identity holds for sufficiently large powers
(in different settings, ω is defined in terms of idempotent powers, but the condition on
sufficiently large powers is good enough here). Since one can effectively test if a finite monoid
satisfies the above property (it is sufficient to verify the power |M(L)|), it is decidable
whether a given regular word language is definable in ∆2(<). We assume that the language
L is given by its syntactic monoid and syntactic morphism, or by some other representation,
such as a finite automaton, from which these can be effectively computed.

We will show that a similar characterization can be found for forests; although the
identities will be more involved. For decidability, it is not important how the input language
is represented. In this paper, we will represent a forest language by a forest algebra that
recognizes it. Forest algebras are described in the next section.

3.2. Tree languages. We give an algorithm which says when a forest language belongs to
a class L, which is either ∆2(<) or ∆2(<,<lex). What about tree languages? There are
two ways of getting a class of tree languages from a class of forest languages L.

(1) The class of tree languages that belong to L.
(2) The class of tree languages of the form L∩ TA, where A is an alphabet, TA is the set of

all trees over alphabet A, and L ∈ L is a forest language over A.

Our algorithm gives a decision procedure under the first definition. The usual understanding
of tree languages definable in ∆2(<) or ∆2(<,<lex) corresponds to the second definition.

Fortunately, the two definitions are equivalent when L is either ∆2(<) or ∆2(<,<lex).
This is because in both cases, L is closed under intersection and contains the languages TA.

Closure under intersection is immediate. Why does L contain the languages TA? Since
∆2(<) is the less powerful logic, it suffices to show how to define TA using a Σ2(<) formula,
and also using a Π2(<) formula. The Σ2(<) formula says there exists a node that is an
ancestor of all other nodes, while the Π2(<) formula says that for every two nodes, there
exists a common ancestor.

In general, the definitions of tree language classes are not equivalent. Consider as L the
class of forest languages defined by purely existential formulas. In particular, if a language
L ∈ L contains a tree t, then it also contains the forest t+t. This means that under the first
definition, the only tree languages we get are the empty tree languages. Under the second
definition, we get some more tree languages, such as “trees with at least two nodes”.

3.3. Basic properties of Π1 and Σ2. Most of the proofs in the paper will work with
Σ2(<) or Σ2(<,<lex) formulas. We present some simple properties of such formulas in this
section.

Apart from defining forest languages, we will also be using formulas to define languages
of contexts. To define a context language we use formulas with a free variable; such a
formula is said to hold in a context if it is true when the free variable is mapped to the hole

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 7

of the context.§ For instance, the formula ∀y y < x ⇒ a(y) with a free variable x defines
the set of contexts where every ancestor of the hole has label a.

We begin by describing the expressive power of purely universal formulas Π1.

Lemma 3.1. A forest language is closed under pieces if and only if it is definable in Π1.
Likewise for context languages.

Proof. It is clear that a forest language definable in Π1 is closed under pieces as the models
of a Π1 formula are closed under substructures.

For the converse, let L be a forest language that is closed under pieces, and let α :
A∆ → (H,V) be its syntactic algebra. Thanks to a pumping argument, any forest has a

piece with the same type, but at most |H||H| nodes. Let T be the finite set of forests with at

most |H||H| nodes that are outside L. Thanks to the pumping argument, a forest belongs to
L if and only if it has no piece in the set T . The latter is a property that can be expressed
in Π1(<,<lex).

If, additionally, the language L is commutative, then we do not need to worry about
the lexicographic order when talking about the pieces in T , only the descendant order is
relevant.

We now turn to the formulas from Σ2. We begin with Σ2(<,<lex), since it has the
better closure properties.

Lemma 3.2. Let K,K ′ be context languages and L,L′ be forest languages. If these lan-
guages are all definable in Σ2(<,<lex), then so are

(1) the forest language KL = {qt : q ∈ K, t ∈ L},
(2) the forest language L+ L′ = {t+ t′ : t ∈ L, t′ ∈ L′},
(3) the context language KK ′ = {qq′ : q ∈ K, q′ ∈ K ′},
(4) the forest language L ∩ L′ = {t : t ∈ L, t ∈ L′},
(5) the context language K ∩K ′ = {q : q ∈ K, q ∈ K ′},

Proof. We only do the proof for KL, the others are treated similarly. When does a forest t
belong to KL? There must exist two siblings x1 and x2 such that the set, call it X, of gray
nodes in the picture below

x1

L

K

x2

describes a forest in L, and the other nodes describe a context in K. Below we define this
property more precisely, and show that it can be defined in Σ2(<,<lex).

First, we want to say that the nodes x1 and x2 are siblings. This can be expressed by
a formula, call it α(x1, x2), of Σ2(<,<lex). The formula quantifies existentially a common
ancestor and uses universal quantification to check that this common ancestor is a parent
of both nodes:

α(x1, x2) = ∃x ∀y x1 ≤lex x2 ∧ x < x1 ∧ x < x2 ∧ (y < x1 → y ≤ x) ∧ (y < x2 → y ≤ x2)

8 M. BOJAŃCZYK AND L. SEGOUFIN

Next, we describe the set X. Membership x ∈ X is defined by a quantifier-free formula

β(x) = (x1 ≤lex x ∧ x ≤lex x2) ∨ (x > x2).

Next, we say what it means for the part inside X describes a forest in L. Suppose that
the forest language L is defined by a formula ϕ of Σ2(<,<lex). To say that X describes a
forest in L we use the formula ϕβ obtained from ϕ by restricting quantification to nodes
satisfying β. Note that ϕβ has free variables x1, x2 from β. Since β is quantifier-free, the
formula ϕβ is also in Σ2(<,<lex).

Finally, we say that the part outside X describes a context in K. The idea is that the
hole of this context corresponds to the set X. The logical formula is constructed below.
Suppose that φ(x) is a formula of Σ2(<,<lex) that describes K. Note that this formula has
a free variable, as with formulas for contexts, which corresponds to the hole. Let φ¬β(x) be
the formula obtained from φ(x) by restricting quantification to nodes not satisfying β. The
remaining question is: which node should we use for x? Any node from X will do, since
for each node y 6∈ X, all nodes from X have the same relationship to y, with respect to the
descendant and lexicographic orders. We use the node x1 for x.

Summing up, the formula for KL is written below.

∃x1∃x2 α(x1, x2) ∧ φ¬β(x1) ∧ ϕβ.

3.4. Σ2 expressions. In the proofs, it will sometimes be more convenient to use a type
of regular expression instead of formulas. These are called Σ2 forest expressions and Σ2

context expressions, and are defined below by mutual recursion:

• Any forest (respectively, context) language that is closed under pieces is a Σ2 forest
(respectively, context) expression. For any label a ∈ A, {a�} is a Σ2 context expression.
Likewise for {�}, the language containing only the empty context.
• If K,K ′ are Σ2 context expressions and L,L′ are Σ2 forest expressions, then
− K ·K ′ is a Σ2 context expression;
− L+ L′ is a Σ2 forest expression;
− K · L is a Σ2 forest expression.
− L ∪ L′ is a Σ2 forest expression.
− K ∪K ′ is a Σ2 forest expression.
− L ∩ L′ is a Σ2 forest expression.
− K ∩K ′ is a Σ2 forest expression.

From Lemmas 3.1 and 3.2 it follows that languages defined by Σ2 forest and context ex-
pressions are definable in Σ2(<,<lex).

4. Characterization of ∆2(<,<lex)

The main result of this paper is the following theorem:

Theorem 4.1 (Effective characterization of ∆2 with descendant and lexicographic orders).

A forest language is definable in ∆2(<,<lex) if and only if its syntactic forest algebra satisfies
the following identity, called the ∆2 identity,

vωwvω = vω for w � v . (4.1)

Before we prove the main theorem, we state and prove an important corollary.

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 9

Corollary 4.2. It is decidable whether a forest language can be defined in ∆2(<,<lex).

Proof. We assume that the language is represented as a forest algebra. This representation
can be computed based on other representations, such as automata or monadic second-order
logic.

Once the forest algebra is given, the ∆2 identity can be tested in polynomial time by
searching through all elements of the algebra. The relation� can be computed in polynomial
time, using a fixpoint algorithm as in [3].

The following lemma gives the easier implication from the main theorem.

Lemma 4.3. Let ϕ be a formula of Σ2(<,<lex) and let q � p be two contexts. For n ∈ N
sufficiently large, forests satisfying ϕ are closed under replacing pnpn with pnqpn.

Proof. Assume that ϕ is ∃x1 · · ·xk∀y1 . . . ylψ, with ψ quantifier-free. Any first-order defin-
able tree language is aperiodic [13], i.e. there is a number m such that any context pi can
be replaced by pj without affecting membership in the language, for any i, j ≥ m. We set
n = 2m+ (k + 1)(l + 1).

Consider a forest t = rpnpns that satisfies ϕ. We want to show that the forest rpnqpns
also satisfies ϕ. By aperiodicity, it is sufficient to show that for some numbers i, j > m,
rpiqpjs satisfies ϕ.

Because t satisfies ϕ we can fix k nodes x1, . . . , xk that make ∀y1 . . . ylψ true. By the
choice of n, t can be decomposed as rpiplpjs such that i, j ≥ m and the middle pl part
contains none of the nodes x1, . . . , xk. We show that t′ = rpiplqpjs satisfies ϕ, which will
conclude the proof of the lemma.

We identify the nodes of t with the nodes of t′ outside the inserted context q. Consider
the valuation of the variables x1, · · · , xk that we fixed above. We show that this valuation,
when seen as nodes of t′, makes ϕ true. Indeed, for any valuation for the variables y1, · · · , yl
in t′, we show that the valuation makes the quantifier-free part ψ true. This is obvious if
none of the yi are in q because ϕ holds in t and the insertion of q does not affect the
relationship < and <lex between the selected nodes. If some of the yi are in q then one
of the contexts p in the middle block pl of t′ does not contain any variable. As removing
the context p that does not contain any variable does not affect the relationship < and
<lex between the selected nodes, ψ(x1, · · · , xk, y1, · · · , yl) holds on rpiplqpjs iff it holds
on rpipl−1qpjs. Moreover, because q is a piece of p, replacing q by p does not affect the
relationship < and <lex between the selected nodes and therefore ψ(x1, · · · , xk, y1, · · · , yl)
holds on rpipl−1qpjs iff it holds on rpipl−1ppjs = t. Hence ψ must hold with the new
valuation.

The rest of the paper contains the more difficult implication of Theorem 4.1 which is a
consequence of the proposition below.

Proposition 4.4. Fix a morphism α : A∆ → (H,V), with (H,V) satisfying the ∆2 identity.
For each h ∈ H, the set Lh of forests t with type α(t) = h is definable by a Σ2 forest
expression, and thus also by a formula of Σ2(<,<lex).

Before proving this proposition, we show how it concludes the proof of Theorem 4.1.
Since Σ2 expressions allow union, the above proposition shows that any language recognized
by α can be defined by a Σ2 forest expression. In particular, if L is recognized by α, then
both L and its complement can be defined by Σ2 forest expressions, and consequently

10 M. BOJAŃCZYK AND L. SEGOUFIN

formulas of Σ2(<,<lex). Since the complement of a Σ2(<,<lex) formula is a Π2(<,<lex)
formula, we get the right-to-left implication in Theorem 4.1.

The rest of the paper is devoted to showing Proposition 4.4. The proof is by induction
on two parameters. For the second parameter, we need to define a pre-order on H. We say
that a type h is reachable from a type g if there is a context type v ∈ V such that h = vg.
If h and g are mutually reachable from each other, then we write h ∼ g. Note that ∼ is an
equivalence relation. Note also that if g is reachable from h, then h is a piece of g. We write
H⊥ for the set of types h that can be reached from every type g ∈ H. Note that H⊥ is not
empty, since it contains the type h1 + · · ·+ hn, for any enumeration H = {h1, . . . , hn}.

The proof of Proposition 4.4 is by induction on the size of the algebra (H,V) and
then on the position of h in the reachability pre-order. The two parameters are ordered
lexicographically, the most important parameter being the size of the algebra. That is we
will either decrease the size of the algebra or stay within the same algebra, but go from
a type g to a type h such that h is reachable from g but not vice versa. As far as h is
concerned, the induction corresponds to a bottom-up pass, where types close to the leaves
are treated first.

Part of the induction proof is presented in Section 5. However, the induction breaks
down for types from H⊥, which are treated in Section 7.

5. Types outside H⊥

In this section we prove Proposition 4.4 for forest types outside H⊥. We fix such a
forest type h for the rest of the section. By induction assumption, for each type g 6∼ h from
which h is reachable, we have a Σ2 forest expression defining the language Lg of forests of
type g. (The case when there are no such types g corresponds to the induction base, which
is treated the same way as the induction step.) In this section we assume that h is outside
H⊥, and we will produce a Σ2 forest expression for Lh. The case where h is in H⊥ will be
treated in Section 7.

In the following, we will be using the stabilizer of h, defined as

stab(h) = {v : vh ∼ h} ⊆ V .

We say that a context type v stabilizes h if it belongs to the stabilizer of h. The key lemma
is that the ∆2 identity implies that the stabilizer is a submonoid of V .

Lemma 5.1. The stabilizer of h only depends on the ∼-class of h. In particular, it is a
submonoid of V .

Proof. We need to show that if h ∼ h′ then stab(h) = stab(h′). Assume v ∈ stab(h). Then
vh ∼ h. Hence we have u1, u2, u3 such that h = u1vh, h = u2h

′ and h′ = u3h. This implies
that h′ = u3u1vu2h

′ and therefore h′ = (u3u1vu2)ωh′. From the ∆2 identity we have that

h′ = (u3u1vu2)ωh′ = (u3u1vu2)ωv(u3u1vu2)ωh′ = (u3u1vu2)ωvh′ .

Hence h′ is reachable from vh′. Since vh′ is clearly reachable from h′, we get vh′ ∼ h′ and
v ∈ stab(h′).

To see that stab(h) is a submonoid consider v, v′ ∈ stab(h). We need to show that
vv′ ∈ stab(h). Let h′ = v′h. Because v′ ∈ stab(h) we have h′ ∼ h. As v ∈ stab(h) = stab(h′)
we have vh′ ∼ h′ and hence vv′h ∼ h.

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 11

Recall now the piece order on forest types from the end of Section 2.2, which corresponds
to removing nodes from a forest. We say a set F ⊆ H of forest types is closed under pieces
if any piece of a forest type f ∈ F also belongs to F . A similar definition is also given for
sets of context types. Another consequence of the ∆2 identity is:

Lemma 5.2. Each stabilizer is closed under pieces.

Proof. We need to show that if u stabilizes h, then each piece u′ of u also stabilizes h. By
definition of the stabilizer we have a context type v such that h = vuh. We are looking for
a context type w such that wu′h = h. From h = vuh we get h = (vu)ωh. Hence by the ∆2

identity we have h = (vu)ωu′(vu)ωh = (vu)ωu′h as desired.

We now consider two possible cases: either h + h ∼ h, or not. Equivalently, we could
have asked if h+� stabilizes h. Again equivalently, we could have asked if �+ h stabilizes
h. When h + h ∼ h, we will conclude by induction on the size of the algebra. When
h + h 6∼ h, we will conclude by induction on the reachability pre-order. These cases are
treated separately in Sections 5.2 and 5.1, respectively.

5.1. h + h ∼ h. Let G be the set of pieces of h. By assumption that h + h ∼ h, we know
that both h+ � and � + h stabilize h.

Lemma 5.3. If h+ h ∼ h then (G, stab(h)) is a forest algebra.

Proof. We need to show that the two sets are closed under all operations:

stab(h)stab(h) ⊆ stab(h)

G+G ⊆ G

� +G,G+ � ⊆ stab(h)

stab(h)G ⊆ G

The first of the above inclusions follows from Lemma 5.1. For the second inclusion, we note
that h + h is a piece of h by assumption on h + h ∼ h. In particular, each forest type in
G + G is a piece of h. For the third inclusion, h + h ∼ h implies that both h + � and
�+h stabilize h. Since by Lemma 5.2 the stabilizer is closed under pieces, we get the third
inclusion. For the last inclusion, consider v ∈ stab(h) and g ∈ G. We need to show that
vg ∈ G. This holds because vg is a piece of vh, which is a piece of h as vh ∼ h.

Recall that in this section we are dealing with the case when h is outside H⊥, i.e. there
are some forest types that can be reached from h but not vice versa. In this case we show
that G is a proper subset of H. To see this, we show that for h⊥ ∈ H⊥, h⊥ 6∈ G. Assume
for contradiction that h⊥ ∈ G. Then h⊥ is a piece of h and because h + � ∈ stab(h) and
stab(h) is closed under pieces (Lemma 5.2), we infer h⊥ + � ∈ stab(h) and h is reachable
from h⊥, a contradiction.

Therefore the algebra from the above lemma is a proper subalgebra of the original
(H,V). Furthermore, this algebra contains all pieces of h; so it still recognizes the language
Lh; at least as long as the alphabet in the morphism is reduced to include only letters that
can appear in h. We can then use the induction assumption on the smaller algebra to get
a Σ2 forest expression for Lh.

12 M. BOJAŃCZYK AND L. SEGOUFIN

5.2. h + h 6∼ h. For v ∈ V , we write Kv for the set of contexts of type v. For g ∈ H, we
write Lg for the set of forests of type g, and Mg for the set of trees of type g.

Let G be the set of forest types g such that h is reachable from g but not vice-versa. By
induction assumption, for each g ∈ G, the language Lg is definable by a Σ2 forest expression.
Our goal is to give a Σ2 forest expression for Lh.

Lemma 5.4. Any forest t of type h can be decomposed as t = ps, with s a forest whose type
is reachable from h, and which furthermore is:

(1) A tree s = as′ with the type of s′ in G; or
(2) A forest s = s1 + s2 with the types of s1, s2 in G.

Proof. Consider decompositions of t as t = ps. Among such decompositions, take a decom-
position where the forest s has a type reachable from h, but s has no subforest with a type
reachable from h. Such a decomposition always exists as t is of type h. If s is a tree, we
get case (1), if s is a forest, we get case (2).

Note that in the above lemma, the type of the context p must stabilize h, since both
the type of s and the type of the whole forest t are in the class of h. Therefore, thanks to
the above lemma, the set Lh of forests with type h can be decomposed as

Lh =
⋃

u∈stab(h)

(⋃
a∈A,g∈G
uag=h

KuaLg ∪
⋃

g1,g2∈G
u(g1+g2)=h

Ku(Lg1 + Lg2)
)

(5.1)

Note that Lg, Lg1 and Lg2 can all be written as Σ2 forest expressions thanks to the induction
assumption from Proposition 4.4. The only thing that remains is showing that the context
language Ku can be defined by a Σ2 context expression. For this, we use the following
proposition.

Proposition 5.5. For any v ∈ V , the language Kv of contexts of type v is defined by a
finite union of concatenations of the form K1 · · ·Km where each context language Ki is
either:

(1) A singleton language {a�} for some a ∈ A; or
(2) A context language closed under pieces; or
(3) A context language � +Mg or Mg + � for some g ∈ H.

The proof of this proposition will be presented in Section 6. Meanwhile, we show how
the proposition gives a Σ2 context expression for each language Ku in (5.1). The singleton
languages, and the languages closed under pieces are Σ2 context expressions by definition.
The only potential problem is with the languages � + Mg or Mg + � that appear in the
proposition. Since the context types u that appear in (5.1) stabilize h, the forest type g has
to be such that � + g or g + � stabilizes h. In either case, g cannot be reachable from h,
since h+h 6∼ h and the stabilizer is closed under pieces. As h is obviously reachable from g,
the language Lg is definable by a Σ2 forest expression thanks to the induction assumption
from Proposition 4.4. Finally, Mg is the intersection of Lg with the set of all trees, which
is definable by a Σ2 forest expression.

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 13

6. Treating contexts like words

In this section, we prove Proposition 5.5. The basic idea is that a context is treated
as a word, whose letters are smaller contexts. The proof strategy is as follows. First, in
Section 6.1, we present the characterization of ∆2(<) for words, which was shown by Pin and
Weil in [11]. This characterization is slightly strengthened to include what we call stratified
monoids, which are used to model the contexts that appear in Proposition 5.5. Then, in
Section 6.2, we apply the word result, in its strengthened form, to prove Proposition 5.5.

6.1. ∆2(<) for words. In this section we present the characterization of ∆2(<) for words,
extended to stratified monoids. A stratified monoid is a monoid M along with a pre-order
� that satisfies the following property:

mωnmω = mω for n � m .

A subset N ⊆ M is called downward closed under � if for every n ∈ N , and every m � n,
we also have m ∈ N .

Proposition 6.1. Let A be an alphabet (possibly infinite), and let β : A∗ → M be a
morphism into a stratified monoid (M,�) that satisfies the identity

(mn)ωm(mn)ω = (mn)ω (6.1)

For any m ∈M , the language β−1(m) is defined by a finite union of expressions

A∗0B1A
∗
1 · · ·BiA∗i

where each Bj is of the form A ∩ β−1(n) for some n ∈ M , and each Aj is of the form
A ∩ β−1(N) for some N ⊆M downward closed under �.

The difference between the above result and the main technical result in Pin and Weil
is twofold. First, we use infinite alphabets here. Second, we use stratified monoids to
get a stronger conclusion, where the letters in the blocks A∗i are downward closed. Both
differences are necessary for our application to context languages.

Our proof is a straightforward adaptation of a proof of Thérien and Wilke in [16], which
analyzed the languages recognized by semigroups in DA.

Before proving this result, we remark how Proposition 6.1 gives the characterization of
∆2(<) presented by Pin and Weil:

Corollary 6.2 (Pin and Weil [11]). A word language (over a finite alphabet) is definable
∆2(<) if and only if its syntactic monoid satisfies the identity (6.1).

Proof. The only if implication is shown using a standard Ehrenfeucht-Fräıssé argument, we
only consider the if implication.

Let then L ⊆ A∗ be a language recognized by a morphism β : A∗ → M , with M
satisfying (6.1). We can see this M as a stratified monoid under the identity pre-order. By
applying Proposition 6.1, we see that each inverse image β(m) is defined by an expression as
in Proposition 6.1 (the downward closure is a vacuous condition, since the order is trivial).
Since each such expression is clearly expressible in Σ2(<), we get that L is definable in
Σ2(<). Furthermore, by Proposition 6.1 also the complement of L is definable in Σ2(<),
and therefore L is also definable in Π2(<).

14 M. BOJAŃCZYK AND L. SEGOUFIN

We now proceed to the proof of Proposition 6.1. The proof is by induction on the size
of β(A) ⊆ M or, equivalently, the number of elements in the monoid that correspond to
single letters. In the proof of Thérien and Wilke, the induction was simply on the size of
the alphabet, but this will not work here, since the alphabet is infinite.

We use the term Σ2 word expression for the word expressions as in the statement of the
Proposition 6.1. It is not difficult to show that languages defined by Σ2 word expressions
are closed under union, intersection and concatenation.

We will use the following notation. Given two elements m and n of M we say that
m ∼L n if there exist k, l ∈ M such that m = kn and n = lm. We say that m ∼R n if
there exist k, l ∈ M such that m = nk and n = ml. These are the left and right Green’s
relations.

A classical consequence of aperiodicity, itself a consequence of (6.1), is:

m ∼R n ∧ m ∼L n ⇒ m = n for m,n ∈M . (6.2)

We will also use the following property of monoids satisfying (6.1), which can be proved
along the lines of Lemma 5.1.

m ∼R n ∼R mk ⇒ nk ∼R n for m,n, k ∈M . (6.3)

Lemma 6.3. For all m ∈ M , the language Um = {w : mβ(w) ∼R m} is definable by a Σ2

word expression.

Proof. Let Am be the set of letters a of A such that mβ(a) ∼R m. In other words, Am =
A ∩ β−1(N), where N is the set {n : mn ∼R m}.

We will show that Um = A∗m. Stated differently, a word belongs Um if and only if all of
its letters belong to Am.

Thanks to (6.3), for all n ∼R m we have nβ(a) ∼R m. Hence by induction on the
length of w ∈ A∗m we can prove w ∈ Um. For the converse implication, let w be a word
outside A∗m, of the form w = w1aw2 with w1 ∈ A∗m and a 6∈ Am. Then mβ(w) = nβ(a)n′

for some n, n′, and from the discussion above we have n ∼R m. Hence by (6.3) and by
hypothesis on a, nβ(a) 6∼R m and w cannot be in Um.

To conclude, we need to show that N is closed under �. Indeed, let k � n and let
n ∈ N . By assumption on the monoid being stratified, we have nωknω = nω. In particular,
we have

mnωknω ∼R mnω ∼R m .

From the above it follows that mnωk ∼R m, which gives mk ∼R m by (6.3), and hence
k ∈ N .

Note that by (6.3) we have Un = Um whenever m ∼R n.

Lemma 6.4. For any m ∈M , the following language can be defined by a Σ2 word expres-
sion:

Vm = {a1 · · · ai : β(a1 · · · ai) = m and β(a1 · · · ai−1) 6∼R m} .

Before we give the proof, we show how it concludes the proof of Proposition 6.1. Con-
sider the set {w : β(w) ∼R m}. Each word w in this set can be written as uv where u is
the smallest prefix of w such that β(u) ∼R m. Hence we have:

{w : β(w) ∼R m} =
⋃

n:n∼Rm
VnUm .

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 15

Since Σ2 word expressions are closed under union and concatenation, the above language
is definable by a Σ2 word expression thanks to Lemmas 6.3 and 6.4. Using a symmetric
version of Lemma 6.3 and Lemma 6.4 for ∼L, we can get an Σ2 word expression for {w :
β(w) ∼L m}. But we also know from (6.2) that

β−1(m) = {w : β(w) ∼R m} ∩ {w : β(w) ∼L m}
and the result follows by closure of Σ2 word expressions under intersection.

Proof of Lemma 6.4. We say that m is a prefix of n if there exists k ∈M such that n = mk.
This defines a pre-order in M . The proof is by induction on the position of m relative to
this pre-order.

The induction base is when m has no proper prefixes: If m = nk then n ∼R m. In this
case the language Vm contains at most the empty word, since the condition on a1 · · · ai−1

is infeasible. Clearly both languages ∅ and {ε} are Σ2 word expressions.
Assume now that m is not minimal. Each word w of Vm can be written as ua where

a ∈ A, β(u) = k and kβ(a) = m. Furthermore, u can be written as u1u2 where u1 is the
smallest prefix of u such that n = β(u1) ∼R k. We therefore have:

Vm =
⋃
VnUn,ka with Un,k = {w ∈ A∗ : nβ(w) = k}

where the union is taken for n, k ∈ M such that n ∼R k, k 6∼R m a prefix of m and for
a ∈ A with kβ(a) = m. By induction the language Vn is definable by a Σ2 word expression.
It is also clear that Un,k ⊆ Un. Recall from the proof of Lemma 6.3 that Un = A∗n where
An = A ∩ β−1(N) for some N ⊆M . Therefore we also have β(Un,k) ⊆ A∗n. From (6.3) and
the fact that kβ(a) = m we know that a 6∈ An, therefore An is a proper subset of A. Let β′

be the restriction of β to An. We have Un,k =
⋃
nx=k β

′−1(x), from induction on the size of
the alphabet in Proposition 6.1 we obtain a Σ2 word expression for Un,k. This concludes the
proof of this lemma as Σ2 word expressions are closed under concatenation and union.

6.2. Proof of Proposition 5.5. We now proceed to show how the word result stated in
Proposition 6.1 can be lifted to the context result in Proposition 5.5. Proposition 5.5 says
that for any context type v ∈ V , the set of contexts of type v is described by a finite union
of expressions of the form K1 · · ·Km where each Ki is either: a singleton language {a�};
or closed under pieces; or an expression � +Mg or Mg + �.

The basic idea is that we treat the context as a word over an infinite alphabet, which
we call B. This alphabet has two kinds of letters. Both kinds are contexts:

• Contexts of the form a�, for a ∈ A.
• Contexts of the form t+ � or � + t, for t a tree over A.

Consider now the morphism β : B∗ → V , which is simply α restricted to the contexts
in B∗. Every context p in Kv can be decomposed as p = b1 · · · bm ∈ B∗. In particular, we
have

Kv = β−1(v) .

We can treat V as a stratified monoid, by using the piece relation � as the pre-order.
By applying Proposition 6.1, we see that the inverse image β−1(v) can be presented as a
finite union of expressions of the form:

(B ∩ β−1(N0))∗(B ∩ β−1(n1)) · · · (B ∩ β−1(nk))(B ∩ β−1(Nk))
∗ ,

16 M. BOJAŃCZYK AND L. SEGOUFIN

where n1, . . . , nk are elements of V , and N1, . . . , Nk are a subsets of V that are downward
closed under �.

We need to show that the expressions used above are of the three forms allowed by
Proposition 5.5. Consider first an expression (B ∩β−1(W))∗, where W ⊆ V is closed under
pieces. Since W is closed under pieces (as a set of context types), then so is the language
(B ∩ β−1(W))∗ (as a set of contexts). Consider next an expression of the form B ∩ β−1(n).
This context language is a union of languages of the first (singleton) and third (� + Mg

or Mg + �) types described in Proposition 5.5. The union is not a problem for a Σ2 word
expression, since union distributes across concatenation.

7. Types in H⊥

Recall that in Section 5, we managed to find a Σ2 forest expression for each set Lh,
assuming h was outside H⊥. Our techniques failed for forest types h ∈ H⊥, i.e. forest types
reachable from every other forest type. In this section, we deal with these forest types.

In order to deal with the types from H⊥, we will have to do a different induction, this
time on context types. This induction, stated in Proposition 7.1, is expressed in terms of
an equivalence relation ≡v. Given a context type v ∈ V and two forest types h, h′, we write

h ≡v h′ if ∀u ∈ V vuh = vuh′ . (7.1)

We extend this equivalence relation to context types, by

w ≡v w′ if ∀u ∈ V ∀h ∈ H vuwh = vuw′h . (7.2)

By abuse of notation, we also lift the equivalence relation ≡v to forests, considering two
forests s, t equivalent when their forest types are equivalent. It is this meaning that is used
in the statement below.

Proposition 7.1. For any context type v, every equivalence class of forests under ≡v is
forest language definable by a Σ2 forest expression.

From Proposition 7.1 we immediately obtain a Σ2 forest expression for Lh, as the
equivalence class of ≡v containing h, where v = �. Hence the proof of Proposition 7.1 ends
the proof of Proposition 4.4. We note that the proof of Proposition 7.1 will be using the Σ2

forest expressions Lh for types h 6∈ H⊥ that have been developed in Section 5. In particular
if an equivalence class of ≡v is contained in H \ H⊥, then it can easily be defined by the
disjunction of all the Σ2 forest expressions corresponding to each type. The difficulty is to
handle equivalence classes that intersect H⊥.

The rest of Section 7 is devoted to proving Proposition 7.1. The proof uses the following
pre-order on context types. We say that a context type u is a prefix of a context type v
if there exists a context type w such that v = uw (we also say that v is an extension of
u). We overload the use of ∼ and denote by ∼ the equivalence relation induced by the
prefix pre-order, i.e. v ∼ w holds if v is both a prefix and an extension of w. The proof of
Proposition 7.1 is by induction on the position of v in the prefix pre-order, starting with
context types that have no proper extension, and ending at the context type v = � that
has no proper prefix.

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 17

7.1. The induction base. The base of the induction in the proof of Proposition 7.1 is
when the context type v has no proper extension, i.e. v ∼ w holds for all extensions w of
v. We will show that such a context type is necessarily constant, i.e. vg = vh holds for
all forest types g, h ∈ H. This gives the induction base, since for a constant context type
v, there is only one equivalence class of ≡v, and this class is, by definition, the set of all
forests, which can be defined by a Σ2 forest expression (it is closed under pieces).

Lemma 7.2. A context type has no proper extension if and only if it is constant.

The if direction is immediate: if a context type v is constant, then vu = v holds for all
context types u, and therefore v has no proper extension. For the converse implication, as
well as in the rest of Section 7, we will use the notion of stabilizers for context types:

stab(v) = {w : vw ∼ v} .
When u ∈ stab(v), we say that u stabilizes v. As for stabilizers of forest types (recall
Lemma 5.1 and Lemma 5.2), the ∆2 identity implies that the stabilizer stab(v) is a sub-
monoid of V and it is closed under pieces. The following lemma implies Lemma 7.2, since
its assumptions are met by a context type without proper extensions. Recall that H⊥ is
the equivalence class of ∼ that contains all types reachable from any other type.

Lemma 7.3. If both H⊥ + � and � + H⊥ intersect stab(v), then the context type v is
constant.

Proof. First note that if some context type in H⊥ + � stabilizes v, then all context types
in H⊥ + � stabilize v, likewise for � + H⊥. This is because the stabilizer is closed under
pieces, and every type in H + � is a piece of every type in H⊥ + �.

Let f = h1 + · · · + hn, for some arbitrary enumeration h1, . . . , hn of H. As we noted
above, both f + � and � + f stabilize v. Therefore,

v(ωf + � + ωf) ∼ v .
The context type (ωf + � + ωf) is constant, since any forest type h ∈ H is a piece of f ,
and therefore by (4.1) we have

ωf + h+ ωf = (f + �)ω · (h+ �) · (f + �)ω · 0 = (f + �)ω · (f + �)ω · 0 = ωf + ωf .

Hence the context type v is constant as it is equal to wv(ωf + � + ωf) for some context
type w.

7.2. The induction step. We now proceed to the induction step in Proposition 7.1. Recall
that our goal is to find a Σ2 forest expression for every equivalence class of ≡v. For a forest
language L, we denote by [L]v the union of equivalence classes of ≡v that intersect L, i.e.

[L]v = {t : t ≡v s for some s ∈ L} ⊇ L .

We use a similar notation [K]v for languages of contexts. We say that a forest language is
a v-overapproximation of a forest language L if it contains L, but is contained in [L]v. In
other words, a v-overapproximation may add forests to L, but it adds no new forest types,
at least as far as the context type v is concerned. Note that a language may have several
v-overapproximations.

Proposition 7.4. For every h ∈ H, some v-overapproximation of Lh can be defined by a
Σ2 forest expression.

18 M. BOJAŃCZYK AND L. SEGOUFIN

The above result concludes the proof of Proposition 7.1. To see this, consider an
equivalence class consisting of forest types f1, · · · , fn. The set of forests with a type in the
class is by definition equal to

⋃
Lfi . By definition of v-overapproximation this set is also

equal to
⋃
L̂fi where L̂fi is any v-overapproximation of Lfi . Hence it is definable by a Σ2

forest expression by Proposition 7.4.
The rest of this section is devoted to proving Proposition 7.4.
When h is outside H⊥, then Lh itself, which is its own v-overapproximation, is definable

by a Σ2 forest expression by the results from the previous sections. The problem is when
h is in H⊥. Because v has some proper extension, from Lemma 7.3 we know that at least
one of � +H⊥ or H⊥ + � is disjoint with the stabilizer of v. Without loss of generality we
assume

� +H⊥ ∩ stab(v) = ∅ . (7.3)

In other words, if the type of a context stabilizes v, then it is possible that some tree to the
left of the hole has a type in H⊥, however all trees to the right of the hole must have types
outside H⊥.

In order to obtain a v-overapproximation of Lh for h ∈ H⊥ we will use the following
decomposition of forests with types in H⊥.

Lemma 7.5. Any forest t of type in H⊥ has a decomposition t = ps where p is a context
whose type stabilizes v, and s is a forest of type in H⊥ that has one of the two forms below.

(1) s = as′ with the type of the forest s′ outside H⊥; or
(2) s = as′ with the type of the context a� not stabilizing v; or
(3) s = s1 + s2 with the types of the forests s1, s2 outside H⊥; or
(4) s = s1 + s2 and
• if s1 has type in H⊥, then the type of � + s2 does not stabilize v.
• if s2 has type in H⊥, then the type of s1 + � does not stabilize v.

Proof. Consider the set D of all possible pairs (p, s) such that t = ps, the type of p preserves
v and the type of s is in H⊥. Take a pair (p, s) ∈ D that is maximal in the following sense:
if q is a nonempty context, then D has no pair with pq on the first coordinate.

Suppose s is a tree of the form s = as′. If s′ has a type outside H⊥, we get item (1). If
s′ has type in H⊥, then by maximality, the context type of pa� does not stabilize v, and
therefore a� has a type that does not stabilize v, so we get item (2).

Suppose s is a forest of at least two trees. Consider any partition of s into two nonempty
forests s = s1 + s2. If both s1, s2 have type outside H⊥, then we get item (3). Otherwise,
we get case (4) by maximality of (p, s).

From Lemma 7.5, we have for h ∈ H⊥:

Lh =
⋃

u∈stab(v)

⋃
f∈H⊥
uf=h

Ku · Yf

where Yf stands for the set of all forests s that have type f ∈ H⊥ and that satisfy one
of the conditions (1)-(4) of Lemma 7.5. To get the v-overapproximation of Lh we will
use v-overapproximations for the smaller expressions above, as stated by the following two
lemmas. The first lemma is concerned with languages of the form Yf .

Lemma 7.6. For every f ∈ H⊥, some v-overapproximation Ŷf of Yf can be defined by a
Σ2 forest expression.

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 19

For the second lemma, concerning Ku, we need a more careful statement. The overap-
proximation that we give is not really an overapproximation of Ku, but it is an overapprox-
imation that works as long as a forest of type in H⊥ is inserted into the hole.

Lemma 7.7. For any u ∈ stab(v), one can define a Σ2 context expression K̂u such that

for any forest s of type in H⊥, K̂us is a v-overapproximation of Kus.

These two lemmas are proved in Sections 7.2.2 and 7.2.1, respectively. First we show
how they complete the proof of Proposition 7.4. We write L⊥ for the set of all forests with
a type in H⊥. We claim that the following language

L̂h =
⋃

u∈stab(v)

⋃
f∈H⊥
uf=h

K̂u · (Ŷf ∩ L⊥)

is a v-overapproximation of Lh.
The first property required from a v-overapproximation, Lh ⊆ L̂h, is immediate. For

the second part, L̂h ⊆ [Lh]v, we need a bit more effort. We show a stronger result, namely
that for any u and f as in the summation above, we have

K̂u(Ŷf ∩ L⊥) ⊆ [KuYf]v

This completes the proof of L̂h ⊆ [Lh]v, since []v distributes across union. To prove the

above, we apply the properties of K̂u and Ŷf to get

K̂u(Ŷf ∩ L⊥) ⊆ [Ku · (Ŷf ∩ L⊥)]v ⊆ [Ku · Ŷf]v ⊆ [Ku · [Yf]v]v

To complete the proof, we would like to replace [Yf]v by Yf in the last expression above.
This can be done thanks to the following easily verifiable consequence of the fact that ≡v
is a congruence for forest algebras.

Fact 7.8. For any set of contexts K and set of languages L, we have [K[L]v]v = [KL]v.

Thanks to Lemmas 7.7 and 7.6, the only thing keeping L̂h from being defined by a Σ2

forest expression is the language L⊥. We deal with this language in the following lemma.

Lemma 7.9. The language L⊥ is definable by a Σ2 forest expression.

Proof. A subforest of t is a forest s such that t = ps for some context p. Take a forest
t ∈ L⊥ and consider a subforest s of t that is in L⊥, but has no proper subforests in L⊥.
Then either s is a tree as′ with s′ 6∈ L⊥, or s = s1 + s2 with s1, s2 6∈ L⊥. Therefore, a forest
is in L⊥ if and only if it has a subforest in⋃

a∈A,g 6∈H⊥
ag∈H⊥

aLg ∪
⋃

g1,g2 6∈H⊥
g1+g2∈H⊥

Lg1 + Lg2 .

Containing such a subforest can be expressed by a Σ2 forest expression, by prefixing the
set above with the set of all contexts. The expressions for Lg, Lg1 and Lg2 are Σ2 forest
expressions by the results from the section on types outside H⊥.

20 M. BOJAŃCZYK AND L. SEGOUFIN

7.2.1. Proof of Lemma 7.7. Our goal in this section is to prove Lemma 7.7, which says that
for any context type u stabilizing v, there is a Σ2 context expression K̂u such that for any
forest s with a type in H⊥, K̂us is a v-overapproximation of Kus.

We apply Proposition 5.5 to get an expression for the context language Ku of the form

Ku =
⋃
i

Ki,1 · · ·Ki,ni (7.4)

The problem with the expression above is that it may use, in some of the subexpressions
Ki,j , languages Mf + � or � +Mf that involve forest types f ∈ H⊥, and we do not know
how to describe types in H⊥. This is where the overapproximation comes in. We show
that if the languages for types in H⊥ are overapproximated, then the result satisfies the
properties required by Lemma 7.7. A more detailed argument is described below.

We say a context language K satisfies (*) if it has the property required from Ku by
Lemma 7.7, namely

(*) there is a Σ2 context expression K̂ such that for any forest s with a type

in H⊥, the language K̂s is a v-overapproximation of Ks.

It is not difficult to see that property (*) is preserved by unions and compositions of context
languages. In particular, in order to prove Lemma 7.7, it suffices to show (*) is satisfied by
all languages Ki,j that appear in (7.4).

The only problem with the overapproximation is when Ki,j is of the form Mf + � or
� +Mf , for f ∈ H⊥. In all the other cases, Ki,j is known to be definable by a Σ2 context
expression, and no overapproximation is needed. Note that by (7.3), the expressions �+Lf
cannot be used, since a forest type from H⊥ cannot appear to the right of the hole in a
context type that stabilizes v. Therefore, to complete the proof of Lemma 7.7, it remains
to show that for any f ∈ H⊥, the context language Mf + � satisfies (*).

In the following, we use an equivalence relation ≡v+. This is defined to be the intersec-
tion of all equivalence relations ≡vu, for context types u that do not stabilize v (and hence
v is a strict prefix of vu). For a forest language L, we write

[L]v+ =
⋂

u6∈stab(v)

[L]vu (7.5)

By the induction assumption in Proposition 7.1, each equivalence class of ≡v+ is definable
by a Σ2 forest expression and therefore so is each language [L]v+, as a union of equivalence
classes of ≡v+. We will show that, for any f ∈ H⊥, the context language K = Mf + �
satisfies (*) with K̂ = [Lf]v+ + �. Assume that the type of s is in H⊥. Then we have:

Ks = Mf + s ⊆ K̂s = [Lf]v+ + s ⊆ [Ks]v = [Lf + s]v .

The first inequality is clear. For the second inequality, we need to show that

v · α([Lf]v+ + s) ⊆ v · α(Lf + s)

This inclusion holds because we have:

v · α([Lf]v+ + s) = v · (� + α(s)) · α([Lf]v+) = v · (� + α(s)) · α(Lf) = v · α(Lf + s)

In the second equality, we used the definition of [Lf]v+ and the assumption that � + α(s)
does not stabilize v. The latter follows from assumption (7.3) since the type of s is in H⊥.

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 21

7.2.2. Proof of Lemma 7.6. In this section, we show that for every type f ∈ H⊥, a v-
overapproximation of Yf can be defined by a Σ2 forest expression. Recall that the language
Yf was defined based on a case distinction in Lemma 7.5, and therefore it can be decom-
posed into a union of four languages, one for each of the four cases in the lemma. As
v-overapproximations are closed under union, for each of these languages, we provide a
v-overapproximation defined by a Σ2 forest expression.

For the languages corresponding to cases (1) and (3), we use the assumption that Lh
can be defined by a Σ2 expression for every type h 6∈ H⊥. The interesting cases are (2)
and (4).

The language corresponding to case (2) is a union of forest languages of the form

a · Lh (7.6)

ranging over letters a such that a� does not stabilize v, and forest types h with ah = f .
We treat each language a · Lh separately.

It may be the case that h belongs to H⊥ and therefore we have no Σ2 forest expression
for Lh. However, we can use overapproximation. As a does not stabilize v, we can apply
the induction assumption in Proposition 7.1 and obtain a Σ2 forest expression for [Lh]v+.
But then the Σ2 forest expression a · [Lh]v+ is a v-overapproximation of a · Lh. It clearly
contain a · Lh so it remains to show that it is included in [aLh]v. To see this consider a
forest t ∈ [Lh]v+ of type g and an arbitrary u ∈ V . As a does not stabilize v, ua does not
stabilize v. Hence by the choice of g we have vuag = vuah and at is in [aLh]v.

It remains to consider the case of (4), where have a union of sets

Lh1 + Lh2 (7.7)

ranging over h1, h2 that satisfy the two implications in item (4) of Lemma 7.5. We do each
pair h1, h2 separately. We consider three subcases.

The first subcase is when h1 6∈ H⊥. Therefore we have a Σ2 forest expression for Lh1 .
In this case we claim that

Lh1 + [Lh2]v+

is a v-overapproximation of of Lh1 + Lh2 . The first requirement of v-overapproximation,

Lh1 + Lh2 ⊆ Lh1 + [Lh2]v+ ,

is immediate. For the other requirement, we need to show that for any forests t1 ∈ Lh1
and t2 ∈ [Lh2]v+, the type of t1 + t2 is ≡v-equivalent to h1 + h2. From t1 ∈ Lh1 , we know
that the type of t1 is h1, but all we know about t2 is that its type g2 satisfies g2 ≡v+ h2.
Consider an arbitrary u ∈ V . Since h1 + � does not stabilize v, we also have u(h1 + �)
does not stabilize v. Hence from g2 ≡v+ h2 we get vu(h1 + g2) = vu(h1 + h2).

The second subcase, when h2 6∈ H⊥, is treated as above by symmetry.
The third subcase is when both h1 and h2 are in H⊥. As a consequence of h2 ∈ H⊥

and the second condition of item (4) in Lemma 7.5 is that

H⊥ + � ∩ stab(v) = ∅ . (7.8)

We claim that a v-overapproximation of Lh1 + Lh2 is

([Lh1]v+ ∩ L⊥) + ([Lh2]v+ ∩ L⊥) . (7.9)

As before, the problem boils down to showing that for any forests

t1 ∈ [Lh1]v+ ∩ L⊥ t2 ∈ [Lh2]v+ ∩ L⊥ ,

22 M. BOJAŃCZYK AND L. SEGOUFIN

the types g1 of t1 and g2 of t2 satisfy g1 + g2 ≡v h1 + h2. In other words, we need to show
that for an arbitrary u ∈ V

vu(g1 + g2) = vu(h1 + h2) .

Since t1 ∈ L⊥, then by (7.8) the context type g1 + � does not stabilize v and therefore the
same holds for u(g1 + �). Hence, we can use the assumption on g2 ≡v+ h2 to infer

vu(g1 + g2) = vu(g1 + �)g2 = vu(g1 + �)h2 = vu(g1 + h2) .

In a similar way, we use h2 ∈ H⊥, the assumption (7.3), and g1 ≡v+ h1, to complete the
proof of this case, and of Lemma 7.6.

vu(g1 + h2) = vu(� + h2)g1 = vu(� + h2)h1 = vu(h1 + h2) .

8. No lexicographic order

In this section, we consider the logic ∆2(<) where only the descendant order, and not
the lexicographic order, is available. We give an effective characterization in the following
theorem.

Theorem 8.1 (Effective characterization of ∆2 with the descendant order only).
A forest language is definable in ∆2(<) if and only if its syntactic forest algebra satisfies
the ∆2 identity, as well as horizontal commutativity:

h+ g = g + h . (8.1)

The “only if” implication is easy: we have already shown that the ∆2 identity must
hold in the syntactic forest algebra of a language definable in ∆2(<,<lex), and ∆2(<) is
a fragment of ∆2(<,<lex). Horizontal commutativity must also hold: the logic only has
the descendant relation, and therefore its formulas are invariant under rearranging sibling
subtrees.

The “if” implication is a minor variation on the work done in the previous sections.
Recall that we proved before that if the syntactic forest algebra of a language L satisfies
the ∆2 identity, then both L and its complement can be defined by Σ2 forest expressions.
We apply this result also in our case. The problem is that the Σ2 forest expressions are not
commutative, and thus need not be definable in Σ2(<). We will show, however, that their
commutative closure can be defined in Σ2(<). Here, we use the term commutative closure of
L for the smallest language that contains L and is closed under rearranging sibling subtrees.

Proposition 8.2. The commutative closure of a Σ2 forest expression is definable in Σ2(<).

Before we prove this proposition, we remark that this is not a completely generic result.
For instance consider the following language over a one letter alphabet: “Each node is a leaf
or has two children, and some leaf has an even number of ancestors”. This language is defin-
able in Σ3(<,<lex) and is horizontally commutative (the formula comes from Potthoff [12]).
However, this language cannot be defined in Σ3(<). Actually, an Ehrenfeucht-Fraissé ar-
gument shows that every first-order formula, that has quantifier depth n and only uses the
descendant order, will give the same result for all balanced binary trees of depths larger
than 2n.

The proof of the above proposition is by induction on the size of the Σ2 forest expression.
The base case is when the Σ2 expression is either {a�}, or a language that is closed

under pieces. In the first case, the language is clearly definable in Σ2(<). In the second case,

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 23

we revisit the proof of Lemma 3.1, which showed that a language L that is closed under
pieces is definable in Π1. If we take the commutative closure of L, we get a commutative
language closed under pieces. In the proof of Lemma 3.1, we constructed the Π1 formula
by forbidding a finite number of pieces; in the commutative case the formula does not need
to worry about the order of siblings in the forbidden pieces.

In the induction step, we have to consider the operations that are allowed by Σ2 ex-
pressions: union, intersection, (horizontal) concatenation

L+ L′ (8.2)

and (vertical) composition
K · L K ·K ′ (8.3)

for a forest languages L,L′ and context languages K,K ′. Union and intersection are easy.
Concatenation and composition are more problematic. Actually, Σ2(<) is not closed under
these two operations. For instance, the languages

K = {a+ �,� + a}
L = {b+ c, c+ b}

are both definable in Σ2(<), but their concatenation

KL = {a+ b+ c, a+ c+ b, b+ c+ a, c+ b+ a}
is not, since it does not contain the forest b+ a+ c.

Nevertheless, if we use commutative closure, the problem disappears. That is, we will
show that if the languages K,K ′, L, L′ are definable in Σ2(<), then the commutative closure
of each of the languages in (8.2) and (8.3) can be defined in Σ2(<). We only do the cases
L+ L′ and K ·K ′, the language K · L is done the same way.

Lemma 8.3. If forest languages L,L′ are definable in Σ2(<), then so is the commutative
closure of L+ L′.

Proof. We write L⊕ L′ for the commutative closure of L+ L′.
Consider first the case when L′ is a tree language definable in Σ2(<). In this case, the

formula for L ⊕ L′ formula places an existentially quantified variable over the root of one
tree, and then relativizes the formulas for L and L′, respectively, to the nodes the are not
descendants (respectively, are descendants), of this existentially quantified root.

For the general case, we use the following lemma on forest languages definable in Σ2(<).

Lemma 8.4. Every forest language L definable in Σ2(<) can be written as a finite union
of languages L0 ⊕M1 ⊕ · · · ⊕Mn, where L0 is a forest language definable in Π1(<), and
M1, . . . ,Mn are tree languages definable in Σ2(<).

Proof. The statement of the lemma immediately follows from the following claim on formu-
las of Σ2(<). We claim that any formula ϕ of Σ2(<) is equivalent to a finite disjunction of
formulas of the form

∃z1 . . . ∃zn ψ ∧
∧

i∈{1,...,n}

(∀y ¬(y < zi)) ∧ ψi

where ψ ∈ Π1(<), and ψ1, . . . , ψn ∈ Σ2(<) are formulas such that

• Each formula ψi has all quantification relativized to descendants of zi.
• The formula ψ has all quantification relativized to nodes that are not descendants of any

of the nodes z1, . . . , zn.

24 M. BOJAŃCZYK AND L. SEGOUFIN

The idea, of course, is that the zi describe the roots of the trees that contain the existentially
quantified nodes x1, . . . , xm in the original formula ϕ of Σ2(<). The straightforward proof
of the claim is omitted. The finite disjunction ranges over all possible repartitions of the
nodes x1, . . . , xm into distinct trees.

From this normal form, since ⊕ distributes across union, it suffices to give a Σ2(<)
formula for languages of the form

L0 ⊕M1 ⊕ · · · ⊕Mn ⊕ L′0 ⊕M ′1 ⊕ · · · ⊕M ′n ,
where the M languages are tree languages definable in Σ2(<) and where L0, L

′
0 are forest

languages definable in Π1(<). By the technique shown at the beginning of the proof, it is
sufficient to obtain a formula for L0⊕L′0. But the language L0⊕L′0 is closed under pieces,
and therefore it is definable in Π1(<).

Lemma 8.5. If context languages K,K ′ are definable in Σ2(<), then so is the commutative
closure of K ·K ′.

Proof. We write K �K ′ for the commutative closure of K ·K ′.
Consider first the case when either K or K ′ is a language {a�}. The formula places a

variable on node corresponding to a�, and relativizes the formula for the remaining context
language to the remaining nodes.

Consider now the general case. Again, we use a normal form lemma for languages
definable in Σ2(<). This lemma is prove the same way as Lemma 8.4.

Lemma 8.6. Every context language K definable in Σ2(<) can be written as a finite union
of languages of the kinds

K̂ � {a�} � (�⊕ L) or �⊕ L
where K̂ and L are context language and forest languages definable in Σ2(<).

We now use Lemma 8.6 to finish the proof of Lemma 8.6. We want to show that K�K ′
is definable in Σ2(<). We apply Lemma 8.6 to the languages K and K ′. Since the operation
� distributes across union, we can assume that the unions describing K and K ′ use just
one language, of either of the two kinds. We have four cases to consider, we only do the
most difficult one

K̂ � {a�} � (�⊕ L) � (�⊕ L′)� {a′�} � K̂ ′ .
This language is the same as

K̂ � {a�} � (�⊕ L⊕ L′)� {a′�} � K̂ ′ .
Let ψK̂ be the Σ2(<) formula defining the context language K̂ � {a�}, obtained from

the first case considered in the proof. Let ψK̂′ be the Σ2(<) formula defining {a′�} � K̂ ′
obtained in the same way. Both of these formulas have a free variable, which describes the
hole of the context. Using Lemma 8.3 we also have a Σ2(<) formula ψL⊕L′ defining L⊕L′.

The desired Σ2(<) formula puts an existentially quantified variable x on the node
corresponding to a�, another existentially quantified variable x′ on the node corresponding
to a′�, and then runs three subformulas, for K̂, � ⊕ L ⊕ L′, and K̂ ′, on the remaining
nodes, appropriately relativizing the quantification. More specifically, this is the formula

∃x ∃x′ a(x) ∧ a′(x) ∧ parent(x, x′) ∧ ϕK̂(x) ∧ ϕK̂′(x
′) ∧ ϕL⊕L′(x, x′)

TREE LANGUAGES DEFINED IN FIRST-ORDER LOGIC WITH ONE QUANTIFIER ALTERNATION 25

where parent(x, x′) is the Π1 formula stating that x is a proper ancestor of x′ and there
are no nodes in between, ϕK̂(x) is constructed from ψK̂ by relativizing all quantification
to the ancestors of x, ϕK̂′(x) is constructed from ψK̂′ by relativizing all quantification
to the descendants of x, and ϕL⊕L′(x, x

′) is constructed from ψL⊕L′ by relativizing all
quantification to the nodes that are neither ancestor of x nor descendant of x′.

9. Discussion

In this paper we considered a signature with the descendant and lexicographic orders.
It would be interesting to know what happens in the presence of other predicates such as
the closest common ancestor, next sibling or child.

Probably the most natural continuation of this work would be an effective character-
ization of Σ2(<) or Σ2(<,<lex). Note that this would strengthen our result: a language
L is definable in ∆2 if and only if both L and its complement are definable in Σ2. We
conjecture that, as in the case for words [1], the characterization of Σ2(<,<lex) requires
replacing the equivalence in the ∆2 identity by a one-sided implication, which says that a
language definable in Σ2(<,<lex) is closed under replacing vω by vωwvω, for w � v.

References

[1] M. Arfi. Opérations polynomiales et hiérarchies de concaténation. Theor. Comput. Sci., 91(1):71–84,
1991.

[2] M. Benedikt and L. Segoufin. Regular tree languages definable in FO and in FO+mod. To appear in
ACM Transactions on Computational Logic (TOCL). 2009.

[3] M. Bojańczyk. Two-way unary temporal logic over trees. In Logic in Computer Science, pages 121–130,
2007.

[4] M. Bojańczyk. Forest expressions. In Computer Science Logic, volume 4646 of Lecture Notes in Com-
puter Science, pages 146–160, 2007.

[5] M. Bojańczyk and I. Walukiewicz. Characterizing EF and EX tree logics. Theoretical Computer Science,
358(2-3):255–273, 2006.

[6] M. Bojańczyk and I. Walukiewicz. Forest algebras. In Automata and Logic: History and Perspectives,
pages 107 – 132. Amsterdam University Press, 2007.

[7] M. Bojańczyk, L. Segoufin, and H. Straubing. Piecewise testable tree languages. In Logic in Computer
Science, 2008

[8] K. Etessami, M. Y. Vardi, and T. Wilke. First-order logic with two variables and unary temporal logic.
Inf. Comput., 179(2):279–295, 2002.

[9] R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.

[10] J.-É. Pin. Logic, semigroups and automata on words. Annals of Mathematics and Artificial Intelligence,
16:343–384, 1996.

[11] J.-É. Pin and P. Weil. Polynomial closure and unambiguous product. Theory Comput. Systems, 30:1–30,
1997.

[12] A. Potthoff First-order logic on finite trees. In TAPSOFT, volume 915 of Lecture Notes in Computer
Science, pages 125–139, 1995.

[13] M. P. Schützenberger. On finite monoids having only trivial subgroups. Information and Control, 8:190–
194, 1965.

[14] T. Schwentick, D. Thérien, and H. Vollmer. Partially-ordered two-way automata: A new characteriza-
tion of DA. In Devel. in Language Theory, pages 239–250, 2001.

[15] I. Simon. Piecewise testable events. In Automata Theory and Formal Languages, pages 214–222, 1975.
[16] D. Thérien and T. Wilke. Over words, two variables are as powerful as one quantifier alternation. In

STOC, pages 256–263, 1998.

26 M. BOJAŃCZYK AND L. SEGOUFIN

[17] T. Wilke. Classifying discrete temporal properties. In Symposium on Theoretical Aspects of Computer
Science, volume 1563 of Lecture Notes in Computer Science, pages 32–46, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Trees forests and languages
	2.1. Trees, forests and contexts
	2.2. Forest algebras

	3. Logic
	3.1. The problem
	3.2. Tree languages.
	3.3. Basic properties of Pi1 and Sigma2
	3.4. Sigma2 expressions.

	4. Characterization of Dtwol
	5. Types outside Hbot
	5.1. h+h sim h
	5.2. h+h notsim h

	6. Treating contexts like words
	6.1. Dtwol for words
	6.2. Proof of Proposition ??

	7. Types in Hbot
	7.1. The induction base
	7.2. The induction step

	8. No lexicographic order
	9. Discussion
	References

