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Abstract We prove a general finite-time convergence theorem for fixpoint ex-
pressions over a well-quasi-ordered set. This has immediate applications for the
verification of well-structured systems, where a main issue is the computability of
fixpoint expressions, and in particular for game-theoretical properties and proba-
bilistic systems where nesting and alternation of least and greatest fixpoints are
common.

1 Introduction

Regular model checking [61,81,26,10] is a popular paradigm for the symbolic ver-
ification of models with infinite state space. It has been applied to varied families
of systems ranging from parameterized distributed algorithms [4] and channel sys-
tems [7] to hybrid systems [23] and list-manipulating programs [24].

In regular model checking, one works with regular sets of states and han-
dles them via finite descriptions, e.g., finite-state automata or regular expressions.
Models amenable to regular model checking are such that, when U ⊆ Conf is a
“regular” set of configurations, then Post(U) and/or Pre(U), the sets of 1-step
successors (respectively, predecessors) of configurations from U , is again a regular
set that can be computed effectively from U . Since regular sets are closed under
Boolean operations, one can try to compute the reachability set Post∗(Init), or
the co-reachability set Pre∗(Final), as the limit of the sequences

U0:=Init ; U1:=U0 ∪ Post(U0); . . . Un+1:=Un ∪ Post(Un); . . . (1)

V0:=Final ; V1:=V0 ∪ Pre(V0); . . . Vn+1:=Vn ∪ Pre(Vn); . . . (2)
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Such computations, essential to any kind of symbolic verification, are possible with
any class of representation closed under, and providing algorithms for, Pre or Post ,
Boolean operations, vacuity [61,55].

With infinite-state models, the main difficulty is convergence. It is very rare
that a fixpoint computation like Eqs. (1–2) converges in finite time [18], and inno-
vative techniques that try to compute directly, or guess and check, or approximate
the limit sets, are currently under active scrutiny (see, e.g., [22,20,25,53,18]).

Well-structured transition systems (WSTS) are a generic family of models for
which the co-reachability set Pre∗(Final) can be computed symbolically using
exactly the sequence (2) [6,48]. For WSTS’s, convergence of the fixpoint compu-
tation is ensured by WQO theory: one handles upward-closed sets, and increasing
sequences of upward-closed subsets of a WQO (a well-quasi-ordered set) always
converge in finite time (see Fact 1 below).

Computing Pre∗(Final) for reachability analysis is just a special case of fixpoint
computation. When considering richer properties, e.g., temporal logic properties,
one is interested in computing more complex fixpoints. Indeed, the set of states
where a temporal logic property holds is often definable with Pre, Boolean oper-
ations, and (sometimes nested) fixpoints [30]. The same holds for game-theoretic
and qualitative probabilistic properties, albeit with more complex fixpoint expres-
sions.

Our contribution. In this article, we define a notion of µ-expressions where
recursion is guarded by upward-closure operators, and give a general finite-time
convergence theorem for all such expressions when evaluated over the powerset
of a WQO. The consequence is that these fixpoint expressions can be evaluated
symbolically by an iterative procedure. The guarded fragment we isolate is very
relevant for the verification of well-structured transition systems. We illustrate this
point by providing direct proofs of decidability results on several classes of WSTS
models, ranging from monotonic counter systems to probabilistic lossy channel
systems.

Related work. Henzinger et al. give general conditions for the convergence of
fixpoints computations for temporal [55] or game-theoretic [35] properties, but the
underlying framework is different: it relies on finite quotients and mainly aims at
timed and hybrid systems. For WSTS’s, a generic computability result for a frag-
ment of the µ-language we consider is briefly mentioned in [63]. Our applications
to well-structured transition systems generalize results from [2,5,65,72,73] that
rely on more ad-hoc proofs of convergence.

Outline. The first part of this article, sections 2–4, presents our framework and
our main theorems in a generic way, using simple explanatory examples to illus-
trate the main ideas. Applications to the verification of well-structured transition
systems are covered in a second part, sections 5–9.

2 A mu-calculus for symbolic verification

Symbolic verification of infinite-state systems can be formalized in several ways
(among other possibilities let us mention automatic structures [62], decidable log-
ics, and the abstract interpretation framework [34]).
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In this article, we adopt a simple generic approach, called “monotonic region
algebra”, that is sufficient for our purposes. It is based on a simple algebra of
computable sets that is embedded in the powerset (a complete lattice) of a WQO,
and where only monotonic operations on sets are considered.

We start by recalling some classic notions from WQO theory [64,69]: A quasi-
ordering over a set W is a reflexive and transitive relation ⊑ ⊆W ×W . A quasi-
ordering is a well-quasi-ordering (a WQO) if it admits no infinite antichains, i.e.,
infinite subsets of mutually incomparable elements, and is well-founded, i.e., ad-
mits no infinite strictly decreasing sequences. Equivalently, ⊑ is a WQO iff any
infinite sequence w1, w2, w3, . . . of elements of W contains an infinite increasing
subsequence of the form wi1 ⊑ wi2 ⊑ wi3 ⊑ · · · (where i1 < i2 < i3 < · · · ). In the
rest of this article, we assume that (W,⊑) is a well-quasi-ordered set, i.e., a set
equipped with a WQO.

We say that a subset V of W is upward-closed if v ∈ V and v ⊑ w implies
w ∈ V . Our developments rely on the Finite-Time Convergence Property, a basic
fact from WQO theory, stating that any infinite increasing sequence of upward-
closed subsets of a WQO stabilizes after finitely many steps.

Fact 1 (Finite-Time Convergence Property) Let V0 ⊆ V1 ⊆ V2 ⊆ · · · be
an infinite increasing sequence of upward-closed subsets of a WQO W . Then for
some index k ∈ N, Vk = Vk+1 = Vk+2 = . . . =

⋃
i∈N

Vi.

In algebraic terminology, this simply states that upward-closed subsets ofW satisfy
the Ascending Chain Condition, and is another characterization of WQO’s (see,
e.g., [60, Thm. 1.2]).

There is a symmetric notion of downward-closed subsets of W . Since the com-
plement of an upward-closed subset is downward-closed and vice versa, the Finite-
Time Convergence Property also states that, dually, an infinite decreasing sequence
of downward-closed subsets of W eventually stabilizes.

Remark 2 (On complexity and the time to convergence) The complexity analysis of
an algorithm whose termination relies on the Finite-Time Convergence Property
requires some bound on the index k at which stabilization is achieved. In this
article, we focus on generic decidability issues. The concluding section discusses
complexity and feasibility issues and provides relevant pointers. ⊓⊔

Given a set V ⊆ W , we write C↑(V ) for its upward-closure, i.e., the smallest
upward-closed set containing V , and K↑(V ) for its upward-interior, i.e., the largest
upward-closed set included in V . The downward-closure of V , written C↓(V ) and
its downward-interior, written K↓(V ), are defined analogously. Observe that C↑

and C↓ are extensive, K↑ and K↓ are contractive, and the following dualities hold:

W rK↑(V ) = C↓(W r V ), W rK↓(V ) = C↑(W r V ). (3)

2.1 Monotonic region algebra

Let O = {o1, o2, . . .} be a countable set of operator names equipped with an arity
function ar : O → N. Here ar(o) is the number of arguments taken by o, and the
pair (O, ar) is called a signature. When ar(o) = 0, o is called a constant.
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Definition 3 A monotonic region algebra overW is a structure R = 〈W,R; (oR)o∈O〉
where

1. R ⊆ 2W is a set of distinguished subsets of W , called regions, that contains in
particular ∅ and W , and

2. for every k ∈ N and every o ∈ O with ar(o) = k, the interpretation oR of o is
a k-ary map oR : (2W )k → (2W ) on subsets of W that satisfies:
– monotonicity w.r.t. set-inclusion, i.e.,

U1 ⊆ V1 ∧ · · · ∧ Uk ⊆ Vk implies oR(U1, . . . , Uk) ⊆ o
R(V1, . . . , Vk) , (4)

– preservation of regions, i.e.,

U1, . . . , Uk ∈ R implies oR(U1, . . . , Uk) ∈ R (5)

for all U1, . . . , Uk, V1, . . . , Vk ∈ 2W .

As a special case of Eq. (5), constants must be interpreted as regions: oR ∈ R
when ar(o) = 0. For simplicity, we often just write o instead of oR when this
causes no confusion.

When ar(o) = n = ar(o′), we write oR ≤ o′R, or just o ≤ o′, when oR(U1, . . . , Un) ⊆
o′R(U1, . . . , Un) for all U1, . . . , Un ⊆ W . A unary operator oR is extensive if
U ⊆ oR(U) for all U . It is contractive if oR(U) ⊆ U .

We say that a monotonic region algebra is effective when, informally, the oR

operations restricted on regions are recursive, and some fundamental predicates
like vacuity and equality of regions, are decidable. We do not want to make the
definition more pedantically formal but of course this assumes that R is count-
able, that an index system (or a data structure) exists for denoting the sets in R,
and that the recursive functions implementing the operations in O are given uni-
formly when O is infinite. In practice, one only considers a finite set of operations
(that may admit extra parameters) and typically uses data structures inspired by
automata theory or constraint solving.

Example 4 (Subword ordering and regular regions) Let Σ = {a, b, . . .} be a finite
alphabet. We say that a word x ∈ Σ∗ is a (scattered) subword of y ∈ Σ∗, written

x ⊑ y,
def⇔ there exists a factorization x = x1 . . . xn of x and padding words

z0, . . . , zn ∈ Σ∗ such that y = z0x1z1x2 . . . zn−1xnzn. In other words, x can
be obtained by erasing some letters from y. It is well-known that (Σ∗,⊑) is a
WQO when Σ is finite (Higman’s Lemma). A standard example of a monotonic
region algebra over W = Σ∗ is obtained by choosing all regular languages as

regions: we denote this algebra with RReg(Σ)
def
= 〈Σ∗,Reg(Σ); . . .〉 where the

set of monotonic operators is left implicit (and will vary with applications). It is
an easy exercise to show that the closure operators preserve regions (see [52] for
efficient algorithms when R is given by a NFA), and that the interior operators
are region-preserving too since the complement of R ⊆ Σ∗ is regular when R is.

The signature can include any monotonic region-preserving operators. Most
standard operations on languages, e.g., concatenation L1.L2, shuffle L1 ‖ L2,

mirroring
�

L, star-closure L∗, left- and right-residuals (L−1L′ def
= {v | ∃u ∈ L, uv ∈

L′}), conjugacy (L̃
def
= {vu | uv ∈ R}), homomorphic and inverse-homomorphic
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images, are collecting, i.e., lifted from functions or relations on words, according

to the pattern o(L1, L2)
def
= {o′(u, v) | u ∈ L1, v ∈ L2} or some variant. Such

languages operators are always monotonic, and the main issue is whether they
preserve regularity. This is the case for all the examples above, and many more [70].
Complementation is not allowed because it is not monotonic, but this is not a

true limitation in practice since the dual õ(L1, . . .)
def
= Σ∗

r o(Σ∗
r L1, . . .) of

any monotonic regularity-preserving operator is itself monotonic and regularity-
preserving, hence can be added to the signature.

Finally, regarding effectiveness, it is well-known that all the operators we men-
tioned are effective for regular regions represented in any of the standard ways,
e.g., via FSA’s or regular expressions. ⊓⊔

Example 5 (Subword ordering and computability of Higman-Haines languages) A
general fact about WQO’s is that the upward and downward closures of arbitrary
sets have simple finite representations [46]. In the case of (Σ∗,⊑), the closures
of arbitrary languages, called Higman-Haines sets, and their interiors, are always
regular. However this is usually not effective [52,42].

Consider for example RCF(Σ), the region algebra having context-free lan-
guages R ∈ CF(Σ) as regions. It accommodates closure and interior operators
since they return regular languages and CF(Σ) contains Reg(Σ). It accommo-
dates other region-preserving operators, e.g., set-union, concatenation and star-
closure in its signature, but not set-intersection since R,R′ ∈ CF(Σ) does not
imply R ∩R′ ∈ CF(Σ).

Regarding effectiveness, (FSA’s for) the closures C↑(R) and C↓(R) can be
computed effectively from (a context-free grammar for) R ∈ CF(Σ) [80]. How-
ever, the interior operators are not effective. Indeed, universality is undecidable
for context-free grammars but decidable for regular languages, and R = Σ∗ iff
K↑(R) = K↓(R) = Σ∗. ⊓⊔

Example 6 (Natural numbers and semilinear sets) The set Nd of all d-dimensional
vectors of natural numbers is naturally ordered by the product ordering : for any

a = (a1, . . . , ad) and b = (b1, . . . , bd), b ≤ a
def⇔ a1 ≤ b1 ∧ · · · ∧ ad ≤ bd. It is well-

known that (Nd,≤) is a WQO when d is finite (Dickson’s Lemma). A standard
monotonic region algebra over W = N

d, denoted RSL(d) in the sequel, is obtained
by choosing as regions all semilinear subsets, or equivalently, all subsets definable
in Presburger arithmetic. Many natural operators on sets of vectors, including
the closure and interior operators, can be defined in Presburger arithmetic, hence
they are region-preserving. In practice, many of them are collecting and hence
monotonic. ⊓⊔

In the rest of this article, we always assume that O contains the unary operators
C↑, C↓,K↑,K↓, and that these requisite operators are given their standard WQO-
theoretical interpretation.

2.2 Region algebra with fixpoints

We now extend the symbolic framework with least and greatest fixpoints. Let
χ = {X,Y, . . .} be a countable set of variables. We write Lµ(O), or shortly Lµ
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when O is understood, for the set of O-terms with least and greatest fixpoints,
given by the following abstract syntax:

ϕ ::= o(ϕ1, . . . , ϕk)
∣∣ X

∣∣ µX.ϕ
∣∣ νX.ϕ

where X runs over variables from χ, and o over k-ary operators from O. Terms
µX.ϕ and νX.ϕ are fixpoint expressions, classically used in µ-calculi [12]. We make
the standard assumption that no variable has both bound and free occurrences in
some ϕ, and that no two fixpoint subterms bind the same variable: this can always
be ensured by renaming bound variables.

As is standard, we write ϕ(X1, . . . , Xn) to stress that the free variables occur-
ring in ϕ are among X1, . . . , Xn, and we use ϕ(ψ1, . . . , ψn) to denote the term
obtained from ϕ(X1, . . . , Xn) by replacing all occurrences of the Xi’s by the cor-
responding ψi’s terms.

Assuming a monotonic region algebra R, the interpretation of Lµ terms is as
expected: a term Jϕ(X1, . . . , Xn)K denotes a mapping from (2W ){X1,...,Xn} to 2W .
In other words, given an environment env : {X1, . . . , Xn} → 2W that associates
a subset of W with each Xi free in ϕ, JϕK(env), more simply denoted JϕKenv,
is a subset of W . We often consider that JϕK has type (2W )n → 2W and write
JϕK(U1, . . . , Un) —or JϕK when n = 0— instead of JϕKenv (where env(Xi) = Ui):
this only assumes that the correspondence between free variables and arguments
of JϕK is understood.

Definition 7 (Semantics of Lµ) JϕKenv is defined by structural induction:

JXKenv
def
= env(X) , Jo(ϕ1, . . . , ϕk)Kenv

def
= o

R(Jϕ1Kenv, . . . , JϕkKenv) ,

JµX.ϕKenv
def
= lfp

(
Ω[ϕ,X, env]

)
, JνX.ϕKenv

def
= gfp

(
Ω[ϕ,X, env]

)
,

where Ω[ϕ,X, env](U)
def
= JϕKenv⊕[X 7→U ] .

Here env ⊕ [X 7→ U ] denotes the environment obtained by extending env to one
more variable, while lfp(Ω[. . .]) and gfp(Ω[. . .]) are the least and greatest fixpoints
of a unary mapping Ω[ϕ,X, env] : 2W → 2W that could be informally defined with
Ω(V ) = JϕK(V, env(X1), . . . , env(Xn)).

Observe that the semantics of the fixpoint terms is well defined. Indeed, (2W ,⊆
) is a complete lattice and every Jϕ(X1, . . . , Xn)K is monotonic in its n arguments
(this is shown by induction on the structure of ϕ) so that Ω[ϕ,X, env], being JϕK
with some arguments already fixed, is monotonic in its remaining argument and
has well-defined least and greatest fixpoints (Knaster-Tarski Theorem).

Moreover, U1 ⊆ V1, . . . , Un ⊆ Vn implies JϕK(U,U1, . . . , Un) ⊆ JϕK(U, V1, . . . , Vn)
by monotonicity of JϕK. Hence, if env(Xi) = Ui and env′(Xi) = Vi for i = 1, . . . , n,
then Ω[ϕ,X, env](U) ⊆ Ω[ϕ,X, env′](U), written more simply Ω ≤ Ω′. This
entails lfp(Ω) ⊆ lfp(Ω′) (i.e., JµX.ϕK(U1, . . . , Un) ⊆ JµX.ϕK(V1, . . . , Vn)) and
gfp(Ω) ⊆ gfp(Ω′). In other words, JµX.ϕK and JνX.ϕK are monotonic.

We now make a crucial observation: for an Lµ term ϕ(X1, . . . , Xn) and regions
U1, . . . , Un, the set JϕK(U1, . . . , Un) is in general not a region. That is, JϕK is usually
not region-preserving (and not computable even when R = 〈W,R; . . .〉 is effective).
This is because R is usually not a complete sub-lattice of 2W . At the moment,
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only the terms ϕ that do not use fixpoints can be guaranteed to have JϕK ∈ R. In
the next section, we present a larger fragment of Lµ for which JϕK is guaranteed
to be region-preserving (and computable).

Example 8 (Fixpoints in the algebra of regular languages) Consider the region al-
gebra RReg(Σ) from Example 4. Using concatenation, set-union and constants,
one can write terms like µX.ε+ a ·X · b whose value is {anbn | n ∈ N} 6∈ Reg(Σ).
With least and greatest fixpoints, and when a few more primitive (monotonic)
operators like intersection, morphisms, etc., are allowed, one can describe complex
languages, well beyond the recursive ones [66,59]. ⊓⊔

We abuse notation and write ϕ(X1, . . . , Xn) ≤ ϕ′(X1, . . . , Xn) when JϕK ≤
Jϕ′K. Note that ϕ ≤ ϕ′ entails µX.ϕ ≤ µX.ϕ′. We say that ϕ and ϕ′ are equivalent,
and write ϕ = ϕ′, when they denote the same mapping, or equivalently when
ϕ ≤ ϕ′ ≤ ϕ.

In the following, and in particular in the application sections, we often trans-
form Lµ terms into equivalent ones that are more convenient. This is done using
simple logical or algebraic transformations, e.g., lattice-theoretical properties like
distributivity of ∩ w.r.t. ∪, etc. (This assumes that ∩ and ∪ appear in the signature
O and have their set-theoretical meaning.) Some of the transformations we use are
more specific to µ-calculi, and we list them here for the sake of completeness.

Lemma 9 (Some useful µ-calculus laws)

Unfolding: for any ϕ(X,Y1, . . . , Yn) in Lµ,

µX.ϕ(X, . . .) = ϕ
(
µX.ϕ(X, . . .), . . .

)
= µX.ϕ

(
ϕ(X, . . .), . . .

)
,

νX.ϕ(X, . . .) = ϕ
(
νX.ϕ(X, . . .), . . .

)
= νX.ϕ

(
ϕ(X, . . .), . . .

)
.

(6)

Fixpoint rule: for any ϕ(X,Y1, . . . , Yn) and ψ(Y1, . . . , Yn) in Lµ,

ϕ
(
ψ(Y1, . . .), Y1, . . .

)
≤ ψ(Y1, . . .) implies µX.ϕ(X,Y1, . . .) ≤ ψ(Y1, . . .) . (7)

Extensive/contractive fixpoints: for any ϕ(X, . . .) and ψ(X, . . .) in Lµ,

µX.(X ∩ ψ) ∪ ϕ = µX.ϕ , νX.(X ∪ ψ) ∩ ϕ = νX.ϕ , (8)

while for any ϕ(X,Y, . . .) in Lµ,

µY.νX.(Y ∪ ϕ) = µY.νX.ϕ , νY.µX.(Y ∩ ϕ) = νY.µX.ϕ . (9)

Commutation of extensive fixpoints: if f , g are extensive unary operators,

µX.f
(
g(X)

)
= µX.

[
f(X) ∪ g(X)

]
= µX.g

(
f(X)

)
. (10)

Proof (Sketch) The unfolding equalities and the fixpoint rule are well-known [12].
We prove equalities (8) and (10) for the sake of illustration. Eq. (9) —see [19] for
a proof— is an extension of (8) that we use in Section 9.

For Eq. (8), let ϕ′(X, . . .)
def
= (X∩ψ)∪ϕ(X, . . .). Now ϕ′(µX.ϕ, . . .) = (µX.ϕ)∩

ψ ∪ ϕ(µX.ϕ, . . .) by def. of ϕ′, = (µX.ϕ) ∩ ψ ∪ µX.ϕ by Eq. (6), = µX.ϕ. The
fixpoint rule applies and yields µX.ϕ′ ≤ µX.ϕ. But ϕ ≤ ϕ′ by definition, so that
µX.ϕ ≤ µX.ϕ′. Finally, µX.ϕ = µX.ϕ′ = µX.X ∩ψ∪ϕ. The other half of Eq. (8)
is entailed by duality.

For Eq. (10), let h(X)
def
= f(X)∪g(X). Since f , g and h are extensive, and since

f ≤ h and g ≤ h, we deduce that h ≤ f◦g ≤ h◦h, hence µX.h(X) ≤ µX.f(g(X)) ≤
µX.h(h(X)) by monotonicity. On the other hand µX.h(h(X)) = µX.h(X) by
Eq. (6). Thus µX.h(x) = µX.f(g(X)). ⊓⊔
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3 Guarded terms and finite-time convergence

We now come to the concept of guardedness by closure and interior operators.

Definition 10 (Guarded variables and guarded terms) Let ϕ ∈ Lµ.

1. A variable X is upward-guarded in ϕ if each of its free occurrences in ϕ is
under the scope1 of one of the upward operators C↑ or K↑, i.e., appears in a
subterm of the form C↑(ψ) or K↑(ψ).

2. A variable X is downward-guarded in ϕ if, symmetrically, each of its free
occurrences in ϕ is under the scope of C↓ or K↓.

3. The term ϕ is guarded if all its subterms of the form µX.ψ have X upward-
guarded in ψ, and all its subterms of the form νX.ψ have X downward-guarded
in ψ.

Guardedness ensures that fixpoint terms can be computed via their approx-
imants. Formally, for ϕ, X and env, the approximants of JµX.ϕKenv are the se-
quence (Mi)i∈N of subsets of W defined inductively with M0 = ∅ and Mi+1 =
JϕKenv⊕[X 7→Mi]. Similarly, the approximants of JνX.ϕKenv are the sequence (Ni)i∈N

defined by N0 =W and Ni+1 = JϕKenv⊕[X 7→Ni]. Writing simply Ω for Ω[ϕ,X, env],

Mi is Ω
i(∅) and Ni is Ω

i(W ). These approximants are linearly ordered:

M0 ⊆M1 ⊆M2 ⊆ · · · ⊆ lfp(Ω) = JµX.ϕKenv,
N0 ⊇ N1 ⊇ N2 ⊇ · · · ⊇ gfp(Ω) = JνX.ϕKenv.

(11)

Lemma 11 (Finite-time convergence of approximants) For ϕ ∈ Lµ, let
(Mi)i∈N and (Ni)i∈N be, respectively, the approximants of JµX.ϕKenv and JνX.ϕKenv.

If X is upward-guarded in ϕ, then there exists an index k ∈ N such that

JµX.ϕKenv =Mk =Mk+1 =Mk+2 = . . . (12)

Dually, if X is downward-guarded in ϕ, then there exists a k ∈ N such that

JνX.ϕKenv = Nk = Nk+1 = Nk+2 = . . . (13)

Proof We only prove the first half since the other half is dual. Let ψ1, . . . , ψm be
the maximal subterms of ϕ that are immediately under the scope of a C↑ or a K↑

operator. Then ϕ can be decomposed under the form

ϕ ≡ Φ(⇑ ψ1, . . . ,⇑ ψm)

where Φ(Y1, . . . , Ym) is a context with fresh variables Y1, . . . , Ym, and where, for
j = 1, . . . ,m, ⇑ ψj is either C↑(ψj) or K↑(ψj), depending on how ψj appears in ϕ.
In either case, and for any environment env′, the set J⇑ ψjKenv′ is upward-closed.

Since X is upward-guarded in ϕ, it has no occurrence in Φ(Y1, . . . , Ym), only
in the ψj ’s, so that

Mi+1 = JϕKenv⊕[X 7→Mi] = JΦK(J⇑ ψ1Kenv⊕[X 7→Mi], . . . , J⇑ ψmKenv⊕[X 7→Mi])

= JΦK(Li,1, . . . , Li,m)

1 Note that the occurrence of X is not required to be under the immediate scope of a closure
or interior operator. See the guarded term in Example 13.
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writing Li,j for J⇑ ψjKenv⊕[X 7→Mi]. Note that Li,j is upward-closed. By monotonic-
ity of J⇑ ψjK, M0 ⊆ M1 ⊆ M2 ⊆ · · · entails L0,j ⊆ L1,j ⊆ L2,j ⊆ · · · . Since the
Li,j ’s are upward-closed, for each j = 1, . . . ,m, there is an index kj such that
Li,j = Lkj ,j for all i ≥ kj (Fact 1). Picking K = max(k1, . . . , km) gives for any
i ≥ K

Mi+1 = JΦK(Li,1, . . . , Li,m) = JΦK(Lk1,1, . . . , Lkm,m)

= JΦK(LK,1, . . . , LK,m) =MK+1.

Thus,
⋃

i∈N
Mi = MK+1 = MK+2 and MK+1 is a fixpoint of Ω[ϕ,X, env], hence

the least one thanks to Eq. (11). Picking k = K + 1 satisfies Eq. (12). ⊓⊔

Lemma 11 is the key to our main theorem:

Theorem 12 (Guarded terms are computable) If ϕ(X1, . . . , Xn) ∈ Lµ is
guarded then JϕK is a region-preserving (monotonic) function. Furthermore, if the
region algebra is effective, then JϕK is a computable function (over regions).

Proof The proof is by structural induction on ϕ. For this, observe that if ϕ is
guarded, all its subterms are guarded too. We consider four cases.

1. if ϕ = X is a variable, JϕK is the identity function, IdW , and is region-
preserving.

2. if ϕ is some o(ϕ1, . . . , ϕk), the JϕiK’s are (computable) region-preserving by in-
duction hypothesis. By definition, oR too is region-preserving (and computable
when the region algebra is effective). Then JϕK, being the composition of oR

and the JϕiK’s, is region-preserving (and computable). Note that this includes
the case where o is nullary (is a constant): JoK is a (computable) region.

3. if ϕ is some µX.ψ(X,X1, . . . , Xn), we consider any environment env such that
env(Xj) is a region for j = 1, . . . , n and prove by induction on i that each
approximant Mi of JϕKenv is a region. M0 = ∅ is a region by definition, and if
Mi is a region, then Mi+1 = JψK(Mi, env(X1), . . . , env(Xn)) is one too, since
by induction hypothesis JψK is region-preserving. We conclude that JϕKenv,
being some Mk’s by Lemma 11, is a region. When R is effective, the Mi’s can
be computed effectively, and one can detect when Mk = Mk+1 since region
equality is decidable by assumption. Then JϕKenv = Mk can be computed
effectively.

4. if ϕ is some νX.ψ, the reasoning is similar to the previous case. ⊓⊔

Example 13 (Guarded fixpoints in the algebra of regular languages) We continue
Examples 4 and 8. While Lµ-terms can describe very complex languages, guarded
terms are guaranteed to describe regular languages. E.g., with Σ = {a, b}, the
language defined by νX.K↓(ε + a + b + a · X · a + b · X · b) (inspired by the
definition of palindromes) must be regular since it is some JνX.ψ(X)K where X is
downward-guarded in ψ.

Furthermore, this language can be computed effectively as a limit of approx-
imants. One starts with N0 = Σ∗. To compute N1 = JψK(N0) = K↓(ε + a +
b + a · N0 · a + b · N0 · b), we use Eq. (3), or “K↓ = ¬C↑¬”: the complement of
ε+a+ b+aΣ∗a+ bΣ∗b is aΣ∗b+ bΣ∗a, whose upward-closure is C↑(ab)+C↑(ba),

whose complement is N1 = a∗ + b∗. Then N2
def
= JψK(N1) = a∗ + b∗ = N1: the

fixpoint JνX.ψ(X)K was reached after finitely many steps. ⊓⊔
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4 Systems of fixpoint equations

Fixpoint equations are an alternative way of writing µ-calculus terms. This pre-
sentation can make nested fixpoints easier to read, and it can simplify a large term
by eliminating the need to duplicate repeated identical subterms. In this section
we explain how to adapt the notion of guardedness for this setting in order to
extend Theorem 12.

We start by recalling the necessary notations and definitions (see also [12]).

Definition 14 An n-dimensional system of fixpoint equations is a sequence of
the form

X1
λ1= ϕ1(X1, . . . , Xn, Y1, . . . , Ym) ,

...
...

Xn
λn= ϕn(X1, . . . , Xn, Y1, . . . , Ym) ,

where, for i = 1, . . . , n, λi is either µ or ν, and where ϕ1, . . . , ϕn are Lµ terms.

Such a system is often denoted in the shorter vector form
−→
X

Λ
= −→ϕ (

−→
X,

−→
Y ), where

Λ is a vector of n symbols µ or ν. It defines a unique mapping from (2W )
−→
Y to

(2W )n —or more simply from (2W )m to (2W )n—, called its solution, and denoted

JΛ−→X.−→ϕ K.
For env ∈ (2W )

−→
Y , the definition of JΛ−→X.−→ϕ Kenv extends Def. 7 and is by induc-

tion on n. When n = 0, JΛ−→X.−→ϕ Kenv is the empty tuple 〈〉. For n > 0, JΛ−→X.−→ϕ Kenv
is the tuple 〈U1, . . . , Un〉 given by

〈U2, . . . , Un〉 def
=

u
wwwv

X2
λ2= ϕ2(ψ1(X2, . . . , Xn,

−→
Y ), X2, . . . , Xn,

−→
Y )

...
...

Xn
λn= ϕn(ψ1(X2, . . . , Xn,

−→
Y ), X2, . . . , Xn,

−→
Y )

}
���~

env

, (14)

U1
def
=

q
ψ1(X2, . . . , Xn,

−→
Y )

y
env⊕[X2 7→U2,...,Xn 7→Un]

, (15)

where

ψ1(X2, . . . , Xn,
−→
Y )

def
= λ1X1.ϕ1(X1, . . . , Xn,

−→
Y ) . (16)

Remark 15 (On the semantics of mutually recursive equations) In the special case

where n = 1, the above definition gives Jψ1(
−→
Y )K, i.e., Jλ1X1.ϕ1(X1,

−→
Y )K as a

solution, in accordance with the semantics of Lµ terms. More generally, it can be
seen as a kind of Gaussian elimination that transforms any system of n mutually
recursive fixpoint equations into an equivalent non-recursive definition “X1 =

Φ1(
−→
Y ), . . . , Xn = Φn(

−→
Y )” based on usual Lµ terms. ⊓⊔

Example 16 Consider the following system

X1
µ
= Y1 ∪X1 ∪X2 , X2

ν
= Y2 ∩X1 ∩X2 , (17)

where we assume that ∪ and ∩ have their standard set-theoretical meaning.
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One solves this system by first letting ψ1(X2, Y1, Y2)
def
= µX1.(Y1 ∪X1 ∪X2).

This simplifies as ψ1 = Y1∪X2 with Eq. (8). Now one rewrites the second equation
as

X2
ν
= Y2 ∩ ψ1(X2, Y1, Y2) ∩X2 , that is, X2

ν
= Y2 ∩ (Y1 ∪X2) ∩X2 ,

whose solution is JνX2.Y2 ∩ (Y1 ∪ X2) ∩ X2K, or more simply JνX2.Y2K = JY2K
using Eq. (8). Now ψ1(X2, Y1, Y2) simplifies as Y1 ∪ Y2 and the whole system is
equivalent to “X1 = Y1 ∪ Y2, X2 = Y2”.

Observe that the order in which the fixpoint equations are listed in a system is
relevant when it comes to defining what takes precedence among the mixed least
and greatest fixpoint selectors. In effect, the higher-numbered λi’s have priority
over the lower-numbered ones. If we now reverse the order of the equations, we
get a system

X2
ν
= Y2 ∩X1 ∩X2 , X1

µ
= Y1 ∪X1 ∪X2 , (17′)

solved by writing ψ′
2(X1, Y1, Y2)

def
= νX2.Y2∩X1∩X2, or equivalently ψ

′
2 = Y2∩X1.

Then µX1.Y1∪X1∪ (Y2∩X1) = Y1 and ψ′
2(X1, Y1, Y2) = Y1∩Y2. We end up with

“X1 = Y1, X2 = Y1 ∩ Y2”. ⊓⊔

We now provide a notion of guardedness for systems of fixpoint equations. For
this, we slightly extend our terminology and use “µ-guarded” (resp. “ν-guarded”)
as synonymous with “upward-guarded” (resp. “downward-guarded”).

Definition 17 (Guarded systems of fixpoint equations) A system X1
λ1=

ϕ1(X1, . . . , Xn,
−→
Y ), . . . , Xn

λn= ϕn(X1, . . . , Xn,
−→
Y ) is guarded if one of the follow-

ing two condition holds:

Xi is λj-guarded in ϕj for all 1 ≤ i ≤ j ≤ n, or (C1)

Xi is λi-guarded in ϕj for all 1 ≤ j ≤ i ≤ n. (C2)

Lemma 18 If X1
λ1= ϕ1, . . . , Xn

λn= ϕn is a guarded system of fixpoint equations,
then the derived system —see Eq. (14)— is guarded too.

Proof Being guarded, the system under consideration satisfies condition C1 or C2.
Assume that it satisfies C1. We show that the derived system too satisfies C1:

Indeed, for 2 ≤ i ≤ j the occurrences of Xi in ϕj(ψ1, X2, . . . , Xn,
−→
Y ) are either,

so-called previous, occurrences in ϕj( , X2, . . . , Xn,
−→
Y ), or new ones in ψ1. In the

first case, they are λj-guarded as in the original system. In the second case, they
occur in a term that replaces X1 whose occurrences in ϕj(X1, . . .) were λj-guarded
by assumption, hence they are λj-guarded too in ϕj(ψ1, . . .).

If, on the other hand, we assume that the original system satisfies condition C2,
we can show that the derived system too satisfies C2. The reasoning is unchanged
for previous occurrences of some Xi in some ϕj(ψ1, X2, . . .) when 2 ≤ j ≤ i ≤ n.

For the new occurrences of Xi, we observe that they appear in the subterm ψ1
def
=

λ1X1.ϕ1(X1, X2, . . . , Xn, . . .) where they are λi-guarded since, by assumption,
they were λi-guarded in ϕ1(X1, X2, . . . , Xn, . . .). ⊓⊔
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Theorem 19 Let
−→
X

Λ
= −→ϕ (

−→
X,

−→
Y ) be a guarded system of fixpoint equations. Then

JΛ−→X.−→ϕ K is a region-preserving mapping with values in (2W )
−→
Y . Furthermore, if

the region algebra is effective, JΛ−→X.−→ϕ K is computable.

Proof The proof is by induction on the dimension n of the system, the base case
where n = 0 holding vacuously.

Assume now that n ≥ 1 and write ψ1 for λ1X1.ϕ1(X1, . . . , Xn,
−→
Y ). Recall

that JΛ−→X.−→ϕ Kenv is 〈U1, U2, . . . , Un〉, where 〈U2, . . . , Un〉 is the value over env of a
derived system —see Eq. (14)—, and where U1 is Jψ1Kenv⊕[X2 7→U2,...,Xn 7→Un].

We assume that env(Yj) is a region for all Yj ∈ −→
Y and consider the derived

system. By Lemma 18, this system is guarded. The induction hypothesis applies
and we deduce that U2, . . . , Un are regions. Furthermore they can be computed
from env when the region algebra is effective.

Consider now ψ1 and observe that, thanks to condition C1 or C2, X1 is λ1-
guarded in ϕ1. Hence, by Theorem 12, Jψ1K is region-preserving, (and computable
when the region algebra is effective). Thus U1 = Jψ1Kenv⊕[X2 7→U2,...,Xn 7→Un] is also
a (computable) region. ⊓⊔

Remark 20 For a system of n fixpoint equations, guardedness as defined in Def. 17
requires guardedness of Xi in ϕj for n(n+1)

2 pairs (i, j). Unfortunately, simpler
conditions will not be sufficient for Theorem 19. Consider for example the following
condition:

Xi is λi-guarded in ϕi(X1, . . . , Xn,
−→
Y ) for all 1 ≤ i ≤ n. (C0)

Then the following system “X1
µ
= X2, X2

µ
= o(X1)” satisfies condition C0 but

its solution is 〈V, V 〉 for V = JµX.o(X)K. In general V is not a region.
Note that this example can be reproduced with any condition that tries to

weaken C1 or C2 by omitting some of their (i, j) pairs. ⊓⊔

5 Applications to the verification of well-structured counter systems

In the second part of this article, we show how the results of sections 3 and 4 apply
to a variety of verification problems for well-structured transition systems (WSTS).
This is not an exhaustive survey (and applications exist outside of verification).

This section focuses on basic verification problems and (several kinds of)
counter systems since they are a simple and ubiquitous model. We consider lossy
channel systems in the following sections since this latter model is better suited
to the game-theoretical and/or probabilistic questions we use for illustration. This
choice of applications is motivated by their prominence in the WSTS literature,
but the majority of the results we present can be adapted more or less directly to
other WSTS settings.

5.1 Well-structured transition systems

Recall that a (labeled) transition system is a structure T = (Conf , Σ,→) where
Conf = {σ, τ, γ, . . .} is a set of configurations, or “states” of the system, where
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Σ = {ℓ, ℓ′, . . .} is a set of labels, and →⊆ Conf ×Σ ×Conf is a labeled transition
relation. A transition (σ, ℓ, σ′) ∈→ is customarily called a step of T and denoted

σ
ℓ−→ σ′, or just σ −→ σ′ when the label ℓ is not relevant, or when one deals with

unlabeled transition systems.

Definition 21 ([48,6,55]) A well-structured transition system is a transition
system T = (Conf , Σ,→,⊑) enriched with a WQO ⊑ over Conf , and such that

the transitions satisfy the following monotonicity property:2 for all steps σ
ℓ−→ σ′

and configurations τ ⊒ σ, there exists a step τ
ℓ−→ τ ′ such that τ ′ ⊒ σ′.

Using standard notations, we let Pre[ℓ](γ′)
def
= {γ ∈ Conf | γ ℓ−→ γ′} denote the

sets of 1-step predecessors of γ by some ℓ-labeled step. This extends to sets of

configurations: Pre[ℓ](V )
def
=

⋃
γ∈V Pre[ℓ](γ) for V ⊆ Conf ; to sequences of labels

(words in Σ∗): Pre[ℓ1 . . . ℓn](V )
def
= Pre[ℓ1](. . . (Pre[ℓn](V )) . . .), with Pre[ε](V )

def
=

V ; to languages L ⊆ Σ∗ with Pre[L](V )
def
=

⋃
w∈L Pre[w](V ). Finally, Pre∗ and

Pre+, are shorthand for Pre[Σ∗] and Pre[Σ+], and collect all the predecessors
(resp., strict predecessors) of some configurations.

The dual P̃re of Pre is defined by P̃re(V ) = Conf r Pre(Conf r V ), or

¬Pre(¬V ) in more compact notation. Thus σ ∈ P̃re(V ) iff all 1-step successors of
σ are in V (this includes the case where σ is a deadlock state with no successors).

Observe that, seen as unary operators on 2Conf , Pre and P̃re are monotonic. In
fact, Pre is ∪-continuous for all transition systems, and ∩-continuous for finitely
branching ones (symmetrically for P̃re).

5.2 Monotonic counter systems

A first example of WSTS is given by monotonic counter systems. We start with
general Presburger counter systems before restricting to monotonic systems.

Informally, a counter is a storage location holding a natural number. Formally,
a (Presburger) counter system is a tuple S = (Q,Σ, d,∆) where Q = {p, q, . . .}
is a finite set of locations, Σ is the set of labels, d ∈ N is a dimension, and
∆ ⊆ Q × Σ × Pres(X ∪ X ′) × Q is a finite set of transition rules, or shortly
“rules”. Here, X = {x1, x2, . . . , xd} is a set of d variables for the d counters, while
X ′ = {x′1, x′2, . . . , x′d} are primed copies, and Pres(X∪X ′) is the set of Presburger
formulae with free variables in X ∪ X ′. The components of a rule δ = (p, ℓ, u, q)
are a start- and an end-location p, q, a label ℓ, and an update u(X,X ′), i.e., a
Presburger formula describing how the current values of the counters change when
firing δ.

The operational semantics is as expected. A configuration of S = (Q,Σ, d,∆)
is a pair σ = (p,a) of a current location p ∈ Q and a current valuation a ∈ N

d

of the counters. Transitions between configurations are obtained from the rules:

there is a transition (p,a)
ℓ−→ (q,b) if ∆ contains a rule δ = (p, ℓ, u, q) such that u

is satisfied when the values a and b are assigned to X and X ′, denoted |= u(a,b).

2 Called “strong compatibility” in [48]. There exist alternative definitions of well-structured
transition systems based on weaker notions of compatibility.
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r s

x1 − x′
1 = x′

2 − x2 = 1 x′
1 − x1 = x2 − x′

2 = 1x1 = x′
1 = 0 ∧ x′

2 = x2

x2 = x′
2 = 0 ∧ x′

1 = x1 + 1

Fig. 1 A simple counter system

Example 22 (A simple counter system) Fig. 1 depicts a simple (unlabeled) counter
system with d = 2 and Q = {r, s}. Its behavior in any given configuration is
completely deterministic. Here is a run starting from (r, 0, 0):

(r, 0, 0) −→ (s, 0, 0) −→ (r, 1, 0) −→ (r, 0, 1) −→ (s, 0, 1) −→ (s, 1, 0) −→ (r, 1, 1)

−→ (r, 0, 2) −→ (s, 0, 2) −→ (s, 1, 1) −→ (s, 2, 0) −→ (r, 2, 1) −→ · · ·

It appears that all possible configurations will be visited exactly once. ⊓⊔

Example 23 (Minsky Machines and Vector Addition Systems) Using arbitrary Pres-
burger formulae for updates is expressive and versatile. It generalizes many clas-
sical models like Minsky Machines or Vector Addition Systems, etc., where only
updates of a specific form are allowed. For Vector Addition Systems, the updates
have the form

u(v−,v+)(X,X
′)

def⇔
d∧

j=1

(
xj ≥ v−[j] ∧ x

′
j = xj − v−[j] + v+[j]

)
(18)

for some v+,v− ∈ N
d, or equivalently, when seeing X and X ′ as vectors,

u(v−,v+)(X,X
′)

def⇔ X ≥ v− ∧X ′ = X − v− + v+
. (19)

For Minsky Machines, the updates are zero tests, written “if xi = 0 then . . . ”
in programming notation, incrementations “xi := xi + 1”, and decrementations
“if xi > 0 then xi := xi − 1”. This imperative notation is more compact but less
explicit than their Presburger formulation:

uzero?(xi)(X,X
′)

def⇔ xi = 0 ∧
d∧

j=1

xj = x
′
j , (20)

uincr(xi)(X,X
′)

def⇔ x
′
i = xi + 1 ∧

d∧

j=1

j 6=i

xj = x
′
j , (21)

udecr(xi)(X,X
′)

def⇔ xi = x
′
i + 1 ∧

d∧

j=1

j 6=i

xj = x
′
j . (22)

⊓⊔
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Now to monotonicity. For this, we order the set ConfS
def
= Q×N

d of configura-
tions of S with

(p,a) ≤ (q,b)
def⇔ p = q ∧ a ≤ b . (23)

This extends the product ordering on N
d (from Example 6) and turns ConfS into

a WQO since (Nd,≤) is a WQO and Q is finite. For counter systems, a natural
choice for symbolic verification purposes is to use the algebra RSL(S) over ConfS
of semilinear,3 or equivalently Presburger-definable, regions of S.

Definition 24 A counter system is monotonic if the associated transition system

TS
def
= (ConfS , Σ,→,≤) is well-structured.

Observe that the question whether S = (Q,Σ, d,∆) is monotonic can be expressed
by a Presburger formula,

∧

p,q∈Q

ℓ∈Σ

[(
Y ≥ X ∧

∨

(p,ℓ,u,q)∈∆

u(X,X ′)

)
⇒

(
∃Y ′ : Y ′ ≥ X

′ ∧
∨

(p,ℓ,u′,q)∈∆

u
′(Y, Y ′)

)]
, (24)

hence is decidable.

Example 25 (Some classes of monotonic counter systems)
1. Vector addition systems, or equivalently Petri nets, are monotonic as can be
checked on Eq. (18).
2. Many extensions of Petri nets allow richer sets of updates (on the same set of
configurations) and retain monotonicity. For example, Post-self-modifying nets [79],
reset/transfer nets [38] and broadcast protocols [40], or the more general affine
nets [47]. These are all special cases of Presburger counter systems since their
updates can be defined with Presburger formulae.
3. Lossy counter machines are monotonic: see Section 5.4. ⊓⊔

Remark 26 Famously, Minsky machines are not monotonic because of their zero
tests. ⊓⊔

We now consider the monotonic region algebra RSL(S). The signature includes
union, intersection, C↑ andK↑, the Pre[ℓ] operators (all monotonic operators), and
some constants. In terms of this region algebra, the defining property of monotonic
counter systems entails

Pre[ℓ](C↑R) = C↑

(
Pre[ℓ](C↑R)

)
. (25)

We abuse terminology and say that a constant c is upward-closed if its inter-
pretation JcK is.

Proposition 27 Let ϕ be a closed Lµ term that uses only Pre, union, intersec-
tion, upward-closure, fixpoints and upward-closed constants. Then, for monotonic
counter systems, JϕK is upward-closed.

3 Semilinear subsets of ConfS = Q × Nd are all sets of the form ∪q∈Q{q} × Rq where each

Rq ⊆ Nd is semilinear. Equivalently, they can be seen as semilinear subsets of Nd+1, or more
precisely of {0, 1, 2, . . . , |Q| − 1} × Nd, by identifying Q with its cardinal.
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Proof We show that for any subformula ψ of ϕ, Jψ(X1, . . .)Kenv is upward-closed
when env(X1), . . . are upward-closed. The result will apply to ϕ without any re-
striction since it has no free variable and JϕK does not depend on env.

The proof is by structural induction on ψ. We consider all cases in turn. If ψ
is a constant c, JcK is upward-closed by assumption. If ψ is a variable X, JXKenv =
env(X) is upward-closed by assumption. If ψ is some ψ1 ∩ ψ2 or ψ1 ∪ ψ2, we
know by induction hypothesis that Jψ1Kenv and Jψ2Kenv are upward-closed, hence
JψKenv too since the union or the intersection of two upward-closed sets is upward-
closed. If ψ is some Pre[ℓ](ψ′) we rely on the fact that Jψ′Kenv is upward-closed
(induction hypothesis), so that JψKenv = Pre[ℓ](Jψ′Kenv) = Pre[ℓ](C↑Jψ′Kenv) is
upward-closed by Eq. (25). If ψ is some µX.ψ′, we first prove, by induction over
i, that all the approximants (Mi)i∈N of JµX.ψ′Kenv, are upward-closed, relying on
the induction hypothesis on ψ′ to prove that Mi+1 = Jψ′Kenv⊕[X 7→Mi] is upward-
closed. Now, by Fact 1, the sequence of approximants stabilize in finite time since
they are increasing and upward-closed. Thus JψKenv coincides with some Mk, and
it is upward-closed. The case where ψ is some νX.ψ′ is similar. ⊓⊔

Let B(∃U, ∃X,∧,∨) denote the fragment of CTL (the well-known temporal logic,
see [39] for notations and definitions) where only existential path quantification
is allowed. Write S, σ |= ϕ when configuration σ of S satisfies temporal formula
ϕ, and SatS(ϕ) for {σ ∈ ConfS | S, σ |= ϕ}. Model checking is the problem of
deciding whether S, σ |= ϕ for given S, σ and ϕ.

Theorem 28 (Model-checking monotonic counter systems) For a mono-
tonic counter system S, and for a B(∃U, ∃X,∧,∨) formula ϕ where atomic propo-
sitions are upward-closed, the set SatS(ϕ) is an upward-closed set (hence a region
in RSL(S)) that can be computed from S and ϕ.

Proof By translating CTL as Lµ terms in the classical way [30], e.g., with

∃[ϕ1Uϕ2] is CTL notation for µX.ϕ2 ∪ ϕ1 ∩ Pre(X) , (26)

we can apply Prop. 27 and deduce that all SatS(ϕ) are upward-closed. Therefore,
replacing any Pre(. . .) by Pre(C↑(. . .)) in the resulting Lµ terms does not change
their interpretation.

Now, since B(∃U, ∃X,∧,∨) only uses least fixpoints, and all such fixpoints have
the bound variable under the scope of Pre as exemplified in Eq. (26), this gives
us terms that are upward-guarded. Thus they can be evaluated as a consequence
of Theorem 12. ⊓⊔

Thus, model checking B(∃U, ∃X,∧,∨) is decidable under the above assumptions.
This CTL fragment allows combining and nesting the constrained reachability
properties that are central to the verification of safety properties.

Remark 29 Theorem 28 cannot be extended to the whole of CTL. For example, the
set SatS(∀♦r) of all configurations from which one will inevitably reach a given
control state r ∈ Q cannot be computed from S, even when S is a lossy counter
system [77]. ⊓⊔
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5.3 Regular simulation for monotonic counter systems

In process algebra, so-called “regular” equivalences and preorders are behavioral
relations between an arbitrary labeled transition system and a finite-state one
(which is usually taken as a specification of the other process) [58,65].

We first consider regular simulation, i.e., the special case where one considers
Milner’s classic simulation preorder.4

Consider an arbitrary counter system S = (Q,Σ, d,∆) and assume that F =
(F,Σ,−→F ) is a finite-state transition system, i.e., F = {f1, . . . , fn} for some n.
The simulation relation between S and F , is the largest relation � ⊆ ConfS × F

that satisfies the following transfer property (see, e.g., [50]):

σ � f =⇒ for all σ
ℓ−→ σ

′ there exists f
ℓ−→Ff

′ s.t. σ′ � f
′
. (27)

For f ∈ F , let Xf
def
= {σ ∈ ConfS | σ � f}.

Theorem 30 (Decidability for regular simulation) If S is a monotonic
counter system, the sets (Xf )f∈F are downward-closed and can be computed effec-
tively.

Proof Since F is finite, the coinductive definition of � translates into a finite
system of fixpoint equations for the Xf sets. Formally, Eq. (27) rewrites as

Xf1

ν
=

⋂

ℓ∈Σ

P̃re[ℓ]
( ⋃

f1

ℓ−→Ff ′

Xf ′

)
, · · · , Xfn

ν
=

⋂

ℓ∈Σ

P̃re[ℓ]
( ⋃

fn

ℓ−→Ff ′

Xf ′

)
. (28)

By duality, the complementary sets Yf
def
= ConfS rXf are given by the following

system of fixpoint equations:

Yf1

µ
=

⋃

ℓ∈Σ

Pre[ℓ]
( ⋂

f1

ℓ−→Ff ′

Yf ′

)
, · · · , Yfn

µ
=

⋃

ℓ∈Σ

Pre[ℓ]
( ⋂

fn

ℓ−→Ff ′

Yf ′

)
. (29)

With Prop. 27 we know that the solutions of Eq. (29) are upward-closed when S
is monotonic. Hence it is equivalent to define the (Yf )f∈F with:

Yf1

µ
=

⋃

ℓ∈Σ

Pre[ℓ]
(
C↑

⋂

f1

ℓ−→Ff ′

Yf ′

)
, · · · , Yfn

µ
=

⋃

ℓ∈Σ

Pre[ℓ]
(
C↑

⋂

fn

ℓ−→Ff ′

Yf ′

)
, (30)

which is guarded. Theorem 19 now applies and gives us computability. ⊓⊔
It is easy to extend Theorem 30 to (most variants of) weak simulation, where
a special label τ ∈ Σ is a silent internal action [49]. This means replacing the

existential quantification “∃ f ℓ−→Ff
′” in Eq. (27) with, e.g., “∃ fτ

∗ℓτ∗

−−−→Ff
′” and

leads to a variant of Eq. (28) that is still guarded.

Remark 31 (Simulation of F by S) One cannot compute the simulation relation
in the other direction, i.e., of F by S. Let X ′

f = {σ | f � σ}. The definition of
simulation leads to a system of fixpoint equations for the (X ′

f )f∈F that is not
guarded. From this we deduce that each X ′

q is (semilinear and) upward-closed,
using Prop. 27. However, X ′

f is not computable5 from S and F since if F is just a

4 Regular simulation is known to be decidable for well-structured systems [6]. By contrast,
outside of the regular equivalence framework, all sensible behavioral relations between config-
urations of monotonic counter systems are undecidable [56,75].

5 However, it is decidable whether f � σ (given σ) when S is finitely branching [6].
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single loop “f1 −→ f1”, X
′
f1

is exactly the set of configurations from which S has an
infinite run, a set that cannot be computed even for lossy counter machines [77].

⊓⊔

5.4 Lossy Counter Machines

Lossy counter machines are a weak version of counter machines that is well-
structured by construction. It is convenient to define them as standard counter
machines with a new operational semantics that defines their unreliability [68,77].
Formally, given a Presburger counter machine S, its lossy variant Slossy is obtained
by replacing any update u(X,X ′) in the rules of S by a modified, “lossy”, version

ulossy(X,X
′)

def⇔ ∃Y, Y ′ : X ≥ Y ∧ u(Y, Y ′) ∧ Y ′ ≥ X
′
. (31)

The behavior of the resulting Slossy is the behavior of S except that one now
assumes that the counters are unreliable and can decrease nondeterministically
before and after steps.

Eq. (31) entails that Slossy is a monotonic system. In fact, lossy counter ma-
chines satisfy a stronger property:

Pre[ℓ](R) = Pre[ℓ](C↑R) = C↑

(
Pre[ℓ](C↑R)

)
,

P̃re[ℓ](R) = P̃re[ℓ](K↓R) = K↓

(
P̃re[ℓ](K↓R)

)
.

(32)

This leads to a notable strengthening of Theorem 28: one can handle negation!

Theorem 32 Model checking B(∃U, ∃X,∧,∨,¬) is decidable for lossy counter sys-
tems (assuming that atomic propositions are semilinear). Furthermore, for every
formula ϕ of this fragment of CTL, the set SatS(ϕ) is semilinear and computable
from S and ϕ.

Proof (Sketch) Using Eq. (32) the µ-calculus definitions of B(∃U, ∃X,∧,∨,¬) for-
mulae directly lead to guarded terms. ⊓⊔

We are also in a position to deal with regular bisimulation. Write Zf
def
= {σ ∈

ConfS | σ ∼ f} for the set of configurations of S that are bisimilar with a state
f of F . The natural coinductive definition of bisimulation does not lead to a
guarded system for the Zf ’s. However, for regular bisimulation, an alternative
characterization leads to an inductive definition as we now explain (see also [58,
65]). Recall the definition of the finite-depth approximants ∼0 ⊇ ∼1 ⊇ ∼2 · · · of
bisimulation:

σ ∼n+1 f
def⇔

{
∀σ ℓ−→ σ′ : ∃f ℓ−→Ff

′ : σ′ ∼n f
′ , and

∀f ℓ−→Ff
′ : ∃σ ℓ−→ σ′ : σ′ ∼n f

′ ,
(33)

where σ ∼0 f holds for all σ and f . Then, writing N for |F |, σ ∼ f iff

σ ∼N f and for all σ
∗−→ σ

′ there is a f ′ ∈ F s.t. σ′ ∼N f
′
. (34)
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Using Eq. (32), the above characterization yields a guarded system for (Zq)q∈F :

Zf = Z
N
f ∩ ZF , ZF

ν
=

( ⋃

f ′∈F

Z
N
f ′ ∩

⋂

ℓ∈Σ

P̃re[ℓ](K↓ZF )
)
,

Z
0
f = ConfS , Z

n+1
f =

⋂

ℓ∈Σ

( ⋂

f
ℓ−→Ff ′

Pre[ℓ](Zn
f ′) ∩ P̃re[ℓ]

( ⋃

f
ℓ−→Ff ′

Z
n
f ′

))
.

Corollary 33 (Decidability for regular bisimulation) For lossy counter sys-
tems, the sets (Zf )f∈F are semilinear and can be computed effectively.

Remark 34 The above result does not extend to all monotonic systems. For ex-
ample, even in the simple case of VASS’s for which regular bisimulation is decid-
able [57], the sets (Zf )f∈F are in general not semilinear. ⊓⊔

5.5 Integral Relational Automata

Integral relational automata (IRA) [32] are counter systems where updates are
restricted to assignments guarded by comparisons. Using an imperative notation,
the assignments can have the form xi:=c for a counter xi and a constant c ∈ N,
xi:=xj for two counters, and the special xi:=? that assigns nondeterministically
any natural number (and yields infinitely-branching transition systems). These
updates are guarded by arbitrary Boolean combinations of simple tests of the
form xi < c (comparing a counter and a constant) and xi < xj −c (comparing two
counters, with gap-order constraints allowed). Since these updates are Presburger-
definable, IRA’s are a special case of counter systems.

p0 p1 p2

q1

q2

x1:=? x2:=?

y:=x2
if x1 < x2

y:=x1
if x2 ≤ x1

Fig. 2 An integral relational automaton

Example 35 The IRA depicted on Figure 2 nondeterministically picks two arbi-
trary values for x1 and x2, compares them and stores the largest one in y. ⊓⊔

IRA’s are not monotonic in the sense of Definition 24, however they are well-
structured transition systems when one assumes a different ordering on configu-
rations. Formally, for a = (a1, . . . , ad) and b = (b1, . . . , bd) in N

d or in Z
d, we say

that a is sparser than b, written a ≤sp b, when

for all 1 ≤ i, j ≤ d:
(
ai ≤ aj iff bi ≤ bj

)
and |ai − aj | ≤ |bi − bj | . (35)

In other words, the ordering between any two elements of a is respected by the
corresponding elements in b, and their relative distance is not decreased.
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Fact 36 (Nd,≤sp) and (Zd,≤sp) are WQO’s.

Indeed there are only a finite number Fd ≈ d!
2(log 2)d+1 of total preorders of d el-

ements6, and only dd−1
2 distinct differences between the d elements. Thus there

exists an order-embedding from (Zd,≤sp) to (Fd × N
d d−1

2 ,≤). Furthermore, the
dd−1

2 differences can be generated with only the d− 1 differences between imme-
diate neighbours since if, e.g., x < y < z then |x− z| = |x− y| + |y − z|. Thus
(Zd,≤sp) can even be embedded into (Fd × N

d−1,≤). Since the latter is a WQO
(by Dickson’s Lemma), the former is too.

When C = {c1, . . . , ck} is a finite subset of Z (with c1 < c2 < · · · < ck), we let

a ≤C
sp b

def⇔ (a1, . . . , ad, c1, . . . , ck) ≤sp (b1, . . . , bd, c1, . . . , ck)

⇔ (a1, . . . , ad, c1, ck) ≤sp (b1, . . . , bd, c1, ck) .
(36)

Then, for any C, (Zd,≤C
sp) is a WQO that refines (Zd,≤sp).

If we now let CS be the (finite) set of all constants that appear in a guard or

an assignment of S and order ConfS with (p,a) ⊑S (q,b)
def⇔ p = q ∧ a ≤CS

sp b, we
obtain a WQO w.r.t. which the IRA S is well-structured [32,6].

Now to verification: IRA’s are counter systems, so we can use the algebra
of semilinear regions for symbolic verification, with Pre and Post being effective
and region-preserving. Configurations are well-quasi-ordered with ≤CS

sp : since this
WQO is Presburger-definable (witness Eqs. (35) and (36)), the associated closure
and interior operators are effective and region-preserving. Finally, all the machin-
ery described above for the symbolic verification of monotonic counter machines
still apply mutatis mutandis.

Theorem 37 Regular simulation and model-checking B(∃U, ∃X,∧,∨) where atomic
propositions are upward-closed (w.r.t. ⊑S) are decidable for IRA’s.7

Furthermore, for any B(∃U, ∃X,∧,∨) formula ϕ, the set SatS(ϕ) is upward-
closed and computable, and for any state q of a finite F , the set Xq = {σ | σ � q}
is downward-closed and computable.

5.6 Incrementation errors

Counter automata with incrementation errors, called ICA’s for short, have recently
been introduced in connection with temporal logics and data logics [37,44]. Seen
as counter systems, they are not monotonic, but “co-monotonic”, i.e, they satisfy
an equation similar to Eq. (24) where Y ≥ X and Y ′ ≥ X ′ are replaced with
Y ≤ X and Y ′ ≤ X ′. Equivalently, the transition system obtained by reversing
the direction of steps (running the system backwards) is well-structured. Thus,
instead of Eq. (32), one relies on Post [ℓ](R) = C↑(Post [ℓ](C↑R)) to prove, e.g.,
that for ICA’s Post∗(R) is a region and can be computed effectively.

6 The Fd’s are known as the “Fubini numbers”, or the “ordered Bell numbers”, see A000670

in the Encyclopedia of Integer Sequences.
7 In the case of IRA’s, the optimal complexity is obtained with algorithms that are not

WSTS-based [29].
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6 Lossy channel systems

Lossy channel systems (LCS’s) are another classic model for which WSTS theory
provides many positive results [31,9]. In this section, we first recall the necessary
notations, definitions and classical results before considering the verification of
game-theoretical and probabilistic properties in sections 7–9.

For simplicity we consider unlabeled systems. A channel system is a tuple
S = (Q,C,M, ∆) consisting of a finite set Q = {q, q′, . . .} of locations, a finite
set C = {c, . . .} of channels, a finite message alphabet M = {m, . . .} and a finite
set ∆ = {δ, . . .} of transition rules. Each transition rule has the form (q, op, q′),

written q
op−→ q′, where op is an operation: c!m (sending message m ∈ M along

channel c ∈ C), c?m (receiving message m from channel c), or
√

(an internal
action to some process, no I/O-operation).

With a channel system S, we associate two operational semantics. We start
with the “reliable” semantics: A configuration of S is a pair (q, w) where q is a
location of S and w : C → M

∗ is a mapping, called the channel valuation, that

describes the channel contents. Thus ConfS
def
= Q×M

∗C. When C = {c1, . . . , cd},
we often use M

∗d instead of M∗C, and write (q, u1, . . . , ud) instead of (q, w) (when
ui = w(ci) for i = 1, . . . , d). Reliable, also called “perfect”, steps are as expected.
Formally, the effect of an operation op on the contents w, denoted op(w), is the
valuation w′ such that:8

if op = c!m : w
′(c) = w(c).m and w′(c′) = w(c′) for all c′ 6= c ,

if op = c?m : m.w
′(c) = w(c) and w′(c′) = w(c′) for all c′ 6= c ,

if op =
√

: w
′(c) = w(c) for all c .

Then the perfect steps of S, denoted σ−→perfσ
′, are all (q, w)−→perf(q

′, w′) such

that there is a rule q
op−→ q′ in ∆ and w′ = op(w), in which case we say that the

rule is enabled. We write En(σ) ⊆ ∆ for the set of rules enabled in σ.
Now to unreliability. Losing messages is formalized via the subword ordering,

extended from M
∗ to ConfS in the natural way: (q, w) ⊑ (q′, w′) if q = q′ and

w(c) ⊑ w′(c) for all channels c ∈ C. Then the semantics of S consists of so-called
“lossy” steps defined with

σ −→ τ
def⇔ σ−→perfτ

′ ∧ τ
′ ⊒ τ for some τ ′. (37)

In plain words, a step in the LCS can be seen as a perfect step followed by arbitrary
message losses.

Remark 38 (On defining lossy steps) With Eq. (37), we opt for a semantics where
message losses occur anywhere in the channels, right after a perfect step. In the
literature, one often considers more liberal definitions with arbitrary losses before
and after a step [9], or more restrictive definitions where messages can only be
lost during the steps that (try to) send them to a channel [33] or when they are
in position to be read at the head of a channel [45].

There is usually no essential semantical difference between these definitions
that package the same atomic events into different single “steps”. The liberal

8 For “c?m” operations, op(w) is only defined if the contents of channel c starts with m.
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definition is often technically smoother because (ConfS ,−→liberal,⊑) is a WSTS.
However, losing messages at the start of a step is unnatural in situations where
several adversarial processes compete, e.g., in the game-theoretical or probabilistic
settings that we explore in sections 7–9. Hence our choice of Eq. (37) for the
definition of lossy steps. ⊓⊔
One consequence of using Eq. (37) is that when σ ⊑ σ′, the transition rules
enabled in σ are not necessarily enabled in σ′. This motivates the introduction of
the following relation:

σ �S σ
′ def⇔ σ ⊑ σ

′ ∧ En(σ) ⊆ En(σ′) . (38)

Lemma 39 (ConfS ,�S) is a WQO and TS
def
= (ConfS ,−→,�S) is a WSTS.

Proof �S is a WQO as the intersection of two WQO’s. For monotonicity of steps,
assume σ �S σ

′ and σ −→ τ , i.e., σ−→perfτ1 ⊒ τ where the perfect step is obtained
by firing rule δ ∈ ∆. From En(σ) ⊆ En(σ′) we conclude that there is a step
σ′−→perfτ

′
1 using δ. From σ′ ⊒ σ we get τ ′1 ⊒ τ1 hence τ ′1 ⊒ τ . Thus by letting

τ ′ = τ , we have a step σ′ −→ τ ′ with τ �S τ
′. ⊓⊔

6.1 An effective region algebra for LCS’s

We adapt the algebra of regular regions (Example 4) to LCS’s. Formally, for an
LCS S, a recognizable region is any R ⊆ ConfS that can be written under the form
R =

⋃
i∈I{qi} × L1

i × · · · × Ld
i where I is a finite index set, where d = |C| is the

number of channels in S, and where, for i ∈ I, qi is some location ∈ Q, and each
L
j
i for j = 1, . . . , d is a regular language ∈ Reg(M). We denote with RRec(S)

the monotonic region algebra that contains exactly these recognizable regions. It
is closed under Boolean operations.

Obviously, for any transition rule δ ∈ ∆, the set of configurations in which δ
is enabled is a recognizable region. Thus, from the regularity of language closures
w.r.t. the subword ordering (see Example 5), we deduce the recognizability of the
closures w.r.t. �S , denoted C↑�S

R and C↓�S
R, or more simply C↑R and C↓R

when S is understood, of any R ⊆ ConfS . Consequently, the interiors w.r.t. �S ,
simply denoted K↑R and K↓R, are also recognizable regions.

The set of operators we consider on regions includes C↑, C↓, K↑, K↓ (as re-

quired by the definition), union and intersection, Pre and P̃re. These operators
are monotonic, region-preserving and effective.

Let us show that, even with our specific operational semantics, Pre(R) and

P̃re(R) are regions. First let Preperf(. . .) denote the set of 1-step predecessors by
perfect steps. It is easy to see that, when R is recognizable, Preperf(R) is recog-
nizable too: it is obtained from R by simple regularity-preserving operations like
replacing the contents Li of channel ci with m.Li when accounting for operation

ci?m, and with the right-residual (Li)m
−1 def

= {x | xm ∈ Li} when accounting
for ci!m. We conclude with Pre(R) = Preperf(C↑R) from Eq. (37). Since C↑R is
recognizable, Pre(R) is recognizable for any R.

Finally, RRec(S) is an effective region algebra where recognizable regions and

the above-mentioned operations, including Pre and P̃re, can be handled algorith-
mically, e.g., using automata-based representations like QDD’s [21].
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Remark 40 (Lossy channel systems with guards) Guards are additional conditions
that restrict the firability of rules and are useful in many situations, e.g., for mod-
elling priorities between rules. They can be simple conditions like the emptiness
of a channel, or more complex ones like the (non-)occurrence tests used in [28,27].

It turns out that our approach can handle all guards defined by recognizable

regions. If we write q
G:op−−→ q′ for rule q

op−→ q′ guarded by G, a formal definition

of the semantics would give Pre[q
G:op−−→ q′](R) = G ∩ Pre[q

op−→ q′](R) which is
easily accommodated by our region algebra. We will not pursue this direction in
more depth, and just remark that all our results on lossy channel systems extend
directly to a setting with recognizable guards. ⊓⊔

6.2 Verification of lossy channel systems

Theorem 12 has numerous applications for LCS’s, as we describe now and in
the next three sections. In order to ensure guardedness of terms, we rely on the
following two key equalities

Pre(R) = Pre(C↑R) , P̃re(R) = P̃re(K↓R) . (39)

These are direct consequences of Eqs. (37) and (38) (recall that C↑ and K↓ refer
to �S). Using Eq. (39), Pre∗(R) can be expressed by a guarded term:

Pre∗(R) = µX.R ∪ Pre(X) = µX.R ∪ Pre(C↑X). (40)

Corollary 41 For recognizable R ⊆ Conf , Pre∗(R) is recognizable and effectively
computable.

More generally, model checking B(∃U, ∃X,∧,∨,¬) is decidable for lossy channel
systems (assuming that atomic propositions are recognizable), as are regular sim-
ulation and bisimulation: everything we illustrated for lossy counter machines in
Section 5.4 extends to LCS’s.

Remark 42 (Beyond safety) Inevitability properties, and recurrent reachability
can be stated in Lµ [30]. With temporal logic notation, this yields

Sat(∀♦R) = µX.R ∪
(
Pre(Conf ) ∩ P̃re(X)

)
, (Inev)

Sat(∃�♦R) = νX.µY.
(
[R ∪ Pre(Y )] ∩ Pre(X)

)
. (RecReach)

These two Lµ terms are not guarded and Eq. (39) is of no help here. This is to be
expected: first, σ |= ∃�♦R is undecidable for lossy channel systems or even lossy
counter systems [8,77]; second, and while σ |= ∀♦R is decidable for lossy channel
systems, the map R 7→ Sat(∀♦R) is not computable [68,77]. ⊓⊔

7 Solving games on lossy channel systems

Theorem 12 is useful when solving games on LCS’s, as we show in this section and
in Section 9 for stochastic games.

From now on, all the situations we consider have game-theoretical aspects and
we shall always explicit who has control over message losses: it can be one the
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players in this section, or the environment in the last two sections with proba-
bilistic message losses. Therefore, Pre and P̃re will always refer to perfect steps,
i.e., they are what was written Preperf and P̃reperf earlier. For the same reasons,
we order configurations with ⊑ rather than with �S , and the closure and interior
operators refer to ⊑.

In general, we consider two players A and B using a channel system S =
(Q,C,M, ∆) as their arena. Formally, the set of locations is partitioned into two
sets Q = QA∪QB , one for each player (we do not consider concurrent games). We

then let ConfA
def
= QA ×M

∗C and ConfB
def
= QB ×M

∗C be the recognizable regions
where it is A’s turn (resp., B’s turn) to play.

Goals for the players combine reachability and invariance properties, denoted as
above with ♦ and, respectively, �. For a goal G, following ATL-like notations [11],
we write 〈〈A〉〉G and 〈〈B〉〉G for the sets of configurations where, respectively, A and
B have a winning strategy to ensure goal G.

In this section, we restrict our attention to turn-based games with strict al-
ternation (otherwise we lose decidability, see Remark 43). This means that for all

rules q
op−→ q′ in ∆, q ∈ QA iff q′ ∈ QB . Thus a single step from some σ ∈ ConfA

can only lead to configurations in ConfB , and reciprocally. In this setting, the fol-
lowing equalities —valid in all strictly-alternating games— are our main tool for
transforming unguarded Lµ terms into equivalent guarded ones:

ConfA ∩ Pre(U) = Pre(U ∩ ConfB) ,

ConfA ∩ P̃re(U) = ConfA ∩ P̃re(U ∩ ConfB) .
(41)

We omit the symmetrical equalities that allow simplifying for ConfB ∩Pre(U) etc.
For simplicity —and w.l.o.g., see [19]— we assume that players can never be in a

deadlock situation where no move is possible, i.e., P̃re(∅) = ∅.

Remark 43 (Alternation is needed) The strictly-alternating setting adopted in this
section is more or less necessary for the decidability results we give below. Indeed,
games with no assumption on alternation between players would allow to express
temporal model-checking problems, e.g., the CTL formula ∃�R, for which the
support set is not computable.

We could handle a slightly weaker form of alternation, namely games where
there exists a uniform bound M on the number of consecutive moves from a same
player. The situation is different when the message losses are probabilistic and the
stochastic games in Section 9 are not required to be strictly alternating. ⊓⊔

7.1 Asymmetric games on lossy channel systems

We first consider asymmetric games where one player, B, controls the message
losses for both sides, as well as his perfect moves, while the other player, A, can
only perform perfect steps. This setting was previously considered in [5]. It can be
used, e.g., to model all the situations where the channel system (player A) must
reach some objective against an adversarial environment (player B) responsible
for message losses.
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B-Reachability games, A-invariance games. These are games where player
B attempts to reach (visit at least once) a region R, no matter how A behaves. It
is known that such games are determined [51]. In our setting, the configurations
from which B can achieve the goal ♦R can be characterized with:

〈〈B〉〉♦R =WB
def
= µX.R ∪

(
ConfB ∩ Pre(C↑X)

)
∪
(
ConfA ∩ P̃re(C↑X)

)
. (42)

Here WB is defined with a guarded term, hence is computable. One way to under-
stand Eq. (42) is to consider a configuration σ ∈WB . If σ ∈ ConfArR: it is A’s

turn to play but, since σ ∈ P̃re(C↑WB), A can only choose among perfect steps
reaching C↑WB . Now, and since he controls message losses, B can make sure the
play ends up in WB .

We may also consider a different asymmetric setting, where B only controls
the message losses for his moves while A plays perfect steps where no losses can
occur. Then 〈〈B〉〉♦R is characterized with

〈〈B〉〉♦R =WB
def
= µX.R ∪

(
ConfB ∩ Pre(C↑X)

)
∪
(
ConfA ∩ P̃re(X)

)
. (43)

Here we use Eq. (6), i.e., unfoldings, to deal with the second, unguarded, occurrence
of X. This gives

WB = µX.

(
R ∪

(
ConfB ∩ Pre(C↑X)

)

∪
(
ConfA ∩ P̃re

[
R ∪

(
ConfB ∩ Pre(C↑X)

)
∪
(
ConfA ∩ P̃re(X)

)]))

which we now simplify using Eq. (41) and ConfA ∩ ConfB = ∅,

= µX.R ∪
(
ConfB ∩ Pre(C↑X)

)
∪
(
ConfA ∩ P̃re

(
ConfB ∩

(
R ∪ Pre(C↑X)

)))

= µX.R ∪
(
ConfB ∩ Pre(C↑X)

)
∪
(
ConfA ∩ P̃re

(
R ∪ Pre(C↑X)

))
,

and we have a guarded term for WB . As can be seen, unfolding the recursive
definition of WB exposes terms where the alternation between A and B leads to
simplification. This technique is used repeatedly in the rest of this section.

Theorem 44 (Decidability for asymmetric LCS games) For asymmetric
LCS games and recognizable regions R, the sets 〈〈B〉〉♦R and, dually, 〈〈A〉〉�R are
(effective) recognizable regions.

We have just reproved a result originally from [5]. Note that one can choose whether
A steps are lossy (under B’s control) or not.

7.2 Symmetric games

We now turn to symmetric games on LCS’s, where A and B play in turn, choosing
the next configuration. Here both players choose a transition rule to fire and
messages to lose after their step.
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Reachability games. We consider the game where player A tries to reach a set
of configurations R whatever the adversarial behaviour of B. The set of winning
configurations for A is naturally characterized by the following term:

〈〈A〉〉♦R =WA
def
= µX.R ∪

[
ConfA ∩ Pre(C↑X)

]
∪
[
ConfB ∩ P̃re(K↓X)

]
.

The change from P̃re(C↑X) —previously, in Eq. (42)— or P̃re(X) —in Eq. (43)—

to P̃re(K↓X) above reflects the change between an adversary who could choose a
firable rule but not his message losses to an opponent who also chooses his message
losses. When in P̃re(K↓X), the adversary (B now) is forced to choose a rule and
message losses that will end up in X =WA.

Now, to obtain a guarded term for WA, we use unfolding and Eq. (41), exactly
as we did for asymmetric games:

WA = µX.R ∪
[
ConfA ∩ Pre(C↑X)

]
∪
[
ConfB ∩ P̃re

(
K↓

(
R ∪ Pre(C↑X)

))]
. (44)

Repeated reachability and persistence games. In a repeated reachability
game, A’s goal is to visit region R infinitely many times, whatever the choices of
B. (In a persistence game, A aims at remaining inside R from some moment on,
no matter how B behaves. Dually, this is a repeated reachability game for B.) In
the repeated reachability game, the winning configurations for A are given by

〈〈A〉〉�♦R =WA
def
= νY.〈〈A〉〉♦

(
HA(Y )

)
,

with HA(Y )
def
= R ∩

[(
ConfA ∩ Pre(C↑Y )

)
∪
(
ConfB ∩ P̃re(K↓Y )

)]
,

(45)

and where we see 〈〈A〉〉♦(. . .) as a unary region-preserving operator given by Eq. (44).
Note that 〈〈A〉〉�♦R and 〈〈A〉〉�

(
〈〈A〉〉♦R

)
do not coincide.

The term in Eq. (45) is not guarded. Furthermore there does not seem to be
an easy and direct way to derive an equivalent but guarded term for WA with
unfoldings and simplifications based on Eq. (41). This is because the outermost
operator 〈〈A〉〉♦ in WA makes unfolding harder to manage.

In this situation, we prefer providing alternative definitions for WA. This can
be done by modifying HA(Y ), e.g., WA = νY.〈〈A〉〉♦H ′

A(Y ) = νY.〈〈A〉〉♦H ′′
A (Y ) for

H
′
A(Y )

def
= R ∩

[(
ConfA ∩ Pre

(
C↑P̃re(K↓Y )

))
∪
(
ConfB ∩ P̃re(K↓Y )

)]
,

H
′′
A (Y )

def
= ConfB ∩

[(
R ∩ P̃re(K↓Y )

)
∪
(
P̃re(R ∩K↓Y )

)]
.

These alternative characterizations rely on the strict alternation of player turns
and the fact that the objective, here �♦R, is prefix-independent.

We now have guarded-term definitions and conclude that reachability, invari-
ance, repeated reachability, and persistence symmetric LCS games are decidable.

Theorem 45 (Decidability for symmetric LCS games) For symmetric LCS
games and recognizable R, the four sets 〈〈A〉〉♦R, 〈〈A〉〉�R, 〈〈A〉〉♦�R, and 〈〈A〉〉�♦R,
are (effective) recognizable regions.
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Parity games. Parity games on lossy channel systems are briefly mentioned in [5],
where it is stated that they can be reduced to a game on a finite arena, namely the
one constituted of configurations with empty channels. In fact, this reduction only
holds when colors are put on control states (i.e., all configurations with a same
given location are colored the same) since then both players are always better off if
they systematically empty the channels after their moves. However, this reasoning
is not valid when colors are not uniform in control states.

Let us show how to handle the general situation: we consider an arbitrary
coloring function c : Conf → {1, . . . , k} for some k ∈ N, that assigns a color
in {1, . . . , k} with each configuration. We let color i ⊆ Conf denote the set of
configurations colored with color i. Classically, player A wins the game if during
the play, the highest color which is visited infinitely often is even. The set WA of
configurations where player A has a winning strategy (against any choices by B)
can be characterized in the following way:

WA
def
= λkXk . . . νX2.µX1.




[
ConfA ∩ Pre

(
C↑

⋃k
i=1(color i ∩Xi)

)]

∪
[
ConfB ∩ P̃re

(
K↓

⋃k
i=1(color i ∩Xi)

)]


 .

where λk is either µ or ν depending on the parity of k.

The above characterization of winning regions holds on any arena [12, sect. 4.3].
Unfortunately the Lµ term defining WA is not guarded. However, in the particular
case of symmetric LCS games with strict alternation, an alternative characteriza-
tion is possible:

WA = λkXk . . . νX2.µX1.




[
ConfA ∩ Pre(C↑P̃re(K↓

⋃k
i=1(color i ∩Xi)))

]

∪
[
ConfB ∩ P̃re(K↓Pre(C↑

⋃k
i=1(color i ∩Xi)))

]


 .

Since WA can be defined with a guarded term, we conclude that symmetric parity
games are decidable on LCS’s.

Theorem 46 (Decidability for symmetric parity games) For symmetric
parity games on LCS’s and recognizable regions (color i)1≤i≤k, the set of winning
configurations for player A is an (effective) recognizable region.

8 Probabilistic lossy channel systems

Our general finite convergence theorem has applications to qualitative probabilistic
model-checking problems for well-structured transition systems. As in the previous
section about (non-probabilistic) games, lossy channel systems are the prominent
example in the literature [16,3,1,71,15].

We consider here a Markov decision process (MDP) semantics for lossy chan-
nel systems where the choice between actions is non-deterministic whereas the
losses follow a probabilistic distribution. This model is called NPLCS, for Non-
deterministic and Probabilistic LCS.
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8.1 The MDP semantics of NPLCS’s

We assume familiarity with the basic concepts of MDP’s and the algorithmic
verification of probabilistic systems. A good introductory exposition is available
in [17, Chapter 10].

We view message losses as probabilistic events. Formally, and given a channel
system S = (Q,C,M, ∆), we assume a fixed loss rate 0 < λ < 1 so that any
message waiting inside the channels can be lost with probability λ during the
current unit of time, which for simplicity is assumed to coincide with a step of S.
Each message is lost or not lost independently of the others. Thus, and given two
channel contents w,w′ : C → M

∗, the probability ploss(w,w
′) that w becomes w′ in

one step via message losses is given by ploss(w,w
′) = #(w′, w)λ|w|−|w′|(1− λ)|w

′|

where #(w′, w) is the number of ways w′ can be obtained from w by erasing some
symbols, or equivalently, the number of different embeddings of w′ into w (see [3,
Section 5] for details). In particular, ploss(w,w

′) 6= 0 iff w′ ⊑ w. These probabilistic
losses are lifted to configurations: ploss(σ, σ

′) = ploss(w,w
′) if σ = (q, w) and σ′ =

(q, w′) for some q ∈ Q, and ploss(σ, σ
′) = 0 otherwise. This can be seen as a family

of probability distributions: for each σ ∈ ConfS , we let loss(σ) ∈ Dist(ConfS) be

the distribution on ConfS given by loss(σ)(σ′)
def
= ploss(σ, σ

′).

We may now let the MDP associated with S and λ be MS
def
= (ConfS ,−→mdp)

where −→mdp ⊆ ConfS ×Dist(ConfS) is given by

σ−→mdploss(τ)
def⇔ σ−→perfτ is a perfect step of S (see Section 6).

In other words, the role of the scheduler inMS is to choose which transition rule
to fire, before subsequent losses are decided following the probabilistic distribution.
Clearly, when the probabilities are abstracted away from MS , the resulting steps
are exactly the lossy steps given by Eq. (37).

8.2 Qualitative verification of NPLCS’s

Natural verification questions for this MDP model are the following: given a linear-
time property ϕ and a starting configuration σ

is there a scheduler U such that PU (σ |= ϕ) = 1?, or (almost surely)

is there a scheduler U such that PU (σ |= ϕ) > 0? (positive probability)

This is called qualitative verification because one only compares PU (σ |= ϕ) with
the extremal values 0 and 1. It turns out that, for NPLCS’s, these qualitative
properties do not depend on the specific value of the loss rate λ.

On NPLCS’s, these problems are undecidable for general LTL formulas, see [3,
15]. In the sequel, we use Theorem 12 to derive decidability for specific subclasses
of formulas.

Theorem 47 (Decidability of qualitative model-checking problems for
NPLCS [15]) Given a NPLCS S, an initial configuration σ and a recognizable
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region R, it is decidable whether there exists a scheduler U such that:

(a.1) PU

(
σ |= ♦R

)
= 0, or (b.1) PU

(
σ |= �♦R

)
= 1, or

(a.2) PU

(
σ |= ♦R

)
< 1, or (b.2) PU

(
σ |= �♦R

)
< 1, or

(a.3) PU

(
σ |= ♦R

)
= 1, or (b.3) PU

(
σ |= �♦R

)
= 0.

Furthermore, the sets of configurations from which any of (a.1) to (b.3) holds are
recognizable regions effectively computable from R and S.

To prove Theorem 47, we show that the sets of configurations from which any of
(a.1) to (b.3) holds can be expressed by a guarded term in Lµ. By Theorem 12,
these sets are computable (assuming that R is a region) and in particular one may
decide whether they contain a given initial configuration.

To shorten notations, and given a linear-time property ϕ, we write 〈〈 〉〉=1ϕ

(resp., 〈〈 〉〉>0ϕ) for the set of configurations where there is a scheduler such that ϕ
holds almost surely (resp., with positive probability).

Let us start with (a.1). 〈〈 〉〉=1
�R can be expressed by a guarded term:

〈〈 〉〉=1
�R =W

def
= νX.R ∩ Pre(K↓X) . (46)

Eq. (46) is easy to establish and is not specific to NPLCS’s. Note that from
〈〈 〉〉=1

�R there even exists a memoryless scheduler which ensures that all exe-
cutions satisfy �R. With Eq. (46) and Theorem 12 we conclude that if R is a
recognizable region, then 〈〈 〉〉=1

�R is an (effective) recognizable region, which co-
incides with (a.1).

The remaining properties, (a.2) to (b.3), also lead to guarded Lµ terms, as
witnessed by the following equalities:

〈〈 〉〉>0
�R = µX.

(
〈〈 〉〉=1

�R
)
∪
(
Pre(C↑X) ∩R

)
, (47)

〈〈 〉〉=1
♦R = νX.µY.R ∪ Pre

(
C↑Y ∩K↓X

)
, (48)

〈〈 〉〉=1
�♦R = νX.µY.Pre

(
C↑(Y ∪R) ∩K↓X

)
, (49)

〈〈 〉〉>0
♦�R = µX.

(
〈〈 〉〉=1

�¬R
)
∪ Pre(C↑X) , (50)

〈〈 〉〉=1
♦�R = 〈〈 〉〉=1

♦
(
〈〈 〉〉=1

�¬R
)
, (51)

and also taking 〈〈 〉〉=1
�(. . .) —defined by Eq. (46)— and 〈〈 〉〉=1

♦(. . .) —defined by
Eq. (48)— as additional unary operators. Since all the terms on the left-hand side
are defined with guarded terms, their computability is immediate with Theorem 12.

The proof that Eqs. (47–51) are correct —see [15]— is not the topic of this arti-
cle. Here we just want to observe that, in contrast with Eq. (46), their correctness
relies in an essential way on a specific property of the Markov decision processes
induced by LCS’s, namely, the finite attractor property : given a scheduler for MS

there exists a finite set of configurations that is almost-surely visited infinitely
often. Moreover, this finite set can be chosen independently from the scheduler:

Lemma 48 (Finite attractor property [76,13]) Let E = {(q, ε) | q ∈ Q} be
the finite set of configurations where the channels of S are empty. Then PU (σ |=
�♦E) = 1 for every scheduler U and starting configuration σ ∈ ConfS.

The finite attractor property will be used explicitly in the upcoming section.
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9 Two-player stochastic games

The NPLCS framework can be seen as a stochastic game where a single player,
the scheduler, is playing against the probabilistic environment, i.e., against the
probabilistic message losses.

It is of course possible to consider 2-player stochastic games on arenas gener-
ated by probabilistic LCS’s: this question was studied first in [14] and later in [2,
19]. We proceed as in Section 7: the two players are called A and B and ConfS is
partitioned as ConfA∪ConfB . However, we do not assume anymore that the game
is strictly alternating, and therefore ConfA and ConfB can be arbitrary regions,
but the game is stochastic: once a player has chosen a firable rule, the perfect step
is followed by stochastic message losses as in Section 8.1.

9.1 Reachability objectives

Let us first consider reachability, or dually invariance, objectives.
Assume A tries to reach region R (goal ♦R) with probability 1 no matter how

B behaves. The set 〈〈A〉〉=1
♦R of states in which A has an almost-sure winning

strategy is given by a guarded term:

〈〈A〉〉=1
♦R =WA

def
= νY.µX.



R ∪

[
ConfA ∩ Pre(C↑X ∩K↓Y )

]

∪
[
ConfB ∩ P̃re(C↑X ∩K↓Y )

]


 . (52)

Justifying Eq. (52) is outside the scope of this article, but we can try to give an in-
tuition of why it works: the inner fixpoint “µX.R∪· · · ” define the largest set from
which A has a strategy to reach R no matter what B does if the message losses are
favorable. This may fail if the losses are contrary. However, whatever messages are
lost, A’s strategy also guarantees that the system will remain in WA, from which
it will be possible to retry the strategy for ♦R as many times as necessary. This
will eventually succeed almost surely thanks to the finite-attractor property.

Expressions like WA in Eq. (52) are easier to understand once we introduce a
variant of the Pre operator that better captures the game-theoretical aspects at
hand. Define

Pre⊗A (X)
def
=

(
ConfA ∩ Pre(X)

)
∪
(
ConfB ∩ P̃re(X)

)
, (53)

Pre⊗B (X)
def
=

(
ConfA ∩ P̃re(X)

)
∪
(
ConfB ∩ Pre(X)

)
, (54)

allowing the reformulation of Eq. (52) as

〈〈A〉〉=1
♦R =WA

def
= νY.µX.R ∪ Pre⊗A (C↑X ∩K↓Y ) . (52’)

We note that, since (ConfA,ConfB) is a partition of Conf , Pre⊗A and Pre⊗B are dual.

Consider now 〈〈A〉〉>0
♦R, where A wants to achieve a reachability objective

with positive probability. Dually B wants to achieve an invariance objective almost-
surely, since these games are determined. Writing R′ for ¬R, the winning set for
B is given by:

〈〈B〉〉=1
�R

′ =WB
def
= νX.R

′ ∩ Pre⊗B (K↓X). (55)
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In Eq. (55), the ConfB ∩ Pre(K↓X) component of the Pre⊗B (K↓X) accounts for
states in which B can choose a perfect move that will end up in K↓X, i.e., that
can be followed by any adversarial message losses and still remain in X. The
ConfA ∩ P̃re(K↓X) component accounts for states in which A cannot avoid going
to X, even with favorable message losses.

Equations (52) and (55) give guarded terms for 〈〈A〉〉=1
♦R and 〈〈B〉〉=1

�R′, so
we conclude:

Theorem 49 (Decidability of simple stochastic games on LCS’s) For
stochastic LCS-games and recognizable regions R, the sets 〈〈A〉〉=1

♦R, 〈〈A〉〉>0
♦R,

〈〈A〉〉>0
�R and 〈〈A〉〉=1

�R are (effective) recognizable regions.

9.2 Büchi objectives

To date, the main positive result concerning stochastic games on lossy channel
systems is the computability of 〈〈A〉〉=1

�♦R, and 〈〈A〉〉=1 ∧m
i=1 �♦Ri, where player

A can satisfy a (generalized) Büchi objective, i.e., visit infinitely often a goal re-
gion R, or several goal regions R1, . . . , Rm, almost-surely.

We start with Büchi games. The set 〈〈A〉〉=1
�♦R of states from which A has an

almost-sure winning strategy can be characterized by the following term:

〈〈A〉〉=1
�♦R =WA

def
= νY.µX.

[
Y ∩ Pre⊗A

(
K↓Y ∩ C↑(R ∪X)

)]
. (56)

(See [19] for a justification.) The characterization of the winning region does not
provide us with a guarded term: witness the first bound occurrence of Y . However
we can replace it with an equivalent guarded term by purely lattice-theoretical
reasoning: applying Eq. (9) on WA gives:

〈〈A〉〉=1
�♦R =W

′
A

def
= νY.µX.Pre⊗A

(
K↓Y ∩ C↑(R ∪X)

)
. (57)

Theorem 50 (Decidability of stochastic Büchi games on LCS) Almost-
sure Büchi games on stochastic LCS are pure-memoryless determined. Further-
more, if R, ConfA and ConfB are recognizable, then the sets of winning positions
are (effective) regions too.

For generalized Büchi games, a similar characterization is possible [19]:

〈〈A〉〉=1
m∧

i=1

�♦R =WA
def
= νY.

m⋂

i=1

µX.
[
Y ∩ Pre⊗A

(
K↓Y ∩ C↑(Ri ∪X)

)]
. (58)

As in Eq. (56), theWA term is not guarded. Unfortunately, we do not have at hand
a generalization of Eq. (9) that would get rid of them unguarded occurrences of Y .
The solution adopted in [19] is to validate a slightly more complex characterization,
this times with a guarded term:

WA =W
′
A

def
= νY.Pre⊗A

(
K↓

m⋂

i=1

µX.
[
Y ∩ Pre⊗A

(
K↓Y ∩ C↑(Ri ∪X)

)])
. (59)

Theorem 51 (Decidability of stochastic generalized Büchi games on LCS)
Almost-sure generalized Büchi games on stochastic LCS are determined. Further-
more, if R1, . . . , Rm, ConfA and ConfB are recognizable, then the sets of winning
positions are (effective) regions too.
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10 Conclusion

We developed a generic criterion, called “upward-guardedness”, that guarantees
the finite-time convergence of fixpoint equations defining subsets of a well-quasi-
ordered set. Our motivations originate in the verification of well-structured transi-
tion systems, where the well-known backward-reachability algorithm—see Eq. (2)—
is the paradigmatic fixpoint computation that is guaranteed to converge in finite-
time. Researchers who extended this technique to more complex and nested fix-
point expressions, where the approximants are not upward- or downward-closed,
had to struggle to prove convergence. We hope that the rich sequence of exam-
ples given in sections 5 to 9 have convincingly demonstrated the usefulness of our
technique for such situations.

So far we did not touch on complexity issues. It is widely believed in the
verification community that termination arguments based on WQO theory are not
constructive and do not come with complexity bounds. However, the truth is that
it is possible to bound the number of steps after which an increasing sequence
V0 ⊆ V1 ⊆ V2 ⊆ · · · of upward-closed subsets must stabilize. This only needs
information on the structure of the underlying WQO and a bound on the rate of
growth of the sequence of Vi’s, often deduced from the complexity of the process
that generates it. We refer to [43,74] for more details: the results there directly
apply to our Theorem 12. The complexity upper-bounds one obtains with such
WQO-based analysis are often very high, far above the PSPACE, EXPTIME, and
nonelementary upper bounds often met in algorithmic verification. Furthermore,
these enormous upper bounds are optimal for many WSTS models: this is the case,
e.g., for reset/transfer nets, lossy counter machines and lossy channel systems,
timed-arc Petri nets and data nets [78,33,54] (but not for, e.g., integral relational
automata and vector addition systems [29,41]).

However, these worst-case complexity results are not the real issue in practical
applications, for which we believe our results have some significance. Symbolic
algorithms directly based on the Finite-Time Convergence Property have been
implemented in model checking tools, and the main problem one faces there is not
the possibility of terrible time-to-convergence values. Instead, state explosion is
caused by the need to store and handle “large” Vi sets. Here, dramatic improve-
ments have been obtained by designing improved data-structures, or “symbolic
representations”, that make better use of symmetries in the data, that are better
at sharing common substructures, at caching and recalling instead of recomput-
ing, and that allow more efficient implementations of the required basic operations
on upward-closed sets: unions, comparisons, Pre and/or Post . See, e.g., [36] for
(Nk,≤), [67] for Presburger-definable regions, and [7] for (Σ∗,⊑) and channel
contents.
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