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Abstract

Algebra offers an elegant and powerful approach to understand regular languages and
finite automata. Such framework has been notoriously lacking for timed languages
and timed automata. We introduce the notion of monoid recognizability for data
languages, which includes timed languages as special case, in a way that respects
the spirit of the classical situation. We study closure properties and hierarchies
in this model, and prove that emptiness is decidable under natural hypotheses.
Our class of recognizable languages properly includes many families of deterministic
timed languages that have been proposed until now, and the same holds for non-
deterministic versions.

1 Introduction

The class of regular languages can be characterized in various ways: finite au-
tomata, rational expressions, monadic second order logic, extended temporal
logics, finite monoids... |[RS97|. Following the terminology of Henzinger et al.
[HRS98|, we thus get a fully decidable class of languages, i.e. a class of lan-
guages closed under boolean operations and for which emptiness is decidable.
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All these characterizations constitute not only one of the cornerstones of the-
oretical computer science but also form the fundamental basis for much more
practical research on verification (see e.g. [CGP99]).

Among all these equivalences, the simplest is undoubtedly the purely alge-
braic one claiming that a word language is regular if and only if it is monoid
recognizable i.e. it is the inverse image by a morphism of some subset of a
finite monoid. Aside of its simplicity, this equivalence leads to several beauti-
ful theorems making a bridge between formal languages and algebra. A most
famous example is due to Schiitzenberger who showed that the class of lan-
guages recognized by aperiodic monoids coincides with the class of star-free
languages [Sch65|. Note that this result, together with a theorem of Kamp
|[Kam68]|, yields an algorithm to decide whether a recognizable language can
be defined by a linear temporal logic formula.

real-time systems, the situation is far from being so satisfactory. The orig-
inal class of timed automata, proposed by Alur and Dill [AD94| has a
decidable emptiness problem, but is not closed under complement. Sev-
eral logical characterizations [Wil94,HRS98| or even Kleene-like theorems
[ACM97,Asa98,BP99,ACM02,BP02] have been proposed for the whole class of
timed automata but no purely algebraic one. Besides, interesting subclasses of
timed automata, closed under complement, have been proposed and often log-
ically characterized. For instance, (recursive) event-clock automata |[AFH94]
are closed under complement and can be characterized in a nice logical way
[HRS98|. But once again, even if a related notion of counter-free timed lan-
guages has been defined, no algebraic characterization exists.

We propose in this paper a purely algebraic characterization for timed lan-
guages. In fact, we deal with a more general framework than timed languages,
the so-called data languages. We consider a finite alphabet of actions > and a
set of data D (this set of data could be some time domain but also anything
else). A data word is thus a sequence of pairs (a,d) where a € ¥ and d € D.
As we will explain in details in Section 3, the monoid recognizability for data
languages cannot be obtained through the simple notion of morphism, as is
the case for regular formal languages. We propose in this paper another mech-
anism, based on registers. We obtain in this way, for any set of actions ¥ and
any set of data D, a class of so-called “monoid recognizable” data languages.
Note that similar situations arose in other contexts. For example, it has been
shown in [Bar89] that the class NC! of languages recognized by boolean cir-
cuits of logarithmic depth can be characterized in algebraic terms, using the
notion of programs of polynomial length instead of morphisms. Another ex-
ample is the algebraic characterization of PSPACE using the leaf languages
approach [HLS93].



The class of monoid recognizable data languages is closed under boolean op-
erations. In this class, two hierarchies naturally occur, depending on which
monoid and how many registers are used. As first result, which shows the
interest of our approach, the choice of the monoid is fundamental. More pre-
cisely, we prove that, like in the formal language case, two different varieties
of monoids recognize two different sets of data languages. This implies that
increasing the number of registers cannot help if the monoid is not power-
ful enough. On the contrary, if the monoid M is fixed, then the number of
registers can be bounded by some constant depending only on ¥ and M.

We next define a notion of deterministic data automata and, as one of our two
main theorems, we prove that a data language is monoid recognizable if and
only if it is accepted by some data automaton. Note that the translation from
monoid to automaton and vice versa is simple and very close to what happens
in formal language theory, which emphasizes the elegance of the proposed
approach.

We then focus on the problem of deciding emptiness of languages recognized
by data automata, or equivalently, monoid recognizable. We propose a simple
and nice condition related to the registers and the data domain under which
emptiness is decidable. More precisely, under this condition, we propose our
second main result: an algorithm to transform a data automaton A4 into a
finite automaton recognizing the classical formal language of those words of
¥* that can be obtained from a data word accepted by A by erasing the data.
The idea of this construction is similar to the region automaton construction
of Alur and Dill |AD94|.

Hence the class of data languages recognized by monoids, where the condition
above holds, forms a fully decidable class of data languages. If the set of
data D is a time domain, our recognizable data languages contain all the
timed languages recognized by deterministic timed automata |[AD94| or their
deterministic extensions [DZ98,CG00|. But our class also contains a lot of
timed languages which cannot be recognized by any timed automata (even
non-deterministic ones).

We also briefly study three possible extensions of our model. First, we extend in
a natural way the set of operations on registers that we can perform (registers
can be erased or swapped). The model obtained using this larger class of
updates is not more expressive than the original model, but the new operations
are very natural and useful macros to represent systems. We then consider
non-deterministic data automata (or equivalently a non-deterministic notion
of monoid recognizability). Then we get a larger class of data languages, still
closed under union and intersection but not anymore by complementation.



On the contrary, this new class is closed by concatenation and iteration. Once
again, emptiness can be decided, by an algorithm similar to the one used in
the deterministic case. Finally, we show that if we extend the power of the
registers and allow computations to be performed on them, then what monoid
is used to recognize the language becomes essentially irrelevant.

This article is a long version of [BPTO1].

2 Basic Definitions

If Z is any set, Z* denotes the set of finite sequences of elements in Z. We
consider throughout this paper a finite alphabet ¥ and an unrestricted set
of data D. Among the elements of D, we distinguish a special initial value,
denoted by L.

A data word over ¥ and D is a finite sequence (a1, d) ... (a,,d,) of (X x D)*.
A data language is a set of data words.

If £ > 1 is the number of registers, a k-register update, or simply an update,
is an application up from D* x D into D¥, such that there exists a set I, C
{1,...,k} and up maps ((d;);=1.x, d) onto ((d;);=1 ) where d; = d it i € I, and
d; =d; iti ¢ I,,. In the sequel, on the pictures, an update up will be precisely
written as the set I,,,.

If ~ is an equivalence defined on D* and if § € D*, we denote 6 the class of ¢
modulo ~.

3 Monoid Recognizability

Intuitively, the principle of monoid recognizability consists in mapping the
words of a free monoid I'* (where I' can be either finite or infinite) into a finite
monoid M and to define a language by the set of words which are mapped on
a given subset F' of M. Of course, “interesting” mappings will allow to deduce
properties of the language from properties of a monoid which recognizes it.

In the formal language case, the best known and most studied method to define
monoid recognizability is to use simply a morphism ¢ from [I'* into M. In such
a framework, to decide if a word w € I'* belongs or not to the language L, it
is sufficient to run the procedure presented as Algorithm 1. Then, it can be



shown that a word language is monoid recognizable if and only if it is regular.
Apart from its simplicity, this equivalence leads to several beautiful theorems
making a bridge between formal languages and algebra [Pin86].

Algorithm 1 The mechanism for formal languages
% Initialization
m =1
% Computation
While not end of w do
Read the next letter a of the word
Compute p(a)
Compute m := mep(a)
Endwhile
% Output
If m € F then output “yes” else output “no”

S SR R R SR IR R Tk 3R

Unfortunately, using such a simple mechanism for data languages is hopeless
if we want an interesting class of languages. Indeed, since the image of X x D
would be finite, the simple language {(a,d)(a,d") | d # d'} would not be
monoid recognizable as soon as D is infinite.

Hence, we need some kind of auxiliary memory to take care of the values
of the data. This will lead of course to a more complicated mechanism than
morphisms. Here, we propose to use a finite number of registers as auxiliary
memory. Roughly, and intuitively, a data word w will be in the language if
and only if the procedure described in Algorithm 2 answers “yes”.

Algorithm 2 A mechanism that uses registers
% Initialization
m:=1
all the registers are set to L
% Computation
While not end of w do
Read the nest letter (a,d) of the word
Update the registers with the new data d using a and m
Compute the new value m in the monoid from the old value,
a and the registers
Endwhile
% Output
If m € F then output “yes” else output “no”

S R R R R R R R TR R TRk 3R

We need now to precise how the registers are updated and how the successive
values in the monoid are computed.



In order to maintain the relevance of the monoid, the whole mechanism has
to be very simple and, in particular, has to be unable to perform any compu-
tation. To this purpose, we first use the notion of updates as defined in the
previous section. Then, the new value in the monoid does not depend on the
exact data stored in the registers but only on a finite and bounded information
from these registers.

All this leads to the formal definition of a k-register mechanism:

Definition 1 A k-register mechanism over a finite monoid M s a triple p =
[(upm,a)meM,aeEa ~ (,0] where:

o for each (m,a) € M X X, up,, . is a k-register update,
o ~ is an equivalence of finite index on DF,
e © is a morphism from (X x D%/)* into M.

Note that if & = 0, a k-register mechanism reduces to a morphism from >*
into M.

If p is a k-register mechanism over a finite monoid M and if w =
(a1,dy)(az, d3) ... (a,,d,) is a data word of (X x D)* the computation of p
over w yields the element of M given by the computation described in Algo-
rithm 3 (where 6 is an array of size k corresponding to the k registers and
§ denotes the equivalence class by ~ of the registers §). The output of this
computation is denoted by p(w).

Algorithm 3 Computation in a k-register mechanism

% Initialization

m:=1

VI<j<k 0]:=1

% Computation

Fori:=1ton do
0= upm,ai(gv dz)
m = me(a;, 0)

Endfor

% Output

Output m

S R R T IR R R R SRk YR

In the following, if w = (ay,d;)(az,ds) ... (a,,d,) is a data word of (X x D)*,
the value of ¢ at step i of the loop is denoted by #; and the value of m at step
1 is denoted by m;.

From this definition of k-register mechanism, we can now define the notion of
data language recognized by a monoid M.



Definition 2 Let L be a data language over ¥ and D and let M be a finite
monotd. We say that M recognizes L if there exists a subset F' of M and a
k-register mechanism p = [(Upm.a)mem.acs, ~, @] such that:

L=p'(F)

A data language is said to be monoid recognizable if there exists some finite
monoid recognizing it.

Example 3 The data language L = {(a,d)(a,d') | n > 1, d# L,d # d'} over
{a} and D is recognized by the finite monoid M = {1,y,vy* 0} with y> = 0
and 0x = 20 =0 for any x € M.

To this aim, we use two registers. Thus, we define the 2-register mechanism
p = [(Upm.a)memaes, ~, @] in the following way:

o The updates are up, , such that I, , = {1} and if z € M \ {1}, up., such
that I, , = {2}.

e ~ has two equivalence classes, namely 0, = {(d,d') | d # d'} and 6— =
D2\ 0.,.

o The morphism ¢ : ({a} x {04,0_})* — M is defined by ¢(a,0,) =y and
e(a,0-) = 0.

With these definitions, L is accepted by M using p (with F = {y*}).

As an example of computation, consider the data word (a,d)(a,d’) with d # L
and d # d'.

In the monoid M 5V, % Yy % Y’
. d d

Values of the two registers
L L d
Equivalence classes 0- 0. 0,

We must notice that the registers do not compute anything. For example, taking
D = Q, with only one register we could have computed the difference d' — d
instead of putting the data d' in a second register. But this is not allowed in
our model.

Example 4 The data language {(a,d;)...(a,d,)(a,d) | n > 1, d &
{di,...,d,}} over{a} and D (where D is infinite) is not recognized by any fi-
nite monoid. Intuitively, an unbounded number of data should be stored, which
s not allowed.



Proposition 5 Assume D reduces to { L}. A formal language is recognizable
if and only if its image is a monoid recognizable data language.

Assume D is finite. If a data language is monoid recognizable, then it is also
a recognizable formal language. The converse also holds.

Proof. The first property is obvious, as 3 and X x D are then in bijection.

For the second property, we assume that D is a finite set of data and that
L C (X x D)* is a data language recognized by the finite monoid M, using
the k-register mechanism p = [(UPm.a)merraes: ~, ¢]. The morphism ¢ : (X X
DY/)* — M can be extended in a natural way into a morphism @ : (X x
D*)* — M. Note that (X x D*) is finite. We define the morphism

Y1 (8 x D)* —s (M x DF)MxD")
0" = upy (0. d)

(a,d) | (m,0) — (m',0") such that
m' =m.p(a,d)
and F’ as the set of functions o : (M x D¥) — (M x D) such that, if 1y,
is the neutral element of M, o((1,7, L*)) is of the form (f,8) where f is in F,
the accepting set for L, and § € D*. It is easy to see that the morphism )
“simulates” the mechanism p.

Conversely, assume L C (3 x D)* is regular. There exists a finite monoid M,
F C M and a morphism ¢ : (X x D)* — M such that L = ¢~!(F). Using
a mechanism with one register, that is always updated, we can easily see that
L is a monoid recognizable data language. O

If M is a finite monoid and k an integer, the set of data languages over %
and D recognized by M using k registers, is denoted by Ly (%, D), or simply
E'M,k- We also set EM = Uk ‘C]\/[Jg and Ek = UM E'M,k-

Proposition 6 The set Ly, is closed under complementation. If Ly € Ly,
and Ly € £M27k2; then L1 U Ly and Li N Ly are in £M1><M27k;1+k2-

Proof. The set Ly, is closed under complementation.

Let L € Ly be a data language. Assume p is a k-register mechanism and F' is
a subset of M such that L = p~*(F) (as in Definition 2). Let (ay,dy) . .. (ap, d,)
be a data word. Then the following equivalence holds:



(a1,dy)...(ap,dy) € L <= p((ar,dq)...(ap,d,)) € F

Thus,

(a1,dy) ... (ap,dy) € L <= p((a1,dq)...(ap,d,)) € M\ F

If Ly € Lyyp, and Ly € Ly, p,, then Ly U Ly and Ly N Ly, are in

EM 1X Ma,ky + ko
Let L, € £M1,k1 and Ly € 'CM2J€2‘

Assume that for i = 1,2, p; = [(upl¥),)merracs, ~i, ¢i] is a ki-register mecha-

m,a

nism and F; C M; is a subset of M; such that L; = p; '(F}).

We define k = ki + ko, M = M; x M, with the classical product. We also
define the equivalence ~ on D* by

0102 ~ 9195 <~ 91 ~1 01 and 02 ~o 012

and the morphism o(a, 0;.05) = (p1(a, 0y), p2(a, ). We finally define for each
m € M and each a € X the k-register update up,, , such that
I =71 ) U (k’l + Iup(z) )

U;
Pm.a UPm a m,a

The language L; U Lo is then recognized by M using the mechanism p =
[(Upm.a)memaes, ~, @] for F' = (Fy x M) U (M; x F,) whereas Ly N Lo is
recognized by M using p for F' = F; X F5. O

From the algebraic point of view, the soundness of our definition is assessed
by the following result, which shows that the structure of the monoid is really
fundamental and plays a role similar to what happens in the framework of
formal languages. Note that, in particular, this result proves that increasing
the number of registers cannot help if the monoid is not powerful enough.

Let L be a language on . We define the data language
Lp ={(a1,dy)...(an,dy) | a1...a, € L and d; € D}

Lemma 7 Let M be a finite monoid and L a language defined on the alphabet
Y. Then, L s recognized by M <= Lp 1is recognized by M.

Proof. We prove the two implications separately.



Assume that L is recognized by M. There exists a morphism ¢ : ¥* — M
and some F' C M such that L = o=!(F). It is easy to see that M recognizes
Lp (using no register).

Assume that Lp is recognized by M using the k-register mechanism p =
[(Wpm,a)meMaes, ~, ] and F* C M. In particular, if a; ... @, is in X*, the image
of the data word (ay, L) ... (a,, L) in (X xD%/)*, considering the computation

of Figure 3, is (a1, L*)...(a,, L¥). We define a morphism ¢ : ¥* — M by

P(a) = ¢((a, L*)). Then,

ap...a, € L < (ag,1)...(a,, L) € Lp
= p((al,J_—)...(an,J_le F
— p((a, L*)...(ap, LF)) € F
<~ Y(ay...a,) €EF

Thus, M recognizes the language L and the conclusion easily follows. ]

This establishes that the role of the monoid is fundamental, in the sense that
two different varieties of monoids (see [Pin86| for a definition of this notion)
recognize two different sets of data languages. This is an easy implication of
the previous lemma and of the variety theorem [Pin86].

The following statements make precise the relative role of the monoid and of
the registers. For example, each additional register strictly increases the class
of data languages being recognized, as in timed automata each additional clock
increases also the power of the automata [HKWT95]. On the other hand, if the
monoid and the alphabet are fixed, then the hierarchy on registers collapse.

Proposition 8 (1) The sequence (L(X, D))y, is strictly monotonic.
(2) If M is a fized finite monoid, the sequence (L (2, D))r collapses, more
precisely, Lypomixsi g = Lypomxs.

Proof.

(1) Assume that D is an infinite set of data. We will prove that the data
language

Lk:{(a,dl),,(a,dn) |V2,] t=jmod k—1 = dl:dj}

over {a} and D is recognized by a finite monoid using k registers, but is
recognized by no finite monoid using strictly less than £ registers.

Intuitively, Ly can be recognized by a finite monoid with k registers
as follows. Reading a data word (a,d;)...(a,d,), the first £ — 1 data

10



are recorded in the first & — 1 registers. Then the data dj, is put in the
last register and the equality d, = d; is tested through the equivalence
relation on D*. Hence the next data dj; is put in the last register and the
equality di,1 = ds is once again tested through the equivalence relation
on D*. The process continues until the last data letter is read or an error
occurs. The main difficulty is to know with which register the last one
has to be compared. This is done thanks to the monoid which roughly
keeps this information through the whole computation.

More formally, we first define the monoid M as follows. The elements
of M are:

0
mt, where i € {0,....k—1}
nl, wherei € {1,...,k—1}and I C {1,...,k}

and the composition law is given by:

mk =1
n'l-m/ =0
Oifj+imodk—1¢1
mitimod k=1 otherwise
n'l-ntJ =n T med kL where H={heJ|h—jecl}
It is left to the reader to verify that this composition law is indeed asso-
ciative.

We can now define the k-register mechanism p = [(upm.o)menaes, ~
ak
e The updates are:

UPyi o SUch that I,  ={i+1}for 0<i<k—2

Upy,, such that I,, , = {k} for any = which is not of the form m’

e The equivalence relation ~ on DF is such that:

either 0, =0, = L
(0i)1<i<k ~ (0;)1<i<i if { or 6, # L and 0}, # L
k
and {i |0, =0,y ={i |0/ =0}

and has thus 1 + 2*~! equivalence classes.

11



e The application ¢ is defined by:

p(a,b) =

We claim that the monoid M defined above recognizes the lan-
guage Lj with the k-register mechanism p and {m’ | 0 < i <
k — 1} as set of final elements. A computation of p on a data word
(a,dy) ... (a,dr_1)(a,dy)(a,dryq) is given by the following picture.

(a, dl) ...... (CL, dkfl) (a, dk) (0,, dk+1)
1 dy dy dy
1
. di 1 dk—1
1 1 1 dy,
1 m mk—1 o

From the definition of the elements of p, it holds

ap =m* - p(a, (dy, ... d_q,dy))
=mrtnfi| dp = d;}
0ifkmod k—1=1¢ {i|dp=di)} ie dp#dy

m otherwise

and

apyr =m-o(a,(dy, ..., dy1,dri1))
01f2m0dk—1:2¢{z|dk+1:dl} i.e. dk+17éd2

m? otherwise

We will now prove that Lj is not recognized by any finite monoid with
at most k — 1 registers. Assume the contrary and let M be some finite
monoid and let p = [(Upm.a)meraes, ~, ] be a h-register mechanism
(with h < k — 1) recognizing L.

For any data word w = (a,d;)...(a,dy) of length k, we define the
sequence (#;)o<;<x as in Algorithm 3. The data word w is thus said to
be read on the path ¢ = (y,...,0;). For such a given path ¢, we denote
by E(c) the set of all the data words read on c. Since the vectors 6; are

12
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of size h, there exists for any path ¢ an integer n(c) € {1,...,k} such
that, for any data word (a,dy) ... (a,dy) read on the path ¢, the last data
vector 6, does not contain the data indexed by n(c).

Now let us consider a subset D of D (which is infinite by hypothesis)
of size 8 > N* where N is the number of equivalence classes of ~. The
set ({a} x D)* has 8% elements. Since the number of pathes is N*, there
exists some path ¢ such that E(c) contains at least ﬁ,—i > k1 data words

of ({a} x D). Let us consider the equivalence relation ~ on the elements
of ({a} x D)* defined as follows:

u v if Vi # n(c), u; = v

Since D is of size 3, ~ has *~! equivalence classes. Hence the set E(c)
contains at least two data words

(a, dl) e (a, dn(c)) Ce . (a, dk)
and
(a,dy)...(a,dy) - (a,dy)

of ({a} x D)¥ which are ~-equivalents. The computations of p on these
two words are represented by the following figure.

(a, dl) Ce (a, dn(c)) . (a, dk)
T T T T T
01 en(c)fl en(c) 0/@—1 9k:
01 01 n(e) O 0%
\J \J \J \J
(a,dy) . (a, ;z(c)) e (a,dy,)
As 0, = 0, for any data word w, if the data word

(a,dr)...(a,dpe)) ... (a,dp)w is in L then the data word
(a,dv)...(a,d ) ... (a,dp)w is also in L. However, this is impos-
sible since d, ) # d;(c). Thus L is not recognized by any finite monoid
with strictly less than £ registers.

Updates are parameterized by a pair of M x X, thus, considering a data
language L recognized by a finite monoid M with k+1 registers using the
mechanism [(Upy, o) memaes, ~, @], and assuming that k is greater than
the powerset of the cardinality of M x 3, we get that at least two registers
are updated in the same way by all the updates. More precisely, defining

13



the application

A {l.. k} — P({upme | (m,a) € M x X})

1 — {upma | (Mm,a) € M x L and i € I, }

A cannot be injective. There exists thus two integers ¢ # j such that
A7) = A(j). We assume, without loss of generality, that i and j are

respectively k and k + 1, and we define the equivalence relation = on the
set D* by

(dl,...,dk) ~ (dll,,dz) < (dl,...,dk,dk)N (da,,d;c,d%)

We get easily that L is recognized by M using the k-register mechanism
[(upr, o) meMaes, R, ] where Ly, = I, , \ {k+ 1} and 1 is defined
from ¢ in an obvious way. We then get that Lyrp41 = L as soon as
3 > 2|M><E|‘

O

Remark 9 This proposition shows in particular that for a fived monoid and
a fized alphabet, the number of registers can be bounded. This result becomes
of course false if only the monoid s fized.

For instance, let M be the finite monoid {1,0,x} with x> = x. For any integer
k, let us define ¥, = {ag,ai,...,ax 1}. For any data word u € (X x D)*
and any t = 1...k — 1, we set pu;(u) as the data d (if it exists) such that
u=u" (a;,d) u" where u" does not contain any a;; and we set pu;(u) = L if
the data does not exist. For each k, we define now the data language

Ly = {u (d0,d)) ... (ao,}) | w € (% \ {ao}) x D)*
and for each j, d; € U ps(w)} )

We claim that
Lk - ,CM,]C(E]C,D) \ U »Ck’

K <k
Indeed, define the k-register mechanism p = [(Upm.a)mem.acs, ~, | where ~ is
defined by the two equivalence classes

0={0cD"|31<i<k-—1 suchthat §y=0;} and 0 =D"\ 0

The updates up. o, are defined by L. , = {i}if0<i<k—1andze M.
The morphism ¢ : (D x {0,0'})* — M s finally defined by ¢(ag,0) = z,
0(ap, @) = 0 and p(a;, —) = x if 1 < i < k — 1. Using this construction, M
recognizes L.

14



To prove that Ly 1s not recognized by any monoid using strictly less than k
registers can be done without difficulty using a construction similar to the one
presented in the proof of the previous Proposition.

4 Data Automata

In this section, we define a notion of recognizability by data automata and
prove its equivalence with monoid recognizability.

Definition 10 A data automaton over ¥ and D is a tuple A = (Q, qo, F, k, ~
,T') where:

Q 1s a finite set of states,

qo € Q is the initial state,

F C Q s the set of final states,

k is an integer,

~ is an equivalence relation of finite index defined on D*, and

T C(QxDE. xS xUxDEL xQ) is a finite set of transitions (U is a
set of updates)

such that the following determinism hypotheses hold:

e for each tuple (q,g,a) € Q x D%/ x X, there is a (unique) update up such
that any transition (q,g,a,up’,¢',q') € T satisfies up’ = up, and
o if (¢,9.a,up, ', q1) and (¢, 9,a,up.g',q3) are in T, then q; = g5.

A data word (aq,ds) ... (a,,d,) is accepted by the data automaton A if there
exists a path in A

g1,a1,up1,9} 92,02,uP2,g% Graln UPn i,
do q1 qQ ... Qp-1 —————— (n
dy da dn

such that the sequence (6;);—o. ., defined by

0o =L" and 011 = upip1(0;, disr)
satisfies 0;_, = g; for 1 <i<n, §; = g for 1 <i <nand q, € F.
The set of data words that are accepted by A is denoted by L(.A).
Example 11 The data language described in Example 3,

L={(ad)(ad)|d# L, d#d}
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is recognized by the following data automaton (0— and 04 are defined in Ez-

ample 3):
Z? Y 79_ 9_7 Y 70_
@ a, {r} ;ﬁ@ # @, {r2} #@

We claim that this notion of recognizability by data automata is equivalent to
the notion of monoid recognizability in the following sense:

Theorem 12 Let L be a data language over Y. and D. Then L s recognized
by a data automaton if and only if it is recognized by a finite monoid.

We thus have a result similar to the formal language case. As it appears
below, the transformations from monoids to automata and from automata to
monoids are very close to the ones used in formal languages. We believe that
this similarity emphasizes the appropriateness of our approach.

Proof. If Implication. First, assume that L C (X x D)* is recognized by
a finite monoid M using the k-register mechanism p = [(upm.a)merraes, ~: @)
and the accepting set F' C M. We construct a data automaton over X and D,
A=(Q,q, F,k,~,T), as follows:

e i and ~ comes from the k-register mechanism,
e Q=M and qo = 1
o T'={(m,g.a,upma, g’ ,m') | m €M, g,g €DV, a€X m'=mp(ag)}

We will prove that A is a valid deterministic data automaton and that
L(A) = L. First, note that if m is a state of A, if g is a given equivalence
class and if @ is an action, there is a unique update up such that A has a
transition (g, g, a, up, —, —), namely up = up,, .. Moreover if ¢’ is an equiv-
alence class, the state m’ such that (m,g,a, upy, 4, g, m') is a transition of
A is uniquely determined. Thus, A satisfies the determinism hypothesis of
Definition 10.

Assume the data word w = (ay,dy) . .. (a,,d,) is in L. The sequences (0;)i—o..»
and (m;);—o. ., defined by:

00 = J_k and mgy = 1M

Oi1 = Upmi,aiﬂ(gi, di+1) Mip1 =M, @(ai+170i+1)
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satisfy m,, € F. Consider the following run in .4

%ﬂlvule,al 7E E7a27upm1,a27£ e’nflya’ruupmn_l,anyx
1M 7 M 7 Mo ... 7 My,
dl d2 dn

It is a valid accepting path for w in A because 6;11 = uppm, a,,, (0i, diz1) and
M1 = mi30<ai+17 9i+1)-

Conversely, suppose w = (ay,dy) ... (a,,d,) is in L(A). Consider the run

! ! !
g1,a1,up1,9, 92,a2,up1,9, gn ,an ,UPn,g.
I8Y; my 5 My ... —————— My,
dy da dn

90 91 92 0”

where 0y = L* and 0;,, = UPmy 00,1 (05, div1) satisfy 0; = giy1 and 0,4, = Gis1-

ThU.S7 we have that 90 = J_k, 9i+1 = UPm;,aiv1 (ei,di+1), mo = 1M7 miv1 =

mip(aii1,0;41) satisfy m, € F and w € L.

Only If Implication. Now, assume that L C (X x D)* is recognized by
the data automaton A = (Q,qo, F,k,~,T). We define M as the set of
applications from Q x D%/ into itself. We claim that L is recognized by
M. The morphism ¢ : (¥ x DE)* — M is induced by the application

(a,g") — |(q,9) — (¢, g’)] where ¢ is the unique state for which there exists

a transition (¢, g,a,up,q’,q’) in A (the unicity of ¢’ comes from the determin-
ism of A). For any m € M, suppose m((qo, g0)) = (q,9) (go is the equivalence
class of L¥). Because of determinism again, for any a, there is a unique up
such that there exists a transition (¢, g, a, up, —, —) and we define up,, , = up.
We finally define F' = {m | m((qo, L¥)) € F x D¥/_}. We note L’ the data lan-
guage accepted by M using the k-register mechanism [(upm q)menraess ~ @]

and the set F.

Assume w = (a1, dy) ... (ap, dp) is in L using the following computation:

! !
g1,a1,up1,9; g2,a2,up1,95 Grsln s UPn g,

qo ) 1 & > q2 ... 4. an

0o 01 02 On

where 00 = J_k and 8i+1 = upi+1(0i7di+1)- It satisfies Q_z = Ji+1, 9i+1 = Ji+1
and ¢, € F. Let mg be the identity function on Q x D%/_. Let m;,; be the

composition of m; with ¢(a;1,0i11) = @(ait1, giy1), i.e. of m; with [(¢, @) —
(¢',gi,1)] for the unique ¢’ such that there exists a transition of the form
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(¢, @, ai+1,up, gy ). Assuming inductively that m;((go, L¥)) = (¢;, 0;), we thus
get ¢ = q;iv1 and mi1((qo, L*)) = (¢it1,0; + 1) and thus w € L.

Conversely, assume that w = (a1, dy) ... (ap,d,) is in L. Hence the sequences
defined by

90 = J_k and mop = lM
Oiy1 = Upmi,am(@i, di+1) Miy1 = My @(aiﬂ,ﬂ)

satisfy the property that %((qo,F)) = (q,0) for some ¢ € F. We define

(gi,0:) by (¢;,0;) = mi((qo, L*)) and we claim that

00,a1,uPmg,aq .01 01,a2,upm,ay.02 On—1,0n,UPm,, _1,an-0n

qo i 7 1 & 7 {2 ... 4 7 (n

is a valid accepting path in A. Hence, w € L.

The equivalence between monoids and automata is now proved. O

We can notice that the translations from monoids to automata and vice versa
do not change neither the set of updates, nor the number of registers and the
equivalence.

We say that a data language is recognizable if it is recognized by some data
automaton (which is equivalent to being recognized by a finite monoid).

5 Comparison with Timed Automata

One of the main motivation of this work was to find an algebraic character-
ization of timed languages. It is clear that if we consider as data domain D
a classical time domain (for example N or Q" or RT), then timed languages
reduce to our data languages (since we can easily handle the monotonicity
condition on time).

Proposition 13 Let A be a (deterministic) timed automata with n clocks
over a timed domain D. There exists a (deterministic) data automaton with
2n + 2 registers which recognizes the same language.

Sketch of proof. We assume that the definition of a (deterministic) timed
automaton is known, otherwise, we refer to [AD94].
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Let us consider a deterministic timed automaton A with n clocks, {x1, ..., x,}.
A clock xg is added to the set of clocks to represent the universal time, i.e. xq is
never reset in A. There exists an equivalence relation edfined on D", namely
=, such that if ¢ is a guard appearing in A, then ¢ is an union of equiva-
lence classes (= can for example be the region equivalence). We construct a
(deterministic) data automaton B with 2n + 2 registers in the following way.

The set of states of B is (Q x F where () is the set of states of A and F is the set
of functions f : {zg,...,2,} — {0,...,2n + 1} such that for all 0 < i < n,
f(z;) € {i,n+1+1i}. Intuitively, the value of the clock z; will be alternatively
kept by the two registers ¢ and n + 1 + 1.

The equivalence ~ in B is defined by:

(0i)o<i<ont1 ~ (0F)o<i<oni1

(Of(@o) = Vs 1<icn = (9}(%) - 9}(%))19@
VfeF, or
(0(20) = Of@)1<i<n < 0 and (0 ,0) — Oy 1<i<n <O

(00 < Qn—i-l <~ 06 < 0;1_‘_1)

(60> Onir = 0,>0,,,,)

Consider a transition in .A:

, a, C:=0
(=)

For each function f in F, we construct transitions in B in the following way:

9, a, o, O

where

e 0 is any equivalence class of ~,
e « issuch that I, ={0,1,....2n+ 1} \ {f(z0),..., f(zn)},

19



e [’ € F is such that

0 if f(zg)=n+1
n+1 if f(zg) =0
fz;) ite, C
fllwg) = {n+1+i ifx; €Cand f(r;) =i
i ifz; € Cand f(z;))=n+1+1

(o) =

e 0 is any equivalence class of ~ such that

(Bi)o<i<an+1 € 0 = (ﬁf'(aso) - ﬂf(ati))lfign € g and Bpr(ag) > Bi(ao)

The data automaton B that we just constructed is deterministic and recognizes
the same data (or timed) language as A. O

Hence any timed language accepted by some deterministic timed automaton
(as defined by [AD94]) is also recognized by a data automaton with the time
domain as data domain.

Conversely, data automata allow the recognition of a much larger class of lan-
guages. Indeed all the languages accepted by the extension of timed automata
proposed in [CGO0| are also recognized by data automata. And even, for ex-
ample, the language {(a,7)(a,27)...(a,n7) | 7 € Q4 } is recognized by a data
automaton whereas it is known that this language cannot be recognized by a
timed automaton, even in the extension proposed by [DZ98].

We can also define more exotic languages which are monoid recognizable as
for instance the set {(a,t;)...(a,t,) | Vi, t; is a prime number}. Namely, it
suffices to consider a monoid with 2 elements, 1 register and an equivalence
relation of index 2. The first class contains all the prime numbers and the
second class all the others.

6 Decidability of the Emptiness Problem

We first note that the general class of recognizable data languages is unde-
cidable: we can easily simulate a two counter machine [Min67| using a data
automaton. We propose a condition that determines a class of data automata
for which the emptiness problem is decidable.

As a preliminary, given a register update up, we define a relation on D%/,
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denoted by —=— | in the following way:
0 —L=0 iff veh, 3deD, up(v,d) €0
In order to capture decidability in our model, we define the following condition:
Condition (1): § —2— @' iff Yv € 0, 3d € D, up(v,d) € &

This condition is quite natural: it specifies that two equivalent register vectors
have the same future behaviours (condition (1) is a bisimulation relation w.r.t.
the transition relation defined by —=—). Figure 1 illustrates this decidability

condition. 0 g

Fig. 1: Decidability condition (t)

If p = [(upm.a)meracs, ~, ] Is a k-register mechanism, we say that p satisfies
the condition (1) whenever condition () holds for every classes of ~ and for
every update up, q.

We will prove that this simple condition ensures the decidability of the empti-
ness problem. The principle of the proof of this result is similar to the one of
region construction as defined by Alur and Dill [AD94].

Theorem 14 Let L be a recognizable data language over ¥ and D. Assume
L is recognized by the finite monoid M using the k-register mechanism p such
that p satisfies the condition (f). Then the emptiness of L is decidable in
complexity PSPACE.

Proof. Let L C (X x D)* be a recognizable data language. We assume
that M is a monoid which recognizes L using a k-register mechanism p =
[((Wpm,a)mem aes, ~, ] that satisfies condition (f). As in the proof of Theo-
rem 12, we construct a data automaton .4 whose transitions are

,
g, @y, UPm,a, 9

m ————— my(a,q)

Of course, L = L(A). From A, we construct a finite automaton B =
(Q,I,F,T) where Q = M x DX/, I = (1), L%), F = P x D%/ (P is the
acceptance set for the monoid recognizability) and T is defined by

!
g, a, upm,av g

((m,g),a, (mlvg/)) eET < m m' and gmg,
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We will prove that, as condition (T) holds, this finite automaton accepts
UNDATA(L) = {CLl R . | Eldl, R ,dn, (al, dl) R (an, dn) < L}

Assume that A accepts the data word w = (ay,dy). .. (an,d,). The following
path accepts w:
g1,a1,UPmg,aq agi R 92,042,UPm | ,ay ,gé gnvanvqun_l,an79;L

m mq > Moy ... > m
0 & o dy, "

In particular, for each ¢, ;11 = Upm, a,,, (0, diz1), 0; = g; and 0;;1 = g;. Hence,
UPmj,aiy1

for each i, g —————— ¢. and there is a transition ((m;, g;), a;y1, (Mit1,9;))
in B. Thus, the following path of B accepts the word UNDATA(w) = ay . . . a,.

(mo, g1) = (m1,g1) = (M1, g2) == (M2, g) = (M2, g3) ... = (1M, g,)
Conversely, if a; ... a, is a word accepted by B through the path
(m0790) a—1> (mlvgl) a—2> (m27g2) ce a_n> (mnvgn)

It means that for each 4, (m;, gi, Giy1, UPm, aryr» Git1,Mit1) Is transition of A

and that g; git1- We define 6y = L% and inductively 0;.; by: as
0; = g;, there exists d;1 such that upp, q,,, (0;,diz1) € giy1 ; we thus define
0i+1 @S UPm, a;,, (0, dip1). Hence the following path accepts (ai,dy) ... (an, dy)
in A:

upm,b-,ai+1

90,a1,UPmg,aq,91 91,a2,UPm 1 ,a5,92 In—1,0n,UPmy, _q,an - 9n
mo > My > Mo ... > My,
dl d2 dn

The proof is now complete : B accepts UNDATA(L).

L is empty if and only if UNDATA(L) is empty. We can decide emptiness by
applying the usual non-deterministic algorithm to the constructed automaton.
Since this automaton has | M x D%/ | states, the algorithm can be implemented
in space log(|M x D%/|), which is polynomial in the size of the input. 4

We will now show that condition (f) can often be easily decided.

We define up(f) = {v' | v € 0, 3d € D, v' = up(v,d)} and up~"(¢') = {v |
3d € D, up(v,d) € '}. With these definitions,

Condition (1) <= |ap(0) NG #0 = ap ()N =10
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Thus, if @p, up ', N and = are computable, then condition () is also com-
putable.

Moreover, the updates we use do not compute anything, and the condition can
be further simplified. If X is a subset of {1...k}, we define mx the projection
over the components of X. If up is an update, we define x,,;, as the following
product: if R is a subset of D*~Mwl and if R’ is a subset of DI'»|| R x,, R’ =
{v € D¥ | m5(v) € R and m,,(v) € R'} where up = {1...k}\ I,,. Condition
(1) is then equivalent to:

((7"@(5) Xup D‘LM) ne 7 ®> — WW@) C ﬂ'ﬁ(y)

Thus, if ~ is defined in such a way that:

—_

we can compute 7;(6)
we can compute myp(6) X, Dl
we can decide (mgp(0) X D) N0 # )

we can decide mg5(6) C map(6)

N N N N
W N
— — —

then we can decide () !

We note that all the operations from the previous list are elementary opera-
tions on equivalence classes.

Example 15 Let us reconsider data automata constructed from timed au-
tomata, as described in Section 5. We will prove that such data automata
satisfy condition (T). Assume A is a timed automaton and consider one of the

transitions of the corresponding data automaton,

0,a,c,0’

(CLf) — (qlvf,)

where there exists 8 € 0 with a(B,d) € 0 (d € D). Take now y € 6. We have
that B ~ y, thus

(Bf(wo) — Bi)i<i<an =2 (Vi(xo) — Vi)1<i<2n
There exists a successor of v such that
(d — Bi)1<i<on =2 (d' — Yi)1<i<on

It is obvious that o(7y,d') € @. This proves that data automata constructed
from timed automata, as in Section 5, satisfy the decidability condition (1).
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7 Extensions of the Model

The data automata model we did consider can only store data in the registers,
no operation can be performed before updating the registers. In this section,
we study several extensions of the model defined in Section 4.

7.1 Erasing and Swapping Registers

The first extension we consider allows to erase and to swap registers. In this
section, an update of the registers is then a function up which assigns to each
register, either the data currently read, or the value of an other register, or
the empty data, namely L. More formally, an update is a function up such
that there exists an application o : {1,...,k} — {1,...,k}U{L}U{c} such
that

=1 ifo(i)=1
(0)i=1,...c = up((0i)i=1,.k,d) == Vi, {0/ =d ifo(i)=c

0; = 0,(;) otherwise

Proposition 16 Data automata using this extended type of updates are as
expressive as data automata.

Proof. Let A= (Q,k,2,D,~,qy, F,T) be a data automaton using extended
updates, as described above. We construct a data automata B with simple
updates, as defined in Section 4, that recognizes the same data language.

We denote by F the set of functions f : {1,...,k} — {0,1,...,k}. In-
tuitively, the value of the f(i)*™® register in the transformed automaton cor-
respond to the value stored in the i*" register in the original data automa-
ton. The register “0” is a particular register which is never updated and

thus always contains the value L. Let us now construct the data automaton
B=(Q,(k+1),2,D,=q,F',T") in the following way:

e Q'=Qx7F,

e ¢, = (qo,1d), where Id(i) = i for every register i,
e ['"=FxF,

e = is defined as:

0=0 <= YfeF, (0r0)i=r.k ~ (05)i=1.k

hd j'f (q7g7 a? up? g’? q,) 6 T? then fOI' every f j'n f? ((Q7 f)7§7 a’7 Up,7?, (q,7 f/)) is
in 7" if
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- (Oraiyh<ick €9 = (Oi)o<i<k € 9

- (Oraihcick €9 = (0i)o<i<k € '

- f'(3) = f(j) if up puts the value of register j in register i. We denote [
the set of ¢ such that f’(7) is defined. If the cardinality of I is k, then f’
is totally defined. Otherwise, there is a register, different from 0, say h,
which is not in f’(I). For every register ¢ to which up assigns the current

value of the data, we set f'(i) = h. For every register i to which up assigns
the value L, we set f'(i) = 0.

- up’ writes the current value in the register h, if defined in the previous
item.

From this construction, it is easy to show that A and B accept the same data
language. O

Erasing or swapping registers are thus macros with no additional expressive
power. However, these macros can be very useful. For instance, they are used
below to simplify the proof of Proposition 19.

Note that the proof of Proposition 16 also shows that we could restrict our
model to updating at most one register on each transition.

7.2  Non-Deterministic Models

Up to now, we only considered models that are deterministic, i.e. for each
data word, there is a unique possible execution on it. Now, we will consider
a non-deterministic version of the models. We thus define non-deterministic
data automata as in Definition 2, but without the determinism condition. We
define a non deterministic k-register mechanism as a triple [(Un.a)mem aes, ~
, ¢] where the only difference with Definition 1 is that U,, , is a set of updates
instead of simply a unique update. We hence say that a finite monoid M
non-deterministically recognizes a data language L whenever there exists a
non-deterministic k-register mechanism that recognizes L in the same way as
Definition 2. We also say that a data language is nd-recognizable whenever it is
recognized by some non-deterministic data automaton. Some properties which
are true for deterministic data automata are also true for non-deterministic
data automata:

Proposition 17 e A data language is non-deterministically recognized by a
finite monoid if and only if it is nd-recognizable.

o Condition (1) ensures the decidability of the emptiness problem, i.e. if a data
language is recognized by a non-deterministic data automaton that satisfies
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the condition (1), then we can test for its emptiness.
e The class of nd-recognizable data languages is strictly more expressive than
the class of recognizable data languages.

Proof. The two first points of the theorem can be proved in the same way
as Theorem 12 and Theorem 14. We just need to present the proof of the last
point, namely that there exists a data language which is nd-recognizable but
not recognizable.

Consider the data language L accepted by the following non-deterministic
data automaton:

a 1 7£7”27 a, {7"2} a
a, {r1}, m#L ; rL=ro, a
N

Then L = {(a,dy)...(a,d,) | 31 <i < j <mn, d; =d; # L}. Moreover, one
can prove that L is not recognized by any (deterministic) data automaton.

Suppose L is accepted by a data automaton A using k registers. There are
finitely many paths of length £ + 1 in A. For each such path ¢, we define

E(c) ={(a,dy)...(a,dps1)read through the path c and i # j = d; # d;}

There exists an integer n(c) such that the data indexed by n(c) (of a data
word read through the path ¢) is not stored at the end of the path c¢. Using a
combinatorial argument (see the proof of Proposition 8), there exists two data
words in some E(c) that differ only on the data n(c).

(a,dl) (avdn(c)) (aadk+1)
QO —— Q1 - Qu(e) 1 ——— Qu(e) -+ Gk ——— Qi1

90 01 Qn(c)fl en(c) Qk Qk—l—l
96 9,1 0;(0)71 041((:) 0;6 ;erl
(a,d1) (@) (a,dp+1)

G = q1 -+ Gn(c)-1 — > u(c) - Qb ——— Qr+1
As 0, = 0y, for each w, (a,dy)...(a,dy))...(a,dysy) is in L if and only if

(a,di)...(a,d) ... (a,dry1) is in L. Of course, this is not true. Hence, L is
not accepted by any (deterministic) data automaton. O

Corollary 18 The class of recognizable data languages is not closed under
concatenation.
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Proof. Consider the previous data language L. Although it is not recogniz-
able, this language is the concatenation of the two following recognizable data
languages:

{(a,dy)...(a,dy) | d; € D} and {(a,dp)...(a.d,) |31 <j<n, dj =dp}

which are recognized by the following data automata:

1 7é T2, @, {TQ} a

' @a {r}, rl%LQ ro=ry, a o

Proposition 19 The class of nd-recognizable data languages is closed under
union, intersection, concatenation and finite iteration. It is not closed under
complementation.

O

Proof. For union and intersection, the classical constructions suffice. Let next
L, and Ly be data languages that are accepted by data automata with respec-
tively k; and ko registers. Then we will prove that L, - Ly is accepted by a
data automaton with & = max(ky, ko) registers. We will use Proposition 16 to
prove this result. Assume that, for i = 1,2, A; = (Qi, ki, 2, D, ~i, qo4, F;, T3).
We construct the automaton A = (Q, k, 2, D, ~, qo, F,T), using extended up-
dates as in Section 7.1, such that:

e Q=0Q1UQ:

o 0~ 0 if Oy 4 ~i 9"1.“% fori=1,2
® do = qo,1

. F2 if _[2 N F2 == @

FLUF, ifLNF,#0

o g g:a,up,g’ QIET

eltherq%q’eTl with ¢ = gand G' = ¢
OYQ%QIETQWithG = gand G' = ¢

Lkz ,a,u_p,G'

or g € Fy and 3 ¢ eTywithiel,, G = ¢

and wp puts the current data in the registers of up

and puts L in the other registers?

The data automaton A recognizes the data language L(A;) - L(A2): assume
that the data word w is in L(.A;)-L(Az), we can write w = uv where u € L(A;)

4 Proposition 16 is used.
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and v € L(Ay) and consider the executions in A; for v and in A, for v:

Gnn ,UPn,gp , guahuprgy o,
qo —> ... Qn1 ————— Qn, and 9 —— 4@ ---
dn d}
/ /

where for each i, g; = G; and ¢, = G, and up; is defined as in T It is
an execution which accepts w in A. Thus, L(A;) - L(Az) C L(A).

Conversely, if w € L(A), assume that w can be read in 4 on the following
run:
GnvanvupTLvG{n, G{n,7a’17u_pl7G;_ !

— . (e "
qo Gn-1 ) q a i

0y O 1 0, 0,

This run can be splitted into two parts: one in A; and an other in As:

Ins0n UPn,gn , gLayupLgy
Qo — ... Q-1 ———————— (n et do qp ---
dn dy
/ /

These runs accept respectively v and v such that |u| = n and w = wv. Thus,

u € L(A;) and v € L(Ay) and thus w € L(A;) - L(A2).

The proof is now complete: A recognizes L(A;) - L(As).

Note that we could have constructed directly a data automata, as initially
defined, to recognizes the data language L(A;) - L(Asz), but the use of propo-
sition 16 makes the proof much easier.

A similar construction can handle the iteration, because, in the previous con-
struction, the number of registers is not increased.

Finally, the data language L considered in the proof of Proposition 17 is nd-
recognizable. We can prove that the complement of this data language, namely

L={(a,dy)...(a,d,) |V1<i<j<n, d; #d;}

is recognized by no finite monoid (of course when D is infinite). The proof uses

similar arguments as the ones of the proof of Proposition 17 or of Proposition 8.
(I
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7.8 More General Updates

The updates used in the model are very simple, we can only “write a data
in a memory”, but we cannot perform any calculation. The following ques-
tion arises: does all that precedes generalize to models in which updates can
perform calculations. In this section, an update is now a general function
up : D¥ x D — D*.

Considering the simple updates of registers, we showed that the monoid played
a very important role: “different” monoids do not recognize the same data
languages. Extending the updates, the relevance of the monoid is lost.

Proposition 20 Let L be a language over the finite alphabet . Assume
that L is recognized by a finite monoid M. Then the data language Ly =
{(ar,m1) ... (an,my,) | ar...a, € L} over ¥ and M s recognized by the
monoid N = {1,z,y} with zx =z and zy = y.

Proof. We assume that L C 3* is recognized by M. There exists a morphism
¢ 3 — M, a subset P C M such that L = ¢~!(P). Let us now define
k =1 (there is only one register) and D = M. Then, for each z € N, for each
a € X, we define up, , : M x M — M by up. .(m,d) = me(a). We define
also a morphism v : (¥ x M)* — N by:

rifmeP
yifmeM\P

P(a,m) =

Then, using this construction, we can prove that /N recognizes the data lan-
guage L. O

Remark 21 We note that allowing more general updates enlarges the class of
data languages that can be recognized by a monoid. For example, let L be the
data language

{(a,p1)...(a,p,) | Vi, p; prime number and i # j = p; # p;}

over {a} x N. This data language is not recognizable, but is recognized by
a monoid using more general updates (like, for example, up((6;)i=12,d) =
(d, 02 * d))

However, allowing more general updates like functions D¥ x D — DF¥, the

results on equivalence between monoids and automata and on decidability still
hold, because these results do not depend on the updates.
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8 Comparison with Existing Works

Up to our knowledge, there is no real existing work on the relation between
algebra and timed languages. To achieve our goal, we have been led to con-
sider the more general framework of data languages. Forgetting the internal
structure of I' = X X D, I" can be viewed as an infinite alphabet, and thus it is
much relevant to compare our work to previous works done on languages on
infinite alphabets.

In a chronological order, the first work on infinite alphabets has been proposed
by Autebert, Beauquier and Boasson in [ABB80]. Several notions of rational
and recognizable sets of words have been proposed, among which the following;:
a language L defined on an infinite alphabet D is said H-rational if for every
finite alphabet X, for every alphabetical morphism ¢ : D* — X*, (L) is
regular (i.e accepted by a finite automaton). It is easy to see that every H-
rational language is also recognizable, as a data language, but the converse is
not true. Note that the authors do not propose any automaton or logic-based
formalism.

An other related work is proposed by Kaminski and Francez in |[KF94]. A no-
tion of register automata, quite close to our formalism, is proposed. The class
of languages accepted by these automata is closed under union, intersection,
concatenation and finite iteration, but it is not closed under complementation.
Like our model, an automaton cannot perform any calculation with the regis-
ters, but it can only store the data which are read. However, the constraints
allowed in this model are restricted to the comparison of the current data with
a data stored in one of the registers. A consequence of this restriction is that
the letters read in the word are intuitively not very important, such an au-
tomaton can only “count” the number of times a letter appears in a word. No
other formalism (algebraic or logical) is proposed for this model. Our model
is thus an extension of the formalism proposed in [KF94].

The last work we can compare our work with has been done by Neven,
Schwentick and Vianu in [NSVO01]. The register automata proposed in [KF94]
are further studied and the class of pebble automata is also proposed. In these
automata, some letters of a word can be marked and we can impose condi-
tions on the marked letters. Some logical formalisms are also proposed, but
the hierarchies between subclasses of automata and subclasses of the logics
are not, comparable.
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9 Conclusion

We have proposed in this paper a notion of monoid recognizability for data
languages. We also gave an automaton characterization of this notion. Hence,
the picture for data languages is rather close to the one for classical formal
languages. As an instance of our results, we can deal with timed languages.
And, in this framework, our results can be seen as an interesting algebraic
characterization for timed languages.

A logical characterization of data languages has been proposed |[Bou02|, ex-
tending the work of [Wil94| on timed automata. This theory of data languages
has now to be developped. For instance, a notion of aperiodic data language
can naturally be defined and has to be studied, with the three points of view,
namely monoids, automata and logic.

In the timed framework, any timed language recognized by deterministic timed
automata is monoid recognizable. But the exact relations with the numerous
sets of timed languages that have been proposed in the literature, see for
instance |[HRS98|, have to be investigated.

Besides the case of time, there is another, probably more theoretical, instance
of data languages which could be worth to study: the case where the set of
data D is finite. We have seen that a data language is monoid recognizable
if and only if it is a recognizable formal language (see proposition 5). But,
given a finite monoid M, it remains to characterize the class of data languages
that are recognized by M and, in particular, to compare it with the class of
formal languages recognized by M. Some other aspects could be of interest,
like decomposition theorems a la Krohn-Rhodes.

At least, another interesting direction will also consist in understanding the
exact relation between the power of the monoid and the power of the updates.
In this paper, we have investigated the two extreme cases. If updates on reg-
isters can only choose to store or to skip a data, then the structure of the
monoid is crucial. On the contrary, if the updates can do heavy computations,
then the monoid is nearly useless. All cases in between have still to be studied.
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