
Nash Equilibria in Symmetric Graph Games

with Partial Observation

Patricia Bouyera, Nicolas Markeya, Steen Vesterb,∗

aLSV, CNRS & ENS Cachan, France
bTechnical University of Denmark, Kgs. Lyngby, Denmark

Abstract

We investigate a model for representing large multiplayer games, which satisfy
strong symmetry properties. This model is made of multiple copies of an
arena; each player plays in his own arena, and can partially observe what the
other players do. Therefore, this game has partial information and symmetry
constraints, which make the computation of Nash equilibria difficult. We
show several undecidability results, and for bounded-memory strategies, we
precisely characterize the complexity of computing pure Nash equilibria for
qualitative objectives in this game model.

Keywords: Games on graphs, Network of systems, Symmetry, Nash
equilibrium

1. Introduction

Multiplayer games. In the field of formal verification, games played on
graphs extend the more classical Kripke structure with a way of modeling
interactions between several components of a computerized system. Those
types of games are intensively used as a tool to reason about and automatically
synthesize (part of) reactive systems [1]. Consider a server granting access to a
printer and connected to several clients. The clients may send requests to the
server, and the server grants access to the printer depending on the requests

IThis work has benefited from support from projects FP7-ICT-601148 (Cassting) and
ERC-StG-308087 (EQualIS).
∗Corresponding author
Email addresses: bouyer@lsv.ens-cachan.fr (Patricia Bouyer),

markey@lsv.ens-cachan.fr (Nicolas Markey), stve@dtu.dk (Steen Vester)

Preprint submitted to Information and Computation July 6, 2016

it receives. The server could have various strategies: for instance, never
grant access to any client, or always immediately grant access upon request.
However, it may also have constraints to satisfy which define its winning
condition: for instance, that no two clients should access the printer at the
same time, or that every request must eventually be granted. A strategy for
the server is then a policy that it should apply in order to achieve these goals.

Until recently, more focus had been put on the study of purely antagonistic
games (a.k.a. zero-sum games), which conveniently represent systems evolving
in a hostile environment: the aim of one player is to prevent the other player
from achieving his own objective.

Non-zero-sum games. Over the last ten years, computer scientists have
started considering games with non-zero-sum objectives: they allow for conve-
niently modelling complex infrastructures where each individual system tries
to fulfill its own objectives, while still being subject to uncontrollable actions
of the surrounding systems. As an example, consider a wireless network in
which several devices try to send data: each device can modulate its transmit-
ting power, in order to maximize its bandwidth or reduce energy consumption
as much as possible. In that setting, focusing only on optimal strategies for
one single agent is too narrow. Game-theoreticians have defined and studied
many other solution concepts for such settings, of which Nash equilibrium [2]
is a prominent one. A Nash equilibrium is a strategy profile where no player
can improve the outcome of the game by unilaterally changing his strategy.

Networks of identical devices. Our aim in this paper is to handle the
special case where many of the interacting systems have identical abilities and
objectives. This encompasses many situations involving computerized systems
over a network. We propose a convenient way of modelling such situations, and
develop algorithms for synthesizing a single strategy that, when followed by all
the players, leads to a global Nash equilibrium. To be meaningful, this requires
symmetry assumptions on the arena of the game. We also include imperfect
observation of the players, which we believe is relevant in such a setting.

Our contributions. We propose a model for representing large interacting
systems, which we call a game network. A game network is made of multiple
copies of a single arena; each player plays on his own copy of the arena.
As mentioned earlier, the players have imperfect information about the global
state of the game. For instance, they may have a perfect view on some of
their “neighbours”, but may be blind to some other players. In symmetric

2

game networks, we additionally require that any two players are in similar
situations: for every pair of players (A,B), we are able to map each player C
to a corresponding player D with the informal meaning that ‘player D is
to B what player C is to A’. Of course, winning conditions and imperfect
information should respect that symmetry. We present several examples
illustrating the model, and argue why it is a relevant model. In these systems,
we are interested in so-called symmetric pure Nash equilibria, which are special
Nash equilibria where all players follow the same deterministic strategy.

We show several undecidability results, in particular that the parame-
terized synthesis problem (aiming to obtain one policy that forms a Nash
equilibrium when applied to any number of participants) is undecidable.
We then characterize the complexity of computing constrained pure symmet-
ric Nash equilibria in symmetric game networks, when objectives are given
as LTL formulas, and when restricting to memoryless and bounded-memory
strategies. This problem with no memory bound is then proven undecidable.

Related work. Game theory has been a very active area since the 1940’s,
but its applications to computer science via graph games is quite recent. In
that domain, until recently more focus had been put on zero-sum games [1].
Some recent works have considered multi-player non-zero-sum games, includ-
ing the computation of constrained equilibria in turn-based and in concurrent
games [3, 4, 5] or the development of temporal logics geared towards non-
zero-sum objectives [6, 7, 8].

None of those works distinguish symmetry constraints in strategy profiles
nor in game description. Still, symmetry has been studied in the context of
normal-form games [9, 10]: in such a game, each player has the same set of
actions, and the utility function of a player only depends on his own action
and on the number of players who played each action (it is independent on
‘who played what’). It will be further discussed in Appendix A.

Finally, let us mention that parameterized networks of identical systems
are intensively studied in the context of model checking. Several techniques
have been developed in this context for solving the parameterized model-
checking problem (“for a large number of copies of the system, does the
property hold?”): in some frameworks, one can prove the existence of a
cutoff, that is the computation of a bound on the number of copies of the
systems that is sufficient to prove the property for any number of participants,
see for instance [11]; in other contexts, the model-checking problem can be
reduced to analyzing the property of the network architecture, like in [12];

3

other techniques have been developed based on Vector Addition Systems
with States [13], on algebraic techniques for quotienting the state space [14],
on modular games [15], or on induction techniques for proving network
invariants [16, 17]. Networks of probabilistic systems have been considered, on
which qualitative (almost-sure) properties can be checked using game-based
techniques [18]. However, none of these works solve the synthesis problem for
(symmetric) strategies in networks of identical systems, which is the topic of
the present paper.

2. Nash equilibria in Symmetric Games with

Partial Observation

2.1. Definitions
Preliminary definitions. For every k ∈ N ∪ {∞}, we write [k] for the
set {i ∈ N | 0 ≤ i < k} and [∞] = N. Let s = (pi)i∈[n] be a sequence, with
n ∈ N∪{∞} being the length |s| of s. Let j ∈ N such that j−1 < n. The jth
element of s, denoted sj−1, is the element pj−1 (so that a sequence (pi)i∈[n]

may be named p when no ambiguity arises). The jth prefix s<j of s is the
finite sequence (pi)i∈[j]. If s is finite, we write last(s) for its last element s|s|−1.

Given a mapping f : A → B, a ∈ A, and b ∈ B, we write f [a 7→ b] for
the mapping g such that g(a) = b and g(α) = f(α) for all α ∈ A \ {a}.
Given a mapping f : A→ B and a mapping g : B → C, the composition
of g and f is the mapping g ◦ f : A → C defined as g ◦ f(a) = g(f(a)).
Seeing a sequence p = (pi)i∈[n] as a mapping with domain [n], and given a
mapping f : [m]→ [n], we write p ◦ f for the sequence (pf(j))j∈[m].

Concurrent games. Concurrent games played on graphs are used in the
verification community as a tool to model, reason about and automatically
synthesize interacting reactive systems. The model of concurrent games,
originally given for two players in [19], is defined as follows:

Definition 1. A concurrent game is a tuple G = 〈States,Agt,Act,Mov,Tab〉
where

• States is a finite set of states;

• Agt is a finite set of agents (also called players);

• Act is a finite set of actions;

4

• Mov : States×Agt→ 2Act \ {∅} is the set of actions available to a given
player in a given state;

• Tab : States× ActAgt → States is a transition function that specifies the
next state, given a state and an action of each player.

The evolution of such a game is as follows: from a state s, each player A
concurrently selects an available action mA ∈ Mov(s, A). The successor state
of s under the move (mA)A∈Agt is then looked up in Tab. A path in G from
state s is a sequence (si)i≥0 of states such that s0 = s and for all i ≥ 0, there
is a move (mA)A∈Agt such that si+1 ∈ Tab(si, (mA)A∈Agt). Finite paths are
called histories, while infinite paths are called plays. We write Path (resp. Hist,
Play) for the set of paths (resp. histories, plays) in G.

Let A ∈ Agt. A strategy for A is a mapping σA : Hist → Act such that
for every ρ ∈ Hist, σA(ρ) ∈ Mov(last(ρ), A). Given a set of players C ⊆ Agt,
a strategy for coalition C is a mapping σ assigning to each A ∈ C a strategy
for A (we will write σA instead of σ(A) to alleviate notations). As a special
case, a strategy for Agt is called a strategy profile.

A path ρ is compatible with a strategy σ of coalition C if, for every
i < |ρ|, there exists a move (mA)A∈Agt such that Tab(ρi−1, (mA)A∈Agt) = ρi
and mA = σA(ρ<i) for all A ∈ C. The set of outcomes of σ from a state s,
denoted Out(s, σ), is the set of plays from s that are compatible with σ.

Remark 2. This work can be seen as extending the already vast literature
of model checking networks of systems [16, 13, 17, 20, 11] towards synthesis.
This also follows recent works about controller synthesis for parameterized
discrete events systems [21, 22].

Games of infinite duration played on finite graphs are standard models in
game theory, some classical examples are stochastic games [?] and mean-
payoff games [?]. In particular, they are widely applied in the verification
community as they are very natural for modelling (theoretically) infinite
duration systems with finite state spaces [23, 19?]. An important advantage
of this modelling choice compared to normal-form games with infinitely many
actions or games played on infinite trees are that the finite graphs are finitely
representable systems of infinite duration. As such, they can be used as input
to algorithms for automatic verification and synthesis.

Nash equilibria. Let G be a concurrent game. A winning condition for
player A is a set ΩA of plays of G. We say that a play ρ ∈ ΩA yields payoff 1

5

to A, and a play ρ /∈ ΩA yields payoff 0 to A. Winning conditions are usually
infinite, but will most often be given symbolically as the set of plays satisfying
a given property. For instance, given a formula φ of some logic (like LTL,
see e.g. [25]) using States as atomic propositions, we write Ω(φ) for the set
of plays satisfying φ. A strategy σ of a coalition C is winning for A from
a state s if Out(s, σ) ⊆ ΩA. A strategy profile σ is a pure Nash equilibrium
if, for every A ∈ Agt and every strategy σ′A, if σ is losing for A, then so
is σ[A 7→ σ′A]. In other terms, no player can individually improve his payoff.

Remark 3. In this paper, we restrict to pure Nash equilibria, which cor-
respond to deterministic programs for the players. Considering randomized
strategies would clearly be of interest in presence of symmetry and would be
a natural extension of this work. However some restrictions will be required
since the existence of a randomized Nash equilibrium in concurrent games
with reachability objectives is undecidable already with three players [26].

Remark 4. Even though Nash equilibria are some of the most well-studied
solution concepts both in normal-form games and extensive-form games [24],
there are situations where they are not sufficient to prescribe rational behavior,
for instance in situations with non-credible threats. For a discussion, see
e.g. [24]. To handle phenomena like this other kinds of equilibria, such as
subgame-perfect equilibria [27], have been defined. Studying such equilibrium
concepts in our setting would also be a natural continuation of our work.
Though, despite the issues, Nash equilibria are still sufficient in many cases.
As a practical example, most of the succesful programs in the AAAI Computer
Poker Competition are based on Nash equilibrium computation [?].

2.2. Symmetric Concurrent Games
As mentioned in the introduction, our aim is to propose a convenient way of
modelling situations where all the interacting systems have identical abilities
and objectives, and to develop algorithms for synthesizing symmetric strategy
profiles in that setting. Intuitively, a symmetric strategy profile is a strategy
profile where the same single strategy is played by all the players. The model
we propose is made of a one-player arena, together with an observation
relation. Intuitively, each player plays in his own copy of the one-player arena;
the global system is the (synchronous) product of all the local copies, but each
player observes the state of the global system only through an observation
relation. This is in particular needed for representing large networks of
systems, in which each player may only observe some of his neighbours.

6

Example 5. Consider for instance a set of identical devices (e.g. cell phones)
connected on a local area network. Each device can modulate its emitting
power. In order to increase its bandwidth, a device tends to increase its
emitting power; but besides consuming more energy, this also adds noise over
the network, which decreases the other players’ bandwidth and encourages
them to in turn increase their power. We can model a device as an n-state
arena where state i corresponds to some power pi, with p0 = 0 representing the
device being off. A device would not know the exact state of the other devices,
but would be able to evaluate the surrounding noise; this can be modelled using
our observation relation, where all configurations with the same level of noise
would be equivalent. Based on this information, the device can decide whether
it should increase or decrease its emitting power, resulting in a good balance
between bandwidth and energy consumption.

Despite the global arena being described as a product of identical arenas,
not all games described this way are symmetric: the observation relation
should also be symmetric, and we have to impose extra conditions on that
relation in order to capture an adequate notion of symmetry. Moreover,
the observation relation relates global states of the system, and an explicit
description of it will most often not be practical. We thus consider compact
representations of this relation, as we now explain.

2.2.1. Formalization of the model

Game networks. We first define our notion of an n-player game network,
which describes a complex game as a product of n identical one-player games.

Definition 6. An n-player game network G is a tuple 〈G, (≡i)i∈[n], (Ωi)i∈[n]〉
such that

• G = 〈States, {A},Act,Mov,Tab〉 is a one-player arena;

• for each i ∈ [n], ≡i is an equivalence relation on Statesn extended in a
natural way to sequences of states of Statesn. Two ≡i-equivalent elements
of Statesn are indistinguishable to player i. This models imperfect
information for player i. If ≡i is the identity, then we say player i has
perfect information;

• for each i ∈ [n], Ωi ⊆ (Statesn)ω is the objective of player i. We require
that for all ρ, ρ′ ∈ (Statesn)ω, if ρ ≡i ρ′ then ρ and ρ′ are equivalently
in Ωi.

7

We make the synchronous hypothesis and we define the semantics of this
game as the “product game” G ′ = 〈States′, [n],Act,Mov′,Tab′, (Ωi)i∈[n]〉 where
States′ = Statesn, Mov′((s0, . . . , sn−1), i) = Mov(si, i), and the transition table
is defined as

Tab′((s0, . . . , sn−1), (mi)i∈[n]) = (Tab(s0,m0), . . . ,Tab(sn−1,mn−1)).

Notice that we do not fix an initial state for the one-player arena as
we want to be able to model cases where the players start in different states.
For example, this makes us capable of modelling settings where not all players
start playing at the same time.

Example 7. Consider the cell-phone game again. It can be modelled as a
game network where each player observes everything. That is, the equivalence
relations ≡i are the identity. A more realistic model for the system can be
obtained by assuming that each player only gets precise information about his
close neighbours, and less precise information, or no information at all, about
the devices that are far away.

We now give some further useful definitions. An element of Statesn is
called a configuration of G. The equivalence relation ≡i induces equivalence
classes of configurations that player i cannot distinguish. We call these
equivalence classes information sets and denote Ii the set of information sets
for player i. Strategies should respect these information sets: a strategy σi for
player i is ≡i-realizable whenever ρ ≡i ρ′ implies σi(ρ) = σi(ρ

′). A strategy
profile σ = (σi)1≤i≤n is said to be realizable whenever σi is ≡i-realizable for
every i ∈ [n].

Symmetric game networks. If we impose no restriction on the observa-
tion relation, n-player game networks do not fully capture symmetries in a
system. Besides playing on similar arenas, we will add the extra requirement
that all the players are in similar situations w.r.t. the other players.

Given a permutation π of [n], for a configuration t = (si)i∈[n] we de-
fine t(π) = (sπ(i))i∈[n]; similarly, for a path ρ = (tj)j∈N, we define ρ(π) =
(tj(π))j∈N.

We now refine the previous definition for a game network to capture
symmetries in the system.

Definition 8. A game network G = 〈G, (≡i)i∈[n], (Ωi)i∈[n]〉 is symmetric
whenever for every two players i, j ∈ [n], there is a permutation πi,j of [n] such
that πi,j(i) = j and satisfying the following conditions: for every i, j, k ∈ [n],

8

1. πi,i is the identity, and πk,j ◦ πi,k = πi,j; hence π−1
i,j = πj,i.

2. the observation made by the players is compatible with the symmetry
of the game: for all configurations t and t′, t ≡i t′ if, and only if,
t(π−1

i,j) ≡j t′(π−1
i,j);

3. objectives are compatible with the symmetry of the game: for every
play ρ, ρ ∈ Ωi if, and only if, ρ(π−1

i,j) ∈ Ωj.

In that case, π = (πi,j)i,j∈[n] is called a symmetric representation of G.

The mappings πi,j define the symmetry of the game: πi,j(k) = l means
that player l plays vis-à-vis player j the role that player k plays vis-à-vis
player i. We give the intuition why we apply π−1

i,j in the definition above, and
not πi,j . Assume configuration t = (s0, . . . , sn−1) is observed by player i. The
corresponding configuration for player j is t′ = (s′0, . . . , s

′
n−1) where player-

πi,j(k) state should be that of player k in t. That is, s′πi,j(k) = sk, so that

t′ = t(π−1
i,j). As mentioned in the introduction, we discuss such subtleties in

the context of normal-form games in Appendix A.
These mappings define how symmetry must be used in strategies: let G be

a symmetric n-player game network with symmetric representation π. We say
that a strategy profile σ = (σi)i∈[n] is symmetric for the representation π if it
is realizable (i.e., each player only plays according to what he can observe)
and if for all i, j ∈ [n] and every history ρ, it holds σi(ρ) = σj(ρ(π−1

i,j)).
Symmetric Nash equilibria are the special kinds of Nash equilibria which

are also symmetric strategy profiles. This means that a symmetric Nash
equilibrium is a Nash equilibrium where all players apply the same strategy.

Example 9. Consider a card game tournament with six players, three on
each table. Here each player has a left neighbour, a right neighbour, and
three opponents at a different table. To model this, one could assume player 0
knows everything about himself, and has some information about his right
neighbour (player 1) and his left neighbour (player 2). But he knows nothing
about players 3, 4 and 5.

Now, the role of player 2 vis-à-vis player 1 is that of player 1 vis-à-vis
player 0 (he is his right neighbour). Hence, we can define the symmetry as
π0,1(0) = 1, π0,1(1) = 2, π0,1(2) = 0, and π0,1(3, 4, 5) = (3, 4, 5) (any choice
is fine here). As an example, the observation relation in this setting could
be that player 0 has perfect knowledge of his set of cards, but only knows the
number of cards of players 1 and 2, and has no information about the other

9

three players. Notice that other observation relations would have been possible,
for instance, giving more information about the right player.

Example 10. Consider again the cell-phone example. In this model, the
noise depends on the relative positions of the devices, and in that sense this
game is not symmetric. The model of the cell-phone could include information
about the relative positions of the other devices, by including several disjoints
copies of the model, in which the neighbour devices have different influences
over the noise. The initial state for each player would then depend on the
topology of the network.

Example 11. Finally, let us mention that even though it is not fully sym-
metric, it is possible to model a client-server architecture in our framework.
Let S be a model for the server and C be a model for the client. The game
arena G will then be the disjoint union of S and C, and the equivalence ≡i
will look like: “if player i is in part S, then he has perfect information on
all players, and if player i is in part C, then he sees his own states and the
state of player 0”, having in mind that player 0 will be the server and all
other players will be clients. Such a game is not symmetric since the server
observes more players than the clients do. In order to make the game fully
symmetric, we would add extra players, trapped in a sink state, and observable
by the clients. See Appendix B for a way to model this in our framework.

Discussion on the model. First note that symmetric representations are
not unique in general. We discuss here the impact of the representation on
Nash equilibria.

We first define for each player a partitioning of the set of all the players,
which will define what the players cannot distinguish. We then prove various
indistinguishability properties, give examples and give conditions over the
representations which ensure identical Nash equilibria.

For every player i ∈ [n], we let ∼=i be the following equivalence relations
on the set of players [n]: j ∼=i k if, and only if, for every configuration t,
t ≡i t(πj↔k), where πj↔k is the permutation of j and k. It means that player i
cannot distinguish between the players j and k. We then define for every
i ∈ [n], the partition Pi of [n] which is induced by ∼=i. We call P = (Pi)i∈[n]

the canonical partitioning for G.

Lemma 12. For every symmetric representation π of G, for every i, j ∈ [n],
for every Pi ∈ Pi, it holds πi,j(Pi) ∈ Pj.

10

Proof. Assume that it is not the case. There are two cases:

• First, suppose πi,j(Pi) (Pj for some Pj ∈ Pj. Take kj ∈ Pj ⊆ πi,j(Pi)
and pj ∈ πi,j(Pi). For every configuration t, we have that t ≡j t(πkj↔pj).
We define pi = π−1

i,j (pj) (which is then in Pi) and ki = π−1
i,j (kj) (which is

then not in Pi). As π is a symmetric representation of G, we have that
t(π−1

i,j) ≡i t(π−1
i,j ◦ πkj↔pj). We can now notice that t(π−1

i,j ◦ πkj↔pj) =

t(πki↔pi ◦π−1
i,j), which then implies t(π−1

i,j) ≡i t(πki↔pi ◦π−1
i,j). For every t′,

we therefore get t′ ≡i t′(πki↔pi). This contradicts the fact that pi ∈ Pi
and ki /∈ Pi. This case is not possible.

• Second, suppose there exists two sets Pj and P ′j such that Pj 6= P ′j ∈ Pj ,
and πi,j(Pi) ∩ Pj 6= ∅ and πi,j(Pi) ∩ P ′j 6= ∅. The reasoning is similar to
above. �

Example 13. For a configuration t = (si)i∈[n] and a subset P of players,
we define tP as the subsequence (si)i∈P , and its Parikh image Parikh(tP) as
the function mapping each state s to its number of occurrences in tP . Now,
we define the observation relation Parikh(P) as follows:

(t, t′) ∈ Parikh(P) if, and only if, Parikh(tP) = Parikh(t′P).

Similarly, we define the observation relation Id(P) as

(t, t′) ∈ Id(P) if, and only if, t[i] = t′[i] for all i ∈ P.

Using these relations and the fact that the intersection of two equivalence
relations is an equivalence relation, we can define various observation relations,
for instance the relation ≡i defined by

Id({i}) ∧ Parikh({i+ 1, i+ 2, i+ 3}) ∧ Parikh({i+ 3, i+ 4, i+ 5})

where all indices are taken modulo n. With such an observation, player i has
perfect information about his own state, and knows the Parikh images for
players i+1, i+2 and i+3 and for players i+3, i+4 and i+5. One can check
that the partition Pi is then ({i}, {i+ 1, i+ 2}, {i+ 3}, {i+ 4, i+ 5}) where
player i+ 3 plays a special role as he appears in the two Parikh conditions.

11

There are two reasons why a symmetric game network may admit several
symmetric representations. For instance, in a three-player game where each
player only observes the Parikh image of the other two players, mappings π
can either be defined as π0,1(1) = 2 and π0,1(2) = 0, or π0,1(1) = 0 and
π0,1(2) = 2. Such distinctions are harmless in general, and those will generate
the same symmetric behaviours. More precisely:

Lemma 14. Let G be a symmetric n-player game network, and assume P is
the canonical partitioning of G. Take two symmetric representations π and π̃
for G. Assume that for every i ∈ [n], for every piece P ∈ Pi, πi,j(P) = π̃i,j(P).
Then, a strategy profile σ is symmetric for π if, and only if, it is symmetric
for π̃.

Proof. It is sufficient to show that for every configuration t, t(π−1
i,j) ≡j t(π̃−1

i,j).
Let π be a permutation of [n] that preserves partition Pi such that

π̃i,j = πi,j ◦ π. Let t be a configuration. As π preserves Pi, t ≡i t(π−1). This
implies, if we apply the symmetry condition for πi,j: t(π

−1
i,j) ≡j t(π−1 ◦ π−1

i,j),

that is, t(π−1
i,j) ≡j t(π̃−1

i,j). Therefore the symmetry condition for the strategy
profile does not depend on the choice of the symmetry mappings. �

Symmetric representations might however differ more ‘dramatically’. As-
sume for instance that n = 6, and that ≡i is defined for every i ∈ [6] as
‘Id({i})∧Parikh({i+ 1, i+ 2})∧Parikh({i+ 3, i+ 4})’ (taken modulo 6). Then
the canonical partition Pi is equal to ({i}, {i+ 1, i+ 2}, {i+ 3, i+ 4}, {i+ 5}),
and the mappings πi,j(i + k) = j + k mod 6 properly define the symmetry.
But there are other mappings that define the symmetry, for instance:

π′2i,2i+1 : 2i 7→ 2i+ 1
2i+ 1 7→ 2i+ 4
2i+ 2 7→ 2i+ 5
2i+ 3 7→ 2i+ 2
2i+ 4 7→ 2i+ 3
2i+ 5 7→ 2i

π′2i+1,2i+2 : 2i 7→ 2i+ 1
2i+ 1 7→ 2i+ 2
2i+ 2 7→ 2i+ 5
2i+ 3 7→ 2i
2i+ 4 7→ 2i+ 3
2i+ 5 7→ 2i+ 4

The other mappings are obtained by composition. This also properly rep-
resents the symmetry, but generates different symmetric strategy profiles.
Under additional technical conditions, we can prove that Nash equilibria co-
incide for two symmetric representations of a given symmetric game network.
First we realize that a symmetric strategy profile is fully determined by an
≡0-realizable strategy for player 0.

12

Lemma 15. Fix a symmetric representation π for G. If σ0 is an ≡0-realizable
strategy for player 0, then the strategy profile σ defined by σi(ρ) = σ0(ρ(π−1

i,0))
defines a realizable and symmetric strategy profile.

Proof. Symmetry is straightforward:

σj(ρ(π−1
i,j)) = σ0(ρ(π−1

j,0 ◦ π−1
i,j)) = σ0(ρ(π−1

i,0)) = σi(ρ).

Assume that σi is not ≡i-realizable: this means that there are two runs
ρ ≡i ρ′ such that σi(ρ) 6= σi(ρ

′). By the symmetry of the game, it holds that
ρ(π−1

i,0) ≡0 ρ
′(π−1

i,0), which implies that σ0(ρ(π
−1
i,0)) = σ0(ρ

′(π−1
i,0)). However

this precisely means σi(ρ) = σi(ρ
′). Hence strategy σi is ≡i-realizable. �

We can now show the following result.

Lemma 16. Assume that a symmetric representation π of game network
G = (G, (≡i)i∈[n], (Ωi)i∈[n]) has to satisfy the following additional constraint:
if there exist permutations (κi)i∈[n] of [n] such that:

(i) κi(i) = i for every i

(ii) for every two configurations t and t′,

t ≡i t′ ⇔ t(κi ◦ πj,i ◦ κ−1
j ◦ πi,j) ≡i t′(κi ◦ πj,i ◦ κ−1

j ◦ πi,j)

(iii) for every run ρ, we have ρ ∈ Ωi if, and only if, ρ(κi◦πj,i◦κ−1
j ◦πi,j) ∈ Ωi

then for every configuration t, t ≡i t(κi◦πj,i◦κ−1
j ◦πi,j). Under that additional

constraint, the choice of the representations does not affect Nash equilibria.
More precisely: if π and π̃ are two symmetric representations of game G that
satisfy the above hypothesis, then a realizable strategy profile σ is a symmetric
Nash equilibrium from t in G for representation π if, and only if, it is a
symmetric Nash equilibrium from t in G for representation π̃.

Proof. Let (πi,j)i,j and (π̃i,j)i,j be two different representations (for the pieces
of the canonical partitioning). Following Def. 8, those mappings are uniquely
characterized by (π0,i)i and (π̃0,i)i. Assume κi is the permutation of [n] such
that π̃0,i = κi ◦ π0,i (in particular w.l.o.g. κi swaps pieces of Pi). We notice
that π̃i,j = κj ◦ πi,j ◦ κ−1

i , again applying the properties listed in Def. 8.
It is not difficult to prove all the conditions for the κi’s:

• using π̃0,i = κi ◦ π0,i, we get π̃0,i(0) = κi ◦ π0,i(0), which entails κi(i) = i.

13

• it holds t ≡i t′ if, and only if, t(π̃−1
i,j) ≡j t′(π̃−1

i,j), which in turn is

equivalent to t(π̃−1
i,j ◦ π−1

j,i) ≡i t′(π̃−1
i,j ◦ π−1

j,i). This directly entails the
second property of the lemma.

• the third property is proven by applying the same argument: ρ ∈ Ωi is
equivalent to ρ(π̃−1

i,j ◦ π−1
j,i) ∈ Ωi, from which the property follows.

We therefore get that t ≡i t(κi ◦ πj,i ◦ κ−1
j ◦ πi,j) for every i and j, and in

particular, taking j = 0, we get that t ≡i t(κi) (since κ0 is the identity).
Fix a strategy σ0 for player 0 (which is ≡0-realizable). It defines two

strategy profiles σ and σ̃. For every i, we compute:

σ̃i(ρ) = σ0(ρ(π̃−1
i,0)) = σ0(ρ(κi ◦ π−1

i,0)) = σi(ρ(κi)) = σi(ρ) (since ρ ≡i ρ(κi))

In particular, σ̃ and σ have the same outcome, yielding the same payoff to all
players. Now if one of the players can improve his payoff, say player i can use
strategy σ′i to get better payoff than with his strategy σi, then he can also
improve his payoff by playing the same strategy σ′i in place of strategy σ̃i.

�

In the sequel, we always assume that the symmetric representation is given.
Note however that a symmetric representation can be computed in space
polynomial in the number of players, by just enumerating the permutations
and checking that they satisfy the constraints. As we show later, the problems
we consider have higher complexity (when decidable), so that this assumption
does not alter our results.

Discussion on the encoding of symmetric game networks. One moti-
vation for the definition of this model is to represent large networks of identical
systems in a rather compact way. To this aim, we need a succinct representa-
tion of game networks, in particular for the relations ≡i. Notice that represent-
ing those equivalence relations explicitly as |States|n × |States|n tables is not
practicable. We therefore allow equivalence relations to be given symbolically,
for instance as a polynomial-time program (or Turing machine) taking two
integers i ≤ n and two states t and t′ in Statesn, and returning 1 if, and only if,
t ≡i t′. Examples of such functions are Parikh(P) and Id(P) defined previously.

14

3. Problems considered and relationships be-

tween them

In this paper we are interested in the computation of Nash equilibria and
symmetric Nash equilibria in symmetric game networks. More precisely, we
are interested in the following three problems:

Problem 1 (Existence of a symmetric NE). Given a symmetric game
network G, a symmetric representation π, and a configuration t, the existence
problem asks whether there is a symmetric Nash equilibrium in G from t for
the representation π.

Remark 17. There might not exist a pure Nash equilibrium in a symmetric
game network. Figure 2 shows how one can simulate the matching penny
game, which is known not to have pure Nash equilibria. We assume there are
two players, and they both have perfect information. Player 0 starts from p0

whereas player 1 starts from q0. The objective is the same for player 0 and
for player 1 and is written:(
p0 ⇒ (F ((p+ ∧ q+) ∨ (p− ∧ q−)))

)
∧
(
q0 ⇒ (F ((p+ ∧ q−) ∨ (p− ∧ q+)))

)
.

This reads as follows: “if you are in p0, then you have to eventually visit both
p+ and q+, or both p− and q−, and if you are in q0, you have to eventually
visit both p+ and q−, or both p− and q+”. It is not hard to be convinced that
it is symmetric, and that there is no pure Nash equilibrium from (p0, q0) in
that game network.

p0

p+ p−

+ − q0

q+ q−

+ −

Figure 1: Matching pennies as a symmetric game network

Problem 2 (Constrained existence of a symmetric NE). Given a
symmetric game network G, a symmetric representation π, a configuration t,
a set L ⊆ [n] of losing players, and a set W ⊆ [n] of winning players,
the constrained existence problem asks whether there is a symmetric Nash
equilibrium σ in G from t for the representation π, such that all players in L
lose and all players in W win. If W = [n], the problem is called the positive
existence problem.

15

Note that for the constrained problem, the input sets L and W do not
need to cover the entire set of players. Thus, L and W constitute a partial
specification of which players should win and lose.

3.1. From Nash equilibria to symmetric Nash equilibria
In this section we show that even though symmetric Nash equilibria are Nash
equilibria satisfying special properties, they are in some sense at least as
hard to find as Nash equilibria. This unfortunately means that we cannot in
general hope to have an algorithm with better complexity for the symmetric
problem by using properties of symmetry. Furthermore, it allows us to infer
hardness results from the framework with standard Nash equilibria to the
framework with symmetric Nash equilibria. The result is formalized in the
following proposition.

Proposition 18. From a symmetric game network G, we can construct in
polynomial time a symmetric game network H such that there exists a sym-
metric Nash equilibrium in H if, and only if, there exists a Nash equilibrium
in G. Furthermore the construction only changes the arena, but does not
change the number of players nor the objectives or the resulting payoffs.

Proof. Let G = (G, (≡i)i∈[n], (Ωi)i∈[n]) be a symmetric game network and
(s0,0, ..., sn−1,0) be a configuration as an input to the existence problem.
We build a symmetric game network H which has a symmetric Nash equi-
librium from some particular configuration if, and only if, G has a Nash
equilibrium from (s0,0, ..., sn−1,0). We generate H as follows.

Let H = (H, (∼i)i∈[n], (Θi)i∈[n]) be a symmetric game network with n
players as G. We design H as n disconnected copies of G. These copies
will be denoted H0, ..., Hn−1. We write Hj(s) to denote the state of Hj

corresponding to some state s of G. We introduce the mapping λ1 such
that λ1(Hj(s)) = s for all states s and all players j. Then we let the initial
configuration in H be (H0(s0,0), H

1(s1,0), ..., H
n−1(sn−1,0)). In other words,

the players in H start in their assigned initial state, but in different copies
of G. We define ∼i such that for all i, for all states s0, ..., sn−1, s

′
0, ..., s

′
n−1

in G and for all m0, ...,mn−1, j0, ..., jn−1 ∈ [n], it holds:

(Hm0(t0), Hm1(t1), ..., Hmn−1(tn−1)) ∼i (Hj0(v0), Hj1(v1), ..., Hjn−1(vn−1))

if, and only if,
(t0, ..., tn−1) ≡i (v0, ..., vn−1) ∧mi = ji.

16

Finally, for every player i and every infinite play ρ = (s1
0, ..., s

1
n−1)(s2

0, ..., s
2
n−1)...

in H, the objectives of the players in H are such that for all j0, ..., jn−1 ∈ [n],

(Hj0(s1
0), ..., Hjn−1(s1

n−1))(Hj0(s2
0), ..., Hjn−1(s2

n−1))... ∈ Θi ⇔ ρ ∈ Ωi

We first show that H as defined here is indeed a symmetric game network.
The proof is in two steps.

Lemma 19. The relation ∼i is an equivalence relation for all i.

Proof. Every state in H can be written as Hj(s) for a state s in G and an
index j ∈ [n] in a unique way. Now ∼i is reflexive for all i since for all states
s0, ..., sn−1 in G and all j0, ..., jn−1 ∈ [n], we have

(s0, ..., sn−1) ≡i (s0, ..., sn−1) ∧ ji = ji ⇒
(Hj0(s0), ..., Hjn−1(sn−1)) ∼i (Hj0(s0), ..., Hjn−1(sn−1))

It is symmetric for all i, since for all states s0, ..., sn−1, s
′
0, ..., s

′
n−1 in G

and all j0, ..., jn−1,m0, ...,mn−1 ∈ [n], it holds

(Hj0(s0), ..., Hjn−1(sn−1)) ∼i (Hm0(s′0), ..., Hmn−1(s′n−1))

⇒ (s0, ..., sn−1) ≡i (s′0, ..., s
′
n−1) ∧ ji = mi

⇒ (s′0, ..., s
′
n−1) ≡i (s0, ..., sn−1) ∧ ji = mi

⇒ (Hm0(s′0), ..., Hmn−1(s′n−1)) ∼i (Hj0(s0), ..., Hjn−1(sn−1)).

It is transitive for all i since for all states s0, ..., sn−1, s
′
0, ..., s

′
n−1, s

′′
0, ..., s

′′
n−1

in G, and j0, ..., jn−1, k0, ..., kn−1,m0, ...,mn−1 ∈ [n], we have{
(Hj0(s0), ..., Hjn−1(sn−1)) ∼i (Hk0(s′0), ..., Hkn−1(s′n−1))∧
(Hk0(s′0), ..., Hkn−1(s′n−1)) ∼i (Hm0(s′′0), ..., Hmn−1(s′′n−1))

⇒

{
(s0, ..., sn−1) ≡i (s′0, ..., s

′
n−1) ∧ (s′0, ..., s

′
n−1) ≡i (s′′0, ..., s

′′
n−1)

∧ji = ki ∧ ki = mi

⇒ (s0, ..., sn−1) ≡i (s′′0, ..., s
′′
n−1) ∧ ji = mi

⇒ (Hj0(s0), ..., Hjn−1(sn−1)) ∼i (Hm0(s′′0), ..., Hmn−1(s′′n−1))

This means that ∼i is an equivalence relation for all i. �

17

Lemma 20. Let π = (πi,j)i,j∈[n] be a symmetric representation of G. Then it
is also a symmetric representation of H.

Proof. The first property of symmetric representations does not depend
on the underlying game network, so π satisfies it. Secondly, for any two
configurations (Hk0(s0), ..., Hkn−1(sn−1)) and (Hk′0(s′0), ..., Hk′n−1(s′n−1)) of H
and every i, j ∈ [n], we have

(Hk0(s0), ..., Hkn−1(sn−1)) ∼i (Hk′0(s′0), ..., Hk′n−1(s′n−1))

⇔ (s0, ..., sn−1) ≡i (s′0, ..., s
′
n−1) ∧ si = s′i

⇔ (s0, ..., sn−1)(π−1
i,j) ≡j (s′0, ..., s

′
n−1)(π−1

i,j) ∧ sπ−1
i,j (j) = s′

π−1
i,j (j)

⇔ (Hk0(s0), ..., Hkn−1(sn−1))(π−1
i,j) ∼j (Hk′0(s′0), ..., Hk′n−1(s′n−1))(π−1

i,j)

which means it satisfies the second requirement. For the third point, for
every play ρ = (H i0(s0

0), ..., H in−1(s0
n−1))(H i0(s1

0), ..., H in−1(s1
n−1))... and every

i, j ∈ [n], we have

(H i0(s0
0), ..., H in−1(s0

n−1))(H i0(s1
0), ..., H in−1(s1

n−1))... ∈ Θi

⇔ (s0
0, ..., s

0
n−1)(s1

0, ..., s
1
n−1)... ∈ Ωi

⇔ (s0
π−1
i,j (0)

, ..., s0
π−1
i,j (n−1)

)(s1
π−1
i,j (0)

, ..., s1
π−1
i,j (n−1)

)... ∈ Ωj

⇔

(H
i
π−1
i,j

(0)(s0
π−1
i,j (0)

), ..., H
i
π−1
i,j

(n−1)(s0
π−1
i,j (n−1)

))

(H
i
π−1
i,j

(0)(s1
π−1
i,j (0)

), ..., H
i
π−1
i,j

(n−1)(s1
π−1
i,j (n−1)

))... ∈ Θj

which is the final step showing that (πi,j)i,j∈[n] is also a symmetric representa-
tion for H which is therefore a symmetric game network. �

It remains to prove that there is a Nash equilibrium in G from configuration
(s0,0, ..., sn−1,0) if, and only if, there is a symmetric Nash equilibrium in H
from configuration (H0(s0,0), ..., H

n−1(sn−1,0)). First we introduce a bit of
notation. The way we define the equivalence relations (∼i)i∈[n] the information
sets of a player in H depends on which copy of G he is in as well as which
information set in G the current configuration corresponds to. We denote the
information sets for every player i, every copy j of G and every information
set I of player i in G as follows

Hj
i (I) = {(Hm0(s0), ..., Hmn−1(sn−1)) | (s0, ..., sn−1) ∈ I ∧mi = j}.

18

We now start with the first direction and assume there is a Nash equilib-
rium σ in G from (s0,0, ..., sn−1,0). Then we create the strategy profile σ′ in H
such that for all players i, j and all sequences of information sets I0, ..., Ik−1

of player i in G,

σ′i(H
j
i (I0)...Hj

i (Ik−1)) = σj(π
−1
i,j (I0)...π−1

i,j (Ik−1))

which we will prove is a symmetric Nash equilibrium. Note again that in all
legal sequences of information sets, a player will stay in the same copy of G
and therefore this is a full definition of a strategy for each player.

Lemma 21. If σ is a Nash equilibrium in G from (s0,0, ..., sn−1,0), then σ′ is
a symmetric Nash equilibrium in H from (H0(s0,0), ..., Hn−1(sn−1,0)).

Proof. To prove that it is symmetric, we need the following result, stating
that for all i, j and all information sets I of player i in G, it holds

π−1
i,j (Hj

i (I)) = {(H
m
π−1
i,j

(0)(sπ−1
i,j (0)), ..., H

m
π−1
i,j

(n−1)(sπ−1
i,j (n−1))) |

(Hm0(s0), ..., Hmn−1(sn−1)) ∈ Hj
i (I)}

= {(H
m
π−1
i,j

(0)(sπ−1
i,j (0)), ...H

m
π−1
i,j

(n−1)(sπ−1
i,j (n−1))) |

(s0, ..., sn−1) ∈ I ∧mi = j}

= {(H
m
π−1
i,j

(0)(sπ−1
i,j (0)), ...H

m
π−1
i,j

(n−1)(sπ−1
i,j (n−1))) |

(sπ−1
i,j (0), ..., sπ−1

i,j (n−1)) ∈ π
−1
i,j (I) ∧mπ−1

i,j (j) = j}

= Hj
j (π
−1
i,j (I))

The requirement for σ′ to be symmetric can now be reformulated as follows.
For all players i, j and all information sets I0, ...Ik−1 of player i in G we have

σ′i(H
j
i (I0)...Hj

i (Ik−1)) = σ′j(π
−1
i,j (Hj

i (I0))...π−1
i,j (Hj

i (Ik−1)))

⇔ σj(π
−1
i,j (I0)...π−1

i,j (Ik−1)) = σ′j(H
j
j (π
−1
i,j (I0))...Hj

j (π
−1
i,j (Ik−1)))

⇔ σj(π
−1
i,j (I0)...π−1

i,j (Ik−1)) = σj(π
−1
j,j (π−1

i,j (I0))...π−1
j,j (π−1

i,j (Ik−1)))

Since πj,j = π−1
j,j and πj,j is the identity, it follows that the bottom equality is

true and therefore σ′ is symmetric for representation (πi,j)i,j∈[n].
To see that σ′ is also a Nash equilibrium from (H0(s0,0), ..., Hn−1(sn−1,0))

consider the deviation of a player p from σ′p to σ′p,dev. We then look at a

19

corresponding deviation of p from σp to σp,dev in G where for all sequences of
information set tuples

σp,dev(I0, ..., Ik−1) = σ′p,dev(Hp
p (I0), ..., Hp

p (Ik−1)).

We consider the outcomes of the two profiles in the two games, denoted
ρG and ρH respectively. We wish to show that ρG = λ1(ρH) by induction. For
the base case we have

ρG,=0 = (s0,0, ..., sn−1,0) = λ1(H0(s0,0), ..., Hn−1(sn−1,0)) = λ1(ρH,=0).

As induction hypothesis suppose it holds for prefixes of outcomes with
length at most v. Further, let ρG,≤v+1 = (s0

0, ..., s
0
n−1)...(sv+1

0 , ..., sv+1
n+1) and let

Iji be the information set for player i in G which contains sji . We will need
that for a move m of all the players we have for all states s0, ..., sn−1 in G that

Tab((s0, ..., sn−1),m) = λ1(Tab((H0(s0), ..., Hn−1(sn−1)),m)).

Then we get

ρG,≤v+1 = ρG,≤v · Tab(ρG,=v, σ[σp 7→ σp,dev](I(ρG,≤v)))

= λ1(ρH,≤v) · Tab((sv0, ..., s
v
n−1), σ[σp 7→ σp,dev](I(ρG,≤v)))

= λ1(ρH,≤v) · λ1(Tab((H0(sv0), ..., Hn−1(svn−1)),

σ[σp 7→ σp,dev](I(ρG,≤v))))

= λ1(ρH,≤v) · λ1(Tab(ρH,=v, σ[σp 7→ σp,dev](I(ρG,≤v))))

Since for all players i and all information sets I0, ..., Ik−1 of i in G it holds that
σ[σp 7→ σp,dev]i(I0, ..., Ik−1) = σ′[σ′p 7→ σ′p,dev]i(H

i
i (I0), ..., H i

i (Ik−1)) we get

ρG,≤v+1 = λ1(ρH,≤v) · λ1(Tab(ρH,=v, σ[σp 7→ σp,dev](I(ρG,≤v))))

= λ1(ρH,≤v) · λ1(Tab(ρH,=v, σ
′[σ′p 7→ σ′p,dev]((H0

0 (I0
0), ...,

Hn−1
n−1 (I0

n−1))...(H0
0 (Iv0), ..., Hn−1

n−1 (Ivn−1)))))

= λ1(ρH,≤v) · λ1(Tab(ρH,=v, σ
′[σ′p 7→ σ′p,dev](ρH,≤v)))

= λ1(ρH,≤v) · λ1(ρH,=v+1)

= λ1(ρH,≤v+1)

This means that if a player p can deviate from σ′ inH to obtain outcome ρH,
then he can deviate from σ in G to obtain an outcome ρG with λ1(ρH) = ρG.

20

Given the way we have defined objectives in H, every player will get the same
payoff from a play ρ in H as in λ1(ρ) in G for every play ρ. Since σ is a Nash
equilibrium in G from (s0,0, ..., sn−1,0) where no player can deviate to improve
his payoff, then no player can deviate to improve his payoff from σ′ in H
from (H0(s0,0), ..., Hn−1(sn−1,0)) because otherwise that player would be able
to deviate from σ in G to improve his payoff. Thus, σ′ is a symmetric Nash
equilibrium from (H0(s0,0), ..., Hn−1(sn−1,0)). �

For the other direction we assume there is a symmetric Nash equilibrium
σ′ in H from (H0(s0,0), ..., H

n−1(sn−1,0)). We now define σ in G for all
information sets I0, ..., Ik−1 of player i by letting

σi(I0, ..., Ik−1) = σ′i(H
i
i (I0), ..., H i

i (Ik−1)).

Lemma 22. If σ′ is a symmetric Nash equilibrium in H from global state
(H0(s0,0), ..., Hn−1(sn−1,0)), then σ is a Nash equilibrium in G from (s0,0, ..., sn−1,0).

Proof. Contrary to the previous case we consider a deviation from σ in G
by player p from σp to σp,dev and consider a corresponding deviation in H
from σ′ defined by

σ′p,dev(H i
i (I0), ..., H i

i (Ik−1)) = σp,dev(I0, ..., Ik−1)

for all information sets I0, ..., Ik−1 of player p in G. Let the outcomes of the
profiles with the deviations be ρG and ρH. As in the previous case we can
show that λ1(ρH) = ρG which means that when a player p deviates in G
from σ he can do a deviation in H from σ′ which gives him the same payoff.
Since σ′ is a Nash equilibrium from (H0(s0,0), ..., Hn−1(sn−1,0)) no player can
deviate to improve his payoff from σ′. This means that no player can deviate
to improve his payoff from σ in G from (s0,0, ..., sn−1,0) and therefore it is a
Nash equilibrium from this configuration. �

This concludes the proof that there is a symmetric Nash equilibrium from
(H0(s0,0), ..., H

n−1(sn−1,0)) in H if, and only if, there is a Nash equilibrium
from (s0,0, ..., sn−1,0) in G.

There are n times as many states in the arena H as in the arena G.
In addition, there are n times as many equivalence classes, which implies that
the size of H is polynomial in the size of G.

21

3.2. From positive existence to existence
Before turning to our decidability and undecidability results, we begin by
showing that positive existence of Nash equilibria is not harder than existence.
This is quite natural as all players have to win and there is no need to look
for improvements: positive existence is equivalent to finding a path along
which all objectives are fulfilled.

Proposition 23. Deciding the symmetric existence problem in symmetric
game networks is at least as hard as deciding the positive symmetric existence
problem. The reduction doubles the number of players and uses LTL objectives,
but does not change the nature of the strategies (memoryless, bounded-memory,
or general).

This result is a consequence of the following lemma, which we prove below.

Lemma 24. Let G be an n-player symmetric game network and t0 be an
initial configuration in G. We can construct in polynomial time a (2n)-player
symmetric game network G ′ and a configuration t′0 in G ′ such that there is
a Nash equilibrium from t0 along which all players win in G if, and only if,
there is a Nash equilibrium from t′0 in G ′. Moreover, this equivalence also
holds for memoryless and bounded-memory equilibria.

Proof. Let G = (G, (≡i)i∈[n], (Ωi)i∈[n]) be a symmetric game network with
n players. Assume the symmetric representation (πi,j)i,j∈[n]. The game G ′
will consist of playing a matching pennies game between new players before
entering the arena G. The new arena for the game is depicted in Figure 4.
While one player will play in the left part (containing G), a new player will
play in the right part. The former player will aim at matching the pennies or
reaching his objective in G, while the second player will try not to match the
pennies. If there is a Nash equilibrium in the resulting game, both players
must win, since otherwise they can change their strategy and improve their
payoff. In that equilibrium, it must be the case that the former player satisfies
his objective in G. This is formalised below.

We define the new game network G ′ with 2n players as G ′ = 〈G′, (≡′i)i∈[2n],
(Ω′i)i∈[2n]〉 defined below:

• G′ = (States′, {A},Act′,Mov′,Tab′) where:

22

s, p0

s, p+

s, p−

G
+

−

∗

∗
q0

q+

q−

+

−

Figure 2: The player arena G′

– States′ = States ∪ (States × {p0, p+, p−}) ∪ {q0, q+, q−}. The last
three states constitute the isolated part of the arena, while the
other states are in the main part ;

– Act′ = Act ∪ {+,−, ∗};
– for every s ∈ States, Mov′(s) = Mov(s) Mov′(s, p+) = {∗}

Mov′(s, p0) = {+,−} Mov′(s, p−) = {∗}
Mov′(q0) = {+,−} and Mov′(q+) = Mov′(q−) = ∅;

– for every s ∈ States,
Tab′(s, a) = Tab(s, a) for every a ∈ Mov′(s)
Tab′((s, p0),+) = (s, p+)
Tab′((s, p0),−) = (s, p−)
Tab′((s, p+), ∗) = Tab′((s, p−), ∗) = s

Finally, Tab′(q0,+) = q+ and Tab′(q0,−) = q−.

• For every configuration t = (s0, . . . , s2n−1), we define

main(t) = {j ∈ [2n] | sj is in the main part of the arena} .

We extend main to runs in a straightforward way. For every i ∈ [2n],
we define η(i) = n+ i mod 2n. Then, for every i ∈ [2n], t ≡′i t′ if and
only if the following conditions are satisfied:

– main(t) = main(t′);

– if the above conditions hold, there is a bijection ν : main(t)→ [n]
such that ν(j) ∈ {j, η(j)} for every j ∈ main(t) such that t(ν−1) ≡i
t′(ν−1). Note that this only holds if |main(t)| = |main(t′)| = n
and either i ∈ main(t) or η(i) ∈ main(t).

• Let i ∈ [2n] and Γisol
i be the set of runs % such that:

– player i plays in the isolated part (that is, i /∈ main(%))

– player η(i) plays in the main part (that is, η(i) ∈ main(%))

23

– players i and η(i) realise their matching penny (that is, they visit
states (s, p+) and q+, or states (s, p−) and q−, along %)

Let Γmain
i = Γisol

η(i) be the counterpart in the main component.

Then, a run % of G ′ will belong to Ω̃i whenever there exists a bijection
ν : main(%)→ [n] such that ν(j) ∈ {j, η(j)} for every j ∈ main(%), and
%[ν] belongs to Ωi, where %[ν] is the run obtained after having projected
% on the players ν(main(%)) and having removed the first two states of %.

Finally, for every i ∈ [2n], we define the objective Ω′i for player i as

Ω̃i ∪ Γmain
i ∪ Γisol

i

We now define for every i, j, k ∈ [n], the permutations π′i,j as follows:

• π′i,j(k) = πi,j(k) and π′i,j(η(k)) = η(πi,j(k)),

• π′i,η(j)(k) = η(πi,j(k)) and π′i,η(j)(η(k)) = πi,j(k),

• π′η(i),j(k) = η(πi,j(k)) and π′η(i),j(η(k)) = πi,j(k)

• π′η(i),η(j)(k) = η(πi,j(k)) and π′η(i),η(j)(η(k)) = η(πi,j(k))

Since (πi,j)i,j∈[2n] is a symmetric representation for G, so is (π′i,j)i,j∈[2n]

for G ′. We should also note that if G has a compact representation, then so
has G ′. Furthermore, if objectives (Ωi)i∈[n] are given by LTL formulas, then
objectives (Ω′i)i∈[2n] can also be given by LTL formulas of the same size. The
result now follows from Lemma 25 below. �

Lemma 25. There is a symmetric Nash equilibrium in G from configuration
t0 = (s0

0, . . . , s
n−1
0) where every player wins if, and only if, there is a symmetric

Nash equilibrium in G ′ from configuration t′0 = ((s0
0, p0), . . . , (sn−1

0 , p0), q0, . . . , q0).

Proof. Assume there is a Nash equilibrium σ in G from t0 where every player
wins. We define the strategy profile σ′ where players i ∈ [n] play action +,
then ∗, and finally play in G following their strategy in σ, while players n+ i
for i ∈ [n] play −. Note that if σ is symmetric, then this new profile is
also symmetric. Under this new strategy profile, all the players achieve their
objectives; this is therefore a Nash equilibrium.

Conversely, assume σ′ is a Nash equilibrium in G ′. Each player n + i
can easily ensure Γisol

n+i by swapping its action-choice (between + and −).

24

Player n+ i must therefore be winning in a Nash equilibrium. Similarly, if
player i is not winning, he can swap his first action and make the outcome
belong to Γmain

i ; this means that player i must be winning along the outcome
of σ′. But since player n+ i is winning, the outcome of σ′ does not belong
to Γmain

i ∪ Γisol
i , hence it must belong to Ω̃i. The strategy profile σ is then

just the part of σ′ after the matching-penny part, and restricted to the first
n players. The outcome of σ from t0 in G then fulfills all the objectives of the
players in [n], hence it is a positive Nash equilibrium. Finally, we note that
if σ′ is symmetric, then so is σ. �

4. Existence in Symmetric Game Networks

Recent works have considered the computation of Nash equilibria in standard
concurrent or turn-based games. In particular, the abstraction of suspect
games described in [28] has allowed the development of efficient algorithms
for computing Nash equilibria in concurrent games, for various classes of
objectives. However those algorithms cannot be applied to our framework for
the following reasons:

• each player has only partial information on the state-space of the game;

• the symmetry requirement induces non-local constraints in the concur-
rent game resulting from the product of the one-player arenas.

Notice that even in the case of symmetric games with perfect information,
an approach using Strategy Logic [29], which can express Nash equilibria and
impose several players to play the same strategy, would not work out-of-the-
box, as in our setting strategies are equal up to a permutation of the states.

We now list the results we have obtained about computing Nash equilibria
in symmetric game networks. We begin with undecidability results, for the
following cases:

• non-regular objectives (for two players, perfect observation and recall);

• partial observation (for three players, LTL objectives, perfect recall).

• parametrized number of players (LTL objectives, incomplete observation,
memoryless strategies);

We prove decidability when the number of players is given in the input and
there is a restriction to bounded memory strategies.

25

4.1. Undecidability with non-regular objectives
Our games allow for arbitrary Boolean objectives, defined for each player as
a set of winning plays. We prove that it is too general to get decidability of
our problems even with perfect information.

Theorem 26. The existence of a symmetric Nash equilibrium for non-regular
objectives in two-player symmetric game networks is undecidable (even with
perfect information).

Proof. We do a reduction of the halting problem for a deterministic two-
counter machine, which is well-known to be undecidable. A two-counter
machine M is a 3-tuple M = 〈Q,∆, qF 〉 where

• Q is a finite set of control states, and qF ∈ Q is a halting state;

• ∆: Q\{qF} → {inc}×{c, d}×Q∪{dec}×{c, d}×Q2 is an instruction
function which assigns an instruction to each state.

A configuration of M is a 3-tuple in Q × N × N. A run of M is a
sequence of configurations ρ = (q0, c0, d0)(q1, c1, d1)... where (q0, c0, d0) is the
initial configuration (usually assuming c0 = d0 = 0), and for two consecutive
configurations we are in one of the following situations:

• ∆(qi) = (inc, c, qi+1), ci+1 = ci + 1 and di+1 = di;

• ∆(qi) = (inc, d, qi+1), di+1 = di + 1 and ci+1 = ci;

• ∆(qi) = (dec, c, qi+1, q) for some q, ci+1 = ci − 1 ≥ 0 and di+1 = di;

• ∆(qi) = (dec, d, qi+1, q) for some q, di+1 = di − 1 ≥ 0 and ci+1 = ci;

• ∆(qi) = (dec, c, q, qi+1) for some q, ci+1 = ci = 0 and di+1 = di;

• ∆(qi) = (dec, d, q, qi+1) for some q, di+1 = di = 0 and ci+1 = ci.

The run is infinite if there is no i so qi = qF and otherwise it is finite with qF
being the halting state in the final configuration of ρ. The problem of deciding
if the run of a two-counter machine has a halting run from a configuration
(q0, c0, cd) is undecidable and we wish to reduce an instance of this problem
to the existence problem in symmetric game networks.

26

s1,0

s1,H

s1,T

s2,0

s2,H

s2,T

G′

H

T

∗

∗

H

T

∗

∗

Figure 3: Illustration of G

qi C+
ij

qj
C+ ∗

(a) The incrementation module

qi

C−ij qj

C0
ik

qk

C−
∗

C0

∗

(b) The decrementation module

Figure 4: Constructions of the incrementation and decrementation modules

Let M be a deterministic two-counter machine and let (q0, c0, d0) be an
initial configuration. From this we create a symmetric game network with
two players G = 〈G, (≡i)i∈[2], (Ωi)i∈[2]〉 where (s1, s2) ≡i (s′1, s

′
2) if, and only if,

s1 = s′1 and s2 = s′2 for i = 1, 2. The arena G consists of two disconnected
parts. It is shown in Fig. 5, but without G′.

The idea is that player 1 starts in s1,0 and player 2 starts in s2,0. They first
play a matching pennies game, and then player 2 plays in G′, this simulating
the counter machine M . We design the objectives so that player 2 wins if he
acts according to the rules of the counter machine and reaches a halting state.
If he does not reach a halting state, he wins if he chose an action different
from that of player 1 in the initial matching pennies game; otherwise player 1
wins. This way, if there is a legal, halting run of the counter machine, then
there is a Nash equilibrium where player 2 wins and player 1 loses. If there
is no legal halting run then the game is essentially reduced to a matching
pennies game which has no Nash equilibrium.

Formally, we do this by letting G′ consist of the control states of M with
the state connected to s2,H and s2,T being q0. Then for all i, j there is an
action C+ taking the play from qi through an intermediate state C+

ij to qj if
∆(qi) = (inc, C, qj) for some counter C ∈ {c, d} as illustrated in Fig. 6a.

In addition, for all i, j, k there is an action C− and an action C0, respec-
tively taking the play from qi through intermediate states C−ij to qj and C0

ik

to qk if ∆(qi) = (dec, C, qj, qk) for some counter C ∈ {c, d}, as shown in Fig. 6b.

27

Additionally, we add a self-loop to the halting state qF . For a finite path
ρ we now define

Cρ =
∣∣{k | ρk = C+

ij for some i, j}
∣∣− ∣∣{k | ρk = C−ij for some i, j}

∣∣
When given an initial value c0 and d0 of the counters we then define the

objectives such that player 2 loses in all plays ρ that contains a prefix ρ≤k
such that state ρk = C−ij and C0 − Cρ≤k < 0 for some C, i and j to make sure
player 2 plays according to the rules of the counter machine and does not
subtract from a counter with value zero. In addition, he loses in all plays
ρ that contains a prefix ρ≤k such that ρk = C0

ij and C0 − Cρ≤k 6= 0 to make
sure player 2 does not follow the true branch of a zero test when the value
of the counter being tested is not zero. Finally, player 2 wins if he does not
violate any of these restrictions and reaches qF . He also wins if he wins the
matching pennies game, no matter whether he violates the restrictions or not.
Player 1 simply wins whenever player 2 does not win.

In total this means that there is a Nash equilibrium where player 2 wins
and player 1 loses if M halts with initial counter values c0 and d0. If M does
not halt with initial values c0 and d0 the game is reduced to a matching pennies
game which has no Nash equilibrium. Thus, there is a Nash equilibrium in G
if, and only if, M halts, implying that the existence problem is undecidable.

The partially defined strategies specified for the two players in the re-
duction can trivially be extended to symmetric strategies which makes the
symmetric existence problem undecidable as well. �

4.2. Undecidability with partial information
We already mentioned an undecidability proof in Theorem 26 for two players,
perfect observation and perfect recall. However, the objectives used for
achieving the reduction are quite complex. We explain here how partial
observation also leads to undecidability, but for LTL objectives, and with
only three players. To show this, we can slightly alter a proof from [30].
There, synthesis of distributed reactive systems with LTL objectives is shown
undecidable in the presence of partial observation. The situation used in that
proof, where two processes (players 1 and 2) with an LTL objective ϕ play
against a hostile environment (player 3), can be modelled in our framework.
The idea is that ϕ is built from a deterministic Turing machineM in such a way
that the processes can win if, and only if, M halts on the empty input tape.

On top of this reduction, we add an initial matching-pennies module
between player 1 and 2, and slightly change the LTL objectives as follows:

28

players 1 and 2 still win if ϕ is true, but each player can also win by winning
the initial matching-pennies game. Player 3 still wins if ϕ is not true. Now,
if M halts on the empty input tape, then there is a Nash equilibrium where
players 1 and 2 play in such a way that ϕ is true; they both win, while player 3
loses and has no winning deviation.

On the other hand, suppose M does not halt on the empty input tape.
Let σ = (σ1, σ2, σ3) be a given strategy profile. If player 3 is losing along
the outcome of σ, then he can change his strategy and improve, since M
does not halt on the empty input tape; thus σ is not a Nash equilibrium. On
the other hand, if player 3 is winning along the outcome of σ, then one of
players 1 and 2 is losing. But then, this player can improve by changing his
strategy in order to win the initial matching pennies game. Thus, σ is not a
Nash equilibrium in this case either. This implies that there exists a Nash
equilibrium if, and only if, M halts on the empty input tape.

Theorem 27. Deciding the existence of a symmetric Nash equilibrium for
LTL objectives in symmetric game networks is undecidable for n ≥ 3 players.

4.3. Decidability for memoryless strategies
In this section we prove that the existence of a memoryless symmetric Nash
equilibrium is decidable, and that it is PSPACE-complete. Notice here that the
input of the observation relations ≡i are already of size |States|n × |States|n.
In the next section we consider more succinct encodings for these relations.

We first observe that PSPACE-hardness is a direct consequence of the
proof of PSPACE-hardness of model-checking of LTL in finite-state transition
systems [?].

We now explain our algorithms for deciding the (constrained) existence of
symmetric Nash equilibria restricted to memoryless strategies. The algorithm
is as follows: it first guesses a memoryless strategy for one player, from which
it deduces the strategies to be played by the other players. It then looks for
the players that are losing, and checks if they alone can improve their payoff.

More formally, we fix a symmetric game network G = 〈G, (≡i)i∈[n], (Ωi)i∈[n]〉
with symmetric representation π = (πi,j)i.j∈[n]. We assume that each objec-
tive Ωi is given by an LTL formula φi.

The first step is to guess and store an ≡0-realizable memoryless strategy σ0

for player 0. Such a strategy is a mapping from Statesn to Act; following
our remark above, such a strategy has size polynomial in the size of the

29

input. We intend player 0 to play according to σ0, and every player i to
play according to σ0(π−1

i,0 (s0, ..., sn−1)) in state (s0, ..., sn−1). From Lemma 15,
we know that all symmetric memoryless strategy profiles can be characterized
by such an ≡0-realizable memoryless strategy for player 0.

The algorithm then checks that no player can improve his payoff (and
checks the constraint, if any, on the sets of winning and losing players). To this
aim, for each player, the algorithm builds the outcome of the strategy profile
on-the-fly, and checks that it fulfills the objective of the considered player;
if not, it checks whether this player can play differently and satisfy its objective.

Such an algorithm requires storing the memoryless strategy, and building
ultimately-periodic paths. This can be performed on-the-fly: having strat-
egy σ0 stored on the tape, the algorithm computes the moves of all the players,
and can then apply the resulting transition. The state space Statesn being
polynomial in the size of the input, this can be performed in polynomial space.

Theorem 28. The constrained existence of a memoryless symmetric Nash
equilibrium for LTL objectives in symmetric game networks is PSPACE-complete.

Remark 29. Notice that this algorithm can be extended to bounded-memory
strategies. The algorithm would then require exponential space if the bound
on the memory is given in binary, and still polynomial space otherwise.

Notice also that the algorithm above could be adapted to handle non-
symmetric bounded-memory equilibria in non-symmetric game networks:
it would just guess all the strategies, and check the satisfaction of the LTL
objectives in the product automaton obtained by applying the strategies.

The algorithm could also be adapted, still with the same complexity, to
handle richer objectives as in the semi-quantitative setting of [28], where
players have several preordered objectives. Instead of guessing the winners,
the algorithm would guess, for each player, which objectives are satisfied, and
check that no individual improvement is possible. This can be done by listing
all possible improvements and checking that none of them can be reached.

5. Succinct Game Networks

As our goal is to represent large networks of components it is not feasible to
store the entire observation relation explicitly for all players since this can be
very large. In this section we investigate a succinct representation for sym-
metric game networks that can be represented symbolically in a succinct way.

30

A succinct symmetric game network is a tuple P = 〈G, (αj)j∈[k],≡, φ〉
where G is a one-player arena, αj : N→ (N→ N) indicate the k neighbours
of each player, and ≡ and φ are templates for defining ≡i and φi for each
player. We now explain how a symmetric game network G = Pn can be
obtained from a succinct symmetric game network P and an integer n ≥ k.

For a given n, the state space of Pn is Statesn. Then each αj(n) is a
mapping [n] → [n]; the integer αj(n)(i) represents the j-th neighbour of
player i. We require that the mappings αj be represented symbolically, e.g.
as arithmetic expressions involving j and the arguments n and i. We explain
below how this partially defines the symmetric representation for Pn.

The equivalence relation ≡ is a relation over (Statesk × NStates): the
first component deals with the k neighbours of each state, while the second
component compares the Parikh image of the configurations1. For any i ∈ [n],
and for any two configurations t and t′ in Statesn, we let

t ≡i t′ ⇔ (tαj(i))j∈[k] × (#s(t))s∈States ≡ (t′αj(i))j∈[k] × (#s(t
′))s∈States.

where #s(t) is the number of elements in the configuration t that are given
by state s.

For instance, in order to define exact observation of the left- and right
neighbours, we would define α1(n)(i) = i − 1 (mod n), α2(n)(i) = i + 1
(mod n), and let ≡ relate any two tuples as soon as their first two items
(t1, t2) and (t′1, t

′
2) match.

Similarly, φ is an LTL formula from which the objectives of the players
can be derived: the formula is built on two types of atomic propositions:

• for each atomic proposition p appearing in G, and for any j ∈ [k], pk is
an atomic proposition;

• for any two states s and s′, formulas of the form #s ∼ c and #s−#s′ ∼ c,
with ∼ ∈ {<,≤,=,≥, >} and c ∈ N, are atomic propositions.

For each i ∈ [n], formula φi is then obtained by replacing pk with pαk(n)(i).
The semantics of these atomic propositions is defined as follows:

• pαk(n)(i) holds true in configuration t if the label of state t(αk(n)(i))
contains p;

1Notice that this slightly differs from the Parikh condition we used in Example ??: there
several conditions would be imposed on Parik images of different subsets of neighbours.
The setting defined here could easily be extended to this case.

31

• #s−#s′ ∼ c holds true in t if, writing ns for the number of occurrences
of s in t and ns′ for the number of occurrences of s′ in t, it holds
ns − ns′ ∼ c. Similarly for #s ∼ c.

It remains to see under which conditions the resulting game network
〈G, (≡i)i∈[n], (φi)i∈[n]〉 is a symmetric game network: for this, we need to
prove the existence of a symmetric representation π. This puts contraints
on (αj)j∈[k], depending on ≡ and φ. In the general case (omitting trivial cases
where e.g. ≡ is the identity relation, or φ is always true), the condition t ≡i
t′ ⇔ t(π−1

i,j) ≡j t′(π−1
i,j) might give rise to conditions πi,j(αl(n)(i)) = αl(n)(j)

on the symmetric representation. This corresponds to our intuition that the
role of player αl(n)(j) w.r.t. j (namely, being his l-th neighbour) is the same
as the role of αl(n)(i) w.r.t. i. In particular, this in general implies that if
αl(n)(i) = αl′(n)(i) for some i, then αl(n)(j) = αl′(n)(j) for all j ∈ [n].

Finally, the initial configuration of a succinct game network is given as a
function mapping each integer n ≥ k to a configuration in Statesn. This can
for instance be given as a sequence of pairs (sj, φj) where sj ∈ States and φj
is a boolean function taking n and i as argument. Then, in Pn, player i would
have initial state sj for the smallest j for which φj(n, i) is true (requiring that
φl ≡ > for some l, so that such a j always exists).

5.1. Undecidability of parameterized existence
The synthesis of symmetric Nash equilibria for an arbitrary number of players
was one of our target applications in this work: we study the problem whether
a succinct symmetric game network admits a symmetric Nash equilibrium
when the number of players is large enough. More precisely, we aim at
deciding the existence of a one-player strategy σ0, and of an integer n0, such
that the strategy profile obtained by making all n0 players follow strategy σ0

(each player having its own observation) is a Nash equilibrium. We show
that deciding the existence of such an equilibrium is undecidable, even when
considering only memoryless strategies.

Theorem 30. The existence of a parameterized symmetric Nash equilibrium
for LTL objectives in succinct symmetric game networks is undecidable (even
for memoryless strategies).

We first give a proof for existence of a positive symmetric Nash equilibrium
and then describe how to do a similar construction without the positivity
constraint.

32

LetM = (Q, q0,Σ, δ,Halt) be a deterministic Turing machine (δ : Q×Σ→
Q × Σ × {−1,+1}). We assume Halt is a sink state. We build a succinct
symmetric game network P that captures the behaviour of M. We intend to
enforce thatM halts if, and only if, there exists n such that Pn has a positive
symmetric Nash equilibrium from some initial configuration. Moreover, we
will show that there is a positive Nash equilibrium in Pn if, and only if, there
is a memoryless one.

We first define the one-player arena G = 〈States, {A},Act,Mov,Tab〉,
which is depicted on Fig. 7, as follows:

• States = ((Q× Σ) ∪ Σ ∪ {Halt})× {L,#, R}

• Act = Σ ∪Q

• Mov(((q, a), •), A) = Σ if q 6= Halt
Mov((a, •), A) = Q ∪ {a}
Mov(((Halt, a), •), A) = Mov(Halt) = {Halt}

• Tab(((q, a), •), b) = (b, •) if q 6= Halt
Tab((a, •), q) = ((q, a), •), Tab((a, •), a) = (a, •)
Tab(((Halt, •), a),Halt) = Tab((Halt, •),Halt) = (Halt, •)

Each state is marked with a special symbol in {L,#, R}: letters L and R
are used to indicate the left-most and right-most cells of the tape, while
identifies all other cells.

In this reduction, we let k = 3 (each player observes two neighbours plus
himself), with α1(n)(i) = i− 1 (mod n), α2(n)(i) = i, and α3(n)(i) = i+ 1
(mod n). The observation relation ≡ is the identity on States3, with no
condition on the Parikh images. This defines a ring topology where each
player has perfect observation of himself and of his left and right neighbours.

We now define the objectives of the players, by describing an LTL formula ϕ.
For the sake of readability, we use atomic propositions p−1, p and p+1 (instead
of p1, p2 and p3, respectively), representing the value of atomic proposition p for
players α1(n)(i), α2(n)(i) and α3(n)(i). The LTL formula ϕ is given in Fig. 8.

Assuming (w.l.o.g.) that all the cells of the tape initially contains a special
symbol [, we set the initial configuration of the network to be ([,#) for all
players, except for players 0, 1 and 2, starting respectively in states ([, R),
([, L) and ((q0, [),#). We write γn for this initial configuration.

33

q, a

b

q′, b

q, b

a c

a c

q′, a q′, c

q, c

...
...

...
. . .

. . .

. . .

. . .

. . .

. . .

Halt, cHalt, bHalt, a Halt

b

b

q′

q

Halt

Halt
Halt

Halt

Figure 5: The one-player arena (with transitions for one 4-tuple (q, q′, a, b)). Note that the
second component • ∈ {L,#, R} of the states are omitted.

Lemma 31. IfM halts, then there exists n and a memoryless strategy σ that
induces a positive symmetric memoryless Nash equilibrium in Pn from γn.

Proof. SupposeM halts. Then the unique finite run ρ ofM uses only a finite
number of tape cells. Let this number be n1, and consider the game Pn, for
any n = n1 + 2.

In this game, define a memoryless strategy such that action [is always
chosen from states ([, L) and ([, R) (since the tape head never points to these
positions). For states with second component #, let the choice of action for
player i ∈ {1, ..., n1} in round k of the game correspond to the content of cell i
in the k-th step of the run ρ. It also means playing the control state of M
when the tape head in ρ moves to cell i. As player i can see the contents of
the two cells i+ 1 and i− 1, as well as cell i, he can derive from the current
state what to play next in this strategy profile. Thus, this can be done using
a memoryless strategy. As every player can use this strategy, this induces a
symmetric memoryless strategy profile.

As ϕi expresses that player i plays exactly according to the rules of the
Turing machine, that some player eventually reaches the Halt state (because
it requires all players to eventually stay in the same state), and that the state

34

ϕ =
∧

(q,a)∈Q×Σ s.t.
δ(q,a)=(q′,b,r), c,d∈Σ
γ1,γ2,γ3∈{L,#,R}

G

 (((q, a), γ1) ∧ (c, γ2)r ∧ (d, γ3)−r

)
⇒

X
(

(b, γ1) ∧ ((q′, c), γ2)r ∧ (d, γ3)−r

)
∧

G

 ((c, γ1) ∧ (d, γ2)r ∧ ((q, a), γ3)−r

)
⇒

X
(

((q′, c), γ1) ∧ (d, γ2)r ∧ (b, γ3)−r

)

∧ ∧

a,b,c∈Σ
γ1,γ2,γ3∈{L,#,R}

G
[(

(a, γ1)−1 ∧ (b, γ2) ∧ (c, γ3)+1

)
⇒ X (b, α2)

]

∧ F
∨

s∈States

G s ∧
∧

γ∈{L,R}

(
([, γ)⇒ G ([, γ)

)

Figure 6: Formula ϕ

of players beginning in ([, L) and ([, R) never change states, this strategy
profile ensures that every player wins as ρ is a halting run.

Thus, the strategy profile defined is a memoryless positive symmetric
Nash equilibrium in Pn. Note that this strategy also induces a memoryless
positive symmetric Nash equilibrium in Pn′ for all n′ ≥ n. �

Lemma 32. If M does not halt, then there exists no n for which there is a
positive Nash equilibrium in Pn from γn.

Proof. We do the proof by contraposition. Suppose that there exists n such
that there is a positive symmetric Nash equilibrium σ in Pn from γn. Then
the unique outcome % of the associated strategy profile from γn satisfies ϕi
for all 0 ≤ i ≤ n+ 1. In particular, player 0 and player n0 − 1 always choose
action [and stay in the states ([, L) and ([, R) respectively.

Further, as ϕi is satisfied in % for all other players, the topmost conjuncts
in the definitions of the formulas imply that the players must play according
to the unique run ρ of M. The truth of the formula also implies that one of
the players eventually plays the halting state as all players eventually keep
staying in the same state. This means that M does in fact halt. �

35

Theorem 28 now follows from Lemmas 29 and 30. In particular, note that
they imply undecidability both with and without the restriction to memoryless
strategies. Note also that the proof above is only for the restriction to positive
equilibria. However, using techniques similar to the proof of Proposition 23,
the proof can be adapted to handle unconstrained Nash equilibria.

5.2. Decidability with bounded memory
In this section, we keep the setting of succinct representations for the ob-
servation relation and for the LTL objectives, but fix the number of players.
We prove that the existence of a memoryless (or even bounded-memory)
symmetric Nash equilibrium is decidable, and that it is EXPSPACE-complete.
Notice that we assume that the number of players is given in binary, so that
the state space Statesn is actually doubly-exponential in the size of the input.

We first notice that EXPSPACE-hardness is a direct consequence of the
proof of Theorem 28; the only difference is that we have to consider exponential-
space Turing machines. The reason that the size of the tape is exponential in
this reduction is that there is one cell for each player. Here, the crucial point is
that the number n of players is given in binary in the succinct representation.

The algorithm follows the same line as in Section ??: it guesses a mem-
oryless strategy to be stored on the tape, and checks that no player has
a profitable deviation by guessing paths step-by-step. The strategy maps
each information set to an action. The number of information sets is the
number of different equivalence classes in ≡: the number of different Parikh
images of size n over States is bounded by nStates, and the number of different
configurations for the k neighbours is Statesk. Here k can be assumed to be
given in unary, since the input contains one function αj for each 0 ≤ j ≤ k−1.
Hence the number of information sets is exponential, and the strategy can be
guessed and stored using exponential space.

Checking whether a player meets his objective or has an incentive to
deviate from the guessed strategy can be achieved in exponential space,
following the same ideas as in Section ??.

Theorem 33. Deciding the constrained existence of a memoryless symmetric
Nash equilibrium for LTL objectives in succinct symmetric game networks is
EXPSPACE-complete.

Remark 34. As for the case of non-succinct symmetric game networks, this
algorithm can be lifted to handle finite-memory strategies. Here, the problem
remains EXPSPACE-complete, even when the memory bound is given in binary.

36

The algorithm can also be adapted to handle non-symmetric equilibria, by
guessing and storing exponentially many memoryless strategies (one for each
player).

6. Conclusion

In this paper, we have proposed a model of games for large networks of
identical devices. This model of games is composed of a single arena, which
is duplicated (one copy for each player), and each player has only a partial
information on the whole state-space of the system. To fully represent large
networks of identical devices, we added symmetry constraints, which yields
non-local constraints in the system.

For this model, we have studied several problems related to the com-
putation of symmetric pure Nash equilibria. We have fully characterized
the complexity of the (constrained) existence problem for bounded-memory
strategies, and we have proven several undecidability results when the memory
of the strategies is unbounded.

This work opens many interesting directions of research. Besides solving
the questions left open in this paper, these directions include the study of
mixed Nash equilibria in such networks of games. Other possibilities for further
work include extended quantitative objectives, or stronger solution concepts,
like sub-game perfect equilibria [27] or secure equilibria [31]. Restriction to
interesting subclasses of observation relations and network topologies is also
important to find meaningful special cases with lower complexity.

References

[1] T. A. Henzinger, Games in system design and verification, in: Proc.
10th Conference on Theoretical Aspects of Rationality and Knowledge
(TARK’05), 2005, pp. 1–4.

[2] J. F. Nash, Jr., Equilibrium points in n-person games, Proc. National
Academy of Sciences 36 (1) (1950) 48–49.

[3] K. Chatterjee, R. Majumdar, M. Jurdziński, On Nash equilibria in
stochastic games, in: Proc. 18th International Workshop on Computer
Science Logic (CSL’04), 2004, pp. 26–40.

37

[4] M. Ummels, D. Wojtczak, The complexity of Nash equilibria in stochastic
multiplayer games, Logical Methods in Computer Science 7 (3:20).

[5] P. Bouyer, R. Brenguier, N. Markey, M. Ummels, Pure Nash equilibria
in concurrent games, Logical Methods in Computer Science 11 (2:9).

[6] K. Chatterjee, T. A. Henzinger, N. Piterman, Strategy logic, Information
and Computation 208 (6) (2010) 677–693.

[7] F. Mogavero, A. Murano, G. Perelli, M. Y. Vardi, Reasoning about
strategies: On the model-checking problem, ACM Transactions on Com-
putational Logic 15 (4) (2014) 34:1–34:47.

[8] F. Laroussinie, N. Markey, Augmenting ATL with strategy contexts,
Information and Computation(To appear).

[9] J. F. Nash, Jr., Non-cooperative games, Annals of Mathematics 54 (2)
(1951) 286–295.

[10] P. Dasgupta, E. Maskin, The existence of equilibrium in discontinuous
economic games, 1: theory, The Review of Economic Studies 53 (1) (1986)
1–26.

[11] B. Aminof, S. Jacobs, A. Khalimov, S. Rubin, Parametrized model check-
ing of token-passing systems, in: Proceedings of the 15th International
Workshop on Verification, Model Checking, and Abstract Interpretation
(VMCAI’14), 2014, pp. 262–281.

[12] B. Aminof, T. Kotek, S. Rubin, F. Spegni, H. Veith, Parameterized
model checking of rendezvous systems, in: CONCUR 2014 - Concurrency
Theory - 25th International Conference, CONCUR 2014, Rome, Italy,
September 2-5, 2014. Proceedings, 2014, pp. 109–124.

[13] S. M. German, A. P. Sistla, Reasoning about systems with many processes,
Journal of the ACM 39 (3) (1992) 675–735.

[14] E. A. Emerson, A. P. Sistla, Symmetry and model checking, Formal
Methods in System Design 9 (1-2) (1996) 105–131.

[15] R. Alur, S. La Torre, P. Madhusudan, Modular strategies for recursive
game graphs, Theor. Comput. Sci. 354 (2) (2006) 230–249.

38

[16] P. Wolper, V. Lovinfosse, Verifying properties of large sets of pro-
cesses with network invariants, in: Proceedings of the 1st International
Workshop on Automatic Verification Methods for Finite State Systems
(CAV’89), 1990, pp. 68–80.

[17] P. A. Abdulla, B. Jonsson, On the existence of network invariants for
verifying parameterized systems, in: Correct System Design, Recent
Insight and Advances, 1999, pp. 180–197.

[18] N. Bertrand, P. Fournier, A. Sangnier, Playing with probabilities in
reconfigurable broadcast networks, in: Proceedings of the 17th Interna-
tional Conference on Foundations of Software Science and Computation
Structure (FoSSaCS’14), 2014, pp. 134–148.

[19] R. Alur, Th. A. Henzinger, O. Kupferman, Alternating-time temporal
logic, Journal of the ACM 49 (2002) 672–713.

[20] P. A. Abdulla, B. Jonsson, M. Nilsson, M. Saksena, A survey of regular
model checking, in: Proceedings of the 15th International Conference on
Concurrency Theory (CONCUR’04), 2004, pp. 35–48.

[21] H. Bherer, J. Desharnais, R. St-Denis, Control of parameterized discrete
event systems, Discrete Event Dynamic Systems 19 (2) (2009) 213–165.

[22] H. Bherer, Controller synthesis for parameterized discrete event systems,
Ph.D. thesis, Université Laval, Québec, Canada (2009).

[23] W. Thomas, Infinite games and verification, in: Proc. 14th International
Conference on Computer Aided Verification (CAV’02), 2002, pp. 58–64.

[24] M. J. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press,
1994.

[25] C. Baier, J.-P. Katoen, Principles of Model-Checking, MIT Press, 2008.

[26] P. Bouyer, N. Markey, D. Stan, Mixed Nash equilibria in concurrent
games, in: Proceedings of the 34th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’14), 2014, pp.
351–363.

[27] M. J. Osborne, An Introduction to Game Theory, Oxford University
Press, 2004.

39

[28] P. Bouyer, R. Brenguier, N. Markey, M. Ummels, Concurrent games
with ordered objectives, in: Proc. 15th International Conference on Foun-
dations of Software Science and Computation Structure (FoSSaCS’12),
2012, pp. 301–315.

[29] F. Mogavero, A. Murano, M. Y. Vardi, Reasoning about strategies,
in: Proceedings of the 30th Conferentce on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’10), Leibniz-
Zentrum für Informatik, 2010, pp. 133–144.

[30] A. Pnueli, R. Rosner, Distributed reactive systems are hard to synthesize,
in: Proc. 31st Annual Symposium on Foundations of Computer Science
(FOCS’90), IEEE Computer Society Press, 1990, pp. 746–757.

[31] K. Chatterjee, T. A. Henzinger, M. Jurdzinski, Games with secure
equilibria, Theor. Comput. Sci. 365 (1-2) (2006) 67–82.

[32] F. Brandt, F. A. Fischer, M. Holzer, Symmetries and the complexity of
pure nash equilibrium, J. Comput. Syst. Sci. 75 (3) (2009) 163–177.

[33] S. fen Cheng, D. M. Reeves, Y. Vorobeychik, M. P. Wellman, Notes on
equilibria in symmetric games, in: Proceedings of the 6th International
Workshop On Game Theoretic And Decision Theoretic Agents (GTDT),
2004, pp. 71–78.

[34] C. T. Ryan, A. X. Jiang, K. Leyton-Brown, Computing pure strategy
nash equilibria in compact symmetric games., in: EC, 2010, pp. 63–72.

[35] C. Papadimitriou, The complexity of finding Nash equilibria, in: N. Nisan,
T. Roughgarden, É. Tardos, V. V. Vazirani (Eds.), Algorithmic Game
Theory, Cambridge University Press, 2007, pp. 29–51.

[36] Y. Shoham, K. Leyton-Brown, Multiagent Systems - Algorithmic, Game-
Theoretic, and Logical Foundations, Cambridge University Press, 2009.

40

Appendix A. Symmetric Normal-Form Games

In this section, we question the definition of symmetric normal-form games
introduced in [10] which is as follows:

Definition 35. A symmetric normal-form game is a tuple 〈[n], S, (ui)i∈[n]〉
where [n] is the set of players, S is a finite set of strategies and ui : S

n → R

are utility functions such that for all strategy vectors (a0, ..., an−1) ∈ Sn, all
permutations π of [n] and all i it holds that

ui(a0, ..., an−1) = uπ(i)(aπ(0), ..., aπ(n−1)).

In [10] and other sources where symmetric games are defined [32, 33, 34,
24, 35, 36] the basic intuition of what a symmetric normal-form game should
be is a game where all players have the same set of actions and the same utility
functions in the sense that the utility of player should depend exactly on
which action he chooses himself and on the number of other players choosing
any particular action. However, the definition above does not seem to capture
the scenario at hand and might even be erroneous. For two players we agree
with the definition, and indeed in [24, 36] it is only defined for two players.
In [32, 33, 34, 35] however it is defined such that ui(ai, a−i) = uj(aj, a−j)
whenever ai = aj and a−i = a−j. Here, ai means the action taken by player i
and a−i means the set of actions taken by players other than player i. This
definition seems to agree with the intuition about the games which we wish
to represent. One argument against Definition 34 is that it has the following
consequence:

Theorem 36. Using Definition 34 for games with more than two players,
for all pairs of players i, j and all strategy profiles (a0, ..., an−1) we have

ui(a0, ..., an−1) = uj(a0, ..., an−1).

In particular, for zero-sum games, we have ui(a0, ..., an−1) = 0 for every
player i and all strategy profiles (a0, ..., an−1).

Proof. We start by looking at games with n ≥ 3. First, using the permutation2

(1, 2, 0, ...), we get

u0(a0, a1, a2, ...) = u1(a1, a2, a0, ...).

2We write (p0, p1, p2, ...) to denote the permutation (i 7→ pi) for all i, so that permutation
(1, 2, 0) is (0 7→ 1, 1 7→ 2, 2 7→ 0, ...).

41

Then, using (1, 0, 2, ...) (which exchanges the first two players), we get

u1(a1, a2, a0, ...) = u0(a2, a1, a0, ...).

Putting these equations together, we get u0(a0, a1, a2, ...) = u0(a2, a1, a0, ...).
This means that player 0 can switch action with player 2 without changing his
utility. This can be done for arbitrary opponents by symmetry and since we
can switch actions of all other players without changing the utility using per-
mutations where π(0) = 0, we have that u0(a0, ..., an−1) = u0(aπ(0), ..., aπ(n−1))
for every permutation π. By symmetry, for every i and every permutation π,
we get

ui(a0, ..., an−1) = ui(aπ(0), ..., aπ(n−1)).

Now consider any two players i and j as well as a permutation π such that
π(i) = j. Then we have

ui(a0, ..., an−1) = uπ(i)(aπ(0), ..., aπ(n−1))

= uj(aπ(0), ..., aπ(n−1))

= uj(a0, ..., an−1)

using the result above. This means that for every choice of actions of the
players, every player gets the same utility. �

One could define a class of games with this property, however for the
definition at hand the property is not true for games with two players, which
is a quite strange property of a class of games.

In the following definition we propose a fix to the above definition. The
resulting definition is equivalent to the definitions in [32, 33, 34, 35], but it is
given in a form resembling Definition 34. Note that this formulation has simi-
larities with our own definition of a symmetric game network (Definition 8).

Definition 37. A symmetric normal-form game is a tuple 〈[n], S, (ui)i∈[n]〉
where [n] is the set of players, S is a finite set of strategies, and ui : S

n → R

are utility functions such that for all strategy vectors (a0, ..., an−1) ∈ Sn, all
permutations π of [n] and all i, it holds that

ui(a0, ..., an−1) = uπ−1(i)(aπ(0), ..., aπ(n−1)).

The intuition behind this definition is as follows. Suppose we have a
strategy profile σ = (a0, ..., an−1) and a strategy profile where the actions of

42

the players have been rearranged by permutation π, σπ = (aπ(0), ..., aπ(n−1)).
We would prefer that player j, using the same action in σπ as player i does in σ,
gets the same utility. Since j uses aπ(j), this means that π(j) = i⇒ j = π−1(i).
Now, from this intuition we have that ui(a0, ..., an−1) = uj(aπ(0), ..., aπ(n−1)) =
uπ−1(i)(aπ(0), ..., aπ(n−1)). Apart from this intuition, the new definition can
be shown to be equivalent to the one from [32, 33, 34, 35]. The reason that
we agree with Definition 34 for two-player games is that π = π−1 for all
permutations π of two elements.

Appendix B. A server-client architecture

We show how to model the server-client architecture in a symmetric way.
Assume S represents the arena for the server, and C for the client. The
arena G is composed of three disconnected components: S, C, and an extra
state sink with a selfloop on it. We assume there are n clients. The game G is
defined as the (2n+ 1)-players game network G = (G, (≡i)i∈[2n+1], (Ωi)i∈[2n+1])
where:

• we define NS(0) = {0, 1, . . . , n}, for every 1 ≤ i ≤ n, we define NS(i) =
{0, i, n + 1 . . . , 2n − 1}, and for every n + 1 ≤ i ≤ 2n, we define
NS(i) = {0, n+ 1, . . . , 2n}

• we define NC(0) = {0, n + 1}, and for every 1 ≤ i ≤ 2n, we define
NC(i) = {0, i}

• (s0, . . . , s2n−2) ≡i (s′0, . . . , s
′
2n−2) if, and only if, the following conditions

hold:

– si is an S-state if, and only if, s′i is an S-state

– si is a C-state if, and only if, s′i is a C-state

– if si is an S-state, then for every j ∈ NS(i), sj = s′j

– if si is a C-state, then for every j ∈ NC(i), sj = s′j

This is a symmetric game network. A possible symmetric representation
is: π0,i(0) = i, π0,i(1) = i and π0,i(j) = n − j + 1 if 1 ≤ i ≤ n; π0,i(0) = i,
π0,i(1) = i and π0,i(2) = n+ 1... π0,i(n) = 2n if n+ 1 ≤ i ≤ 2n.

Assuming that player 0 will play in S, players 1, . . . , n will play in C, and
all other players are trapped in sink, this properly model the server-client
architecture since in that case:

43

• ≡0 reduces to Id([n])

• ≡i reduces to Id({0, i}) for every 1 ≤ i ≤ n

With this modeling, we will be interested in symmetric Nash equilibria starting
at configuration (s0, c0, . . . , c0, sink, . . . , sink) where s0 is the initial state of S
and c0 the initial state of C.

44

	Introduction
	Nash equilibria in Symmetric Games with Partial Observation
	Definitions
	Symmetric Concurrent Games
	Formalization of the model

	Problems considered and relationships between them
	From Nash equilibria to symmetric Nash equilibria
	From positive existence to existence

	Deciding the existence of symmetric Nash equilibria
	Undecidability with non-regular objectives
	General strategies
	Undecidability with parameterized number of players
	Bounded-memory Nash equilibria

	Conclusion
	Symmetric Normal-Form Games
	A server-client architecture

