
ar
X

iv
:1

50
6.

03
88

3v
1

 [
cs

.G
T

]
 1

2
Ju

n
20

15

Hierarchical Information Patterns and

Distributed Strategy Synthesis

Dietmar Berwanger1, Anup Basil Mathew12, and Marie van den Bogaard1

1 LSV, CNRS & Université Paris-Saclay, France
2 IMSC, Chennai, India

Abstract Infinite games with imperfect information tend to be undecid-
able unless the information flow is severely restricted. One fundamental
decidable case occurs when there is a total ordering among players, such
that each player has access to all the information that the following ones
receive.
In this paper we consider variations of this hierarchy principle for syn-
chronous games with perfect recall, and identify new decidable classes
for which the distributed synthesis problem is solvable with finite-state
strategies. In particular, we show that decidability is maintained when
the information hierarchy may change along the play, or when transient
phases without hierarchical information are allowed.

1 Introduction

Realising systems that are correct by design is a persistent ambition of com-
puting science. The stake is particularly high for systems that interact with an
unpredictable environment over indeterminate time. Pioneering results in the
area of synthesis, due to Büchi and Landweber [3], and Rabin [16] show that the
task can be automatised for the case of a monolithic design, with correctness
conditions specified by automata over infinite objects — words or trees repre-
senting computations. A most natural framework for representing the problem
setting and its solution is in terms of infinite games with perfect information
over finite graphs, as described by Pnueli and Rosner in [14], and by Thomas
in [17].

For distributed systems, in which several components interact towards sat-
isfying a global specification, the game-theoretical formulation of the synthesis
problem leads to games with imperfect information and the question of whether
there exists a winning strategy that can be distributed among several players.
Unfortunately, such games are much less amenable to automated solutions: as
pointed out by Peterson and Reif in [13], it is generally undecidable whether a so-
lution, i.e., a distributed winning strategy, exists for a finitely presented game for
two players against Nature (or the environment); furthermore, Janin [8] showed
that, even if a solution exists, it may not be implementable by a finite-state de-
vice. As there is no hope for solving the distributed synthesis problem uniformly,
it remains to look out for classes that allow for an algorithmic treatment. For

http://arxiv.org/abs/1506.03883v1

surveys on results in this direction, see e.g., the article [5] of Gastin, Sznajder,
and Zeitoun, and the thesis of Puchala [15].

One fundamental case in which the distributed synthesis problem becomes
decidable is that of hierarchical systems: these correspond to games where there
is a total order among the players such that, informally speaking, each player
has access to the information received by the players that come later in the or-
der. Peterson and Reif [13] showed that for games in this setting, it is decidable
whether distributed winning strategies exist – although, with nonelementary
complexity –, and if yes, finite-state winning strategies can be effectively syn-
thesised. The result was extended by Pnueli and Rosner [14] to the framework
of distributed systems over fixed linear architectures where information can flow
only in one direction. Later, Kupferman and Vardi developed a fundamental
automata-theoretic approach [11] that allows to extend the decidability result
from linear-time to branching-time specifications, and also removes some of the
syntactic restrictions imposed by the fixed-architecture setting of Pnueli and
Rosner. Finally, Finkbeiner and Schewe [4] give an effective characterisation of
communication architectures on which distributed synthesis is decidable. The
criterion requires absence of information forks, which implies a hierarchical or-
der in which processes, or players, have access to the observations provided by
the environment.

The setting of games is more liberal than that of architectures with fixed
communication channels. For instance, Muscholl and Walukiewicz [12] present
a decidable class of synthesis problems under different assumptions on the com-
munication between processes that are not subsumed by information-fork free
architectures. A rather general, though non-effective condition for games to ad-
mit finite-state distributed winning strategies is given in [2], based on epistemic
models representing the knowledge acquired by players in a game with perfect
recall. This condition suggests that, beyond the fork-free architecture classifi-
cation there may be further natural classes of games for which the distributed
synthesis problem is decidable.

In this paper, we study a relaxation of the hierarchic-information pattern
underlying the basic decidability results on games with imperfect information.
Firstly, we extend the assumption of hierarchical observation, that is positional
information, by incorporating perfect recall. Rather than requiring that a player
observes the signal received by a less-informed player, we will require that he
can deduce it from his observation of the play history. It can be easily seen that
this gives rise to a decidable class, and it is likely that previous authors had a
perfect-recall interpretation in mind when describing hierarchical systems, even
if the formal definitions in the relevant literature generally refer to observations.

Secondly, we investigate the case when the hierarchic information order is
not fixed, but may change dynamically along the play. This allows to model
situations where the schedule of the interaction allows a less-informed player
to become more informed than others, or where the players may coordinate on
designating one to receive certain signals, and thus become more informed than

2

others. We show that this condition of dynamic hierarchical observation also
leads to a decidable class of the distributed synthesis problem.

As a third extension, we consider the case when the condition of hierarchic
information (based on perfect recall) is intermittent. That is, along every play,
it occurs infinitely often that the information sets of players are totally ordered;
nevertheless, there may be histories, at which incomparable information sets
arise, as it is otherwise typical of information forks. We show that, at least for
the case of winning conditions over attributes observable by all players, this
condition of recurring hierarchical observation is already sufficient for the decid-
ability of the synthesis problem, and that finite-state winning strategies exist for
all solvable instances.

For all the three conditions of hierarchic information, it is decidable with
relatively low complexity whether they hold for a given game. However, the
complexity of solving a game is nonelementary in all cases, as they are more
general than the condition of hierarchic observation, known to admit no elemen-
tary lower bound [14].

2 Preliminaries

2.1 Games on graphs

We use the standard model of concurrent games with imperfect information,
following the notation from [2]. There is a set N = {1, . . . , n} of players and a
distinguished agent called Nature. A list of elements x = (xi)i∈N , one for each
player, is a profile. For each player i, we fix a set Ai of actions and a set Bi of
observations ; these are finite sets.

A game graph G = (V,E, (βi)i∈N) consists of a finite set V of nodes called
positions, an edge relation E ⊆ V × A × V representing simultaneous moves
labelled by action profiles, and a profile of observation functions βi : V → Bi

that label every position with an observation, for each player. We assume that
the graph has no dead ends, that is, for every position v ∈ V and every action
profile a ∈ A, there exists an outgoing move (v, a, w) ∈ E.

Plays start at a designated initial position v0 ∈ V and proceed in rounds.
In a round at position v, each player i chooses simultaneously and indepen-
dently an action ai ∈ Ai, then Nature chooses a successor position v′ reach-
able along a move (v, a, v′) ∈ E. Now, each player i receives the observation
βi(v′), and the play continues from position v′. Thus, a play is an infinite se-
quence π = v0, v1, v2, . . . of positions, such that for all ℓ ≥ 0, there exists a
move (vℓ, a, vℓ+1) ∈ E. A history is a nonempty prefix π = v0, v1, . . . , vℓ of
a play; we refer to ℓ as the length of the history, and we denote by Hist(G)
the set of all histories on the game graph G. The observation function extends
from positions to histories1 and plays as βi(π) = βi(v1), β

i(v2), . . . , and we
write Histi(G) := {βi(π) | π ∈ Hist(G)} for the set of observation histories of

1 Note that we discard the observation at the initial position; this will be technically
convenient and does not restrict the model.

3

player i. We say that two histories π, π′ are indistinguishable to player i, and
write π ∼i π′, if βi(π) = βi(π′). This is an equivalence relation, and its classes
are called the information sets. The information set of player i at history π is
P i(π) := {π′ ∈ Hist(G) | π′ ∼i π}. Accordingly, our model is synchronous and
we assume perfect recall.

A strategy for player i is a mapping si : V ∗ → Ai from histories to actions
such that si(π) = si(π′), for any pair π ∼i π′ of indistinguishable histories. We
denote the set of all strategies of player i with Si and the set of all strategy
profiles by S. A history or play π = v0, v1, . . . follows the strategy si ∈ Si,
if, for every ℓ > 0, we have (vℓ, a, vℓ+1) ∈ E for some action profile a with
ai = si(v0, v1, . . . , vℓ). The play π follows a strategy profile s ∈ S, if it follows
all strategies si. The set of possible outcomes of a strategy profile s is the set of
plays that follow s.

A winning condition over a game graph G is a set W ⊆ V ω of plays. A dis-
tributed game G = (G,W) is described by a game graph and a winning condition.
We say that a play π is winning in G, if π ∈ W . A strategy profile s is winning
in G, if all its possible outcomes are so. In this case, we refer to s as a distributed
winning strategy. Solving a game means to determine whether a distributed win-
ning strategy exists, and if yes, to construct one.

Automata

Our focus is on finitely-represented games, where the game graphs are finite and
the winning conditions described by finite-state automata. Specifically, winning
conditions are given by a colouring function γ : V → C and an ω-regular set
W ⊆ Cω describing the set of plays v0, v1, . . . with γ(v0), γ(v1), · · · ∈ W . In
certain cases, we assume that the colouring is observable to each player i, that
is, βi(v) 6= βi(v′) whenever γ(v) 6= γ(v′). For general background on automata
for games, we refer to the survey [7].

Strategies shall also be represented as finite-state machines. A Moore ma-
chine over an input alphabet Σ and an output alphabet Γ is described by a
tuple (M,m0, µ, α) consisting of a finite set M of memory states with an initial
state m0, a memory update function µ : M × Σ → M and an output func-
tion ν : M → Γ defined on memory states. Intuitively, the machine starts in
the initial memory state m0, and proceeds as follows: in state m, upon read-
ing an input symbol x ∈ Σ, updates its memory state to m′ := µ(m,x) and
then outputs the letter ν(m). Formally, the update function µ is extended to
input words in Σ∗ by setting, µ(ε) := m0, for the empty word, and by setting,
µ(x0 . . . xℓ−1xℓ) := µ(µ(x0 . . . xℓ−1), xℓ), for all nontrivial words x0 . . . xℓ−1xℓ.
This gives rise to the function M : Σ∗ → Γ ∗ implemented by M , defined by
(x0, . . . , xℓ) := ν(µ(x0 . . . xℓ)). A strategy automaton for player i on a game G,
is a Moore machine M with input alphabet Bi and output alphabet Ai. The
strategy implemented by M is defined as si(v0, . . . , vℓ−1) := M(βi(v0 . . . vℓ−1)).
A finite-state strategy is one implemented by a strategy automaton.

Sometimes it is convenient to refer to Mealy machines rather than Moore
machines. These are finite-state machines of similar format, with the only differ-

4

ence that the output function ν : M × Σ → Γ refers to transitions rather than
their target state.

In the following we will speak of several classes C of finite games, always
assuming that winning conditions are given as ω-regular languages. We say that
the synthesis problem for C is finite-state solvable, if

(i) it is decidable whether a given game G ∈ C admits a distributed winning
strategy, and

(ii) if yes, we can effectively construct a profile of finite-state machines that
implements a distributed winning strategy for G.

3 Static information hierarchies

3.1 Hierarchical observation

We set out from the basic pattern of hierarchical information underlying the
decidability results cited in the introduction [13, 14, 11]. These results rely on a
positional interpretation of information, i.e., on observations.

Definition 1. A game graph yields hierarchical observation, if there exists a
total order � among the players such that whenever i � j, then for all pairs v, v′

of positions, βi(v) = βi(v′) implies βj(v) = βj(v′)

In other words, if i � j, then the observation of player i determines the
observation of player j.

Kupferman and Vardi present an automata-theoretic construction [11] for
solving the distributed synthesis problem for such games. The key operation is
that of widening – a finite-state interpretation of strategies for a less-informed
player j within the strategies of a more-informed player i � j. This allows to first
solve a game as if all the moves were performed by the most-informed player,
which comes first in the order �, and successively discard solutions that cannot
be implemented by the less-informed players, i.e., those which involve strategies
that are not in the image of the widening interpretation.

Theorem 2 ([11]). For games with hierarchical observation, the synthesis prob-
lem is finite-state solvable.

3.2 Incorporating perfect recall

In a first step, we extend the notion of hierarchical information to incorporate
the power of perfect recall that players have. While maintaining the requirement
of a fixed order, we now ask that the information set of a player determines the
information sets of those who follow in the order.

Definition 3. A game graph yields (static) hierarchical information, if there
exists a total order � among the players such that, for all histories π, if i � j

then P i(π) ⊆ P j(π).

5

The following lemma provides an operational characterisation of the condi-
tion. We detail the proof, as its elements will be used later.

Lemma 4. A game graph G yields static hierarchical information, if and only
if, for every pair i � j of players, there exists a Moore machine that outputs
βj(π) on input βi(π), for every history π in G.

Proof. For an arbitrary game graph G, let us denote the relation between the
observations of two players i and j along the histories of G by

T ij := {(βi(π), βj(π)) ∈ (Bi ×Bj)∗ | π ∈ Hist(G)}.

This is a regular relation, recognised by the game graph G when viewed as
a finite-word automaton A

ij
G over the alphabet of observation pairs Bi × Bj .

Concretely, Aij
G := (V,Bi × Bj , v0, ∆, V) is a nondeterministic automaton on

states corresponding to positions of G, with transitions (v, (bi, bj), v′) ∈ ∆ if
there exists a move (v, a, v′) ∈ E such that βi(v′) = bi and βj(v′) = bj; all states
are accepting.

(⇐) If there exists a Moore machine that recognises T ij , then T ij is actually
a function. Thus, π ∼i π′ implies βj(π) = T ij(βi(π)) = T ij(βi(π′)) = βj(π′),
and therefore π ∼j π′.

(⇒) Assuming that G yields static hierarchical information, consider the
automaton M ij obtained by determinising A

ij
G and trimming the result, that is,

removing all states that do not lead to an accepting state. AsG yields hierarchical
information, the relation T ij recognised by M ij is functional, and hence M ij is
deterministic in the input component i: for any state v there exists precisely one
outgoing transition along each observation bi ∈ Bi. In other words, M ij is a
Mealy machine, which we can transform into an equivalent Moore machine, as
desired. ⊓⊔

Theorem 5. For games with static hierarchical information, the synthesis prob-
lem is finite-state solvable.

Proof. Intuitively, we transform an arbitrary game graph G = (V,E, β) with
static hierarchical information into one with hierarchical observation, by taking
the synchronised product of G with automata that signal to each player i the
observations of all players j � i. We shall see that this preserves the solutions
to the distributed synthesis problem, for any winning condition on G.

To make the construction precise, let us fix a pair i � j of players, and
consider the Moore machine M ij = (M,m0, µ, ν) from the proof of Lemma 4,
which translates the observations βi(π) into βj(π), for every history π in G. We
define the product G×M ij as a new game graph with the same sets of actions
as G, and the same observation alphabets (Bk)k 6=i, except for player i, for which
we expand the alphabet to Bi×Bj to also include observations of player j. The
new game is over positions in V ×M with moves ((v,m), a, (v′,m′)), if (v, a, v′) ∈
E and µ(m,βi(v)) = m′. The observations for player i are given by βi(v,m) =
(βi(v), ν(m)), whereas they remain unchanged for all other players βk(v,m) =
βk(v), for all k 6= i.

6

The obtained product graph is equivalent to the original game graphG, in the
sense that they have the same tree unravelling, and the additional components
in the observations of player i (representing observations of player j, given by
the Moore machine M ij) are already determined by his own observation history,
so player i cannot distinguish any pair of histories in the new game that he could
not distinguish in the original game. Accordingly, the strategies on the expanded
game graph G ×M ij correspond to strategies on G, such that the outcomes of
any distributed strategy are preserved. In particular, for any winning condition
over G, a distributed strategy is winning in the original game if, and only if, it
is winning in the expanded game G×M ij . On the other hand, the (positional)
observations of Player i in the expanded game determine the observations of
Player j.

By applying the transformation for each pair i � j of players successively,
we obtain a game graph that is equivalent to G under every winning condition,
and which additionally yields hierarchic observation. Due to Theorem 2, we can
thus conclude that, under ω-regular winning condition, the synthesis problem is
finite-state solvable for games with static hierarchical information. ⊓⊔

To decide whether a given game graph yields static hierarchical information,
the collection of Moore machines according to Lemma 4, for all players i, j, may
be used as a witness. However, this yields an inefficient procedure, as the de-
terminisation of a functional transducer involves an exponential blowup; precise
bounds for such translations are given by Weber and Klemm in [18]. More di-
rectly, one could verify that each of the transductions A

ij
G relating observation

histories of Players i, j, as defined in the proof of Lemma 4, is functional. This
can be done in polynomial time using, e.g., the procedure described by Béal et
al. in [1].

We can give a precise bound in terms of nondeterministic complexity.

Lemma 6. The problem of deciding whether a game yields static hierarchical
information is Co-NLogSpace-complete.

Proof. The complement problem, of deciding whether for a given game there
exists a pair of players i, j that cannot be ordered in either way, is solved by
the following nondeterministic procedure: guess a pair of players, then check
that i 6� j, by following nondeterministically a pair of histories π ∼i π′, such
that π 6∼j π′; symmetrically, check that j 6� i — this needs only logarithmic
space to maintain pointers to two players and four positions for tracking the
histories. Hence, the complement problem is in NLogSpace, which means that
our decision problem of whether a game yields static hierarchical information
belongs to Co-NLogSpace.

For hardness, we reduce the emptiness problem for nondeterministic finite
automata to the problem of deciding whether the following game for two players
playing on the graph of the automaton yields hierarchical information: Nature
chooses a run, the players can only observe the input letters, until an accepting
state is reached; if this happens, Nature sends to each player privately one bit,

7

which violates the condition of hierarchical information. Thus, the game has
hierarchic information if, and only if, no input word is accepted. ⊓⊔

3.3 Signals and game transformations

Functions that return information about the current history, such as constructed
in the proof of Lemma 4 will be a useful tool in our exposition, especially when
the information that can be made observable to some players.

Given a game graph G, a signal is a function defined on the set of histories
in G, or on the set of observation histories of some player i. We say that a
signal f : Hist(G) → C is information-consistent for player i, if any two histories
that are indistinguishable to player i have the same image under f . A finite-
state signal is one implemented by a Moore machine. Any finite-state signal
f : Hist(G) → C can also be implemented by a Moore machine M i over the
observation alphabet Bi, such that that M(π) = M i(βi(π)), for every history π.
The synchronisation of G with a finite-state signal f is the expanded game graph
(G, f) obtained by taking the synchronised product G×M , as described in the
proof of Lemma 4. In case f is information-consistent for player i, it can be made
positionally observable to this player, without changing the game essentially. The
result is a game graph (G, f i) that expands (G, f) with an additional observation
component f i(v) for player i at every position v, such that f(π) = f i(v) for each
history π that ends at v. Under any winning strategy, the game (G, f i) is finite-
state equivalent to G, in the sense that winning strategies of the original game
can be transformed into winning strategies of the synchronised game via standard
finite-state operations. In particular, the transformation preserves solutions to
the finite-state synthesis problem.

4 Dynamic hierarchies

In this section, we maintain the requirement on the information sets of players
to be totally ordered at every history. However, in contrast to the case of static
hierarchical information, we allow the order to depend on the history, and to
change dynamically along a play.

Definition 7. We say that a history π yields hierarchical information, if the in-
formation sets {P i(π) | i ∈ N} are totally ordered by inclusion. A game graph G

yields dynamic hierarchical information, if every history yields hierarchical in-
formation.

In other words, a game has dynamic hierarchical information, if there is no
history at which the information sets of two players are incomparable. To decide
whether this is the case, we can use a nondeterministic procedure similar to the
one in Lemma 6, to guess two players i, j and three histories π ∼i π′ and π′′ ∼j π,
such that π′ 6∼i π′′ and π′ 6∼j π′′. Since, for a history π, witnesses π′, π′′ can
be guessed and verified by a nondeterministic automaton, it also follows that,
for every finite game, the set of histories that yield hierarchical information is
regular.

8

Lemma 8. (i) For every finite game, we can construct a deterministic finite
automaton that recognises the set of histories that yield hierarchical infor-
mation.

(ii) The problem of deciding whether a game yields dynamic hierarchical infor-
mation is Co-NLogSpace-complete.

In the remainder of the section, we show that, under this more liberal con-
dition, distributed games are still decidable.

Theorem 9. For games with dynamic hierarchical information, the synthesis
problem is finite-state solvable.

For the proof, we transform an arbitrary game G with dynamic hierarchical
information into one with static hierarchical information, among a different set
of n shadow players 1′, . . . , n′, where each shadow player i′ plays the role of the
i-most informed player in the original game, in a sense that we will make precise
soon. The information sets of the shadow players follow their nominal order, that
is if i < j then P i′(π) ⊆ P j′(π). The resulting shadow game inherits the graph
structure of the orginal game, and we will ensure that, for every history π,

(i) each shadow player i′ has the same information (set) as the i-most informed
actual player, and

(ii) each shadow player i′ has the same choice of actions as the i-most informed
actual player.

This shall guarantee that the shadow game preserves the winning status of the
original game.

The construction proceeds in two phases. Firstly, we expand the game graphG

so that the correspondence between actual and shadow players does not depend
on the history, but only on the current position. This is done by synchronising G

with a finite-state machine that signals to each player his rank in the information
hierarchy at the current history. Secondly, we modify the game graph, where the
shadow-player correspondence is recorded as a positional attribute, such that
the observation of each player is received by his shadow player, at every posi-
tion; similarly, the actions of each player are transferred to his shadow player.
Finally, we show how finite-state winning strategies for the shadow game can
be re-distributed to the actual players to yield a winning profile of finite-state
winning strategies for the original game.

4.1 Information rank signals

For the following, let us fix a game G with dynamic hierarchical information, with
the usual notation. For a history π, we write �π for the total order among players
induced by the inclusions between their information sets at π. To formalise the
notion of an i-most informed player, we use the shortcut i ≈π j for i �π j and
j �π i; likewise, we write i ≺π j for i �π j and not j �π i.

9

Then, the information rank of player i over the game graph G is a signal
ranki : Hist(G) → N defined by

ranki(π) := |{j ∈ N | j ≺π i or (j < i and j ≈π i) }|.

Likewise, we define the order of player i relative to player j as a signal �i
j :

Hist(G) → {0, 1} with �i
j (π) = 1 if, and only if i �π j.

Lemma 10. The information rank of each player i, and his order relative to
any player j are finite-state signals that are information-consistent to player i.

Proof. We detail the argument for the rank, the case of relative order is similar
and simpler.

Given a game G as in the statement, let us verify that the signal ranki is
information-consistent, for each player i. Towards this, consider two histories
π ∼i π′ in G, and suppose that some player j does not count for the rank of i
at π, in the sense that either i ≺π j or (i ≈π j and i < j) — in both cases, it
follows that π ∼j π′, hence P j(π) = P j(π′), which implies that j does not count
for the rank of i at π′ either. Hence, the set of players that count for the rank
of player i is the same at π and at π′, which means that ranki(π) = ranki(π′).

To see that the signal ranki can be implemented by a finite-state machine, we
first build, for every pair i, j of players, a nondeterministic automaton A

j
i that

accepts the histories π where j ≺π i, by guessing a history π′ ∼i π and verifying
that π′ 6∼j π. To accept the histories that satisfy i ≈π j, we take the product
of the automata A

j
i and Ai

j for i �π j and j �π i and accept if both accept.
Combining the two constructions allows us to describe, for every player j, an
automaton Aj to recognise the set of histories at which j counts for ranki(π).

Next, we determinise each of the automata Aj and take appropriate Boolean
combinations to obtain a Moore machine M i with input alphabet V and output
alphabet P(N), which upon reading a history π in G, outputs the set of players
that count for ranki(π). Finally we replace each set in the output of M i by its
size to obtain a Moore machine that returns on input π ∈ V ∗, the rank of player i
at the actual history π in G.

As we showed that ranki is an information-consistent signal, we can conclude
that there exists a Moore machine that inputs observation histories βi(π) of
player i and outputs ranki(π). ⊓⊔

One consequence of this construction is that we can view the signals ranki and
�i

j as attributes of positions rather than properties of histories. Accordingly, we
can assume without loss of generality that the observations of each player i have
an extra rank component taking values in N and that the symbol j is observed
at history π in this component if, and only if, ranki(π) = j. When referring to
the positional attribute �i

j at v, it is more convenient to write i �v j rather

than �i
j.

4.2 Smooth overtaking

As we suggested in the proof outline, each player i and his shadow player, iden-
tified by the observable signal ranki, should be equally informed. To achieve

10

this, we will let the observation of player i be received by his shadow, in every
round of a play. However, since the rank of players, and hence the identity of
the shadow, changes with the history, an information loss can occur when the
information order between two players, say 1 ≺ 2 along a move is swapped to
become 2 ≺ 1 in the next round. Intuitively, the observation received by player 2
after this move contains one piece of information that allows him to catch up
with player 1, and another piece of information to overtake player 1. Due to
their rank change along the move, the players would now also change shadows.
Consequently, the shadow of 1 at the target position, who was previously as
(little) informed as player 2, just receives the new observation of player 1, but he
may miss the piece of information that allowed player 2 to catch up (and which
player 1 had).

We describe a transformation to smoothen the switches in the information
order, such that this artefact does no longer occur. Formally, for a play π in
a game, we say that Player i and j cross at stage ℓ, if P i(πℓ) (P j(πℓ) and
P j(πℓ+1) (P i(πℓ+1). We say that a game with dynamic hierarchical information
is cross-free, if there are no crossing players in any play.

Lemma 11. Every game with dynamic hierarchical information is finite-state
equivalent to a game that is cross-free.

Proof (sketch). We define a signal for each pair of players i, j that represents
the knowledge that player j has about the current observation of player i. If this
signal is made observable to Player i only at histories π at which i �π j, the
game remains essentially unchanged, as players only receive information from
less-informed players, which they could hence deduce from their observation.
Concretely, we define the signal λi

j : V
∗ → P(Bi) by

λi
j(π) := {βi(v′) : v′ is the last state of some history π′ ∈ P j(π)}.

Clearly, this is a finite-state signal.
Now we look at the synchronised product of G with the signals (λi

j)i,j∈N

and the relative-order signal �i
j constructed in the proof of Lemma 10. In the

resulting game graph, we add to every move (v, a, w) an intermediary position
u, at which we assign, for every player i the observation {λi

j(w) : i �w j}.
Intuitively, this can be viewed as a half-step lookahed signal that player i receives
from player j who may have been more informed at the source position v – thus
the signal is not necessarily information-consistent for player i. Still, adding
the signal leaves the game essentially unchanged, as the players cannot react
to the received observation before reaching the target w, at which point the
information is no longer relevant. On the other hand, along moves at which the
information order between players switches, the intermediary position ensures
that the players attain equal information.

To adjust the ω-regular winning conditions for G to the new game, and to turn
any finite-state distributed winning strategy for the new game corresponds into
one for the original game, we may just ignore the added intermediary positions.
In summary, the construction yields a game graph with no crossings that is
finite-state equivalent to the original game graph. ⊓⊔

11

4.3 Shadow players

We are now ready to describe the construction of the shadow game associated to
a game G = (V,E, β,W) with dynamic hierarchical information. Without loss of
generality, we can assume that every position in G is marked with the attributes
ranki(v) and ∼i

j , for all players i, j according to Lemma 10 and that the game
graph is cross-free, according to Lemma 11.

The shadow game G′ = (V ∪ {⊖}, E′, β′,W) is also played by n players and
has the same winning condition as G. The action and the observation alphabet of
each shadow player consists of the union of the action and observation alphabets
of all actual players. The game graph G′ has the same positions as G, plus one
sink ⊖ that absorbs all moves along unused action profiles. The moves of G′

are obtained from G by assigning the actions of each player i to his shadow
player j = ranki(v) as follows: for every move (v, a, v′) ∈ E, there is a move
(v, x, v′) ∈ E′ labelled with the action profile x obtained by a permutation of
a corresponding to the rank order, that is, ai = xj for j = ranki(v), for all
players i. Finally, at every position v ∈ V , the observation of any player i in
the original game G is assigned to his shadow player, that is β′j(v) := βi(v), for
j = ranki(v).

By construction, the shadow game yields static hierarchical information, ac-
cording to the nominal order of the players. We can verify, by induction on the
length of histories, that for every history π, the information set of player i at π
in G is the same as the one of his shadow player ranki(π) in G′.

Finally, we show that the distributed synthesis problem for G reduces to
the one on G′, and vice versa. To see that G′ admits a winning strategy if G
does, let us fix a distributed strategy s for the actual players in G. We define
a signal σj : Hist(G′) → A for each player in G′, by setting σj(π) := si(π) if
j = ranki(π), for each history π. This signal is information-consistent for player j,
since, at any history π, his information set is the same as for the actual player i
with ranki(π) = j, and because the strategy of the actual player i is information-
consistent for himself. Hence, σj is a strategy for player j in G′. Furthermore,
at every history, the action taken by the shadow player j = ranki(π) has the
same outcome as if it was taken by the actual player i in G. Hence, the set of
play outcomes of the profiles s and σ are the same and we can conclude that,
if there exists a distributed winning strategy for G, then there also exists one
for G′. Notice that this implication holds under any winning condition, without
assuming ω-regularity.

For the converse implication, let us suppose that the shadow game G′ admits a
winning profile σ of finite-state strategies. We consider, for each actual player i
of G, the signal si : Hist(G) → Ai that maps every history π to the action
si(π) := σj(π) of the shadow player j = ranki(π). This is a finite-state signal,
as we can implement it by synchronising G with ranki, the observations on
the shadow players, and the winning strategies σj , for all shadow players j.
Moreover, si is information-consistent to the actual player i, because all histories
π ∈ P i(π), have the same value ranki(π) =: j, and, since sj is information-
consistent for player j, the actions prescribed by sj(π) must be the same, for all

12

π ∈ P j(π) = P i(π). In conclusion, the signal si represents a finite-state strategy
for player i. The profile s has the same set of play outcomes outcome as σ, so s

is indeed a distributed finite-state strategy, as desired.
In summary, we have shown that any game G with dynamic hierarchical

information admits a winning strategy if, and only if, the associated shadow
game with static hierarchical observation admits a finite-state winning strategy.
The latter question is decidable according to Theorem 5. We showed that for
every positive instance G′, we can construct a finite-state distributed strategy
for G. This concludes the proof of Theorem 9.

5 Transient perturbations

As a third pattern of hierarchical information, we consider the case where in-
comparable information sets may occur at some histories along a play, but it is
guaranteed that a total order will be re-established in a finite number of rounds.

Definition 12. A play yields recurring hierarchical information if there are
infinitely many histories that yield hierarchical information. A game yields re-
curring hierarchical information if all its plays do so.

Given a play π, we call a gap any interval [t, t + ℓ] of rounds such that the
players do not have hierarchic information at any round in [t, t + ℓ]; the length
of the gap is ℓ+ 1. A game has gap size m, if the length of all gaps in its plays
are uniformly bounded by m. One important insight is that, in finite games with
recurring hierarchical information, only gaps of uniformly bounded size can arise.

Lemma 13. If a game yields recurring hierarchical information, then its gap
size is finite.

Proof. Let G be an arbitrary finite game graph. As we pointed out in Lemma 8,
a history π does not yield hierarchical information, if there exist two players
i, j with incomparable information sets; the set of histories at which this occurs
can be recognised by a deterministic word automaton. Let A be a deterministic
automaton for the complement language intersected with Hist(G), that is, A
accepts all histories with hierarchical information. If we now view A as a Büchi
automaton, which accepts all words with infinitely many prefixes accepted by A,
we obtain a deterministic ω-word automaton that recognises the set of plays with
recurring hierarchical information in G. Applying a standard pumping argument,
we can conclude that, if the graph G at the outset yields recurring hierarchical
information, its gap size is bounded by the number of states in the automaton A.

⊓⊔

To determine whether a game yields recurring hierarchical information, it is
sufficient to check whether the automaton constructed in the proof of Lemma 13
accepts every play.

Corollary 14. It is decidable whether a game yields recurring hierarchical in-
formation.

13

We can show that the synthesis problem for this class of games is finite
state-solvable, by using the information tracking construction from [2].

Theorem 15. For games with recurring hierarchical information and observable
ω-regular winning conditions, the synthesis problem is finite-state solvable.

Proof. The tracking construction of [2] reduces the problem of solving a dis-
tributed game with imperfect information for n players to that of solving a zero-
sum game with perfect information for two players. This is done by unravelling
the given game graph G and labelling every history with the epistemic model
that represents the current knowledge of players, that is, a structure over Hist(G)
equipped with the indistinguishability relations ∼i and an attribute designating
the last state the history; for the epistemic model at a history π, only histories
accessible from π via a sequence of ∼i-relations matter. The unravelling gener-
ates a game on an infinite tree with perfect information, from which winning
strategies can be translated back and forth to the original game.

The main result of [2] shows that, whenever two nodes of the unravelling
tree carry homomorphically equivalent labels, they can be identified without
changing the solution of the game, at least for observable ω-regular winning
conditions. Consequently, the strategy synthesis problem is decidable for a class
of games, whenever the unravelling process of any game in the class is guaranteed
to generate only finitely many epistemic models, up to homomorphic equivalence.

Games graphs with recurring hierarchical information satisfy this condition.
Firstly, for a fixed game, there exist only finitely many epistemic models, up to
homomorphic equivalence, where the ∼i-relations are totally ordered by inclu-
sion [2, Section 5]. In other words, epistemic models of bounded size are sufficient
to describe all histories with hierarchical information. Secondly, by Lemma 13,
from any history with hierarchical information, the (finitely branching) tree of
continuation histories with incomparable information is of bounded depth, hence
only finitely many epistemic models can occur in the unravelling. Overall, this
implies that every game with recurring hierarchical information and observable
winning condition has a finite quotient under homomorphic equivalence. Accord-
ing to [2], we can conclude that the distributed strategy problem for the class is
finite-state solvable. ⊓⊔

6 Discussion

The bottom-line message of our investigation is that the principle of ordered
information flow can afford some flexibility. Still, this may not open floodgates for
natural applications to automated synthesis under imperfect information. Rather
than expecting information in a real-world system to respect a total order, we
see applications in high-level synthesis towards systems on which hierarchical
information patterns are enforced to allow for further refinement.

One possible scenario is inspired from multi-level synthesis as proposed in [9]
for program repair. Here, the objective is to synthesise a system in several steps:
firstly, construct a high-level strategy for a system prototype, in which only a

14

subset of actions is controllable or/and not all observations are reliable, and
subsequently refine this strategy to fulfil further specifications, by controlling
more actions or relying on more observations.

For our concrete setting, the first-level synthesis problem can be formulated
as follows: given an arbitrary distributed game, determine whether it admits a
distributed finite-state winning strategy such that the synchronised product with
the original game yields a residual game graph with hierarchical information; if
possible, construct one. For the next level, the residual game graph can then
be equipped with another winning condition, and the actions or observations
may be refined. In either case, the condition of hierarchical information enforced
by the the first-level procedure is in place and guarantees decidability of the
synthesis problem, for each subsequent level.

It can be easily seen that for any arbitrary graph game, the set of strate-
gies that maintain dynamic hierarchical information is regular. In this case, the
multi-level synthesis approach can hence be combined with existing automata-
theoretic methods. Unfortunately, this would not work out when the objective is
to synthesise a graph with recurring hierarchical information; already the prob-
lem of eventually attaining dynamic hierarchical information is undecidable.

Finally, a promising approach towards handling coordination problems under
imperfect information is proposed in recent work of Genest, Katz, Peled and
Schewe [10, 6], in which strategies are viewed by separating the control and
communication layers. The shadow game in our reduction of dynamic to static
hierarchical information can be understood as an instance of this idea, with the
scheduling of shadow players corresponding to a communication layer, and the
actual execution of their strategy (as in the static hierarchical game), to the
control layer.

References

[1] M.-P. Béal, O. Carton, C. Prieur, and J. Sakarovitch, Squaring transduc-
ers: An efficient procedure for deciding functionality and sequentiality of trans-
ducers, in LATIN 2000: Theoretical Informatics, G. Gonnet and A. Viola, eds.,
vol. 1776 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2000,
pp. 397–406.

[2] D. Berwanger, L. Kaiser, and B. Puchala, Perfect-information construction
for coordination in games, in Proc. of Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’11), vol. 13 of LIPiCS, Leibniz-Zentrum
für Informatik, 2011, pp. 387–398.

[3] J. R. Büchi and L. H. Landweber, Solving sequential conditions by finite-state
strategies, Transactions of the American Mathematical Society, 138 (1969), pp. pp.
295–311.

[4] B. Finkbeiner and S. Schewe, Uniform distributed synthesis, in Proc. of
LICS ’05, IEEE, 2005, pp. 321–330.

[5] P. Gastin, N. Sznajder, and M. Zeitoun, Distributed synthesis for well-
connected architectures, Formal Methods in System Design, 34 (2009), pp. 215–
237.

15

[6] B. Genest, D. Peled, and S. Schewe, Knowledge = observation + memory
+ computation, in Foundations of Software Science and Computation Structures,
A. Pitts, ed., vol. 9034 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2015, pp. 215–229.

[7] E. Grädel, W. Thomas, and T. Wilke, eds., Automata, Logics, and Infinite
Games, no. 2500 in Lecture Notes in Computer Science, Springer-Verlag, 2002.

[8] D. Janin, On the (high) undecidability of distributed synthesis problems, in Proc.
of Theory and Practice of Computer Science (SOFSEM 2007), vol. 4362 of Lecture
Notes in Computer Science, Springer, 2007, pp. 320–329.

[9] B. Jobstmann, A. Griesmayer, and R. Bloem, Program repair as a game,
in Computer Aided Verification, CAV 2005, Proc., vol. 3576 of Lecture Notes in
Computer Science, Springer, 2005, pp. 226–238.

[10] G. Katz, D. Peled, and S. Schewe, Synthesis of distributed control through
knowledge accumulation, in Computer Aided Verification, G. Gopalakrishnan and
S. Qadeer, eds., vol. 6806 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2011, pp. 510–525.

[11] O. Kupferman and M. Y. Vardi, Synthesizing distributed systems, in Proc. of
LICS ’01, IEEE Computer Society Press, June 2001, pp. 389–398.

[12] A. Muscholl and I. Walukiewicz, Distributed synthesis for acyclic architec-
tures, in Foundation of Software Technology and Theoretical Computer Science,
FSTTCS 2014, Proc., vol. 29 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2014, pp. 639–651.

[13] G. L. Peterson and J. H. Reif, Multiple-Person Alternation, in Proc 20th
Annual Symposium on Foundations of Computer Science, (FOCS 1979), IEEE,
1979, pp. 348–363.

[14] A. Pnueli and R. Rosner, Distributed reactive systems are hard to synthesize, in
Proceedings of the 31st Annual Symposium on Foundations of Computer Science,
FoCS ’90, IEEE Computer Society Press, 1990, pp. 746–757.

[15] B. Puchala, Synthesis of Winning Strategies for Interaction under Partial In-
formation, PhD thesis, RWTH Aachen University, 2013.

[16] M. O. Rabin, Automata on infinite objects and Church’s thesis, no. 13 in Regional
Conference Series in Mathematics, American Mathematical Society, 1972.

[17] W. Thomas, On the synthesis of strategies in infinite games, in STACS, 1995,
pp. 1–13.

[18] A. Weber and R. Klemm, Economy of description for single-valued transducers,
Inf. Comput., 118 (1995), pp. 327–340.

16

	Hierarchical Information Patterns and Distributed Strategy Synthesis

