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abstract

Motivated by reasoning tasks for XML languages, the satisfiability problem of logics
on data trees is investigated. The nodes of a data tree have a label from a finite
set and a data value from a possibly infinite set. It is shown that satisfiability for
two-variable first-order logic is decidable if the tree structure can be accessed only
through the child and the next sibling predicates and the access to data values is
restricted to equality tests. From this main result, decidability of satisfiability and
containment for a data-aware fragment of XPath and of the implication problem
for unary key and inclusion constraints is concluded.

1. INTRODUCTION

Most theoretical work on XML and its query languages models XML documents
by labeled ordered unranked trees, where the labels are from a finite set. Attribute
values are usually ignored. This has basically two reasons, which are not indepen-
dent. First, the modeling allows to apply automata based techniques, as automata
operate on trees of this kind. Second, extending the model by attribute values
(data values) quickly leads to languages with undecidable static analysis (see, for
instance [Alon et al. 2003; Neven and Schwentick 2003; Benedikt et al. 2005; Geerts
and Fan 2005]).

Nevertheless, there are examples of decidable static reasoning tasks involving
attribute values [Arenas et al. 2005; Buneman et al. 2003]. The motivation for our
work was to find a logical approach for such tasks.

It is immediately clear that full first-order logic is far too powerful for this pur-
pose. Satisfiability for first-order logic with a predicate for data values equality is
undecidable already on strings [Bojańczyk et al. 2006]. There are several possible
candidates for more appropriate logics, including temporal logics or fragments of
first-order logic. In this work, we concentrate on a (classical) fragment of first-order
logic, two-variable logic. There are several good reasons to consider this fragment.
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It is known that on many kinds of structures this fragment is decidable [Grädel
and Otto 1999]. On ordered, unranked trees, it corresponds in a natural way to
the navigational behavior of XPath1, and it can express many interesting integrity
constraints.

Before we describe the technical contributions of the paper, we first discuss the
connections with XML processing in more detail.

Core-XPath, the fragment of XPath capturing its navigational behavior intro-
duced by Gottlob et al. [Gottlob et al. 2002], is by now well understood. In partic-
ular, it corresponds to FO2(<,+1) on unranked ordered trees [Marx 2005]. Here,
FO2(<,+1) is the two-variable fragment of first-order logic that uses the order <
and successor +1 relations, along with the labels of the nodes. The labels are
encoded by unary relations, one for each of the (finitely many) possible labels.
The symbol “<” refers to two binary predicates: one for comparing the descen-
dant/ancestor relationship of two nodes and one for the preceding/following rela-
tionship of two siblings. Similarly, “+1” also refers to two binary predicates: one
for comparing the parent/child relationship of two nodes and one for comparing the
next/previous sibling relationship of two siblings. Core-XPath is decidable even in
the presence of DTDs and the complexity of many of its fragments has been studied
in the literature. We refer to [Benedikt et al. 2005; Geerts and Fan 2005] and the
references therein for a comprehensive survey.

In the presence of data values a simple extension of Core-XPath is to allow
(in)equalities of the form p/@A op q/@B, op ∈ {=, 6=}, inside qualifiers, meaning
that the value of the A attribute of some node accessible by a path matching p equals
the B attribute value of some node accessible by a path matching q. We denote this
fragment by Core-Data-XPath, but it has also been called FOXPath in [Benedikt
and Koch 2009]. As shown in [Geerts and Fan 2005], Core-Data-XPath is undecid-
able and both [Benedikt et al. 2005; Geerts and Fan 2005] studied fragments of Core-
Data-XPath. Given the correspondence between Core-XPath and FO2(<,+1) it
seems natural to investigate the logic FO2(∼, <,+1), the extension of FO2(<,+1)
with a binary predicate ∼ that checks data value equality of two nodes, as a possible
logical foundation for Core-Data-XPath. It is easy to verify (see Section 6) that
FO2(∼, <,+1) is contained in Core-Data-XPath, and that this inclusion is strict
(for instance, FO2(∼, <,+1) cannot express the test Self/@A = Self//b//c/@A).
Therefore it is natural to wonder whether FO2(∼, <,+1) is decidable.

We do not solve the question whether FO2(∼, <,+1) is decidable here. Never-
theless, we show that the decidability of FO2(∼, <,+1) is a difficult problem as it
would imply deciding multicounter automata on trees and the linear logic MELL,
both of which are known as open issues in their respective fields (see [de Groote
et al. 2004] and the references therein).

Our main result shows that the logic FO2(∼,+1) is decidable. An additional
contribution of our paper is a unified framework for some decidability questions for
XML that involve data values, and that were studied separately in the past. We
give some examples of such applications next.

—Common reasoning tasks for XML are the consistency and the implication prob-

1Here and in the rest of the article we refer to XPath 1.0.
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lems for integrity constraints. Given a finite set S of constraints and a further
constraint ϕ, one asks whether each document satisfying all constraints in S also
satisfies ϕ. This boils down to testing if there is a document that satisfies all
constraints in S but not ϕ, a satisfiability question. The most common family
of integrity constraints are key and inclusion constraints. Many of them involve
only one attribute. It is easy to see that such constraints can be expressed in
FO2(∼,+1). Our main result implies the decidability of the implication problem
for such constraints. This was already known from [Buneman et al. 2003], which
shows that the complexity of implication, without schemas, is polynomial.

—An advantage of the logical approach is that reasoning problems can be relativized
to documents satisfying schemas. Schemas are usually captured by regular tree
languages (where only the labels and not the data values are used). It is known
that regular tree languages can be characterized by EMSO2(+1) sentences, i.e.,
sentences where an FO2(+1) formula is preceded by a block of existential quan-
tifiers ranging over sets of nodes. When satisfiability is concerned, it is straight-
forward that decidability of FO2(∼,+1) implies decidability of EMSO2(∼,+1).
Thus, by combining formulas in a suitable way, it follows easily that the impli-
cation problem for unary key and inclusion constraints (and thus also for foreign
key constraints) is decidable also relative to a schema given by a regular tree
language. This result was already known from [Fan and Libkin 2002], where it
was actually shown that the satisfiability problem is complete for NPTime. Our
more generic approach yields a 3NExpTime upper bound.

—As tree automata can be used to assign types to nodes of a document, integrity
constraints can refer to such types. Therefore, as these types can also be ex-
pressed by EMSO2(∼,+1) formulas, the implication problem for more involved
integrity constraints is still decidable.

—Another application of the logical result considers the containment problem for
XPath with attribute equalities. We present a fragment of XPath which allows
equalities and inequalities on attribute values for which the containment problem
can be reduced to satisfiability of FO2(∼,+1). By combining techniques, we
obtain decidability of the containment for this XPath fragment even relative to
a schema consisting of a regular tree language and unary constraints.

Overview The paper consists of two main parts. In the first, we introduce the
logic FO2(∼,+1) and prove the main technical result: satisfiability is decidable for
sentences of FO2(∼,+1) over data trees. We also discuss possible extensions of
this logic and show some lower bounds. In Section 4 we give strong evidence that
decidability of FO2(∼, <,+1) on unranked trees is a difficult problem by reducing
the non-emptiness problem for vector addition tree automata to it. In the second
part of the paper, we apply the main result to XML reasoning tasks. In Section 5,
we show that satisfiability and implication for unary key and inclusion constraints
are decidable. Section 6 establishes decidability of the containment problem for an
XPath fragment with attribute equalities.

Related work Closely related to our work are the papers [Benedikt et al. 2005;
Geerts and Fan 2005] and the references therein. Most of the fragments they con-
sider are inside Core-XPath (i.e., without data values). However, several other
fragments are in Core-Data-XPath. In [Benedikt et al. 2005] the decidable frag-
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ments of Core-Data-XPath that have data equality tests either don’t have negation
or cannot access arbitrarily deep nodes in the tree (in contrast, FO2(∼,+1) has
both). They also don’t have horizontal navigation and therefore miss an important
aspect of XML navigation features. The paper [Geerts and Fan 2005] extends the
results of [Benedikt et al. 2005] by including the horizontal axis, but the only de-
cidable fragment presented in that paper does not have negation. Finally, the focus
of [Benedikt et al. 2005; Geerts and Fan 2005] was to have the precise complexity
for the decision procedure of the fragment considered, while the precise complexity
of FO2(∼,+1) is still an open issue. An inspection of the current proof of Theorem
3.1 gives an upper bound of 3NExpTime, and the best lower bound we currently
have is NExpTime-hardness.

Another logical approach was considered in [Jurdziński and Lazić 2007], which
extends from data words to data trees the temporal logic approach of [Demri et al.
2005; Demri and Lazić 2006]. The main contribution of [Jurdziński and Lazić 2007]
is an alternating automaton over data trees, which uses registers to inspect data
values. The decidability results are for one-way alternating automata with one
register, with a non primitive recursive lower bound on the complexity. Various
fragments of XPath can be encoded into the alternating automata. In general, the
set of properties that can be described in our approach, and the set of properties
that can be described using the alternating automata of [Jurdziński and Lazić
2007], are incomparable. For instance, “every data value appears twice” can be
expressed in our logic but not by the alternating automata, while the converse
separation is witnessed by “every data value appears at most once on each path”.

The logic considered in [Alon et al. 2003] in order to solve the type inference
problem is incomparable to FO2(∼,+1). It uses patterns with variables for the
data values together with equality and inequality constraints on the variables in
order to extract the relevant pieces of data. It can use arbitrarily many variables
in the patterns, something FO2(∼,+1) cannot do, but it can only inspect the tree
up to a given constant depth.

As we have already mentioned, restricting FO to its two-variable fragment is a
classical idea when looking for decidability [Grädel and Otto 1999]. Over graphs or
over any relational structures, FO is undecidable, while its two-variable fragment
is decidable [Mortimer 1975]. This does not imply anything on the decidability of
FO2(∼,+1), since the equivalence relation and the two tree successor relations can-
not be axiomatized in FO2. A recent paper [Kieroński and Otto 2005] generalized
the result of [Mortimer 1975] in the presence of one or two equivalence relations.
Again this does not apply to our context as we also have two successor relations.
However [Kieroński and Otto 2005] also showed that the two-variable fragment of
FO with three equivalence relations, without any other structure, is undecidable.
This implies that FO2(∼1,∼2,∼3,+1) is undecidable.

On the other hand, two equivalence relations plus the extension of the successor
relation to +1,+2 is already undecidable on words (see long version of [Bojańczyk
et al. 2006]). Therefore, manipulating more than two different attributes at the
same time quickly leads to undecidability.

Note that this does not imply much for XPath, as already in the presence of two
equivalence relations the logic FO2(∼1,∼2,+1) seems to be no longer included in
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XPath. For instance, we conjecture that XPath cannot check that a node x has
the following property: ∃y (y 6= x ∧ x ∼1 y ∧ x ∼2 y) expressing that there exists
another node with the same two attribute values as x.

Results on consistency of integrity constraints in the presence of DTDs were
given in [Arenas et al. 2005]. All of the results were obtained for DTDs where
the tag names and the types are coupled (all tag names have the same type), and
the extension to decoupled DTDs (also known as extended DTDs) was left open.
In particular, it was shown that it is decidable whether a set of unary keys and
foreign keys is consistent with a DTD. The decidability of FO2(∼,+1) implies that
it is decidable whether any set of integrity constraints definable in FO2(∼,+1)
is consistent with an extended DTD. In particular, as (absolute) unary keys and
foreign keys are definable in FO2(∼,+1) this extends one of the results of [Arenas
et al. 2005].

Another related line of research is to consider logics and automata on words with
data values. In [Bouyer et al. 2003; Kaminski and Francez 1994; Neven et al. 2004]
automata and logics over words with data values were considered. The automata of
[Kaminski and Francez 1994; Bouyer et al. 2003] had very limited expressive power,
while the logics and automata of [Neven et al. 2004] are undecidable. In [Bojańczyk
et al. 2006] it is shown that FO2(∼, <,+1) is decidable on words with data values.

2. NOTATIONS AND PRELIMINARIES

In this paper we consider unranked, ordered, labeled trees with data values. A
data tree t over Σ has a set of nodes, where every node v has a label v.l ∈ Σ
and a data value2 v.data ∈ N.

A data tree can be seen as a relational first-order structure. The universe of this
structure is the set of nodes of the tree, moreover, the predicates are as follows:

—For each possible label a ∈ Σ, there is a unary predicate a(x), which is true for
all nodes that have the label a.

—The binary predicate x ∼ y holds for two nodes if they have the same data value.

—The binary predicate E→(x, y) holds for two nodes if x and y have the same
parent node and y is the immediate successor of x in the order of children of that
node.

—The binary predicate E↓(x, y) holds if y is a child of x.

—The binary predicates E⇒ and E⇓ are the transitive closures of E→ and E↓,
respectively.

We write FO2(∼, <,+1) for two-variable first-order logic with all these predicates
and FO2(∼,+1) for the logic without E⇒ and E⇓. By FO2(<,+1) and FO2(+1) we
denote the respective logics without ∼. Whenever we want to stress that a formula
does not have free variables we call it a sentence.

Abusing notation, we allow ourselves to use these predicates outside of logical
formulas, e.g., we write v ∼ w for two nodes v, w that have the same data value.
We also write v ∼ d if the data value of the node v is d.

2We could choose any other infinite set instead of N, as formulas can compare values only with
respect to equality.
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A set of nodes of a data tree is called connected if it is connected in the graph
induced by E→ and E↓.

For a data value d, the d-class of a data tree is the set of all nodes with data
value d. A class is a d-class, for some d. A zone is a maximal connected set of
nodes with the same data value. Two zones are adjacent if their union is connected.
Zones are illustrated in Figure 1.

A node profile is a triple (l, p, r) of elements from {=, 6=,⊥}. The profile of a
node v indicates whether v has the same data value as its left sibling, parent, and
right sibling, respectively, where ⊥ is used in the case that there is no respective
node. We will often use formulas like root(x) and lmchild(x) expressing that a node
has no parent (resp., no left sibling, i.e., it is a leftmost child). These formulas are
straightforward Boolean combinations of profile atoms.

Let Pro denote the set of the 19 possible node profiles (if a node has no parent,
then it has no siblings, so 8 profiles are not legal). For a data tree t over Σ, the
profiled tree associated with t is the data tree over Σ × Pro obtained by adding
to each node of t its profile.

For a data tree t over Σ, the data erasure of t is the tree over Σ obtained from
t by ignoring the data value v.data of each node. The data erasure is a finitely
labeled tree.

3. DECIDABILITY OF FO2(∼,+1) ON TREES

In this section, we present the main result of the paper.

Theorem 3.1. It is decidable whether an FO2(∼,+1) sentence is satisfied in
some finite unranked ordered data tree.

We actually prove a slightly more general result.
The first generalization is that we consider an extended logic EMSO2(∼,+1).

This logic consists of FO2(∼,+1) formulas that are preceded by a prefix of existen-
tial set quantifiers, i.e. sentences ψ of the form

∃R1 . . . ∃Rnϕ ,

where R1, . . . , Rn are unary predicates and ϕ is a formula of FO2(∼,+1). We call
the formula ϕ the core, and ∃R1 . . . ∃Rn the second-order prefix. The formula ϕ
can be seen as a formula on data trees with an extended alphabet Σ′, in which
each symbol consists of a symbol from the original alphabet Σ and a bit vector
indicating membership in the sets R1, . . . , Rn.

Clearly, ψ has a model if and only if the sentence ϕ has a model and therefore,
the decidability of EMSO2(∼,+1) and FO2(∼,+1) are equivalent.

Apart from being more expressive, the extended logic is technically more con-
venient. The idea is that a lot of the complexity can be pushed from the core
into the second-order prefix. From now on, we will be working with sentences of
EMSO2(∼,+1).

As a second generalization, we assume that for each possible profile p, the sig-
nature contains a unary predicate p(x) that is true in nodes of profile p. Clearly,
the profile predicates can be removed from formulas, since they are definable in
FO2(∼,+1). However, the availability of the profile predicates simplifies the logical
part of the proof, especially the normal forms.
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We now outline the structure of the proof. Essentially the idea is classical: first
we compile formulas into automata, and then we test the automata for emptiness.
However, due to the complexity added by data values, some more intermediate
steps are required. These steps are: first, a simplification of the formulas and then,
a simplification of the models considered. For simplified formulas over simplified
models we then proceed with the standard automata-theoretic approach. The sim-
plified formulas are defined in Definition 3.2. The simplified models require that
few zones have large outdegree, see Definition 3.3.

In the following definition, α and β denote atomic types of nodes, i.e., conjunc-
tions of unary predicates or their negations (the unary predicates are the labels, the
profile predicates, and the predicates from the existential second-order quantifica-
tion). Note that true and false are atomic types, too, corresponding, respectively,
to the empty conjunction and, e.g., a(x) ∧ ¬a(x). Note that an atomic type does
not need to specify values for all predicates, we will use the term label for such an
atomic type.

Definition 3.2. A sentence of EMSO2(∼,+1) is in data normal form if its core
is a conjunction of simple formulas, i.e. one of the following three kinds:

(a) Data-blind properties, i.e. sentences of FO2(+1).

(b) “Each class contains at most one node of type α”:

∀x∀y (x ∼ y ∧ α(x) ∧ α(y)) → x = y .

(c) “Each class with a node of type α also has a node of type β”:

∀x∃y α(x) → (x ∼ y ∧ β(y)) .

Definition 3.3. The outdegree of a data zone is the number of its adjacent data
zones.

We now present the three main steps of the proof in slightly more detail:

—First, in Section 3.2 we show that each sentence of EMSO2(∼,+1) can be rewrit-
ten into one in data normal form, that is equivalent w.r.t. satisfiability.

—Next, in Section 3.3, we show that for each sentence in ϕ in data normal form,
one can calculate M,N such that if ϕ has a (finite) model, then it has one where
at most M data zones have outdegree greater than N .

—Finally, in Section 3.4, we decide satisfiability of sentences over models where at
mostM data zones have outdegree greater thanN . This is done by constructing a
certain kind of (extended) tree automaton with decidable non-emptiness problem.

We begin by stating the following simple lemma. This is mainly to illustrate how
complexity can be pushed from the core into the second-order prefix:

Lemma 3.4. Sentences in data normal form are closed under conjunction and
disjunction.

Proof . Closure under conjunctions follows immediately from the definition.
For a disjunction ϕ ∨ ψ, we add a new unary predicate R to the second-order
prefix, along with a data-blind sentence enforcing that R holds either everywhere
or nowhere. The idea is that R tells us which of the disjuncts holds. We then add
R to all the types occurring in ϕ and add ¬R to all the types occurring in ψ.
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3.1 Data-free regular languages for free

In this section, we recall that any regular property of trees without data can be
encoded in EMSO2(+1). The basic idea is that the second-order prefix along with
the successor relation in the core can be used to express automata on trees without
data.

There are many ways of defining regular languages of unranked ordered trees
without data (we call these data-free regular languages from now on). We use au-
tomata over unranked trees similar to the ones defined in [Brüggemann-Klein et al.
2001], also known as hedge automata. Our automata are close to the deterministic
version of unranked tree automata considered by [Cristau et al. 2005; Martens and
Niehren 2005] in the setting of minimization. They are easily translatable into
EMSO2(+1) and can be extended in a straightforward manner by constraints in
Subsection 3.4.

A nondeterministic automaton over unranked trees consists of a finite set
Q of states, subsets I and J of Q, along with relations

δh, δv ⊆ Q× Σ ×Q ,

which are called the horizontal and vertical transition relations respectively. A
run of such an automaton over a Σ-tree t is a labeling ρ : V → Q of nodes by states
such that every node v with label a satisfies all conditions below:

—If v is a leaf then ρ(v) ∈ I.

—If v has no horizontal predecessor then ρ(v) ∈ J .

—If v has a horizontal successor w, then the triple (ρ(v), a, ρ(w)) belongs to the
horizontal transition relation δh.

—If v has no horizontal successor and its parent is w, then the triple (ρ(v), a, ρ(w))
belongs to the vertical transition relation δv.

A run is accepting when the state and label of the root belong to the designated
accepting set F ⊆ Q× Σ. A tree is accepted if it admits an accepting run.

A zone A run

Fig. 1. Illustration of zones (each node is represented with its data value) and runs (each node is
represented with the state given by the run).

The equivalence between EMSO2(+1) and automata over unranked trees works
along the same lines as for ranked trees (see [Neven and Schwentick 2002; Carme
et al. 2004] for similar results):
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Theorem 3.5. Nondeterministic automata over unranked trees accept exactly
the languages definable in EMSO2(+1).

Furthermore, runs of nondeterministic automata can be captured by data-blind
formulas, plus additional predicates. An automaton formula is a sentence

∃R1 . . . Rn∀x∀y























(E→(x, y) → ϕ1) ∧
((E↓(x, y) ∧ rmchild(y)) → ϕ2) ∧

(root(x) → ϕ3) ∧
(leaf(x) → ϕ4) ∧

(lmchild(x) → ϕ5)

where the formulas ϕ1, ϕ2 are boolean combinations of types for x and y, the
formulas ϕ3, ϕ4, ϕ5 are boolean combinations of types for x, root(x) says x is the
root, leaf(x) says x is a leaf, and lmchild(x) and rmchild(x) say x has no left (resp.,
right) sibling.

Fact 3.6. Automaton formulas capture exactly the data-free regular languages.

Proof. The sets R1, . . . , Rn correspond to the states used in the run. The core
formula checks the consistency of the run.

Since regular languages are closed under complementation, the above fact implies:

Fact 3.7. Properties defined by automaton formulas are closed under negation.

3.2 Reduction to data normal form

In this subsection, we show how sentences of EMSO2(∼,+1) can be rewritten into
data normal form. A similar result for data strings is shown in [Bojańczyk et al.
2006].

For complexity reasons that will be apparent in the next section we will actually
use a stronger normal form, called automata data normal form. A sentence ϕ
of EMSO2(∼,+1) is in automata data normal form if it is in data normal form
and its data-blind formulas are automaton formulas. In the rest of this section all
data-blind formulas will be implicitly automaton formulas.

Proposition 3.8. Every sentence of EMSO2(∼,+1) over profiled trees can be
rewritten in exponential time into an equivalent one in automata data normal form
(of exponential size).

We begin our proof of Proposition 3.8 with some examples. Consider first the
property “every class contains at least one node of type α”, which is not in data
normal form. We can express it easily in data normal form, using a simple sentence
of kind (c): “every class with a node of type true also has a node of type α”. As
a second example, consider a sentence stating that “each class contains either zero
or at least two nodes of type α”. This can be transformed3 into data normal form
as follows:

3Of course, this property can also be expressed as the negation of “at least one node” and “at
most one node”.
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Add a unary predicate R such that each class with at least one node of
type α∧R also has a node with α∧¬R, and vice versa (simple formulas
of kind (c)).

The second example shows how simple formulas can be used alongside existentially
quantified predicates, to express non-simple properties. This sort of reasoning will
be heavily used later on in this section.

3.2.1 Intermediate Normal Form. As a first step to prove Proposition 3.8, we
show that every sentence of EMSO2(∼,+1) can be effectively transformed into
an equivalent sentence in “intermediate normal form” of exponential size, with
exponentially many new unary predicates Ri. Then, in Section 3.2.2, we will show
how to transform the intermediate normal form into automata data normal form.

Essentially, a sentence of intermediate normal form is an EMSO2(∼,+1) sentence
where the quantifier depth of the core is 2, and the quantifier-free subformulas are
slightly simplified. More precisely, a sentence of EMSO2(∼,+1) is said to be in
intermediate normal form if its core is a conjunction of formulas of the following
two kinds:

(1) ∀x∀y
[

α(x) ∧ β(y) ∧ δ(x, y)
]

→ dist≤1(x, y)

(2) ∀x∃y α(x) →
[

β(y) ∧ δ(x, y) ∧ ǫ(x, y)
]

where

—α, β are types,

—dist≤1(x, y) is the disjunction

E↓(x, y) ∨ E↓(y, x) ∨ E→(x, y) ∨ E→(y, x) ∨ x = y

—δ(x, y) is either x ∼ y or x 6∼ y, and

—ǫ(x, y) is one of E↓(x, y), E↓(y, x), E→(x, y), E→(y, x), x = y, or ¬dist≤1(x, y).

We note that this normal form is quite similar to the one obtained in [Bojańczyk
et al. 2006] for data words.

Lemma 3.9. Every sentence of EMSO2(∼,+1) can be transformed in exponen-
tial time into an equivalent sentence in intermediate normal form (of exponential
size, with at most exponentially many new unary predicates).

Proof. The overall strategy is not new: we reduce the quantifier depth of the
core to 2, then we add unary predicates that ’color’ certain distinguished positions,
resp. classes containing distinguished positions. These additional colors are then
used to simplify the formulas.

The formal proof proceeds in three steps.

Step 1: Quantifier depth 2.

The first step uses the well-known Scott Normal Form (see for example [Grädel and
Otto 1999]). Each EMSO2(∼,+1) sentence is equivalent (with a linear blowup) to
one where the core is of the form

∀x∀y χ ∧
∧

i

∀x∃y χi,
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where χ and each χi are quantifier-free. Intuitively, the additional relations state
which subformulas of ϕ are satisfied at a given position.

Step 2: Dealing with ∀x∀y χ.
In the second step we show that the formula ∀x∀y χ can be replaced by a formula

∃R1 · · · ∃Rm

∧

i

θi ∧
∧

i=1,2,3

∀x∃y ξi

where the ξi are again quantifier-free and each θi is of the form (1) in the interme-
diate normal form. Moreover, the number of θi is at most exponential.

To this end, we first rewrite ∀x∀y χ into the following form:

∀x∀y (dist>1(x, y) → ψ>1(x, y)∧
(E→(x, y) → ψ→(x, y))∧
(x = y → ψ=(x, y))∧
(E↓(y, x) → ψ↓(y, x)))

where dist>1(x, y) is ¬dist≤1(x, y) and the ψ formulas are quantifier-free and use
only ∼ and the unary predicates. Their size is bounded by the size of χ.

Over unranked trees this is logically equivalent to:

∀x∀y
(

dist>1(x, y) → ψ>1(x, y)
)

∧ ∀x∃y
(

root(x) ∨ (E↓(y, x) ∧ ψ↓(x, y))
)

(ξ1)
∧ ∀x∃y

(

rmchild(x) ∨ (E→(x, y) ∧ ψ→(x, y))
)

(ξ2)
∧ ∀x∃y

(

(x = y ∧ ψ=(x, y))
)

. (ξ3)

Here root(x) and rmchild(x) are testing the profile of x. They express the fact
that x has no parent or no right sibling, respectively.

We denote the latter three conjuncts by ξ1, ξ2, ξ3 and we will take care of them
in Step 3. It only remains to deal with the first conjunct

ψ = ∀x∀y
(

dist>1(x, y) → ψ>1(x, y)
)

.

By turning the ¬ψ>1 into DNF (with an exponential blowup), we can rewrite ψ>1

into a conjunction of formulas of the form

¬(α(x) ∧ β(y) ∧ δ(x, y)) ,

where α, β are types and δ is either x ∼ y or x 6∼ y. Since conjunction distributes
over implication and universal quantification, ψ becomes a conjunction of formulas
of the form

∀x∀y dist>1(x, y) → ¬(α(x) ∧ β(y) ∧ δ(x, y)) ,

which is equivalent to a formula of kind (1).

Step 3: Dealing with
∧

i

∀x∃y χi.

In the last step, we show that each formula ∀x∃y χ can be translated into an
equivalent formula ∃R′

1 · · · ∃R
′
n

∧

i θi in which each θi is of the kind (2) above.
Moreover, the number of θi and the number n of additional predicates are both at
most exponential.
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First, χ can be written as a disjunction of an exponential number of formulas ϕj

of the form

ϕj = αj(x) ∧ βj(y) ∧ δj(x, y) ∧ ǫj(x, y) ,

where the αj , βj , δj, ǫj are of corresponding forms as in (2). It only remains to
eliminate the disjunction. To this end, we add for each disjunct a new unary
predicate Rχ,j with the intended meaning that if Rχ,j holds at a position x then
there is a y such that ϕj(x, y) holds.

More formally, we existentially quantify over the Rχ,j predicates and then require:
∧

j

∀x∃y
(

(αj(x) ∧Rχ,j(x)) → (βj(y) ∧ δj(x, y) ∧ ǫj(x, y))
)

.

Moreover, we need to enforce that for each x and χ at least one Rχ,j holds. This is
done using a formula of kind (2): we write that no position has allRχ,j formulas false
at the same time. Formally, we write the formula ∀x∃y (

∧

j ¬Rχ,j(x)) → false.
By putting together the obtained formulas we get a sentence in intermediate

normal form.

3.2.2 Data normal form. In this section we rewrite sentences from intermediate
normal form into automata data normal form. More precisely, we show that every
conjunct θ ∈ {θ1, . . . , θn} of a formula

ϕ = ∃R1 · · ·Rm (θ1 ∧ . . . ∧ θn)

in intermediate normal form can be transformed into automata data normal form
with a linear blowup. Since formulas in automata data normal form are closed
under conjunction without any additional cost, we obtain a linear translation from
intermediate normal form to automata data normal form. This completes the proof
of Proposition 3.8.

Let then θ ∈ {θ1, . . . , θn} be a conjunct as above. Recall that θ can be of two
kinds, (1) or (2), each of which talks about types α, β. Assume first that the
type α is a single predicate P , and the type β is a single predicate Q. Under
this assumption, there are finitely many possible formulas θ; we will show that in
each case one can find an equivalent formula in automata data normal form. In
particular, the translation of θ into automata data normal form has constant cost.
In the more general case, where the types α, β use more than one predicate, we
existentially quantify over new predicates P,Q and add a data-blind formula “P
holds in exactly the nodes with type α, and Q holds in exactly the nodes with type
β”. This formula is the reason for the linear cost of translating θ into automata
data normal form.

The idea is always the same: we add new existentially quantified predicates which
are used to mark nodes with certain properties and which then allow to express
the property at hand with simple formulas. Below, we denote as P -node a node
where predicate P holds. A P -class (P -zone, resp.) denotes a class (a zone, resp)
containing an P -node.

We begin with some auxiliary properties:

(i) “No class contains both R-nodes and S-nodes.” We add a new predicate P .
Using a simple formula of kind (b), we require that no class contains two
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P -nodes. Then, using two simple formulas of kind (c), we check that each
R-class contains a node with P ∧ R ∧ ¬S, and each S-class contains a node
with P ∧ S ∧ ¬R.

(ii) “Predicate R holds in all nodes that belong to an S-class.” This is checked
by a formula of kind (i): “no class contains both R and ¬R”; one formula of
kind (c): “each R-class has an S-node”; and one data-blind formula: “each
S-node is an R-node”.

(iii) “Predicate R marks the nodes of exactly one class.” We add a new predicate
S. We use (ii) to say that R holds in exactly the nodes that belong to an
S-class. Finally, we add the data-blind property: “There is exactly one S-
node”.

(iv) “Predicate R holds in the nodes that belong to an S-zone”. We verify that
each zone has only R-nodes, or only ¬R-nodes; moreover, a zone is an R-zone
if and only if it has an S-node. Both properties can be checked by automata
formulas using the profiles.

(v) “Each class has at most one S-zone”. First, we use (iv) to mark by a new
predicate R each node from an S-zone. Note that each zone has exactly
one node for which neither the parent nor the right sibling is in the same
class. Such a node, called here the zone root, can be identified by its profile.
Therefore the property in this item is equivalent to saying that each class
contains at most one zone root with predicate R, which is a simple formula
of kind (b).

The translation of θ into automata data normal form is by case analysis. By the
definition of the intermediate normal form, θ may be in one of the two forms (1)
or (2).

Case (1) θ = ∀x∀y
[

P (x) ∧ Q(y) ∧ δ(x, y)
]

→ dist≤1(x, y):
Case (1.1): δ(x, y) is x ∼ y. In this case, θ says that every two occurrences

of P and Q in the same class must be adjacent or identical. Clearly,
θ implies that, if a class contains both P -nodes and Q-nodes, then all
such nodes must be in the same zone. We add a new predicate R.
Using (ii), we ensure that R marks all nodes from P ∧ Q-classes. We
then use (v) to express that each R-class has at most one zone with P
or Q. An automaton formula can check that in every R-zone all P - and
Q-nodes are adjacent or identical.

Case (1.2): δ(x, y) is x 6∼ y. In this case, θ says that every occurrences
of P and Q in different classes must be adjacent. The crucial obser-
vation is as follows: if v, w are two nodes in a tree, then at most two
nodes are adjacent to both v, w (the extreme case is when we can con-
nect v to w via a sibling and the parent). Therefore, if there are two
P -classes then there are at most two Q-nodes outside these two classes.
In particular there are at most four classes containing either P - or Q-
nodes. Combining (i), (ii) and (iii) above, we may assume that these are
marked by predicates R1, . . . , R4. In the presence of these predicates,
θ boils down to an automaton formula. Otherwise, if there is only one
P -class, then we mark it using an extra predicate R as in (iii) and an
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automaton formula checks that every R∧P -node and ¬R∧Q-node are
adjacent.

Case (2) θ = ∀x∃y P (x) →
[

Q(y) ∧ δ(x, y) ∧ ǫ(x, y)
]

:
If ǫ(x, y) implies dist≤1(x, y), then θ can be checked by an automaton
formula, which uses profiles to check if adjacent nodes have the same
data value. Thus, we assume that ǫ(x, y) is dist>1(x, y).
Case (2.1): δ(x, y) is x ∼ y. This means that each P -node needs a non-

adjacent Q-node in the same class. First, we have to require that each
class with a P -node also has a Q-node, this is a simple formula of
kind (c). Using (iv), we can mark each Q-zone with a predicate R. Us-
ing (v), we can mark each class with at most one Q-zone by a predicate
S. If a P -class has two Q-zones (which is equivalent to not having S)
then θ holds for all nodes in the class. The remaining case to consider
is when a class has one Q-zone; in this case all P -nodes in this zone
must have a non-adjacent Q-node in the same zone. Putting all this
together, the property θ boils down to: “each P ∧ R ∧ S-node has a
non-adjacent Q-node in the same zone”. This is can be verified by an
automaton formula that uses the profiles for checking the zones.

Case (2.2): δ(x, y) is x 6∼ y. This means that each P -node needs a non-
adjacent Q-node in a different class. Using an additional predicate, it
can be checked whether Q occurs in exactly one class (properties (ii)
and (iii)). If this is the case, then θ translates to an automaton formula,
plus a formula saying that no class has both P - and Q-nodes (property
(i)). Otherwise, let v, w be Q-nodes in different classes. As we noted
before, there are at most two nodes x, y adjacent to both v, w. All P -
nodes in classes other than those of x, y already satisfy θ. The classes
of x, y can be marked with two additional predicates and an automaton
formula can be used to check θ for the P -nodes belonging to the classes
of x, y.

3.3 A Small Model Property

We now proceed with the second part of the proof of Theorem 3.1. In this part, we
show:

Proposition 3.10. For every sentence ϕ in automata data normal form, one
can compute constants M,N such that ϕ is satisfied in a data tree only if it is
satisfied in one where at most M data zones have outdegree more than N .

This proposition is the most involved and technical part of our proof of Theo-
rem 3.1. We fix a satisfiable sentence ϕ in automata data normal form for the rest
of Section 3.3. We begin with a model of ϕ. We view this model as a first order
structure where all the unary monadic predicates that are existentially quantified
in ϕ are part of the signature. Our goal is to transform the model into one with
only a few data zones of unbounded outdegree.

3.3.1 A few definitions. We use the following terminology.

—A label is a type that includes every unary predicate in the signature (or its
negation). For simplicity, we denote this set of labels by Σ, too. So from now
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on, labels contain all the information about the unary predicates (in particular,
the profiles and also the states of automaton formulas). Note also that Σ is
exponential in the size of the signature, and that all labels are mutually exclusive.

—The set of all children of some node is called4 a sibling group. (Two nodes are
called siblings if they have the same parent node.) A contiguous sequence of
siblings is called an interval. For two siblings v and w, where w is to the right
of v, we write L[v, w] for the interval with left end v and right end w. We write
L(v, w), L(v, w] and L[v, w) for the same interval without v and w, without v
and without w, respectively.

—The depth of a node, a sibling group, or an interval is its distance from the root.

—The induced forest of an interval I is the set of descendants of all nodes in I
(including I).

—A twin-pair (v, v′) is a pair of two consecutive siblings, i.e., v′ is the horizontal
successor of v. A twin-pair is pure if v ∼ v′. The twin-pair (v, v′) is called a
σ-twin-pair if the label of v′ is σ.

—The left interface of an interval I is the twin-pair (v, v′) consisting of the left-
most node v′ of I and its left neighbor v 6∈ I. If there is no such left neighbor
then we set v = ⊥. Correspondingly, the right interface, contains the rightmost
node of I and its right neighbor.
A non-pure interface (resp. non-pure twin-pair), i.e., an interface (v, v′) with
v 6∼ v′, is called a border. As above, a border (v, v′) is called σ-border if the
label of v′ is σ.

—An interval is σ-looping if both its left and right interfaces are σ-twin-pairs.

—A node with data value d is called a d-node. An interval consisting of d-nodes
only is called d-pure. If the exact value d of the data does not matter, we simply
call it pure.

—An interval is called complete if both its interfaces are borders.

—A node that has the same data value as its parent is called attached. An interval
with an attached node is also called attached.

—If the parent of an interval (node, sibling group) has value d we call it a d-parent
interval (node, sibling group).

—The frontier Front(Z) of a set of nodes Z is the set of nodes outside Z that are
connected to Z by a (horizontal or vertical) edge.

—For a data value d, a d-path is a set of d-nodes connected by the vertical successor
relation. A data path is a d-path for some d. By Sub(v, w) we denote the set of
nodes that are in the subtree of v but not in the subtree of w (including v and
excluding w).

Figure 2 illustrates some of these terms.

3.3.2 Proof strategy. In a nutshell, the proof of Proposition 3.10 is a long se-
quence of steps combining cut-and-paste and counting arguments; in each one we
modify an existing model into one where the data zone outdegree is progressively

4Of course, group is not meant in an algebraic sense here.
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Fig. 2. Different types of intervals

smaller. More precisely, we will show that there exists a model for ϕ that satisfies
the following properties:

—At most M1 complete pure intervals have more than N1 nodes (Proposition 3.20).

—At most M2 sibling groups contain more than N2 complete pure intervals (Propo-
sition 3.21).

—At most M3 zones contain data paths with more than N3 nodes (Proposi-
tion 3.25).

All the constants used above depend only on the size of the sentence ϕ, see Table
I for their asymptotic values5. Once we have obtained such a model, one can
easily see that at most

M = M1 +M2 +M3

“large” zones contain more than

(N1 ·N2)
N3+1

nodes. Moreover, nodes in the zones that are not “large” have at most N2 + 3
neighbors with a different data value. (N2 is for the children, +2 is for the left and
right siblings and +1 is for the parent.) Altogether, the zones that are not “large”
have outdegree at most

N = (N1 ·N2)
N3+1(N2 + 3)

Thus, Propositions 3.20, 3.21 and 3.25 imply Proposition 3.10 with M = |Σ|O(|Σ|2),

N = |Σ||Σ|3 (recall that Σ is the set of labels, which is exponential in the size of
the signature of ϕ).

For the proofs of Propositions 3.20, 3.21 and 3.25 we first present, in Subsec-
tion 3.3.3, “local” versions. They show that there exists a model for ϕ where each
data value d satisfies:

—there are at most K1 complete d-pure intervals with more than L1 nodes (Propo-
sition 3.12),

—there are at most K2 d-parent sibling groups with more than L2 complete pure
intervals (Proposition 3.13), and

—there are at most K3 zones with data value d containing a data path with more
than L3 nodes (Proposition 3.17).

5The values of the constants mentioned in Table I are explicitely given in the proofs and the
hidden numbers are not very big
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During the “local pruning”, we will never change the data value of any node, we
will only move nodes around the tree. The cut-and-paste techniques that we use
are provided in Lemmas 3.11, 3.16, 3.19 and 3.24. Table I gives a summary of the
constants used in the the mentioned propositions and lemmas.

Result Const. Value Const. Value

Prop. 3.12 K1 O(|Σ|) L1 O(|Σ|)
Lemma 3.14 K ′

1 O(|Σ|) L′
1 O(1)

Lemma 3.15 K ′
2 O(|Σ|) L′

2 |Σ|O(|Σ|)

Prop. 3.13 K2 O(|Σ|) L2 |Σ|O(|Σ|)

Prop. 3.17 K3 O(|Σ|) L3 O(|Σ|)

K O(|Σ|) L |Σ|O(|Σ|)

Prop. 3.20 M1 |Σ|O(|Σ|2) N1 O(|Σ|2)

Lemma 3.22 M ′
1 |Σ|O(|Σ|) N ′

1 |Σ|O(|Σ|)

Lemma 3.23 M ′
2 |Σ|O(|Σ|2) N ′

2 O(|Σ|3)

Prop. 3.21 M2 |Σ|O(|Σ|2) N2 |Σ|O(|Σ|)

Prop. 3.25 M3 |Σ|O(|Σ|2) N3 O(|Σ|2)

Table I. The constants used for pruning.

We use basically two kinds of transformation steps. The first kind, which we
call horizontal transfer involves an interval I and a twin-pair (u, u′). Under
suitable conditions, I together with its induced forest can be removed from its
current location and inserted between u and u′. The second kind is called vertical
transfer and it incorporates two nodes v, w, where w is a descendant of v and two
nodes u, u′, where u′ is the parent of u. Again under suitable conditions, the part
of the tree between v and w can be inserted between u and u′.

Let I be a d1-parent interval with left interface (v, v′) and right interface (w,w′).
We are interested in sufficient conditions for placing the induced forest of I between
the two nodes of a d2-parent twin-pair (u, u′) such that the resulting tree is still a
model of our fixed formula ϕ. To this end, we call an interval I compatible with
a twin-pair (u, u′) if the following conditions hold:

(i) The labels of u′, v′, w′ are the same.

(ii) If u ∼ u′ then u ∼ v ∼ w.

(iii) If u 6∼ u′ then u 6∼ v′, w 6∼ u′ and v 6∼ w′.

(iv) If d1 or d2 occur in I then d1 = d2.

We recall that the label of a node implies its profile. In particular, in case (ii) also
w ∼ w′ and v ∼ v′ hold.

3.3.3 Pruning locally. In this subsection we show that there is a model, where
for each data value d, there are few large zones with value d. The idea behind the
proofs is to shift intervals along with their induced forests around the tree. For this
purpose we will use the following lemma, which is illustrated in Figure 3.

Lemma 3.11. (Local Horizontal Transfer Lemma).
Let t be a model of ϕ containing a d1-parent interval I, and a d2-parent twin-pair

(u, u′) which does not belong to the induced forest of I.
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Fig. 3. Illustration of the Local Horizontal Transfer Lemma.

If I is compatible with (u, u′) then the tree t′ obtained from t by transferring the
induced forest of I between u and u′ is a model, too.

Proof. Clearly, the local transfer does not change the truth value of any sub-
formula of ϕ of the kind (b) or (c) in the automata data normal form. It remains
to consider the automata subformulas of ϕ. Compatibility ensures in particular
that the profile of each transferred node does not change (items (ii) and (iii) in the
definition take care of the left/right sibling, and item (iv) takes care of the parent).
Let (v, v′) and (w,w′) be the left and right interfaces of I. Item (i) of compatibility
says that u′, v′ and w′ have the same labels. Therefore (v, w′), (u, v′) and (w, u′)
have valid horizontal transitions for the automaton formulas of ϕ because (w,w′),
(v, v′) and (u, u′) did. Therefore t′ satisfies all automaton formulas of ϕ.

Small complete pure intervals. First we show that there is a model with few large
d-pure intervals, for every data value d. Recall that the asymptotic values of the
constants K1 and L1 from the lemma below may be found in Table I together with
the constants used in the other propositions and lemmas.

Proposition 3.12. There is a model of ϕ with at most K1 complete d-pure
intervals of size more than L1, for every data value d.

Proof. Let d be a fixed data value. We will show that parts of pure intervals
with data value d can be transferred to a bounded number of pure intervals until
the property stated in the proposition is satisfied.

For every possible node label σ, we fix a node uσ of minimal depth that has
label σ and data value d (this node may be undefined). We will use the node
uσ as the target of a Local Horizontal Transfer. The minimality of the depth
guarantees that the Local Horizontal Transfer is applied with a target node which
is not a descendant of the transferred interval. Let U denote the set of these nodes.
Clearly, |U | ≤ |Σ|.

Let I be a d-pure interval not containing any node of U . If I has more than
|Σ| nodes there must be two nodes v and v′ in I with the same label, say σ ∈ Σ.
Recall that the label σ induces the same profile for the nodes v, v′ and uσ. Thus,
L[v, v′) is compatible with (u, uσ), where u is the left neighbor of uσ. Then, by
Lemma 3.11, L[v, v′) and its induced forest can be moved between u and uσ, and
the resulting tree is again a model of ϕ.
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We iterate this step until there are no more d-pure intervals of size more than |Σ|
besides those containing the nodes of U . This proves the statement of the lemma
with K1 = |Σ| and L1 = |Σ|.

Few complete pure intervals. We now proceed to show that for any given data
value d, there are few d-parent sibling groups with many complete pure intervals.
This part of the local pruning argument is the most involved one.

Proposition 3.13. There is a model of ϕ with at most K2 d-parent sibling
groups with more than L2 complete pure intervals, for every data value d.

Before we proceed with the proof, we note that we will only be cutting and
pasting complete intervals. In particular, we will never change the length of any
pure interval, and therefore the model obtained will also satisfy the properties that
have been enforced in Proposition 3.12. More generally, in each step of Subsection
3.3, the modified models will keep the properties from the previous steps.

The proof of Proposition 3.13 uses Lemmas 3.14 and 3.15 which we prove first.
We call two twin-pairs data-equivalent if they agree in the data values of their

left and their right components. That is, (v, v) and (w,w′) are data-equivalent, if
v ∼ w and v′ ∼ w′.

Lemma 3.14. There is a model of ϕ in which, for every data value d, there are
at most K ′

1 d-parent sibling groups with more than L′
1 σ-borders that are pairwise

non data equivalent for some σ ∈ Σ.

Proof. Let the data value d be fixed.
Claim. There is a model having at most |Σ| d-parent sibling groups with at least 5
σ-borders (v, v′) with pairwise distinct left data values, for some σ ∈ Σ.

For each label σ, let Bσ be a topmost d-parent sibling group containing at least
5 σ-borders with distinct left data values. If no such Bσ exists, Bσ is undefined.
The sibling groups Bσ will be used as targets of Local Horizontal Transfers. The
minimality of the depth of Bσ will guarantee that the Local Horizontal Transfer is
applied with target nodes that are not descendants of the transferred interval.

Let B be the set of all sibling groups Bσ. We show that from any other d-parent
sibling group C containing more than 5 σ-borders with pairwise different left values
(for some σ) one can transfer an interval into B. Thereby we diminish the size of
C. By iterating this step, and repeating the process for all labels, we end with a
model which satisfies the statement of the claim.

Let C be such a d-parent sibling group. Therefore C /∈ B and C has at least 5
different left values in σ-borders for some σ.

Let (w1, w
′
1), . . . , (w5, w

′
5) be σ-borders in C with distinct left values, ordered by

their position in the sibling group from left to right. Let (u1, u
′
1), . . . , (u5, u

′
5) be

σ-borders in Bσ with distinct left data values, also ordered from left to right.
We are going to find some indices i < j and k such that the interval L[w′

i, wj) can
be transferred from C and placed between uk and u′k. The indices i, j, k are chosen
carefully to ensure condition (iii) in the definition of compatibility (as all other
conditions are already fulfilled). Thus we need: wi 6∼ w′

j and uk 6∼ w′
i and wj 6∼ u′k.

Figure 4 illustrates this situation.
We now proceed to show that such indices i, j, k can be found.
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Fig. 4. Illustration of the proof of the claim in Lemma 3.14. Here, k = 3, i = 2, j = 5. The reader
should verify that it is not possible to choose i = 1 (with any combination of j and k).

—Since the values of u1, . . . , u5 are all different, there must be some k ∈ {1, . . . , 5}
such that at most one i ∈ {1, . . . , 5} satisfies uk ∼ w′

i. Let us fix such a k and let
i0 be the only index such that uk ∼ w′

i0
(this index may be undefined). As the i

we choose below is different from i0, we will have uk 6∼ w′
i.

—We choose j maximal such that wj 6∼ u′k, and i 6= i0 minimal so that wi 6∼ w′
j .

Since j ≥ 4 and i ≤ 3 we immediately get i < j.

This concludes the proof of the claim.
Next, in a symmetric fashion we obtain a model in which, there are at most |Σ|

d-parent sibling groups containing at least 5 σ-borders with pairwise distinct right
data values.

The remaining d-parent sibling groups have at most 4 σ-borders with different
left values and at most 4 σ-borders with different right values, thus at most 16 σ-
borders which are pairwise non data-equivalent, for every label σ. Thus we proved
the lemma with L′

1 = 16 and K ′
1 = 2|Σ|.

Thus, the proof of Lemma 3.14 is completed.

The following lemma not only disallows many σ-borders with the same data value
but many σ-borders at all (relative to each data value).

Lemma 3.15. There is a model of ϕ in which for every data value d, there are
at most K ′

2 d-parent sibling groups with more than L′
2 σ-borders for some σ ∈ Σ.

Proof. We fix a data value d. First we apply Lemma 3.14 and obtain a model
with at most K ′

1 d-parent sibling groups with more than L′
1 non data-equivalent

σ-borders, for every label σ. Let B denote the set of these sibling groups.
We fix some order on the set of labels, say Σ = {σ1, . . . , σs}. We will iteratively

modify the model for each label. At each stage j = 0, . . . , s we will define constants
kj , lj so that the model will satisfy the following invariant:

There is a set Bj of at most kj sibling groups such that in each d-
parent sibling group outside Bj ∪ B the total number of σ-borders with
σ ∈ {σ1, . . . , σj} is at most lj .

For the basis of the induction we set B0 = ∅, k0 = 0 and l0 = 0.
Assume that we already constructed Bj−1, for j ≥ 1, and we want to construct

Bj .
For two sibling groups B,C let B ≤ C if either B has a larger depth than C or

their depth is the same and B has at most as many σj-borders as C. In the proof,
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we will be moving intervals from smaller to larger sibling groups (with respect to
≤).

Assume first that there are at most three d-parent sibling groups outside B∪Bj−1,
with more than

lj := lj−1 + L′
1(lj−1 + 1)

σj-borders. In this case we add these sibling groups to Bj, set kj to be kj−1 + 3,
and we are done.

Otherwise, we find four d-parent sibling groups C1 ≤ C2 ≤ C3 ≤ C4 outside
B ∪ Bj−1, each of them with more than lj σj-borders. We show below that in
this case we can find two sibling groups among {C1, C2, C3, C4}, say B and C, with
B ≤ C and use the Local Horizontal Transfer Lemma to transfer an interval with
two σj-borders from B to C. Moreover, we can do this so that the transferred
interval will not contain any σi-border with i < j.

To show that iterating the above transfer step terminates we will use the follow-
ing order argument. With each data tree we associate two vectors W1,W2 which
store information on the depths of nodes and numbers of borders of d-parent sib-
ling groups, respectively. More specifically, the m-th entry of W1 is the number
of nodes at depth m in the tree, the m-th entry of W2 is the number of d-parent
sibling groups with m σj -borders for m > lj , and zero otherwise. We order these
vectors lexicographically, with the lowest entries considered first for W1-vectors
and the highest entries considered first for W2-vectors. Eventually, we consider the
lexicographic order on (W1,W2).

Notice that moving an interval with two σj-borders from B to C where B ≤ C
either strictly decreases the depth of all moved nodes and thus increases W1, or it
does not change W1 and strictly increases W2. Since both the set of nodes and the
number of sibling groups do not change, this step cannot be iterated indefinitely.
At some point, we must get a model with at most three d-parent sibling groups
outside B ∪ Bj−1, and then Bj can be defined as above.

Because C1 6∈ B ∪ Bj−1, it contains at most L′
1 pairwise non data-equivalent

σj-borders and at most lj−1 σi-borders for i = 1, . . . , j − 1. By definition of lj ,
the sibling group C1 must contain two data equivalent σj-borders (v1, v

′
1), (v2, v

′
2)

(in that order) such that the interval L(v1, v
′
2) does not contain any of the borders

σ1, . . . , σj−1. Let d1 and d2 be the data values of v1 and v′1, respectively. Note that
d1 6= d2 by definition of borders.

Let (u, u′) be a σj-border in Ck, with k ∈ {2, 3, 4}. If the data value of u is not
d2 and the data value of u′ is not d1 then the Local Horizontal Transfer Lemma
allows us to move the interval L[v′1, v2] (and its descendants) between u and u′ and
we have found our B and C with B = C1 and C = Ck. (Note that the assumption
B ≤ C guarantees that C is not in the induced forest of B.)

If this didn’t work, then for every k ∈ {2, 3, 4} and every σj -border (u, u′) in
Ck, either the data value of u is d2 or the data value of u′ is d1. However, by
construction each of the sibling groups C2, C3, C4 has more than lj σj-borders and
less than lj−1 σi-borders, i = 1, . . . , j − 1. Therefore, since L′

1 > 2, in each of these
sibling groups there must be either at least two σj-borders with left value d2 or at
least two σj -borders with right value d1, such that there is no σi-border between
them, for any i < j.
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We conclude that there must be l < m from {2, 3, 4} and σj-borders (v1, v
′
1),

(v2, v
′
2) in Cl and (u, u′) in Cm, respectively, such that v1, v2 and u all have data

value d2, or that v′1, v
′
2 and u′ all have data value d1. In either case we can move

L[v′1, v2] from Cl between u and u′ in Cm. So B = Cl and C = Cm in this case.
After performing the transfer from B to C, we might have increased the number

of pairwise non data-equivalent σk-borders in C, for k ≥ j, which we bounded in
Lemma 3.14. If, for all k ≥ j, C contains no more than L′

1 pairwise non data
equivalent σk-borders, then we are done with the construction of Bj and we proceed
with the next value for j. If this is not the case, we need to reapply Lemma 3.14, but
we have to be careful in order to guarantee the convergence of the process. Recall
the proof of Lemma 3.14. It identifies, for each label σ, one sibling group Bσ such
that for all sibling groups containing more than L′

1 σ-borders with pairwise distinct
left data values one of the σ-border can be transferred into Bσ (and similarly for
right data values). The set B resulting from applying Lemma 3.14 is the union
of all the Bσ. Assume C contains for some k ≥ j more than L′

1 σk-borders with
distinct left data value. If C is not above Bσk

then we can proceed with the proof
of Lemma 3.14 and transfer some of these σk-border to Bσk

. The problem arises
when C is above Bσk

. Then we need to replace Bσk
with C in B. Notice that when

doing this the sibling groups in B will only get higher in the tree, thefore at some
point, this case will never occur. Once we have the new set B we need to consider
the number of σ-borders in Bσk

, even for σ ≤ j. From this point we process again
all values for j starting from 1 as explained above. Note again that the process
terminates because B is modified only a finite number of time.

Finally, we obtain L′
2 = (L′

1|Σ|)(|Σ|+1) and K ′
2 = K ′

1 + 3|Σ|.

Proof of Proposition 3.13. Let K2 = K ′
2 and L2 = |Σ|L′

2 + 1. Whenever a
sibling group contains more than L2 complete pure intervals, there must be more
than L′

2 σ-borders, for some label σ. Hence, the sibling group must be one of the
K ′

2 sibling groups with more than L′
2 σ-borders. The statement of the proposition

follows.

Shallow zones. Thanks to Propositions 3.12 and 3.13, we know that for each d,
almost all d-parent sibling groups contain few pure intervals, and almost all pure
intervals with data value d contain few nodes. The only remaining reason for a
zone with data value d to contain many nodes is a long path.

Long paths are eliminated using the following lemma. An illustration is given in
Figure 5.

Lemma 3.16 Local Vertical Transfer Lemma. Let d be a data value and
let u, v, w be d-nodes in a model t with the same label. If w is a descendant of v
through a d-path and u is not in Sub(v, w) then the tree obtained from t by placing
Sub(v, w) between u and its parent is also a model. (In the new tree, v becomes a
child of the parent of u, u a child of the parent of w, and w a child of the parent of
v.)

Proof. It is easy to see that the only critical positions in this step are between
v, w, u and their respective parents. The new tree t′ is again a model of ϕ since

—all consistency conditions on labels of neighboring nodes are preserved (these are
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Fig. 5. Illustration of the Local Vertical Transfer Lemma.

the conditions from the automaton subformulas of ϕ); recall also that node labels
encode in particular the states of automaton formulas.

—classes are not changed, therefore all subformulas of kinds (b) and (c) of ϕ are
preserved;

—t′ is profiled consistently with the labels (labels imply profiles).

The following proposition shows that we can have only few long paths, for each
data value. Together with Propositions 3.12 and 3.13, the proposition implies that
each data value contains few large zones. If each data value contains few large
nodes, then in particular few pure intervals are large, few sibling groups contain
many complete intervals, and few paths are long. However, in the subsequent
“global” constructions, we will need to refer separately to the three properties:
small pure intervals, few complete intervals, and few long paths.

Proposition 3.17. There is a model of ϕ where for every data value d, there
are at most K3 d-zones containing a path with more than L3 nodes.

Proof. Let d be fixed. For every label σ which implies that a node is attached,
let vσ be an arbitrarily chosen node of minimal depth with data value d and label σ.
If such a node does not exist, vσ is undefined. If vσ is defined, then we initially
define Pσ to be the singleton d-path consisting of vσ. Let Pd be the set of paths Pσ,
for all σ ∈ Σ; this set contains at most K3 = |Σ| paths. We will iteratively move
parts of long d-paths into the paths from Pd until the statement of the proposition
is satisfied.

To this end, we consider a d-path p that is disjoint with
⋃

Pd and has more than
L3 = |Σ|+1 nodes. Clearly there must be two nodes v, w on the path with the same
label σ. As the lower of these nodes is an attached node, we can conclude that
the label σ implies that a node is attached, and thus the upper node is an attached
node as well. By Lemma 3.16, we can now move Sub(v, w) between some suitable
node u in Pσ and its parent. Note that because u has minimal depth among the
d-nodes of label σ, u is not in Sub(v, w).

It is easy to verify that the new model still satisfies the properties of Proposi-
tion 3.12 and Proposition 3.13.
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3.3.4 Pruning globally. For the rest of this section, we will only consider models
of ϕ satisfying the local properties stated in Propositions 3.12, 3.13 and 3.17. In
this subsection we prove their global counterparts, where the restriction “for every
data value d” is lifted (and doing this we ensure that the local properties hold
throughout the section). For this purpose, we need more involved transfer lemmas.
Unlike the previous section, where nodes were only moved around, in this section
we will actually be changing the data values of some nodes.

We first introduce some more notation. The spill of a node v is the part of the
zone of v which is contained in the subtree of v (including v itself). The spill of an
interval I is the union of the spills of its nodes. The d-spill of an interval I is the
union of the spills of the d-valued nodes of I.

In the subsequent constructions, we will sometimes want to take nodes from a set
Z and assign them a different data value d. This change, however, may violate the
conditions stated in our formula, especially conditions (b) - “Each class contains
at most one node of type α” - and (c) -“Each class with a node of type α also has
a node of type β”. Recall that the label of a node is a complete type containing
each predicate or its negation. In order to avoid this problem we say that a set of
nodes Z is safe if for each node of Z there is a node with the same data value and
the same label outside of Z. From now on we will only change the data values of
safe zones.

The following lemma shows that every set of nodes with the same data value
(e.g. a zone or pure interval) can be made safe by removing at most |Σ| elements:

Lemma 3.18. Let Z be a subset of a class in a model. There is a subset Y ⊆ Z
with at most |Σ| elements such that Z \ Y is safe.

Proof. For each label we select a node of that label in Z (if such a node exists)
and put it into Y . It is now immediate that Z \ Y is safe.

We start with a global horizontal transfer lemma which is illustrated in Figure
6.

Z

v
′

w

I
v w

′ u u
′

⇒

v w
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′

Z

v
′

w

I

Fig. 6. Global Horizontal Transfer.

Lemma 3.19. (Global Horizontal Transfer Lemma).
Let I be a d1-parent interval of t and let (u, u′) be a d2-parent twin-pair which is

not in the induced forest of I. Let (v, v′) and (w,w′) be the left and right interface of
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I, respectively. Assume that v′ and w′ have the same data value e1. Furthermore,
let e2 be the data value of u′ and let Z be the e1-spill of I.

If t is a model of ϕ then the tree t′ obtained by changing the data value of Z from
e1 to e2 and moving the induced forest of I between u and u′ is a model of ϕ if the
following conditions hold.

(i) The labels of v′, w′, u′ are the same.

(ii) If d2 6= e1 then d2 does not occur in I.

(iii) If d1 6= e1 then d1 does not occur in I.

(iv) Front(Z) ∪ {w} does not contain any node with data value e2.

(v) The set Z is safe.

(vi) All labels occurring in Z also occur in the class of e2.

Proof. As in the proof of Lemma 3.11, item (i) ensures the consistency of
neighboring labels in t′, therefore t′ satisfies all automata subformulas, as t did.

Conditions (v) and (vi) on the labels in classes e1 and e2 ensure that simple
conditions of kind (b) and (c) from ϕ are not violated by the transfer. Consider
first a simple condition (b): “each class contains at most one node of type α”. The
transfer could violate this condition by adding a second α to the class of e2. This is
impossible by safety of Z, since every node in Z with type α appears at least twice
in e1, and therefore a type α that appears in Z cannot be involved in a simple
condition (b). Consider now a simple condition (c), which says that “each class
with a node of type α also has a node of type β”. This condition could be violated
in one of two ways: by removing all β’s from the class of e1, or by adding an α
without a β to the class of e2. The first violation cannot hold by assumption on
safety of Z, while the second violation cannot hold by assumption (vi), which says
that all labels in Z also occur in the class of e2.

Items (i)-(iv), plus the equal values of v′, w′ guarantee that t′ is a consistently
profiled data tree. To see this, note first that the data (in)equalities for (v, w′),
(u, v′) and (w, u′) are trivially preserved (by item (i)). Let x, y be two nodes in
the induced forest of I, and assume first that y is a left/right sibling or a child of
x. Item (iv) ensures that if x changes its value, the data (in)equality for (x, y) is
preserved. If y is the parent of x, and x belongs to I, then there are several cases to
consider. If x has value different from e1, d1, then item (ii) applies. If x has value
d1 6= e1, then item (iii) applies. If x has value e1, then item (i) applies, since the
label of v′, u′ implies the profile.

To be able to find a target twin-pair fulfilling item (iv) of Lemma 3.19 it is critical
that Front(Z) is small and thus contains only a limited number of data values. The
following definition gives a sufficient condition for Front(Z) being small. A node is
called admissible if its spill

—contains only complete pure intervals with at most L1 nodes,

—contains only nodes whose children sibling group has at most L2 complete pure
intervals, and

—has depth at most L3.
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Clearly, if a node is admissible, then its spill Z satisfies

|Front(Z)| ≤ L where L = (L1L2)
L3+1 .

Furthermore, from Propositions 3.12, 3.13 and 3.17 it follows that in each pure
interval I, there are at most

K = K1 +K2 +K3 (∗)

non-admissible nodes. More generally, each antichain (nodes pairwise incomparable
with respect to the descendant relation) contains at mostK non-admissible d-nodes,
for any d.

Small intervals. Again, we prove first that it can be assumed that almost all pure
intervals are small.

Proposition 3.20. There is a model of ϕ in which at most M1 complete pure
intervals have more than N1 nodes.

Proof. We define the following constants (where K is the constant defined in
Eq. (∗)):

K ′ = |Σ|L+ 1 ,

M ′
1 = K ′K1|Σ| ,

M1 = 2|Σ|M ′
1 ,

N1 = K|Σ| + (|Σ| + 1)2 .

In the remainder of the proof we call any complete pure interval of length more
than N1 long. For a set Γ ⊆ Σ of labels, a Γ-class is a class in which exactly the
labels from Γ occur. A Γ-interval is an interval from a Γ-class (which is not the
same thing as an interval with exactly the labels from Γ).

The goal is to limit the number of long intervals to at most M1. To this end, we
construct a model in which, for each Γ ⊆ Σ there are at most M ′

1 long intervals
from Γ-classes. The transformation of the model is done separately, for each set Γ.
Let thus Γ be fixed in the following.

The general idea is as follows. We start with a model t that satisfies all local
properties from Section 3.3.3. For each label σ, we will fix a set Iσ with a bounded
number of long Γ-intervals. We will then reduce the size of all other pure intervals
by using the Global Horizontal Transfer Lemma to move safe subintervals of large
pure intervals into long intervals from the sets Iσ. Notice that safety guarantees
that the initial pure interval remains a Γ-interval (no label has disappeared in
the corresponding class) while the resulting target interval remains a Γ-interval by
construction (no new label has been added to the corresponding class).

We begin by defining the sets Iσ. Two cases need be considered.

(1) If σ occurs in at most K ′ long Γ-intervals, we put all the long intervals that
contain the label σ into Iσ.

(2) Otherwise, σ occurs in at least K ′ long Γ-intervals. We set Iσ to contain K ′

long Γ-intervals with distinct data values, each containing an occurrence of σ.
These pure intervals will be the destination of horizontal transfers. They are
chosen by traversing the tree in a root-to-leaf, left-to-right manner, and putting
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into Iσ the first K ′ long Γ-intervals with label σ and distinct data values. In
particular, for each long Γ-interval I 6∈ Iσ that contains σ we have either a) the
induced forest of I does not contain any intervals from Iσ; or b) there exists
some J ∈ Iσ with the same value as I, which does not belong to the induced
forest of I.

Let I be the union of the sets Iσ, for all labels σ. Clearly, I contains at most

M ′
1 = K ′K1|Σ|

pure intervals. We claim that if J is a long Γ-interval outside I, then the Global
Horizontal Transfer Lemma can be used to transfer some subinterval I ⊆ J into
I. By iterating this process, we eventually obtain a model where at most M ′

1 pure
Γ-intervals are long.

Let then J be a long Γ-interval outside I. Since J is long, it contains a σ-looping
subinterval, for some label σ. If Iσ contains a long interval I with the same data
value as J , then we can use the Local Horizontal Transfer Lemma to move the
σ-looping subinterval of J into I. Otherwise, for any label σ that occurs twice
in J , the set Iσ does not contain any interval with the same data value as J . In
particular, by the last sentence in case (2), the induced forest of J contains no
element of Iσ.

Like any pure interval, J contains at most K non-admissible nodes. Since J is
long,

|J | > N1 = K|Σ| + (|Σ| + 1)2 ,

it must contain at least |Σ|+1 disjoint intervals of size exactly |Σ|+1 that contain
only admissible nodes. We apply Lemma 3.18 to the spill of J and conclude that at
least one of these |Σ|+1 many disjoint intervals must have a safe spill. Within this
interval, we find two occurrences of some label, say σ, and therefore a σ-looping
subinterval. Summing up: we have found a pure interval I ⊆ J that is σ-looping,
and contains at most |Σ| nodes, all of which are admissible. Furthermore, the spill
Z of I is safe. We will now use the Global Horizontal Transfer Lemma to transfer
I into I.

We need to find a twin-pair (u, u′) in I that can be used as a target for the
transfer. This twin-pair must be chosen so that requirements (i) - (iv) in the
Global Horizontal Transfer Lemma are satisfied. The requirement (v) is already
satisfied, by assumption on Z being safe. Finally, (vi) is satisfied as the source and
the target class both have the same label set Γ.

The first requirement (i) is that the node u′ has label σ. Since the label σ was
found in a long interval outside I, case (2) must have been used in the construction
of Iσ. Therefore, we have not only one, but K ′ pure twin-pairs (u, u′) in I that
satisfy the first requirement, each with a different left data value. Furthermore,
none of these twin-pairs is in the induced forest of J .

In our case, the value e1 in the statement of the Global Horizontal Transfer
Lemma is simultaneously the data value of all nodes in I. In particular, require-
ments (ii) and (iii) are trivially satisfied.

The last remaining requirement is (iv), which says that the frontier of Z does not
contain any node with the same data value as the left data value e2 of the target
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twin-pair (u, u′) and that w 6∼ e2. Note that we have K ′ candidates for e2 inside
Iσ. We will show that the frontier of Z is smaller than K ′, and therefore one of
these candidates can be used. Indeed, the reader will recall that the spill of an
admissible node has a frontier of size at most L. Since I has at most |Σ| nodes,
and all are admissible, its spill Z satisfies

|Front(Z)| ≤ |Σ|L < |Σ|L+ 1 = K ′ .

Having thus satisfied all requirements, we can apply the Global Horizontal Trans-
fer Lemma and move the pure interval I into I. It remains to slightly modify this
model so that all the local properties of Section 3.3.3 are satisfied.

During the process above, we only increase the length of one pure interval in I.
But this interval was already long by the definition of I, so, for each data value d
there are still at most K1 complete d-pure intervals of length more than L1. The
number of complete pure intervals in each of the sibling groups of the model has
not changed during the modification. The only difficulty is with long paths. When
we were transferring I between u and u′, we may have created new long e2-paths,
by concatenating a path in Z with an e2-path arriving at the parent of u. In order
to reduce this number we reapply Proposition 3.17 to the class of e2. We then get
the desired model of ϕ, as this last transformation does not affect the other local
properties and also does not introduce new long intervals.

Few intervals

Proposition 3.21. There is a model with at most M2 sibling groups containing
more than N2 complete pure intervals.

Similar to an attached node, a twin-pair (v, v′) with parent u is called right-
attached if v′ ∼ u and left-attached if v ∼ u. It is called attached if it is left-
or right-attached. An interval6 is said to be free if it contains no attached nodes,
otherwise it is attached. Free intervals are nice, because they are easy to move
around in the model.

The proof of the proposition is shown in two steps.

—Lemma 3.22 gives a model where only a bounded number of sibling groups have
a free interval with many complete pure subintervals.

—Lemma 3.23 gives a model where only a bounded number of sibling groups have
many attached complete pure intervals.

The statement of the proposition then follows easily.

Lemma 3.22. There is a model in which at most M ′
1 sibling groups contain free

intervals with more than N ′
1 complete pure subintervals.

Proof. Let us define the following constants:

N ′
1 = max{L2, 17|Σ|+ 1} ,

M ′
3 = (N ′

1 + 2)|Σ| + 1 ,

M ′
4 = M ′

3 + |Σ|(3N ′
1 + 3) + 1 ,

M ′
1 = M ′

4K2 .

6Note that in this part of the section intervals are not always pure.
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We start with a model that satisfies all local properties of Section 3.3.3, and also
the small pure interval property assured by Proposition 3.20.

We call a sibling group bad if it contains a free interval with more than N ′
1

complete pure subintervals. We want to limit the number of bad sibling groups
to at most M ′

1. We will ensure this by transforming the tree so that at most M ′
4

different data values occur at parents of bad sibling groups. Since we only consider
models satisfying all the local properties of Section 3.3.3, we will then have at most
M ′

4K2 = M ′
1 sibling groups with more than L2 ≤ N ′

1 complete pure intervals at all,
which shows the claim.

We order bad sibling groups similarly as in Lemma 3.15, by letting B ≤ C if
either the depth of B is larger than that of C, or they have the same depth and B
has at most as many borders as C. We show below that if there are more than M ′

4

data values used for parents of bad sibling groups, then we can use Lemma 3.11
to move some interval J with borders (together with its descendants) from a bad
sibling group B to a bad one C with B ≤ C. (Note that we use the Local, and not
Global, Horizontal Transfer Lemma here.) For termination we argue in a similar
way as for Lemma 3.15. We use again vectors W1,W2, where the m-th entry of
W1 is the number of nodes at depth m in the tree, and the m-th entry of W2 is
the number of bad sibling groups with m borders. Again, by each transformation
step either W1 increases or W1 is unchanged and W2 increases. Therefore at some
point we arrive at a tree where at most M ′

4 data values are used for parents of bad
sibling groups.

So assume that the tree contains at least M ′
4 bad sibling groups B1, . . . , Bn with

distinct parent data values ; these are ordered so that Bi ≤ Bj for all i < j. In
each Bi we fix a free interval Ii with exactly N ′

1 complete pure subintervals. As
N ′

1 ≥ 17|Σ|, in each Ii we can find some σ-border that occurs at least 17 times; we
will refer to this σ as σi.

We will consider 3 cases, depending on the number of intervals Ii in which σi-
borders occur frequently with pairwise distinct left (right, resp.) data values.

Assume first that more than M ′
3 of the intervals Ii are such that they contain at

least 5 σi-borders with pairwise distinct left data values.

As M ′
3 > (N ′

1 + 2)|Σ|, we can fix a label σ such that more than N ′
1 + 2 of the

intervals Ii have at least 5 σ-borders with distinct left data values. Among these
intervals we can find some i < j such that the parent data value of Ij does not
occur in Ii. We can find such i, j by taking i minimal (with σi = σ), and using
the fact that Ii contains exactly N ′

1 complete pure intervals, and that parent values
are pairwise different. Together with Ii being a free interval, we conclude that
each subinterval J of Ii and each σ-border (u, u′) of Ij satisfy condition (iv) of
Lemma 3.11. If J is chosen to be σ-looping, then condition (i) is also satisfied.
Furthermore, since σ is a border, we have u 6∼ u′ and therefore condition (ii) is
satisfied, too. It remains to chose J and (u, u′) so that condition (iii) is satisfied.
For this, we use the assumption on σ occurring 5 times with pairwise distinct left
data values, and argue as in the proof of Lemma 3.14. Thus, the Local Horizontal
Transfer Lemma can be applied to J and (u, u′).

The second case is the symmetric case where more than M ′
3 of the intervals Ii

contain at least 5 σi-borders occurs with pairwise distinct right data values.
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The remaining case is where in all but M ′
3 intervals Ii, σi-borders occur with at

most 4 distinct left data values and at most 4 distinct right data values. As each of
the intervals Ii has at least 17 σi-borders, each one must have two data-equivalent
σi-borders. As M ′

4 > M ′
3 + |Σ|(3N ′

1 + 3), there is a label σ such that more than
3N ′

1 + 3 of the intervals satisfy σi = σ. We can thus find i1 < i2 < i3 < i4 such
that

—each of Ii1 , . . . , Ii4 has 2 data-equivalent σ-borders, and

—for each j < k, the parent value of Iik
does not occur in Iij

.

We can argue as in the proof of Lemma 3.15 and find an subinterval J in Iij
and

a σ-border (u, u′) in Iik
, for some j < k, such that the Local Horizontal Transfer

Lemma can be applied. Note that condition (iv) is ensured by the second item
above, together with Iij

being free.
In all cases we did not change any data value, did not modify any complete pure

interval, and we only increased the size of such sibling groups whose number of
complete pure intervals was already bigger than L2. Furthermore, we only trans-
ferred free intervals, so no new pure vertical paths were created. Thus all the local
properties obtained in Section 3.3.3 and the property obtained in Proposition 3.21
still hold.

Lemma 3.23. There is a model with at most M ′
2 sibling groups that contain more

than N ′
2 attached complete pure intervals.

Proof. The proof is very similar to the proof of Proposition 3.20.
Let B0 be the set of sibling groups containing either 1) pure intervals of length

more than N1, or 2) free intervals with more than N ′
1 complete pure subintervals.

Thanks to Proposition 3.20 and Lemma 3.22, we may assume that B0 contains
at most M1 +M ′

1 sibling groups. In the proof, we will not modify sibling groups
from B0. This will allow us to assume that all pure intervals are small and all free
intervals have few complete pure subintervals.

We define the following constants (where K is defined in Eq. (∗)):

L′ = |Σ|N ′
1 ,

K ′ = N1L
′L+ 1 ,

M ′′
2 = M1 +M ′

1 +K ′K2|Σ| ,

M ′
2 = 2|Σ|M ′′

2 ,

N ′
2 = |Σ|(|Σ| + 1)(|Σ| +K) .

In the following, we say a sibling group is bad, if it contains more than N ′
2

attached complete pure intervals. The lemma will be established once we limit the
number of bad sibling group to M ′

2.
We say a label σ is attached if it implies that a node has the same value as its

parent. A Γ-value is a data value whose class contains exactly the labels from Γ.
Similarly as in the proof of Proposition 3.20, we proceed separately, for each set
Γ ⊆ Σ. Let thus Γ be fixed.

For each attached label σ, we will again construct a set Iσ which will be used as
targets for transfers. As before, we consider two cases, depending on σ:
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(1) Assume first that at most K ′ Γ-values occur in parents of bad sibling groups
with label σ. In this case, we put all bad sibling groups that contain label
σ into Iσ. Since we only consider models satisfying the local properties of
Section 3.3.3, there can be at most K ′K2 such sibling groups.

(2) Otherwise, we choose a set Iσ of K ′ bad sibling groups that contain nodes
with label σ, with K ′ different parent Γ-values. These are chosen by traversing
the tree in a root-to-leaf, left-to-right manner, and putting into Iσ the first K ′

bad sibling groups that contain label σ and have distinct parent Γ-values. In
particular, for each bad sibling group B 6∈ Iσ with parent Γ-value and that
contains σ, we have that either a) the induced forest of I does not contain any
sibling groups from Iσ; or b) there exists some B′ ∈ Iσ with the same parent
value as B, which does not belong to the induced forest of B.

Let I be the union of the sets Iσ, for all labels σ. Clearly I contains at most
K ′K2|Σ| sibling groups, and therefore I ∪ B0 contains at most M ′′

2 sibling groups.
We will show that if B is a bad sibling group outside I ∪B0, then part of B can be
transferred into I, possibly with a change of data value. By iterating this process,
we eventually obtain a model satisfying the statement of the lemma.

Let thus B be a bad sibling group outside I ∪ B0 with a Γ-value d in the parent
of B. This is also the data value of all nodes in B with an attached label. Since
B is bad, there must be some attached label σ, such that B contains more than
(|Σ| + K) complete σ-looping intervals. At least one of these intervals, which we
will denote by I, has a safe d-spill (by Lemma 3.18) and contains only d-admissible
nodes (by Eq. (∗)). We may well assume that I contains at most |Σ| complete
pure attached intervals, since otherwise we could find a different looping complete
interval inside I. Furthermore, by assumption on B 6∈ B0, between every two
attached intervals in B we can find at most N ′

1 consecutive free complete pure
intervals. In particular, I contains at most L′ = |Σ|N ′

1 complete pure intervals
altogether, free or attached.

Summing up: inside the sibling group B we have found a complete σ-looping
interval I with at most L′ complete pure intervals and a safe d-spill. Furthermore,
all nodes in I that have data value d are admissible. Finally, by assumption on
B 6∈ B0, each pure interval in I has length at most N1.

We will now apply the Global Horizontal Transfer Lemma (Lemma 3.19) and
transfer I into a twin pair (u, u′) inside I. Note that, as σ is attached, the right
elements of the interfaces carry the same data value as required by the Global
Horizontal Transfer Lemma. We need to choose (u, u′) so that that all requirements
(i) - (v) of the lemma are satisfied. By assumption on the d-spill of I being safe, the
requirement (v) is already satisfied. As the source and target class are Γ-classes,
(vi) is also guaranteed.

The first requirement (i) is that the node u has label σ. Since the label σ was
found in a sibling group outside I, case (2) must have been used in the construction
of Iσ. Therefore, we have not only one, but K ′ twin-pairs (u, u′) in I that satisfy
the first requirement, each with a different left data value.

If at least one of these twin-pairs (u, u′) is in the induced forest of I, then we
know that there is some B′ ∈ Iσ whose parent data value is d and which does
not belong to the induced forest of I. We can therefore use the Local Horizontal
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Transfer Lemma to move the interval I into B′. Therefore, from now on we assume
that the K ′ twin-pairs (u, u′) in I that satisfy the first requirement are all outside
the induced forest of I. We will try to pick one among these candidates that satisfies
the remaining requirements (ii), (iii) and (iv).

The requirement (iii) is satisfied, since by assumption on σ being an attached
label, both d1 and e1 (as defined in the Global Horizontal Transfer Lemma) are the
same data value d.

It remains to satisfy the requirements (ii) and (iv). Note that in our case, each
candidate (u, u′) for the target twin-pair is right-attached – since σ is an attached
label – and therefore both d2 and e2 (as defined in the lemma) are the same data
value. The requirements (ii) and (iv) will therefore be satisfied if we can find a
candidate for the data value d2 = e2 that does not occur in the interval I itself,
nor in the frontier of the d-spill of I. By our assumptions, I contains at most N1L

′

nodes, and therefore at most as many data values. Furthermore, recall that the
spill of an admissible node has a frontier of size at most L. In particular, since all
nodes in I with data value d are admissible, the frontier of the d-spill of I contains
at most N1L

′L nodes. Summing up, there are at most N1L
′L data values that need

to be avoided by the twin pair (u, u′). Since I contains at least

K ′ = N1L
′L+ 1

candidates, at least one of them is suitable, and the Global Horizontal Transfer
Lemma can be applied to reduce the size of B.

It might be necessary to modify this model slightly in order to maintain all the
local properties of Section 3.3.3 and the property of Proposition 3.20.

Let d′ be the right value d2 = e2 of the target twin pair (u, u′). During the
process above, the class of d′ has been modified. It certainly does not have more
d′-parent sibling groups with more than L2 complete pure intervals, as only sibling
groups containing many complete pure intervals have been modified. But some
long d′-intervals and d′-paths may have been created while changing the data value
d into d′. We first apply Proposition 3.12 and Proposition 3.17 to the data value
d′. This does not affect d′-parent sibling groups with many pure subintervals,
and therefore the new model satisfies all the properties of Section 3.3.3. But this
may have introduced globally new long pure intervals. We can then apply again
Proposition 3.20 and we get the desired model as Proposition 3.20 does not affect
the number of complete pure intervals inside a sibling group.

Proof of Proposition 3.21. We set M2 = M ′
1 + M ′

2 and N2 = N ′
2(N

′
1 + 1)

and conclude the proposition directly from Lemmas 3.22 and 3.23.

Shallow zones. Analogously to the local case, we first give a vertical transfer
lemma.

The innerspill of a path that goes from a node v to its descendant w is defined
to be the spill of v without the spill of w.

Lemma 3.24 Global Vertical Transfer Lemma.
Let d1 6= d2 be data values and let v, w be two nodes such that w is a descendant of
v through a d1-path p and let u be a node not in Sub(v, w) with data value d2. Let
Z be the innerspill of p.
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Then the tree obtained from t by changing the data value of Z from d1 to d2 and
moving Sub(v, w) between u and its parent is also a model if the following conditions
hold.

(i) The labels of v, w, u are the same.

(ii) Front(Z) does not contain any node with data value d2.

(iii) Z is safe.

(iv) All labels occurring in Z also occur in the class of d2.

Proof. As in the proof of Lemma 3.16 it is easy to see that the consistency of
neighboring labels is preserved. Condition (iii) ensures that simple conditions of
kind (b) and (c) from the automata data normal form are not violated. Finally
condition (ii) ensures that the new data tree is consistently profiled.

Proposition 3.25. There is a model where at most M3 zones contain paths with
more than N3 nodes.

Proof. We start with a model t that satisfies the conditions of Propositions
3.20 and 3.21.

We define the following constants (where K is defined by Eq. (∗)):

K ′ = L|Σ| + 1 ,

N3 = max{(K + |Σ| + 1)(|Σ| + 1), L3} ,

M ′
3 = |Σ|K ′K3 ,

M3 = 2|Σ|M ′
3 .

The general idea is that if a data path is too long we can find a subpath in it to
which we can apply the Global Vertical Transfer Lemma.

As before, we transform the tree in several rounds, one for each Γ ⊆ Σ. We fix
Γ. For each label σ, we define a set Pσ of nodes with label σ, which will be used
as a target for transfers. As before, we consider two cases:

(1) Consider first the case when at most K ′ different Γ-classes contain σ. In this
case, we define Pσ to be the set of all nodes with label σ that are on some data
path of length more than N3. Since N3 ≥ L3, by Proposition 3.17 we know
that Pσ contains nodes from at most K ′K3 zones.

(2) Otherwise, we set Pσ to be any set of K ′ nodes that have label σ and pairwise
different Γ-values.

Let Z be the set of all zones that contain a node from one of the sets Pσ. Clearly
the size of Z is at most M ′

3 = |Σ|K ′K3. We will now show that if a data path p
has more than N3 nodes, then some fragment of p can be transferred into a zone
from Z. By iterating this process, we arrive at the statement of the lemma.

Let thus p be a data path of a Γ-value d1, disjoint from Z that contains more than
N3 nodes. Recall that there are at most K non-admissible nodes in any antichain
of the class of d1 (cf. Eq. (∗)). Since p contains at least

N3 ≥ (K + |Σ| + 1)(|Σ| + 1)

nodes, there must be two nodes in v, w in p that have the same label, say σ, and
such that innerspill Z between v and w is safe and contains only admissible nodes
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(except maybe for the nodes of p). Without loss of generality we may assume
that the path from v to w contains at most |Σ| nodes.

By assumptions on v, w concerning admissible nodes and the length of the path
from v to w we have:

Front(Z) ≤ L|Σ| < K ′

Note that since the label σ was found outside Z, case (2) must have been used
when constructing Pσ. In particular, Pσ must contain at least one node u with
label σ and a Γ-value d2 not occurring in Front(Z).

We can now apply the Global Vertical Transfer Lemma and transfer the subtree
Sub(v, w) between u and its parent, changing the data value d1 into d2 in the
innerspill Z.

Note that after the transfer, we augmented neither the number of complete
pure intervals, nor the number complete pure intervals in any sibling group, thus
preserving Propositions 3.20 and 3.21.

3.4 Satisfiability for Small Models

In this section we show the following proposition:

Proposition 3.26. Given M,N , and a sentence ϕ in automata data normal
form, it is decidable whether ϕ has a model in which at most M data zones have
outdegree more than N .

The proof is by reduction to the non-emptiness of linear constraint tree automata.
In Subsection 3.4.1, we define linear constraint tree automata and show that they
have a decidable emptiness problem. Then, in Section 3.4.2, we show that the (data
erasure of) solutions can be recognized by a linear constraint tree automaton.

3.4.1 Linear constraint tree automata. A linear inequality over variable set
X is an expression of the form

∑

x∈X

kx · x ≥ 0 kx ∈ Z .

A linear constraint over X is a Boolean combination of linear inequalities. A
valuation ν : X → N satisfying a linear constraint is defined in the usual way. We
call such a satisfying valuation a solution.

Definition 3.27. A linear constraint tree automaton (LCTA) is a nonde-
terministic unranked tree automaton A with state space Q, together with a linear
constraint over Q. The LCTA accepts a tree if the tree admits a run ρ : V → Q
of A on t, which accepts in the usual sense, and which moreover satisfies the linear
constraint wrt. its Parikh image (|ρ−1(q)|)q∈Q.

The following result can be obtained by using [Neeraj Verma et al. 2005], where
it is shown how to compute in linear time an existential Presburger formula for the
Parikh image of a context-free language described by a grammar (a similar result
was also obtained in [Fan and Libkin 2002]). The proof in [Neeraj Verma et al.
2005] can be directly adapted to extended context-free grammars, i.e., grammars
with rules A → LA, where LA ⊆ Σ∗ is a regular language giving the possible
right-hand sides of the rule with left-hand side A.
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Theorem 3.28. Non-emptiness of LCTA is in NPTime.

Proof. The general idea is that a tree is similar to a derivation of an extended
context-free grammar, therefore emptiness of LCTA can be resolved by calculating
the Parikh image of an extended context-free grammar.

Let A be a LCTA with state spaceQ, initial state sets I and J , transition relations
δv, δh, acceptance condition F ⊆ Q × Σ and a linear constraint E. We transform
A into an extended context-free grammar G of polynomial size such that L(A)
is non-empty if and only if the Parikh image of L(G) has non-empty intersection
with the linear constraint E. The claim then follows using [Neeraj Verma et al.
2005; Papadimitriou 1981], since the Parikh image of L(G) can be expressed by a
linear-size existential Presburger formula, hence also the intersection with E.

The grammar G describes accepting runs of the underlying tree automaton of A
as follows. The nonterminals are states Q of the LCTA, while the terminals are a
disjoint copy Q̄ = {q̄ | q ∈ Q} of the states. For each nonterminal q, G allows a
derivation step q → q̄q1 · · · qn if: 1) the state q1 belongs to J ; and 2) for each i < n
there is some label a ∈ Σ such that (qi, a, qi+1) belongs to δh; and 3) there is some
label a ∈ Σ such that (qn, a, q) belongs to δv. Finally, if q belongs to I, we add a
rule q → q̄. The starting nonterminals are those states q ∈ Q such that (q, a) is
final for some label a ∈ Σ. It is fairly straightforward that the Parikh image of
L(G) is exactly the Parikh image of the set of accepting runs of the underlying tree
automaton of A.

It is easy to see that tree languages recognized by LCTA enjoy the following
closure properties:

Lemma 3.29. The class of unranked tree languages accepted by LCTA is closed
under conjunction, disjunction and renaming7.

Note that it is important here that the linear constraints speak of states and not
of letters of the input. Even over words, an automaton with linear constraints over
letters in the input cannot recognize the language {b∗anbn | n ∈ N}.

3.4.2 Satisfiability via linear constraint tree automata. The following proposi-
tion shows that when restricted to data trees with small outdegree of data zones,
LCTA can recognize the data erasure of FO2(∼,+1) sentences. The difficult step
of the proof of this proposition is transforming an accepting run of the LCTA into a
data tree which is a model of the sentence. For this, as it will be made clear below,
we need the assumption that only few zones have large outdegree.

Proposition 3.30. Let ϕ be a sentence in automata data normal form. Let
M,N ∈ N. There is a LCTA that recognizes the data erasures of those models of ϕ
where at most M zones have outdegree more than N .

The proof of this proposition is given in this subsection.
Let us fix a sentence ϕ in automata data normal form. As in the previous section,

Σ is the set of labels (types that determine the value of every unary predicate).
We distinguish two kinds of labels σ depending of ϕ. Those that can appear at

most once in a class are called dogs, and those that can appear arbitrarily many

7A renaming function is one of the form h : Σ → Σ′.
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times in a class are called sheep. Whether or not a label is a dog or sheep is
determined by the simple formulas of kind (b) in Def. 3.2 that appear in ϕ. By
making use of one more relation RD in ϕ we can ensure that each label β arising
from a formula ∀x∃y α(x) → (x ∼ y ∧ β(y)) of type (c) in Def. 3.2 is a dog label.
Notice that adding the predicate RD does not affect the normal form.

Consider a class in a data tree satisfying ϕ. The pre-class-type of the class is
a pair (D,S) where D is the set of dog labels occurring in the class and S is the
set of sheep labels occurring in class. All possible pre-class-types can be computed
from ϕ using the constraints of type (b) and (c).

It will be important in the construction of the LCTA below to know how the dog
labels of each class are spread among the zones of the class. For this we define the
class-type of a class as the triple (π,D, S) where (D,S) is a pre-class-type and
π is a partition of D that separates two dog labels if and only if they appear in
different zones of the class.

The number of class-types is doubly exponential in n, where n is the number of
unary predicates in ϕ. Indeed |Σ| = 2n, and thus there are at most 2O(2n) pairs
(D,S). For each such pair there are 2O(|D|) = 2O(2n) ways of partitioning D.

Let k = M +N |Σ| + 4.
Let ν be a function that assigns to every class-type τ a number from {0, . . . , k}.

For each such function ν, we define L(ϕ, ν) to be the set of models t of ϕ with
at most M zones of outdegree greater than N , where for each class-type τ the
following holds:

—If ν(τ) < k, then there are exactly ν(τ) classes in t of class-type τ .

—If ν(τ) = k, then there are at least k classes in t of class-type τ .

Proposition 3.30 follows immediately from the following lemma, by taking a dis-
junction of automata over all possible functions ν.

Lemma 3.31. For every M,N ∈ N, for every sentence ϕ in automata data nor-
mal form, and every function ν, there is an LCTA Aϕ,ν that recognizes the data
erasure of L(ϕ, ν). The size of Aϕ,ν is doubly exponential in |ϕ| and polynomial in
M and N .

The rest of this subsection is devoted to showing Lemma 3.31.
We fix M,N , ϕ and ν for the rest of the subsection. Let t be a data tree in

L(ϕ, ν). A class (data value) in t is called special if it has a zone with outdegree
more thanN , or if its class-type τ is such that ν(τ) < k. Note that the total number
of special data values is at most M +mk, where m is the number of class-types.
We assume without loss of generality that these data values are {1, . . . ,M +mk}.

We begin by describing the idea behind the LCTA Aϕ,ν . It works on a profiled
tree without data and tries to verify if the tree can be expanded with data values
so that it belongs to L(ϕ, ν). The tree already contains most of the information:
the node labels (that include the profiles) and the division into pseudo-zones. Here,
a pseudo-zone is a maximal (connected) set of nodes whose labels indicate that
the nodes should have the same data value. The whole point of Aϕ,ν is to verify if
the pseudo-zones can be grouped into classes that are consistent with the possible
class types allowed by ϕ.
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It should be noted that Aϕ,ν can easily check whether a profiled tree without
data is locally consistent, i.e., whether the profile conditions can be satisfied: e.g.,
if u is the left sibling of v and the profiles of u and v say that both have the same
data value as their parent, then the profile of u must say that it has the same data
value as its right sibling.

The LCTA Aϕ,ν is defined as follows. For each node, it guesses the class-type
of the class of this node and whether this class will have a special data value, and
if so, which one. We call this value the prevaluation of a node, which is either
one of {1, . . . ,M +mk} or undetermined. We call the values in {1, . . . ,M +mk}
special.

Naturally, all the guesses are done consistently with the pseudo-zones, i.e. all
nodes in the same pseudo-zone get the same special value, if any. Then the LCTA
Aϕ,ν verifies that:

(1) Nodes in the same zone get the same class-type.

(2) The labels in the tree satisfy the neighboring label conditions given by the
automaton formulas of ϕ.

(3) No two adjacent pseudo-zones have the same determined prevaluation. (They
may both have undetermined data values.)

(4) All pseudo-zones of outdegree more than N have a special value. Likewise for
nodes whose class-type τ satisfies ν(τ) < k.

(5) The set of dog labels in every pseudo-zone of class-type τ is consistent with the
partition π induced by τ .

(6) For each τ , any two labels a, b in the set Dτ of dog labels of τ occur the same
number of times in nodes of class type τ .

Note that the linear constraints are only used in the last property. Clearly the
automaton Aϕ,ν accepts all trees in L(ϕ, ν).

We now proceed to show the converse, i.e., that for any profiled tree t without
data values accepted by the LCTA Aϕ,ν there is a valuation of t, i.e., a mapping
from nodes to data values such that the resulting data tree t′ is in L(ϕ, ν). The
difficulty is to find data values for the nodes with undetermined prevaluation so
that any two adjacent pseudo-zones get different data values. We prove that this
is indeed possible by taking advantage of the fact that there are at most M zones
of outdegree larger than N .

Let us fix a run ρ of Aϕ,ν (which tells us the prevaluation λ). A consistent
valuation µ of t using ρ is a labeling of its nodes with data values, that is consistent
with λ and ρ in the following ways:

(A) Every pseudo-zone has exactly one data value.

(B) If λ(v) is special then µ(v) = λ(v).

(C) For every data value d, the class-type of d is the one guessed in ρ.

(D) Adjacent pseudo-zones have different values.

For a tree t that is accepted by Aϕ,ν it is straightforward to find a valuation for
t that fulfills conditions (A)-(C). One only needs to assign data values to nodes
where ρ did not supply a guessed data value. This can be done while satisfying (C)
thanks to the linear constraints in Aϕ,ν .
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Therefore, it only remains to prove that condition (D) can be fulfilled as well.
To this end, we start with a valuation µ0 of t fulfilling (A)-(C) and then modify

the valuation, if necessary, in a top-down fashion. We will thereby ensure that
condition (D) is satisfied for progressively more pseudo-zones. For this purpose, we
call a set V of nodes of t initial, if it is a union of pseudo-zones and it is closed
under the ancestor relation. We say that a valuation of t is consistent for V if
it fulfills (A)-(C) and there are no two adjacent pseudo-zones in V that have the
same data value. We will prove the following claim:

Claim. For every initial set V there is a consistent valuation for V .
The proof is by induction on the size of V . Clearly, µ0 is a consistent valuation

for V if V consists only of the topmost pseudo-zone.
Now we consider an initial set V with at least one pseudo-zone. Let Z be a

pseudo-zone outside V , chosen so that its root is of minimal depth. This ensures
that Z has at most 3 adjacent pseudo-zones in V , say Z1, Z2, Z3. Let W = V ∪ Z.
Note that W is again initial.

Let us fix a valuation µ of t that is consistent for W , obtained by induction. If
µ is also consistent for V we are done. Otherwise, the pseudo-zone Z has the same
data value as one of Z1, Z2, or Z3. We will remove this conflict by swapping the
data value of Z with some other data value.

Clearly in this case, the value of Z is not special. In particular, the class type τ
of Z satisfies ν(τ) = k, since all other class types get special values. For the same
reason, no pseudo-zone with the data value of Z has outdegree more than N .

Let ∆ denote all the data values used in µ that are not special and are used for
nodes of class type τ . Since ν(τ) = k, we have |∆| ≥ k −M .

Consider first the case when the pseudo-zone Z only has sheep labels. In this
case, we can assign to the nodes of Z any of the data values from ∆ and still have
a valuation which is consistent for W . Since |∆| > 3, this can be done so that Z
has a different data value than Z1, Z2 and Z3. We then get a valuation consistent
for V .

The difficult case is when Z contains dog labels. Let Z be the set of pseudo-zones
in t that have the same dog labels as Z and a data value in ∆. Since dog labels
are those that occur precisely once in a class, we have that |Z| = |∆|. We want to
exchange the data value in Z with the data value of some pseudo-zone in Z.

Consider first a pseudo-zone Y with the same data value as Z that contains no
dogs. This pseudo-zone Y is not special, and therefore has at most N neighbors in
t. Because |∆| > N , there is a data value in ∆ which is distinct from all the data
values of the neighbors of Y . We can then assign this data value to Y and still get
a valuation consistent for W . Therefore, we can assume that there are at most |Σ|
pseudo-zones with the data value of Z (there are at most |Σ| dog-labels). Each such
zone has at most N neighbors and therefore there are at most N |Σ| pseudo-zones
adjacent to a zone having the same data value as Z. Since

|Z| ≥ k −M = N |Σ| + 4 ,

there is at least one pseudo-zone Z ′ ∈ Z that has a data value distinct from Z1,
Z2 and Z3 and that is not adjacent to any pseudo-zone with the same data value
as Z. We can thus pick such a pseudo-zone Z ′ and exchange the data values of Z
and Z ′. We obtain thus a valuation that is consistent for V , completing the proof
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of the claim.
We now comment on the size of Aϕ,ν . The automaton can easily verify the

properties (1)-(3), and (5), with a number of states polynomial in the number of
class-types8 M and N . Property (6) is the linear constraint. It remains to show
that property (4) can be tested while keeping the size polynomial. In particular,
we need to check whether a pseudo-zone has outdegree larger than N . To do
this, consider a node x in a pseudo-zone Z. It is easy to count the number A(x)
of different pseudo-zones Z ′ 6= Z that contain some child y of x, by inspecting
the children of x from left to right and incrementing when the profiles tell so.
Actually we only need to count up to N (if the counter exceeds N , then Z has
already outdegree larger than N and we can stop). Using A(x), we can compute
the number B(x) of pseudo-zones that are adjacent to Z and with topmost level
below x. Namely, B(x) equals A(x), plus A(x′) for all children x′ of x that belong
to Z, too (note that no pseudo-zone is counted twice). To finish, we consider the
nodes of Z that belong to the topmost level. These nodes form an interval I, and
we need to add to the sum of the B(x) with x ∈ I, 0, 1 or 2, depending on the
left/right neighbor of I and their profiles towards their parent.

This completes the proof of Lemma 3.31 and thus of Proposition 3.30. Further-
more, it completes the proof of Theorem 3.1.

4. A LOWER BOUND FOR FO
2(∼, <, +1)

We have shown that satisfiability is decidable for FO2(∼,+1). What happens when
we also add the descendant order <?

In this section we show that satisfiability of FO2(∼, <,+1) on (even binary) trees
is at least as hard as checking non-emptiness for vector addition tree automata.
The decidability of the latter has been an open problem for many years and is,
in turn, equivalent to a notorious open problem in linear logic, the decidability of
MELL (Multiplicative Exponential Linear Logic) (see [de Groote et al. 2004] and
the references therein). Therefore proving decidability of FO2(∼, <,+1) on trees
seems to be quite challenging.

A vector addition tree automaton over binary trees is a bottom-up tree automa-
ton that is additionally equipped with a finite number of counters. Each of these
counters carries a non-negative number. A run of the automaton assigns to every
node, besides a state, a counter assignment, which is a vector of non-negative in-
tegers. The run has to be consistent with transitions of the automaton, which are
described below.

Each transition of the automaton is parametrized by three vectors ~a,~b,~c (of
dimension k, where k is the number of counters), three states p, q, r and a label σ.
Assume that v is a node with label σ, and its children v0, v1 have been assigned
states p, q and counter values ~x, ~y respectively. If the counter values satisfy ~x ≥ ~a
and ~y ≥ ~b then the transition can be applied, and the node v gets state r and the
counter assignment

(~x− ~a) + (~y −~b) + ~c .

8The reader should be aware though, that the number of class-types is doubly-exponential in the
size of |ϕ|).
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In other words, the automaton first decrements the counters in the left (resp. right)

child by ~a and ~b, resp. If both decrements are successful (i.e. the counters are still
non-negative), then the counter values are added and further incremented by ~c.

More formally a vector addition tree automaton A is a tuple

(Q,Σ, k, F, δ0, δ) ,

where Q is a finite set of states, Σ is the finite alphabet, k is the number of counters
of the automaton, F ⊆ Q is a set of accepting states,

δ ⊆ (Q× N
k)2 ×Q× Σ × N

k

is the finite set of transitions and δ0 ⊆ Q × Σ × N
k is the finite set of initial

transitions. (The initial transitions are used to give counter assignments to the
leaves of the tree, depending on their labels.)

A tree is accepted if it admits a run where the root carries an accepting state
and all counters are 0.

Note that the automaton cannot test whether a counter is equal to zero, otherwise
the model would be immediately undecidable.

Theorem 4.1. For any vector addition tree automaton A, a sentence ϕA ∈
FO2(∼, <,+1) can be computed such that L(A) 6= ∅ iff ϕA has a model.

Proof. Let k be the number of counters of A and Q be its set of states.
The models of ϕA are going to represent accepting runs of the automaton A.

These runs will be represented by trees, where each node is labeled by either: a
letter from the input alphabet Σ, a state Q, or an element of Ii, Di for i ∈ {1, . . . , k}.
The intended meaning of letter Ii is that counter i is incremented by one, while
Di means that counter i is decremented by one. Nodes in models of ϕA will have
either zero, one or two children. In order to guarantee that we only decrease a
counter wich is not nul, each occurrence of Di is coupled with some occurrence of
Ii, by having the same data value on the 2 nodes. That is, the data value of a
node with label Ii will occur exactly one further time, at a node with label Di (and
vice-versa). Data values of nodes labeled by a state or some input letter from Σ
will occur exactly once.

In a model of ϕA, a transition

δ(p, (a1, . . . , ak), q, (b1, . . . , bk), r, σ, (c1, . . . , ck))

is represented by a fragment of the tree, where, for each i = 1, . . . , k, there are ci
copies of Ii in its top branch, ai copies of Di in the left branch and bi copies of Di

in the right branch, as depicted in Figure 7. The leaf conditions are handled in the
same fashion. Transition are combined in the obvious way and that a tree consists
of such patterns only, can be easily described in FO2(+1).

It is easy to express that each data value occurs either only once (at a node labeled
by a state or by Σ) or twice, at a node labeled by some Di and a descendant of this
node, labeled Ii. A formula stating the second property says that no two nodes of
label Di can have the same data value, no two nodes of label Ii can have the same
data value, for each node of label Di there exists a descendant of label Ii with the
same data value and, for each node of label Ii there exists an ancestor of label Di

with the same data value.
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q

I1

I1

I2

l

D1

D1

D3

q0

D2

D3

q1

Fig. 7. Coding the transition (q0, (2, 0, 1), q1, (0, 1, 1), q, l, (2, 1, 0)).

Thus, the overall number of decrements of each counter is equal to the number
of increments, therefore all counters have value zero at the root. Moreover each
decrement is preceded by an increment (below), therefore the value of each counter
is always non-negative. This concludes the proof.

5. INTEGRITY CONSTRAINTS

In this and the following section we show how our main result, Theorem 3.1, can
serve as a tool to answer decidability questions for XML in the context of data
values. We show how decidability results can be obtained via a reduction to
FO2(∼,+1) satisfiability. One of the advantages of this logic-based approach to
decidability is the compositionality of logic. This holds especially for FO2(∼,+1),
which is closed under all Boolean operations and, as far as satisfiability is concerned
even under existential set quantification. It permits to relativize all reasoning prob-
lems to documents satisfying schemas. In this section we consider reasoning with
XML schemas. XML documents usually come with a specification, often stated in
XML Schema, which describes the set of valid documents. It contains a structural
part which includes a mechanism for assigning types to nodes of the tree and a set
of integrity constraints such as key constraints and inclusion constraints.

It is natural to ask whether a specification is consistent and whether a set of
integrity constraints is minimal or not (implication problem).

We will see that it follows quite directly from Theorem 3.1 that the consistency
and the implication problem for unary keys and inclusion constraints are decidable,
even relative to structural constraints given by a regular tree language.

Note that the decidable results presented here were previously shown in [Fan
and Libkin 2002], with a much better complexity, but in the presence of a weaker
typing mechanism. The advantage of our technique is the genericity: it immediately
applies to any integrity constraint definable to FO2(∼,+1) and in the presence of
any typing mechanism induced by regular tree languages.

We first deal with regular tree languages and types.
Recall that EMSO2(∼,+1) is the extension of FO2(∼,+1), where a prefix of

existential quantifiers over unary predicates (i.e., set variables) is allowed before an
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FO2(∼,+1) formula. Similarly, EMSO2(+1) is obtained from FO2(+1) by prefixing
existential existential set quantification.

Basically, the two standard XML schema languages, DTD and XML Schema, are
able to define only sets of documents that are regular tree languages (but not all
regular tree languages!). In the following, we thus assume that the allowed set of
documents is described by a tree automaton A. The type of a node v is the state
of A on v in an accepting run. In XML Schema it is basically required that A has
a unique accepting run, thus the type of each node is uniquely determined. Thus,
in the following we only consider unambiguous tree automata. Recall from Fact
3.6 that every regular tree language is expressible in EMSO2(+1).

A key constraint is an expression of the form τ [X ] → τ where τ is a type of a
node and X a set of attributes of that node. It says that the X-attributes of a node
of type τ uniquely determine the node. Stated in other terms, for each combination
of attribute values there is at most one node of type τ having these values.

An inclusion constraint is an expression of the form τ [X ] ⊆ τ ′[Y ] where τ
and τ ′ are two node types and X and Y are sequences of attributes of the same
cardinality. It says that for each node u of type τ there is a node v of type τ ′ such
that the X-attributes of u have the same (corresponding) values as the Y -attributes
of v. Key and inclusion constraints are said to be unary if |X | = |Y | = 1.

The consistency problem for unary keys and unary inclusion constraints rela-
tive to a regular tree language is as follows. Given an (unambiguous) tree automaton
A and a set K of unary key and inclusion constraints9, it asks whether there is a
tree t which is accepted by A and fulfills K. The implication problem asks, given
A and sets K1,K2 of constraints, whether each tree accepted by A which fulfills
K1 also fulfills K2.

Proposition 5.1. The consistency and implication problems for unary keys and
unary inclusion constraints relative to a regular tree language are decidable.

Proof. We only consider the more general, implication problem. We encode
XML documents as trees in a way which closely corresponds to the XPath data
model [W3C 1999], i.e., the attributes of a node v are represented by attribute
nodes (labeled by the attribute name) which are children of v. I.e., the B-attribute
value of a node v is given by the value of its (unique) child labeled with B. An
example of this encoding is presented in Figure 8.

Let A and K1,K2 be given. Let τ1, . . . , τn be the types assigned by A. Let
R1, . . . , Rn be unary predicates, corresponding to the types. As in Fact 3.6, we
can write a formula ϕA of FO2(+1) that verifies if a given partition of tree nodes
among the predicates R1, . . . , Rn encodes an accepting run of the automaton A.
(In particular, ∃R1, . . . , RnϕA holds in a tree t if and only if t is accepted by A;
and a tree node satisfies the predicate Ri if and only if the node has type τi). Thus,
a unary key constraint U : τi[B] → τi can be expressed by the FO2(∼,+1) sentence
ϕU =

∀x∀y





(B(x) ∧ ∃yRi(y) ∧E↓(x, y))∧
(B(y) ∧ ∃xRi(x) ∧E↓(y, x))∧

x ∼ y



 → x = y .

9Recall that the types used in these constraints are states of A.
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<schedule>

<course ID="5">

<lecturer faculty="12"> </lecturer>

<building nr="1"> </building>

</course>

</schedule>

schedule

course

ID

(5)

lecturer

faculty

(12)

building

nr

(1)

Fig. 8. An XML document and its data tree encoding. In the encoding, data values are in
parentheses. Data values for non-attribute nodes are not used.

An inclusion constraint U : τi[Bi] ⊆ τj [Bj ] can be expressed by the FO2(∼,+1)
sentence ϕU =

∀x (Bi(x) ∧ ∃y(Ri(y) ∧ E↓(x, y))) →
∃y (x ∼ y ∧Bj(y) ∧ ∃x(Rj(x) ∧E↓(y, x))).

Thus, the implication problem reduces to (un)satisfiability of the following sentence
of EMSO2(∼,+1):

∃R1, . . . , Rn(ϕA ∧
∧

U∈K1

ϕU ∧ ¬
∧

U∈K2

ϕU ).

Note, that by combining key and inclusion constraints also foreign key constraints
can be covered. In [Fan and Libkin 2002] a special case of Proposition 5.1 was
proved: the consistency problem for unary keys and foreign keys is NP-complete
relative to DTD types. The extension to XML Schema’s typing system (and to
any regular tree language) was left as an open question. Note also that we do
not know yet the precise complexity of the implication problem, we only have the
3NExpTime upper-bound given by the analysis of the proof of Theorem 3.1.

Finally we would like to stress that our method does not cover all known decidable
cases of constraints. For instance it is shown in [Arenas et al. 2005] that consistency
of unary foreign key constraints together with primary key constraints (a special
case of key constraints) of arbitrary arity is decidable relative to DTD types. We
couldn’t find a way to express key constraints of arbitrary arity within our logical
framework.

6. XPATH CONTAINMENT

In this section we provide another scenario for which decidability can be obtained
using reductions to satisfiability of FO2(∼,+1). We define a fragment of XPath,
which we call LocalDataXPath, for which static analysis tasks can be decided by
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using FO2(∼,+1). More precisely, satisfiability and containment test for unary
queries expressed in these fragments, possibly in the presence of integrity constraints
and schemas can be reduced to satisfiability of FO2(∼,+1).

For most fragments of XPath where the containment problem has been stud-
ied and established to be decidable, references to attribute values are not allowed.
Notable exceptions are [Benedikt et al. 2005; Geerts and Fan 2005] where the satis-
fiability problem for various fragments of Core-Data-XPath was studied. However,
the expressive power of LocalDataXPath is incomparable to the decidable fragments
found in [Benedikt et al. 2005; Geerts and Fan 2005]. On the one hand we can only
deal with the successor axis (because we need to encode each axis into FO2(∼,+1))
while some fragments of [Benedikt et al. 2005; Geerts and Fan 2005] can handle
descendant axis. On the other hand our fragment is closed under negation - this
was not the case for the decidable fragments with the descendant relation presented
in [Benedikt et al. 2005; Geerts and Fan 2005]. In particular, in our case decidability
of satisfiability immediately yields decidability for the inclusion problem. Finally
we note that, again due to the compositionality of the logic, our decidability result
still holds in the presence of integrity constraints and schemas.

As mentioned in the introduction, FO2(∼, <,+1) is a fragment of Core-Data-
XPath. The proof of this statement follows the same lines as the proof for the
inclusion of FO2(<,+1) into unary-TL over words [Etessami et al. 2002]. The
idea is to transform, by induction on the quantifier depth, each formula ϕ(x) into
a Core-Data-XPath expression that evaluates to true for the same set of nodes
as ϕ(x). In the inductive step one considers subformulas of the form ∃y. (τ ∧
ψ(y)), where τ is an ”order-type” formula, stating the complete information about
the order between x and y. In our setting, τ also states the information about
the data values associated with x, y. For instance, τ could be of the form x <
y ∧ y 6= x + 1 ∧ α(x) ∧ β(y) ∧ x ∼ y, where α, β are labels. Each such formula
τ can be translated into Core-Data-XPath syntax. For example, the formula τ
above translates to Self :: α/@A = Child :: ∗/Descendant :: β/@A. The size of the
expression we obtain is exponential in the size of ϕ.

The language LocalDataXPath allows the comparison of attribute values, but
compared with Core-Data-XPath it has two restrictions: (1) navigation is not al-
lowed along the “transitive” axes as Descendant and FollowingSibling and (2) in
an equality on attribute values either one of the location paths has to be absolute
(i.e., starting from the root), or both (relative) location paths are strongly limited.

In LocalDataXPath only the following axes are allowed:

Axis := Child | Parent | NextSibling |
PreviousSibling | Self | ElseWhere

Every axis corresponds to a binary relation on tree nodes. For instance, the
Child axis is true for node pairs (v, w) where w is a vertical successor of w. The
other axes are defined analogously. The new ElseWhere axis corresponds to the
relation of pairs (v, w) of nodes, where v 6= w. It is added in order to allow at least
some kind of global navigation.

We define the syntax of LocalDataXPath next. For the purpose of this article it
is given in a simplified form as to compared with XPath.
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LocPath := RelLocPath | AbsLocPath

AbsLocPath := / RelLocPath

RelLocPath := Step | RelLocPath/ Step

Step := Axis :: NameTest Predicate∗

SelfStep := Self :: NameTest Predicate∗

NameTest := Name

Predicate := [PredExpr]

PredExpr := LocPath |

LocPath/ Attr EqOp AbsLocPath/ Attr |

SelfStep/ Attr EqOp Step / Attr |

PredExpr and PredExpr |

PredExpr or PredExpr | not PredExpr

Attr := @Name

EqOp := = | ! =

In the above, the special symbols /,=, ! =, [, ] and @ occurring on the right side
of := are all terminals in the grammar. One could also add a wildcard in NameTest

that would fit all labels; however this wildcard can be simulated using disjunction.
Furthermore, there is a syntactic restriction, called safety, on the way attributes

can be used in the relative comparisons :

SelfStep/ Attr EqOp Step/ Attr .

In general terms, the restriction says that the attributes must be uniquely deter-
mined by the label. More formally, we say that an attribute name B is associated
to a label a in a relative comparison as above, if the comparison contains a pattern
of the form:

Axis :: a Predicate∗/@B .

(Note that on the left hand side of EqOp, the pattern will be preceded by a Self

axis, while on the right it will be preceded by some other axis.) A set of expressions
is safe if each label is associated to at most one attribute name. Somewhat ahead
of time, we note that the point of safety is to store the value of the associated
attribute in the node itself, and not in the attribute child.

Example 6.1. The following (safe) expression selects a node v with label a, if it
agrees on attribute B with all its children labelled by b:

¬(Self :: a/@B ! = Child :: b/@B).

The following expression is also safe:

Self :: a/@B = Child :: b/@C .

Although each of the two above expressions is safe on its own, they are no longer
safe as a set, since b is associated to both B and C.
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Theorem 6.2. Satisfiability and Containment for (unary or binary) Local-
DataXPath safe expressions is decidable. This holds even relative to a schema
consisting of a regular tree language and unary key and inclusion constraints.

Proof. (sketch) The proof is, of course, by translating the expressions into
FO2(∼,+1) formulas. We encode XML documents as in the proof of Proposition
5.1 (using the XPath data model) with a small extension that we will introduce
later. As long as expressions do not compare attribute values, there is no need
to restrict the location paths: We can just use the standard transformation of
Core-XPath into FO2(<,+1) of [Marx 2005].

This easily extends to equality expressions with at most one relative location path
by, intuitively, first simulating the relative path, then jumping to a node with the
same data value and checking that this node satisfies its absolute path constraint
by simulating the path backwards to the root. Note that it seems crucial here that
the second path is absolute and thus does not start at the current node, as the two
variables are needed for the navigation and therefore the current node can not be
remembered. As an example the expression

Child :: a/Child ::b/@B =

/Child :: c/NextSibling :: d/@C

is translated into the following equivalent formula ϕ(x):

∃yE↓(x, y) ∧ a(y)∧

∃xE↓(y, x) ∧ b(x)∧

∃yE↓(x, y) ∧B(y)∧

∃x x ∼ y ∧ C(x)∧

∃yE↓(y, x) ∧ d(y)∧

∃xE→(x, y) ∧ c(x)∧

∃yE↓(y, x) ∧ ¬∃xE↓(x, y).

It only remains to explain how we can deal with relative (in-)equalities. To this
end, we exploit the fact that the encoding of XML documents used so far only needs
data values in attribute nodes. Thus, we can use the data values of element nodes for
this purpose. Note, that the safety restriction on relative (in-)equalities ensures that
for each element only one attribute is used in relative (in-)equalities. Therefore,
we use data trees in which this attribute value (if any) is stored directly in the
data value of the element node (on top of the normal storage in the corresponding
attribute node). Note, that an additional FO2(∼,+1) formula can check that the
data values in element nodes are consistent with those in the attribute nodes.

As an example, if (Self :: a/@C = Child :: b/@B) is a subexpression of our
XPath expression at hand, then we consider data trees in which the data value
of a-nodes is interpreted as the C-attribute and the data value of b-nodes as the
B-attribute. By our assumption on safety, we do not need to put two attributes in
the same node. Thus, the expression is equivalent to the formula a(x)∧∃yE↓(x, y)∧
b(y) ∧ x ∼ y.

It is now straightforward to combine the techniques described so far with those
of Section 5 to obtain the second statement of the theorem.
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Containment for binary queries can be handled by having two distinguished nodes
in each tree which correspond to a pair in the query result.

It should be noted that satisfiability of a similar fragment of XPath with all axes
besides Following and Preceding can be reduced to satisfiability of FO2(∼, <,+1).
Unfortunately, we do not know if satisfiability of FO2(∼, <,+1) is decidable.

7. CONCLUSION

An interesting aspect of this work is to present in a unified framework decidability
results that were studied separately in the past: consistency of integrity constraints
and satisfiability of queries. In the future we hope to be able to also include related
problems into the picture like the type inference problem [Alon et al. 2003].

Our main technical result is the decidability of FO2(∼,+1), which can be seen
as a non trivial decidable fragment of Core-Data-XPath. A close inspection of
the proof of Theorem 3.1 gives an upper bound of 3NExpTime for the decision
procedure. The NExpTime lower bound follows from [Etessami et al. 2002]. It
would be interesting to know the precise complexity of the problem.

Another obvious question is whether this decidability result can be extended to
more expressive signatures. We have already mentioned the open and challenging
problem of the decidability of FO2(∼, <,+1).

We conjecture that FO2(∼,+ω) is decidable. This logic can use predicates of the
form Ek

↓ and Ek
→ testing whether two nodes are at distance exactly k (downwards

or rightwards). This is a proper extension, since FO2(∼,+1) even cannot express
the fact that a node x has the same data value as its grandfather. However this
feature would be useful in practice in order to express tree pattern queries which do
not only depend on the labels of the nodes but also how their data values compare.
It would also be useful in order to express more integrity constraints, in particular,
relative keys and relative inclusion constraints, as investigated in [Arenas et al.
2005] in the presence of DTDs. We leave the decidability of FO2(∼,+ω) as an
open problem.

Another interesting issue is to find an algebraic form of the considered logics.
In particular, we would like to find a decidable model of tree automata that can
manipulate data values and express at least all of FO2(∼,+1). Unfortunately two-
way automata using registers or pebbles for comparing data values are undecidable
even with only one register or pebble [David 2004].
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