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Abstract. Reachability checking is one of the most basic problems
in verification. By solving this problem, one synthesizes a strategy that
dictates the actions to be performed for ensuring that the target location is
reached. In this work, we are interested in synthesizing “robust” strategies
for ensuring reachability of a location in a timed automaton; with “robust”,
we mean that it must still ensure reachability even when the delays
are perturbed by the environment. We model this perturbed semantics
as a game between the controller and its environment, and solve the
parameterized robust reachability problem: we show that the existence
of an upper bound on the perturbations under which there is a strategy
reaching a target location is EXPTIME-complete.

1 Introduction

Timed automata [2] are a timed extension of finite-state automata. They come
with an automata-theoretic framework to design, model, verify and synthesize
systems with timing constraints. One of the most basic problems in timed
automata is the reachability problem: given a timed automaton and a target
location, is there a path that leads to that location? This can be rephrased in the
context of control as follows: is there a strategy that dictates how to choose time
delays and edges to be taken so that a target location is reached? This problem
has been solved long ago [2], and efficient algorithms have then been developed
and implemented [13, 18].

However, the abstract model of timed automata is an idealization of real timed
systems. For instance, we assume in timed automata that strategies can choose
the delays with arbitrary precision. In particular, the delays can be arbitrarily
close to zero (the system is arbitrarily fast), and clock constraints can enforce
exact delays (time can be measured exactly). Although these assumptions are
natural in abstract models, they need to be justified after the design phase. Indeed
the situation is different in real-world systems: digital systems have response
times that may not be negligible, and control software cannot ensure timing
constraints exactly, but only up to some error, caused by clock imprecisions,
measurement errors, and communication delays. A good control software must be
robust, i.e., it must ensure good behavior in spite of small imprecisions [11, 12].
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In this work, we are interested in the synthesis of robust strategies in timed
automata for reachability objectives, taking into account response times and
imprecisions. We propose to model the problem as a game between a controller
(that will guide the system) and its environment. In our semantics, which is
parameterized by some 0 < δP ≤ δR, the controller chooses to delay an amount
d ≥ δR, and the system delays d′, where d′ is chosen by the environment satisfying
|d − d′| ≤ δP . We say that a given location is robustly reachable if there exist
parameters 0 < δP ≤ δR such that the controller has a winning strategy ensuring
that the location is reached against any strategy of the environment. If δP
and δR are fixed, this can be solved using techniques from control theory [3].
However δP , δR are better seen as parameters here, representing imprecisions in
the implementation of the system (they may depend on the digital platform on
which the system is implemented), and whose values may not be available in the
design phase. To simplify the presentation, but w.l.o.g., we assume in this paper
that δ = δP = δR; our algorithm can easily be adapted to the general case (by
adapting the shrink operator in Section 3).

Note that this semantics was studied in [6] for timed games with fixed pa-
rameters, where the parameterized version was presented as a challenging open
problem. We solve this problem for reachability objectives in timed automata:
we show that deciding the existence of δ > 0, and of a strategy for the controller
so as to ensure reachability of a given location (whatever the imprecision, up
to δ), is EXPTIME-complete. Moreover, if there is a strategy, we can compute a
uniform one, which is parameterized by δ, using shrunk difference bound matrices
(shrunk DBMs) that we introduced recently [17]. In this case, our algorithm
provides a bound δ0 > 0 such that the strategy is correct for all δ ∈ [0, δ0]. Our
strategies also give quantitative information on how perturbations accumulate
or can compensate. Technically, our work extends shrunk DBMs by constraints,
and establishes non-trivial algebraic properties of this data structure (Section 3).
The main result is then obtained by transforming the infinite-state game into a
finite abstraction, which we prove can be used to symbolically compute a winning
strategy, if any (see Section 4).

By lack of space, technical proofs have been omitted; they can be found in [5].

2 Robust reachability in timed automata

2.1 Timed automata and robust reachability

Given a finite set of clocks C, we call valuations the elements of RC≥0. For a subset
R ⊆ C and a valuation v, v[R← 0] is the valuation defined by v[R← 0](x) = v(x)
for x ∈ C \R and v[R← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation v,
the valuation v + d is defined by (v + d)(x) = v(x) + d for all x ∈ C. We extend
these operations to sets of valuations in the obvious way. We write 0 for the
valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k � x �′ l or k � x−y �′ l
where x, y ∈ C, k, l ∈ Z∪{−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction
of atomic clock constraints. A valuation v satisfies a guard g, denoted v |= g, if
all constraints are satisfied when each x ∈ C is replaced with v(x).



Definition 1 ([2]). A timed automaton A is a tuple (L, C, `0, E), consisting of
finite sets L of locations, C of clocks, E ⊆ L× ΦC × 2C × L of edges, and where

`0 ∈ L is the initial location. An edge e = (`, g, R, `′) is also written as `
g,R−−→ `′.

Standard semantics of timed automata is usually given as a timed transition
system. To capture robustness, we define the semantics as a game where perturba-
tions in delays are uncontrollable. Given a timed automaton A = (L, C, `0, E) and
δ > 0, we define the perturbation game of A w.r.t. δ as a two-player turn-based
timed game Gδ(A) between players Controller and Perturbator. The state space
of Gδ(A) is partitioned into VC ∪ VP where VC = L × RC≥0 is the set of states

that belong to Controller and VP = L × RC≥0 × R≥0 × E is the set of states
that belong to Perturbator. The initial state is (`0,0) and belongs to Controller.
The transitions are defined as follows: from any state (`, v) ∈ VC , there is a
transition to (`, v, d, e) ∈ VP whenever d ≥ δ, e = (`, g, R, `′) is an edge such that
v + d |= g. Then, from any such state (`, v, d, e) ∈ VP , there is a transition to
(`′, (v + d+ ε)[R← 0]) ∈ VC , for any ε ∈ [−δ, δ].

We assume familiarity with basic notions in game theory, and quickly survey
the main definitions. A run in Gδ(A) is a finite or infinite sequence of consecutive
states starting at (`0,0). It is said maximal if it is infinite or cannot be extended.
A strategy for Controller is a function that assigns to every non-maximal run
ending in some (`, v) ∈ VC , a pair (d, e) where d ≥ δ and e is an edge enabled at
v + d (i.e., there is a transition from (`, v) to (`, v, d, e)). A run ρ is compatible
with a strategy f if for every prefix ρ′ of ρ ending in VC , the next transition
along ρ after ρ′ is given by f . Given a target location `, a strategy f is winning
for the reachability objective defined by ` whenever all maximal runs that are
compatible with f visit `.

Observe that we require at any state (`, v), that Controller should choose a
delay d ≥ δ and an edge e that is enabled after the chosen delay d. The edge
chosen by Controller is always taken but there is no guarantee that the guard
will be satisfied exactly when the transition takes place. In fact, Perturbator can
perturb the delay d chosen by Controller by any amount ε ∈ [−δ, δ], including
those that do not satisfy the guard. Notice that G0(A) corresponds to the standard
(non-robust) semantics of A. We are interested in the following problem.

Problem 1 (Parameterized Robust Reachability). Given a timed automaton A
and a target location `, decide whether there exists δ > 0 such that Controller
has a winning strategy in Gδ(A) for the reachability objective `.

Notice that we are interested in the parameterized problem: δ is not fixed
in advance. For fixed parameter, the problem can be formulated as a usual
timed game, see [6]. Our main result is the decidability of this parameterized
problem. Moreover, if there is a solution, we compute a strategy represented by
parameterized difference-bound matrices where δ is the parameter; the strategy
is thus uniform with respect to δ. In fact, we provide a bound δ0 > 0 such that
the strategy is winning for Controller for any δ ∈ [0, δ0]. These strategies also
provide a quantitative information on how much the perturbation accumulates
(See Fig. 3). The main result of this paper is the following:



Theorem 2. Parameterized robust reachability is EXPTIME-complete.

Checking parameterized robust reachability is different from usual reacha-
bility checking mainly for two reasons. First, in order to reach a given location,
Controller has to choose the delays along a run, so that these perturbations
do not accumulate and block the run. In particular, it shouldn’t play too close
to the borders of the guards (see Fig. 3). Second, due to these uncontrollable
perturbations, some regions that are not reachable in the absence of perturbation
can become reachable (see Fig. 4). So, Controller must also be able to win from
these new regions. The regions that become reachable in our semantics are those
neighboring reachable regions. The characterization of these neighboring regions
is one of the main difficulties in this paper (see Section 3.5).

2.2 Motivating example: robust real-time scheduling

An application of timed automata is the synthesis of schedulers in various
contexts [1]. We show that robust reachability can help providing a better schedu-
lability analysis: we show that schedulers synthesized by standard reachability
analysis may not be robust: even the slightest decrease in task execution times
can result in a large increase in the total time. This is a phenomenon known as
timing anomalies, first identified in [9].

Consider the scheduling problem described in Fig. 1, inspired by [16]. Assume
that we look for a greedy (i.e., work-conserving) scheduler, that will immediately
start executing a task if a machine is free for execution on an available task. What
execution time can guarantee a greedy scheduling policy on this instance? One
can model this problem as a timed automaton, and prove, by classical reachability
analysis, that these tasks can be scheduled using a greedy policy within six time
units. However the scheduler obtained this way may not be robust, as illustrated
in Fig. 1(b). If the duration of task A unexpectedly drops by a small amount
δ > 0, then any greedy scheduler will schedule task B before task C, since the
latter is not ready for execution at time 2− δ. This yields a scheduling of tasks
in 8− δ time units.
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(a) A has duration 2.
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(b) A has duration 2− δ.

Fig. 1. Consider tasks A,B,C of duration 2 and D,E of duration 1. Dependences
between tasks are as follows: A → B and C → D,E, meaning e.g. that A must be
completed before B can start. Task A must be executed on machine M1 and tasks
B,C on machine M2. Moreover, task C cannot be scheduled before 2 time units (which
could be modelled using an extra task). Fig. 1(a) shows the optimal greedy schedule for
these tasks under these constraints, while Fig. 1(b) shows the outcome of any greedy
scheduler when the duration of task A is less than 2.



Our robust reachability algorithm is able to capture such phenomena, and
can provide correct and robust schedulers. In fact, it would answer that the tasks
are not schedulable in six time units (with a greedy policy), but only in eight
time units.

2.3 Related work: robustness in timed automata and games

There has been a recent effort to consider imprecisions inherent to real systems
in the theory of timed systems. In particular there has been several attempts to
define convenient notions of robustness for timed automata, see [14] for a survey.

The approach initiated in [15, 8, 7] is the closest to our framework/proposition.
It consists in enlarging all clocks constraints of the automaton by some parame-
ter δ, that is transforming each constraint of the form x ∈ [a, b] into x ∈ [a−δ, b+δ],
and in synthesizing δ > 0 such that all runs of the enlarged automaton satisfy a
given property. This can be reformulated as follows: does there exists some δ > 0
such that whatever Controller and Perturbator do in Gδ(A), a given property
is satisfied. This is therefore the universal counterpart of our formulation of
the parameterized robustness problem. It has been shown that this universal
parameterized robust model-checking is no more difficult (in terms of complexity)
than standard model-checking. This has to be compared with our result, where
complexity goes up from PSPACE to EXPTIME.

Another work that is close to ours is that of [6]. The authors consider general
two-player (concurrent) games with a fixed lower bound on delays, where chosen
delays can be changed by some fixed value δ. It is then shown that winning
strategies can be synthesized: In fact, when δ is fixed, the semantics can simply be
encoded by a usual timed game, and standard algorithms can be applied. Whether
one can synthesize δ > 0 for which the controller has a winning strategy was left
as a challenging open problem. We partially solve this open problem here, under
the assumption that there is a single player with a reachability objective. The
extension to two-player games (with reachability objective) is ongoing work, and
we believe the techniques presented in this paper can be used for that purpose.

Finally, [10] studies a topological and language-based approach to robustness,
where (roughly) a timed word is accepted by the automaton if, and only if, one
of its neighborhoods is accepted. This is not related to our formalization.

3 Shrinking DBMs

3.1 Regions, zones and DBMs

We assume familiarity with the notions of regions and zones (see [4]). For two
regions r and r′, we write rl r′ if r′ is the immediate (strict) time-successor of r.
A zone is a set of clock valuations satisfying a guard.

We write C0 for the set C ∪ {0}. A difference-bound matrix (DBM) is a
|C0| × |C0|-matrix over (R× {<,≤})∪ {(∞, <)}. A DBM M naturally represents
a zone (which we abusively write M as well), defined as the set of valuations v



such that, for all x, y ∈ C0, writing (Mx,y,≺x,y) for the (x, y)-entry of M , it holds
v(x)− v(y) ≺x,y Mx,y (where v(0) = 0). For any DBM M , let G(M) denote the
graph over nodes C0, where the weight of the edge (x, y) ∈ C20 is (Mx,y,≺x,y).
The normalization of M corresponds to assigning to each edge (x, y) the weight
of the shortest path in G(M). We say that M is normalized when it is stable
under normalization.

3.2 Shrinking

Consider the automaton A of Fig. 2, where the goal is to reach `3. If there is
no perturbation or lower bound on the delays between transitions (i.e., δ = 0),
then the states from which Controller can reach location `3 can be computed
backwards. One can reach `3 from location `2 and any state in the zone X =
(x ≤ 2) ∧ (y ≤ 1) ∧ (1 ≤ x− y), shown by (the union of the light and dark) gray
areas on Fig. 3 (left); this is the set of time-predecessors of the corresponding
guard. The set of winning states from location `1 is the zone Y = (x ≤ 2), shown
in Fig. 3 (right), which is simply the set of predecessors of X at `2. When δ > 0
however, the set of winning states at `2 is a “shrinking” of X, shown by the dark
gray area. If the value of the clock x is too close to 2 upon arrival in `2, Controller
will fail to satisfy the guard x = 2 due to the lower bound δ on the delays. Thus,
the winning states from `2 are described by X ∩ (x ≤ 2− δ). Then, this shrinking
is backward propagated to `1: the winning states are Y ∩ (x ≤ 2− 2δ), where we
“shrink” Y by 2δ in order to compensate for a possible perturbation.

An important observation here is that when δ > 0 is small enough, so that
both X ∩ (x ≤ 2− δ) and Y ∩ (x ≤ 2− 2δ) are non-empty, these sets precisely
describe the winning states. Thus, we have a uniform description of the winning
states for “all small enough δ > 0”. We now define shrunk DBMs, a data structure
we introduced in [17], in order to manipulate “shrinkings” of zones.

3.3 Shrunk DBMs

For any interval [a, b], we define the shrinking operator as shrink[a,b](Z) = {v |
v + [a, b] ⊆ Z} for any zone Z. We only use operators shrink[0,δ] and shrink[−δ,δ]
in the sequel. For a zone Z represented as a DBM, shrink[0,δ](Z) is the DBM
Z− δ ·1C×{0} and shrink[−δ,δ](Z) is the DBM Z− δ ·1C×{0}∪{0}×C , for any δ > 0.

Our aim is to handle these DBMs symbolically. For this, we define shrinking
matrices (SM), which are nonnegative integer square matrices with zeroes on
their diagonals. A shrunk DBM is then a pair (M,P ) where M is a DBM, P is a

`1 `2 `3
x≤2

y:=0

x=2
∧1≤x−y

Fig. 2. Automaton A

x

y

x

y

Fig. 3. Winning states in `2 (left) and in `1 (right)



shrinking matrix [17]. The meaning of this pair is that we consider DBMs M−δP
where δ ∈ [0, δ0] for some δ0 > 0. In the sequel, we abusively use “for all small
enough δ > 0” meaning “there exists δ0 > 0 such that for all δ ∈ [0, δ0]”. We also
adopt the following notation: when we write a statement involving a shrunk DBM
(M,P ), we mean that the statement holds for (M−δP ) for all small enough δ > 0.
For instance, (M,P ) = Pretime ((N,Q)) means that M − δP = Pretime ((N − δQ))
for all small enough δ > 0. In the same vein, shrunk DBMs can be re-shrunk,
and we write shrink((M,P )) (resp. shrink+((M,P ))) for the shrunk DBM (N,Q)
such that N − δQ = shrink[−δ,δ](M − δP ) (resp. N − δQ = shrink[0,δ](M − δP ))
for all small enough δ > 0.

It was shown in [17] that when usual operations are applied on shrunk DBMs,
one always obtain shrunk DBMs, whose shrinking matrices can be computed. We
refer to [4, 17] for the formal definitions of these operations.

Lemma 3 ([17]). Let M = f(N1, . . . , Nk) be an equation between normalized
DBMs M,N1, . . . , Nk, using the operators Pretime, UnresetR, ∩, shrink and shrink+

and let P1, . . . , Pk be SMs. Then, there exists a SM Q such that (M,Q) is normal-
ized and (M,Q) = f

(
(N1, P1), . . . , (Nk, Pk)

)
. Moreover, Q and the corresponding

upper bound on δ can be computed in polynomial time.

3.4 Shrinking constraints

x=y=1

y:=0

r1 r3r0

r′0

r2

Fig. 4. Perturbing one transition

Consider a transition of a timed au-
tomaton, as depicted on the figure at
right. From region r0, the game can
reach regions r1, r2, r3, depending on
the move of Perturbator. Therefore, in
order to win, Controller needs a win-
ning strategy from all three regions. One can then inductively look for winning
strategies from these regions; this will generally require shrinking, as exemplified
in Fig. 3. However, not all shrinkings of these regions provide a winning strategy
from r0. In fact, r1 (resp. r3) should not shrink from the right (resp. left) side:
their union should include the shaded area, thus points that are arbitrarily
close to r2. In order to define the shrinkings that are useful to us, we introduce
shrinking constraints.

Definition 4. Let M be a DBM. A shrinking constraint for M is a |C0| ×
|C0| matrix over {0,∞}. A shrinking matrix P is said to respect a shrinking
constraint S if P ≤ S, where the comparison is component-wise. A pair 〈M,S〉
of a DBM and a shrinking constraint is called a constrained DBM.

Shrinking constraints specify which facets of a given zone one is (not) allowed
to shrink (see Fig. 5). A shrinking constraint S for a DBM M is said to be
well if for any SM P ≤ S, (M,P ) is non-empty. A well constrained DBM
is a constrained DBM given with a well shrinking constraint. We say that a
shrinking constraint S for a DBM M is normalized if it is the minimum among
all equivalent shrinking constraints: for any shrinking constraint S′ if for all SMs
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(a) A constrained DBM 〈M,S〉 and its representation (b) A shrinking of 〈M,S〉

Fig. 5. Consider a zone defined by 0 < x < 3, 0 < y < 3, and 0 < x − y < 2. Let
the shrinking constraint S be defined by S0,y = 0, Sx,y = 0, and Sz,z′ =∞ for other
components. The resulting 〈M,S〉 is depicted on the left, as a matrix (where, for
convenience, we merged both matrices into a single one) and as a constrained zone
(where a thick segment is drawn for any boundary that is not “shrinkable”, i.e., with
Sz,z′ = 0). On the right, the dark gray area represents a shrinking of M that satisfies S.

P , P ≤ S ⇔ P ≤ S′, then S ≤ S′. One can show that any shrinking constraint
can be made normalized, by a procedure similar to the normalization of DBMs.
Lemma 5 shows that shrinking constraints can be propagated along operations
on DBMs. This is illustrated in Fig. 6.

Lemma 5. Let M,N,N ′ be normalized non-empty DBMs.

1. Assume that M = Pretime (N), M = N ∩N ′, or M = UnresetR(N). Then, for
any normalized well shrinking constraint S for M , there exists a well shrinking
constraint S′ for N such that for any SM Q, the following holds: Q ≤ S′ iff
the SM P s.t. (M,P ) = Pretime ((N,Q)) (respectively, (M,P ) = (N,Q) ∩N ′
or (M,P ) = UnresetR((N,Q))) satisfies P ≤ S.

2. Assume that M = N ∩N ′. For any well shrinking constraint S for N , there
exists a shrinking constraint S′ for M such that for any SM Q, the following
holds: Q ≤ S′ iff a SM P ≤ S s.t. (N,P ) ∩ N ′ ⊆ (M,Q). Moreover, if
(N,P ) ∩N ′ 6= ∅ for all SMs P ≤ S, then S′ is well.

Let us comment on Fig. 6(a), and how it can be used for our purpose. Assume
there is an edge guarded by N (the whole gray area in the right) without resets.
In the non-robust setting, this guard can be reached from any point of M (the
whole gray area in the left). If we have a shrinking constraint S on M , and we

= Pretime




(a) (M,P ) = Pretime ((N,Q))

= ∩

(b) (M,P ) = (N,Q) ∩N ′

Fig. 6. The figures illustrate the first item in Lemma 5. In each case, DBMs M , N and
N ′ are fixed and satisfy the “unshrunk” equation. The thick plain segments represent
the fixed shrinking constraint S. The dashed segments represent resulting constraint S′.
For any SM Q, we have Q ≤ S′ iff there is an SM P ≤ S that satisfies the equation.



want to synthesize a winning strategy from a shrinking of M satisfying S, then
Lemma 5 gives the shrinking constraint S′ for N , with the following property:
given any shrinking (N,Q), we can find P ≤ S with (M,P ) = Pretime ((N,Q))
(hence, we can delay into (N,Q)), if, and only if Q satisfies Q ≤ S′. The problem
is now “reduced” to finding a winning strategy from 〈N,S′〉. However, forward-
propagating these shrinking constraints is not always that easy. We also need to
deal with resets, with the fact that Controller has to choose a delay greater than
δ > 0, and also with the case where there are several edges leaving a location.
This is the aim of the following developments.

3.5 Neighborhoods

We now consider constrained regions, which are constrained DBMs in which the
DBM represents a region. Fig. 4 shows that if Controller plays to a region, then
Perturbator can reach some of the surrounding regions, shown by the arrows. To
characterize these, we define the set of neighboring regions of 〈r, S〉 as,

Nr,S =
{
r′
∣∣∣ r′ l∗ r or r l+ r′, and ∀Q ≤ S. r′ ∩ enlarge((r,Q)) 6= ∅

}
where enlarge((r,Q)) is the shrunk DBM (M,P ) such that v+[−δ, δ] ⊆M−δP for
every v ∈ r− δQ. This is the set of regions that have “distance” at most δ to any
shrinking of the constrained region (r, S). We write neighbor〈r, S〉 =

⋃
r′∈Nr,S

r′.

Lemma 6 (Neighborhood). Let 〈r, S〉 be a well constrained region. Then
neighbor〈r, S〉 is a zone. If N is the corresponding normalized DBM, there exists
a well shrinking constraint S′ such that for every SM Q, Q ≤ S′ iff the SM P
defined by (r, P ) = r ∩ shrink((N,Q)), satisfies P ≤ S. The pair 〈N,S′〉 is the
constrained neighborhood of 〈r, S〉, and it can be computed in polynomial time.

Constrained neighborhoods are illustrated in Fig. 7.

neighbor


 = neighbor


 =

Fig. 7. Constrained neighborhood of two constrained regions. Notice that inside any
shrinking of the constrained region, there is always a valuation such that a perturbation
of [−δ, δ] moves the valuation to any region of the neighborhood.

3.6 Two crucial properties for the construction of the abstraction

The following lemma characterizes, given a constrained region 〈r, S〉, the set of
constrained regions 〈r′, Sr′〉 such that any shrunk region satisying 〈r′, Sr′〉 can
be reached by delaying from some shrunk region satisfying 〈r, S〉.



Lemma 7. Let 〈r, S〉 be a well constrained region, and r′ be a region such that
r l∗ r′. Then the following properties are equivalent:

1. there exists a well shrinking constraint S′ (which can be computed in poly-
nomial time) such that for every SM Q, Q ≤ S′ iff the SM P such that
(r, P ) = r ∩ shrink+(Pretime ((r′, Q))), satisfies P ≤ S;

2. neighbor〈r, S〉 ⊆ Pretime (r′);

Note that this lemma may not hold for all r′ with r l r′. Consider the
constrained region 〈r, S〉 on the right of Fig. 7, and let r′ be the first triangle
region above r: any valuation arbitrarily close to the thick segments will be in
r− δP for any P ≤ S, but it can only reach r′ by delaying less than δ time units.

Lemma 8. Let 〈r, S〉 be a well constrained region, and let R ⊆ C. Let N be the
set of neighboring regions of 〈r, S〉, and N ′ = {r′[R← 0] | r′ ∈ N}. Then, there
exist well shrinking constraints Sr′′ for all r′′ ∈ N ′ such that for any (Qr′′)r′′∈N ′ ,
we have Qr′′ ≤ Sr′′ for all r′′ ∈ N ′ iff there exists P ≤ S such that

(r, P ) ⊆ r ∩ shrink(
⋃
r′∈N

(r′ ∩ UnresetR((r′′, Qr′′)))).

with r′′ = r′[R← 0]. Moreover, all 〈r′′, Sr′′〉 can be computed in polynomial time.

This lemma gives for instance the shrinking constraints that should be satisfied
in r1, r2 and r3, in Fig. 4, once shrinking constraint in r′0 is known. In this case, the
constraint in r′0 is 0 everywhere since it is a punctual region. The neighborhood N
of r′0 is composed of r′0 and two extra regions (defined by (0 < x < 1) ∧ (x = y)
and (1 < x < 2) ∧ (x = y)). If there are shrinkings of regions r1, r2, r3 satisfying
the corresponding shrinking constraints (given in the lemma), and from which
Controller wins, then one can derive a shrinking of r′0, satisfying its constraint,
and from which Controller wins. In the next section, we define the game RG(A)
following this idea, and explain how it captures the game semantics for robustness.

4 A finite game abstraction

Let A = (L, C, `0, E) be a timed automaton. We define a finite turn-based game
RG(A) on a graph whose nodes are of two sorts: square nodes labelled by (`, r, Sr),
where ` is a location, r a region, Sr is a well shrinking constraint for r; diamond
nodes labelled similarly by (`, r, Sr, e) where moreover e is an edge leaving `.
Square nodes belong to Controller, while diamond nodes belong to Perturbator.
Transitions are defined as follows:

(a) From each square node (`, r, Sr), for any edge e = (`, g, R, `′) of A, there is a
transition to the diamond node (`, r′, Sr′ , e) if the following conditions hold:

(i) r l∗ r′ and r′ ⊆ g;
(ii) Sr′ is such that for all SMs Q, Q ≤ Sr′ iff there exists P ≤ Sr with

(r, P ) = r ∩ shrink+(Pretime ((r′, Q)))



(b) From each diamond node (`, r, Sr, e), where e = (`, g, R, `′) is an edge of A,
writing N for the set of regions in the neighborhood of (r, Sr) and N ′ =
{r′[R ← 0] | r′ ∈ N}, there are transitions to all square nodes (`′, r′′, Sr′′)
with r′′ ∈ N ′, and (Sr′′)r′′∈N ′ are such that for all SMs (Qr′′)r′′∈N ′ , it holds
Qr′′ ≤ Sr′′ for every r′′ ∈ N ′ iff there exists P ≤ Sr such that

(r, P ) ⊆ r∩shrink(
⋃
r′∈N

(r′∩UnresetR((r′′, Qr′′))) (where r′′ = r′[R← 0])

Intuitively, the transitions from the square nodes are the decisions of Controller.
In fact, it has to select a delay and a transition whose guard is satisfied. Then
Perturbator can choose any region in the neighborhood of the current region,
and, after reset, this determines the next state.

Note that RG(A) can be computed, thanks to Lemmas 7 and 8, and has
exponential-size. Observe also that RG(A) is constructed in a forward manner:
we start by the initial constrained region (i.e. the region of valuation 0 with the
zero matrix as shrinking constraint), and compute its successors in RG(A). Then,
if Controller has a winning strategy in RG(A), we construct a winning strategy
for Gδ(A) by a backward traversal of RG(A), using Lemmas 7 and 8. Thus, we
construct RG(A) by propagating shrinking constraints forward, but later do a
backward traversal in it. The correctness of the construction is stated as follows.

Proposition 9. Controller has a winning strategy in RG(A) if, and only if there
exists δ0 > 0 such that Controller wins Gδ(A) for all δ ∈ [0, δ0].

Note that as we compute a winning strategy for Controller (if any) by
Proposition 9, we can also compute a corresponding δ0. One can show, by a
rough estimation, that 1/δ0 is at worst doubly exponential in the size of A.

Let us point out an interesting intermediary result of the proof: given a
winning strategy for Perturbator in RG(A), we show that there is a winning
strategy for Perturbator in Gδ(A) that keeps the compatible runs close to borders
of regions where shrinking constraints are 0.

y=1

y:=0

y=
1∧z
≤2

y=1∧z>2

z=3

z=3

Fig. 8. Conjunction

The upper bound of Theorem 2 is a conse-
quence of the above proposition, since RG(A)
has exponential size and finite reachability
games can be solved in time polynomial in the
size of the game. The EXPTIME lower bound
is obtained by simulating an alternating-time
linear-bounded Turing machine. Simulation
of the transitions is rather standard in timed-
automata literature (though we must be care-
ful here as delays can be perturbed). The
difficult point is to simulate conjunctions: this is achieved using the module
of Fig. 8. From the initial state, Controller has no choice but to play the first
transition when y = 1. Perturbator can either anticipate or delay this transition,
which will determine which of the dashed or dotted transitions is available next.
This way, Perturbator decides by which end the module is exited.



5 Conclusion

We considered a game-based approach to robust reachability in timed automata.
We proved that robust schedulers for reachability objectives can be synthesized,
and that the existence of such a scheduler is EXPTIME-complete (hence harder
than classical reachability [2]). We are currently working on a zone-based version
of the algorithm, and on extending the techniques of this paper to the synthesis
of robust controllers in timed games, which will answer an open problem posed
in [6] for reachability objectives. Natural further works also include the synthesis
of robust schedulers for safety objectives. This seems really challenging, and the
abstraction we have built here is not correct in this case (it requires at least a
notion of profitable cycles à la [7]). Another interesting direction for future work
is to assume imprecisions are probabilistic, that is, once Controller has chosen a
delay d, the real delay is chosen in a stochastic way in the interval [d− δ, d+ δ].
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