
Measuring Permissiveness in Parity Games:
Mean-Payoff Parity Games Revisited?

Patricia Bouyer1, Nicolas Markey1, Jörg Olschewski2, Michael Ummels1,3

1 LSV, CNRS & ENS Cachan, France
{bouyer,markey,ummels}@lsv.ens-cachan.fr

2 Lehrstuhl Informatik 7, RWTH Aachen University, Germany
olschewski@automata.rwth-aachen.de

3 LAMSADE, CNRS & Université Paris-Dauphine, France

Abstract. We study nondeterministic strategies in parity games with the
aim of computing a most permissive winning strategy. Following earlier
work, we measure permissiveness in terms of the average number/weight
of transitions blocked by a strategy. Using a translation into mean-payoff
parity games, we prove that deciding (the permissiveness of) a most
permissive winning strategy is in NP ∩ coNP. Along the way, we provide
a new study of mean-payoff parity games. In particular, we give a new
algorithm for solving these games, which beats all previously known
algorithms for this problem.

1 Introduction

Games extend the usual semantics of finite automata from one to several players,
thus allowing to model interactions between agents acting on the progression of
the automaton. This has proved very useful in computer science, especially for the
formal verification of open systems interacting with their environment [20]. In this
setting, the aim is to synthesise a controller under which the system behaves
according to a given specification, whatever the environment does. Usually, this
is modelled as a game between two players: Player 1 represents the controller and
Player 2 represents the environment. The goal is then to find a winning strategy
for Player 1, i.e. a recipe stating how the system should react to any possible
action of the environment, in order to meet its specification.

In this paper, we consider multi-strategies (or non-deterministic strategies,
cf. [1, 3]) as a generalisation of strategies: while strategies select only one possible
action to be played in response to the behaviour of the environment, multi-
strategies can retain several possible actions. Allowing several moves provides
a way to cope with errors (e.g., actions being disabled for a short period, or timing
imprecisions in timed games). Another quality of multi-strategies is their ability
to be combined with other multi-strategies, yielding a refined multi-strategy,
which is ideally winning for all of the original specifications. This offers a modular
approach for solving games.
? Sponsored by ANR-06-SETI-003 DOTS, and by ESF-Eurocores LogICCC GASICS.

Classically, a strategy is more permissive than another one if it allows more
behaviours. Under this notion, there does not need to exist a most permissive win-
ning strategy [1]. Hence, we follow a different approach, which is of a quantitative
nature: we provide a measure that specifies how permissive a given multi-strategy
is. In order to do so, we consider weighted games, where each edge is equipped
with a weight, which we treat as a penalty that is incurred when disallowing
this edge. The penalty of a multi-strategy is then defined to be the average sum
of penalties incurred in each step (in the limit). The lower this penalty is, the
more permissive is the given multi-strategy. Our aim is to find one of the most
permissive multi-strategies achieving a given objective.

We deal with multi-strategies by transforming a game with penalties into a
mean-payoff game [11, 22] with classical (deterministic) strategies. A move in
the latter game corresponds to a set of moves in the former, and is assigned a
(negative) reward depending on the penalty of the original move. The penalty of a
multi-strategy in the original game equals the opposite of the payoff achieved by
the corresponding strategy in the mean-payoff game. In previous work, Bouyer et
al. [3] introduced the notion of penalties and showed how to compute permissive
strategies wrt. reachability objectives. We extend the study of [3] to parity
objectives. This is a significant extension because parity objectives can express
infinitary specifications. Using the above transformation, we reduce the problem
of finding a most permissive strategy in a parity game with penalties to that of
computing an optimal strategy in a mean-payoff parity game, which combines a
mean-payoff objective with a parity objective.

While mean-payoff parity games have already been studied [9, 2, 7], we propose
a new proof that these games are determined and that both players have optimal
strategies. Moreover, we prove that the second player does not only have an
optimal strategy with finite memory, but one that uses no memory at all. Finally,
we provide a new algorithm for computing the values of a mean-payoff parity
game, which is faster than the best known algorithms for this problem; the
running time is exponential in the number of priorities and polynomial in the
size of the game graph and the largest absolute weight.

In the second part of this paper, we present our results on parity games with
penalties. In particular, we prove the existence of most permissive multi-strategies,
and we show that the existence of a multi-strategy whose penalty is less than a
given threshold can be decided in NP ∩ coNP. Finally, we adapt our deterministic
algorithm for mean-payoff parity games to parity games with penalties. Our
algorithm computes the penalties of a most permissive multi-strategy in time
exponential in the number of priorities and polynomial in the size of the game
graph and the largest penalty.

Due to space restrictions, most proofs are omitted in this extended abstract;
they can be found in the full version of this paper [5].

Related work. Penalties as we use them were defined in [3]. Other notions of
permissiveness have been defined in [1, 19], but these notions have the drawback
that a most permissive strategy might not exist. Multi-strategies have also been
used for different purposes in [16].

2

The parity condition goes back to [12, 18] and is fundamental for verification.
Parity games admit optimal memoryless strategies for both players, and the
problem of deciding the winner is in NP ∩ coNP. As of this writing, it is not
known whether parity games can be solved in polynomial time; the best known
algorithms run in time polynomial in the size of the game graph but exponential
in the number of priorities.

Another fundamental class of games are games with quantitative objectives.
Mean-payoff games, where the aim is to maximise the average weight of the
transitions taken in a play, are also in NP∩ coNP and admit memoryless optimal
strategies [11, 22]. The same is true for energy games, where the aim is to always
keep the sum of the weights above a given threshold [6, 4]. In fact, parity games
can easily be reduced to mean-payoff or energy games [13].

Finally, several game models mixing several qualitative or quantitative ob-
jectives have recently appeared in the literature: apart from mean-payoff parity
games, these include generalised parity games [10], energy parity games [7] and
lexicographic mean-payoff (parity) games [2] as well as generalised energy and
mean-payoff games [8].

2 Preliminaries

A weighted game graph is a tuple G = (Q1, Q2, E,weight), where Q := Q1∪̇Q2 is a
finite set of states, E ⊆ Q×Q is the edge or transition relation, and weight : E → R
is a function assigning a weight to every transition. When weighted game graphs
are subject to algorithmic processing, we assume that these weights are integers;
in this case, we set W := max{1, |weight(e)| | e ∈ E}.

For q ∈ Q, we write qE for the set {q′ ∈ Q | (q, q′) ∈ E} of all successors
of q. We require that qE 6= ∅ for all states q ∈ Q. A subset S ⊆ Q is a subarena
of G if qE ∩ S 6= ∅ for all states q ∈ S. If S ⊆ Q is a subarena of G, then we
can restrict G to states in S, in which case we obtain the weighted game graph
G � S := (Q1 ∩ S,Q2 ∩ S,E ∩ (S × S),weight � S × S).

A play of G is an infinite sequence ρ = ρ(0)ρ(1) · · · ∈ Qω of states such that
(ρ(i), ρ(i+ 1)) ∈ E for all i ∈ N. We denote by OutG(q) the set of all plays ρ with
ρ(0) = q and by Inf(ρ) the set of states occurring infinitely often in ρ.

A play prefix or a history γ = γ(0)γ(1) · · · γ(n) ∈ Q+ is a finite, nonempty
prefix of a play. For a play or a history ρ and j < k ∈ N, we denote by
ρ[j, k) := ρ[j, k − 1] := ρ(j) · · · ρ(k − 1) its infix starting at position j and ending
at position k − 1.

Strategies. A (deterministic) strategy for Player i in G is a function σ : Q∗Qi → Q
such that σ(γq) ∈ qE for all γ ∈ Q∗ and q ∈ Qi. A strategy σ is memoryless
if σ(γq) = σ(q) for all γ ∈ Q∗ and q ∈ Qi. More generally, a strategy σ is
finite-memory if the equivalence relation ∼ ⊆ Q∗×Q∗, defined by γ1 ∼ γ2 if and
only if σ(γ1 · γ) = σ(γ2 · γ) for all γ ∈ Q∗Qi, has finite index.

We say that a play ρ of G is consistent with a strategy σ for Player i if
ρ(k+ 1) = σ(ρ[0, k]) for all k ∈ N with ρ(k) ∈ Qi, and denote by OutG(σ, q0) the

3

set of all plays ρ of G that are consistent with σ and start in ρ(0) = q0. Given
a strategy σ of Player 1, a strategy τ of Player 2, and a state q0 ∈ Q, there exists
a unique play ρ ∈ OutG(σ, q0) ∩OutG(τ, q0), which we denote by ρG(σ, τ, q0).

Traps and attractors. Intuitively, a set T ⊆ Q of states is a trap for one of the two
players if the other player can enforce that the play stays in this set. Formally,
a trap for Player 2 (or simply a 2-trap) is a subarena T ⊆ Q such that qE ⊆ T
for all states q ∈ T ∩Q2, and qE ∩ T 6= ∅ for all q ∈ T ∩Q1. A trap for Player 1
(or 1-trap) is defined analogously.

If T ⊆ Q is not a trap for Player 1, then Player 1 has a strategy to reach
a position in Q \ T . In general, given a subset S ⊆ Q, we denote by AttrG1 (S)
the set of states from where Player 1 can force a visit to S. From every state
in AttrG1 (S), Player 1 has a memoryless strategy σ that guarantees a visit to S
in at most |Q| steps. We call the set AttrG1 (S) the 1-attractor of S and σ an
attractor strategy for S. The 2-attractor of a set S, denoted by AttrG2 (S), and
attractor strategies for Player 2 are defined symmetrically. Notice that for any
set S, the set Q \ AttrG1 (S) is a 1-trap, and if S is a subarena (2-trap), then
AttrG1 (S) is also a subarena (2-trap). Analogously, Q \AttrG2 (S) is a 2-trap, and
if S is a subarena (1-trap), then AttrG2 (S) is also a subarena (1-trap).

Convention. We often drop the superscript G from the expressions defined above,
if no confusion arises, e.g. by writing Out(σ, q0) instead of OutG(σ, q0).

3 Mean-payoff parity games

In this section, we establish that mean-payoff parity games are determined, that
both players have optimal strategies, that for Player 2 even memoryless strategies
suffice, and that the value problem for mean-payoff parity games is in NP∩ coNP.
Furthermore, we present a deterministic algorithm which computes the values
in time exponential in the number of priorities, and runs in pseudo-polynomial
time when the number of priorities is bounded.

Formally, a mean-payoff parity game is a tuple G = (G,χ), where G is
a weighted game graph, and χ : Q→ N is a priority function assigning a priority
to every state. A play ρ = ρ(0)ρ(1) · · · is parity-winning if the minimal priority
occurring infinitely often in ρ is even, i.e., if min{χ(q) | q ∈ Inf(ρ)} ≡ 0 (mod 2).
All notions that we have defined for weighted game graphs carry over to mean-
payoff parity games. In particular, a play of G is just a play of G and a strategy
for Player i in G is nothing but a strategy for Player i in G. Hence, we write
OutG(σ, q) for OutG(σ, q), and so on. As for weighted games graphs, we often
omit the superscript if G is clear from the context. Finally, for a mean-payoff
parity game G = (G,χ) and a subarena S of G, we write G �S for the mean-payoff
parity game (G � S, χ � S).

We say that a mean-payoff parity game G = (G,χ) is a mean-payoff game
if χ(q) is even for all q ∈ Q. In particular, given a weighted game graph G,
we obtain a mean-payoff game by assigning priority 0 to all states. We denote
this game by (G, 0).

4

q1

1
q2

0

1
1

0

Fig. 1. A mean-payoff parity game for which infinite memory is necessary

For a play ρ of a mean-payoff parity game G that is parity-winning, its payoff
is defined as

payoffG(ρ) = lim inf
n→∞

1
n

n−1∑
i=0

weight(ρ(i), ρ(i+ 1)) ;

if ρ is not parity-winning, we set payoffG(ρ) := −∞. If σ is a strategy for Player 1
in G, we define its value from q0 ∈ Q as valG(σ, q0) = infρ∈OutG(σ,q0) payoffG(ρ).
Analogously, the value valG(τ, q0) of a strategy τ for Player 2 is defined as the
supremum of payoffG(ρ) over all ρ ∈ OutG(τ, q0). The lower and upper value
of a state q0 ∈ Q are defined by valG(q0) = supσ valG(σ, q0) and valG(q0) =
infτ valG(τ, q0), respectively. Intuitively, valG(q0) and valG(q0) are the maxi-
mal (respectively minimal) payoff that Player 1 (respectively Player 2) can
ensure (in the limit). We say that a strategy σ of Player 1 is optimal from q0
if valG(σ, q0) = valG(q0). Analogously, we call a strategy τ of Player 2 opti-
mal from q0 if valG(τ, q0) = valG(q0). A strategy is (globally) optimal if it is
optimal from every state q ∈ Q. It is easy to see that valG(q0) ≤ valG(q0). If
valG(q0) = valG(q0), we say that q0 has a value, which we denote by valG(q0).

Example 1. Consider the mean-payoff parity game G depicted in Fig. 1, where a
state or an edge is labelled with its priority, respectively weight; all states belong
to Player 1. Note that valG(q1) = 1 since Player 1 can delay visiting q2 longer
and longer while still ensuring that this vertex is seen infinitely often. However,
there is no finite-memory strategy that achieves this value.

It follows from Martin’s determinacy theorem [17] that mean-payoff parity
games are determined, i.e., that every state has a value. Moreover, Chatterjee et
al. [9] gave an algorithmic proof for the existence of optimal strategies. Finally,
it can be shown that for every x ∈ R ∪ {−∞} the set {ρ ∈ Qω | payoff(ρ) ≥ x}
is closed under combinations. By Theorem 4 in [15], this property implies that
Player 2 even has a memoryless optimal strategy. In the full version of this
paper [5], we give a purely inductive proof of determinacy and the existence of
(memoryless) optimal strategies. We thus have the following theorem.

Theorem 2. Let G be a mean-payoff parity game.

1. G is determined;
2. Player 1 has an optimal strategy in G;
3. Player 2 has a memoryless optimal strategy in G.

5

A consequence of the proof of Theorem 2 is that each value of a mean-payoff
parity game is either −∞ or equals one of the values of a mean-payoff game played
on the same weighted graph (or a subarena of it). Since optimal memoryless
strategies exist in mean-payoff games [11], the values of a mean-payoff game
with integral weights are rational numbers of the form r/s with |r| ≤ |Q| ·W
and |s| ≤ |Q|. Consequently, this property holds for the (finite) values of a
mean-payoff parity game as well.

We now turn towards the computational complexity of mean-payoff parity
games. Formally, the value problem is the following decision problem: Given
a mean-payoff parity game G (with integral weights), a designated state q0 ∈ Q,
and a number x ∈ Q, decide whether valG(q0) ≥ x. By Theorem 2, to decide
whether valG(q0) < x, we can guess a memoryless strategy τ for Player 2 and
check whether valG(τ, q0) < x. It follows from a result of Karp [14] that the latter
check can be carried out in polynomial time. Hence, the value problem belongs
to coNP.

Corollary 3. The value problem for mean-payoff parity games is in coNP.

Via a reduction to energy parity games, Chatterjee and Doyen [7] recently
proved that the value problem for mean-payoff parity games is in NP. Hence,
these games do not seem harder than parity or mean-payoff games, which also
come with a value problem in NP ∩ coNP.

Theorem 4 (Chatterjee-Doyen). The value problem for mean-payoff parity
games is in NP.

A deterministic algorithm. We now present a deterministic algorithm for
computing the values of a mean-payoff parity game, which runs faster than all
known algorithms for solving these games. Algorithm SolveMPP is based on the
classical algorithm for solving parity games, due to Zielonka [21]. The algorithm
employs as a subprocedure an algorithm SolveMP for solving mean-payoff games.
By [22], such an algorithm can be implemented to run in time O(n3 ·m ·W) for
a game with n states and m edges. We denote by f t g and f u g the pointwise
maximum, respectively minimum, of two (partial) functions f, g : Q → R∪{±∞}
(where (f t g)(q) = (f u g)(q) = f(q) if g(q) is undefined).

The algorithm works as follows: If the least priority p in G is even, the
algorithm first identifies the least value of G by computing the values of the mean-
payoff game (G, 0) and (recursively) the values of the game G �Q \Attr1(χ−1(p)),
and taking their minimum x. All states from where Player 2 can enforce a visit
to a state with value x in one of these two games must have value x in G. In the
remaining subarena, the values can be computed by calling SolveMPP recursively.
If the least priority is odd, we can similarly compute the greatest value of G and
proceed by recursion. The correctness of the algorithm relies on the following
two lemmas.

Lemma 5. Let G be a mean-payoff parity game with least priority p even, T =
Q \Attr1(χ−1(p)), and x ∈ R. If val(G,0)(q) ≥ x for all q ∈ Q and valG�T (q) ≥ x
for all q ∈ T , then valG(q) ≥ x for all q ∈ Q.

6

Algorithm SolveMPP(G)

Input: mean-payoff parity game G = (G,χ)
Output: valG

if Q = ∅ then return ∅
p := min{χ(q) | q ∈ Q}
if p is even then
g := SolveMP(G, 0)
if χ(q) = p for all q ∈ Q then return g
T := Q \AttrG1 (χ−1(p)); f := SolveMPP(G � T)
x := min(f(T) ∪ g(Q)); A := AttrG2 (f−1(x) ∪ g−1(x))
return (Q → R ∪ {−∞} : q 7→ x) t SolveMPP(G �Q \A)

else
T := Q \AttrG2 (χ−1(p))
if T = ∅ then return (Q → R ∪ {−∞} : q 7→ −∞)
f := SolveMPP(G � T); x := max f(T); A := AttrG1 (f−1(x))
return (Q → R ∪ {−∞} : q 7→ x) u SolveMPP(G �Q \A)

end if

Lemma 6. Let G be a mean-payoff parity game with least priority p odd, T =
Q \ Attr2(χ−1(p)), and x ∈ R. If valG(q) ≥ x for some q ∈ Q, then T 6= ∅ and
valG�T (q) ≥ x for some q ∈ T .

Theorem 7. The values of a mean-payoff parity game with d priorities can be
computed in time O(|Q|d+2 · |E| ·W).

Proof. We claim that SolveMPP computes, given a mean-payoff parity game G,
the function valG in the given time bound. Denote by T (n,m, d) the worst-case
running time of the algorithm on a game with n states, m edges and d priorities.
Note that, if G has only one priority, then there are no recursive calls to SolveMPP.
Since attractors can be computed in time O(n + m) and the running time of
SolveMP is O(n3 · m · W), there exists a constant c such that the numbers
T (n,m, d) satisfy the following recurrence:

T (1,m, d) ≤ c,
T (n,m, 1) ≤ c · n3 ·m ·W,
T (n,m, d) ≤ T (n− 1,m, d− 1) + T (n− 1,m, d) + c · n3 ·m ·W .

Solving this recurrence, we get that T (n,m, d) ≤ c · (n + 1)d+2 ·m ·W , which
proves the claimed time bound.

It remains to be proved that the algorithm is correct, i.e. that SolveMPP(G) =
valG . We prove the claim by induction over the number of states. If there are
no states, the claim is trivial. Hence, assume that Q 6= ∅ and that the claim is
true for all games with less than |Q| states. Let p := min{χ(q) | q ∈ Q}. We only
consider the case that p is even. If p is odd, the proof is similar, but relies on
Lemma 6 instead of Lemma 5.

7

Let T , f , g, x and A be defined as in the corresponding case of the algorithm,
and let f∗ = SolveMPP(G). If χ(Q) = {p}, then f∗ = g = val(G,0) = valG ,
and the claim is fulfilled. Otherwise, by the definition of x and applying the
induction hypothesis to the game G �T , we have val(G,0)(q) ≥ x for all q ∈ Q and
valG�T (q) = f(q) ≥ x for all q ∈ T . Hence, Lemma 5 yields that valG(q) ≥ x for
all q ∈ Q. On the other hand, from any state q ∈ A Player 2 can play an attractor
strategy to f−1(x) ∪ g−1(x), followed by an optimal strategy in the game G � T ,
respectively in the mean-payoff game (G, 0), which ensures that Player 1’s payoff
does not exceed x. Hence, valG(q) = x = f∗(q) for all q ∈ A.

Now, let q ∈ Q \A. We already know that valG(q) ≥ x. Moreover, since Q \A
is a 2-trap and applying the induction hypothesis to the game G � Q \ A, we
have valG(q) ≥ valG�Q\A(q) = SolveMPP(G �Q \A)(q). Hence, valG(q) ≥ f∗(q).
To see that valG(q) ≤ f∗(q), consider the strategy τ of Player 2 that mimics an
optimal strategy in G �Q \A as long as the play stays in Q \A and switches to
an optimal strategy in G as soon as the play reaches A. We have valG(τ, q) ≤
max{valG�Q\A(q), x} = f∗(q). ut

Algorithm SolveMPP is faster and conceptually simpler than the original
algorithm proposed for solving mean-payoff parity games [9]. Compared to the
recent algorithm proposed by Chatterjee and Doyen [7], which uses a reduction
to energy parity games and runs in time O(|Q|d+4 · |E| ·d ·W), our algorithm has
three main advantages: 1. it is faster; 2. it operates directly on mean-payoff parity
games, and 3. it is more flexible since it computes the values exactly instead of
just comparing them to an integer threshold.

4 Mean-penalty parity games

In this section, we define multi-strategies and mean-penalty parity games. We re-
duce these games to mean-payoff parity games, show that their value problem is
in NP ∩ coNP, and propose a deterministic algorithm for computing the values,
which runs in pseudo-polynomial time if the number of priorities is bounded.

Syntactically, a mean-penalty parity game is a mean-payoff parity game with
non-negative weights, i.e. a tuple G = (G,χ), where G = (Q1, Q2, E,weight) is a
weighted game graph with weight : E → R≥0 (or weight : E → N for algorithmic
purposes), and χ : Q → N is a priority function assigning a priority to every
state. As for mean-payoff parity games, a play ρ is parity-winning if the minimal
priority occurring infinitely often (min{χ(q) | q ∈ Inf(ρ)}) is even.

Since we are interested in controller synthesis, we define multi-strategies only
for Player 1 (who represents the system). Formally, a multi-strategy (for Player 1)
in G is a function σ : Q∗Q1 → P(Q)\{∅} such that σ(γq) ⊆ qE for all γ ∈ Q∗ and
q ∈ Q1. A play ρ of G is consistent with a multi-strategy σ if ρ(k+ 1) ∈ σ(ρ[0, k])
for all k ∈ N with ρ(k) ∈ Q1, and we denote by OutG(σ, q0) the set of all plays ρ
of G that are consistent with σ and start in ρ(0) = q0.

Note that, unlike for deterministic strategies, there is, in general, no unique
play consistent with a multi-strategy σ for Player 1 and a (deterministic) strat-

8

1
q1

0 q2

1

2

Fig. 2. A mean-penalty
parity game

1
q1

0 q2

(q1, {q1}) (q1, {q1, q2}) (q1, {q2}) (q2, {q1})

−2
0
−4

Fig. 3. The corresponding mean-payoff parity
game

egy τ for Player 2 from a given initial state. Additionally, note that every
deterministic strategy can be viewed as a multi-strategy.

Let G be a mean-penalty parity game, and let σ be a multi-strategy. We in-
ductively define penaltyGσ(γ) (the total penalty of γ wrt. σ) for all γ ∈ Q∗ by
setting penaltyGσ(ε) = 0 as well as penaltyGσ(γq) = penaltyGσ(γ) if q ∈ Q2 and

penaltyGσ(γq) = penaltyGσ(γ) +
∑

q′∈qE\σ(γq)

weight(q, q′)

if q ∈ Q1. Hence, penaltyGσ(γ) is the total weight of transitions blocked by σ
along γ. The mean penalty of an infinite play ρ is then defined as the average
penalty that is incurred along this play in the limit, i.e.

penaltyGσ(ρ) =

lim sup
n→∞

1
n penaltyGσ(ρ[0, n)) if ρ is parity-winning,

∞ otherwise.

The mean penalty of a multi-strategy σ from a given initial state q0 is defined as
the supremum over the mean penalties of all plays that are consistent with σ, i.e.

penaltyG(σ, q0) = sup{penaltyGσ(ρ) | ρ ∈ OutG(σ, q0)}.

The value of a state q0 in a mean-penalty parity game G is the least mean penalty
that a multi-strategy of Player 1 can achieve, i.e. valG(q0) = infσ penaltyG(σ, q0),
where σ ranges over all multi-strategies of Player 1. A multi-strategy σ is called
optimal if penaltyG(σ, q0) = valG(q0) for all q0 ∈ Q.

Finally, the value problem for mean-penalty parity games is the following
decision problem: Given a mean-penalty parity game G = (G,χ), an initial state
q0 ∈ Q, and a number x ∈ Q, decide whether valG(q0) ≤ x.

Example 8. Fig. 2 represents a mean-penalty parity game. Note that weights of
transitions out of Player 2 states are not indicated as they are irrelevant for the
mean penalty. In this game, Player 1 (controlling circle states) has to regularly
block the self-loop if she wants to enforce infinitely many visits to the state with
priority 0. This comes with a penalty of 2. However, the multi-strategy in which

9

she blocks no transition can be played safely for an arbitrary number of times.
Hence Player 1 can win with mean-penalty 0 (but infinite memory) by blocking
the self-loop once every k moves, where k grows with the number of visits to q2.

In order to solve mean-penalty games, we reduce them to mean-payoff parity
games. We construct from a given mean-penalty parity game G an exponential-
size mean-payoff parity game G′, similar to [3] but with an added priority
function. Formally, for a mean-penalty parity game G = (G,χ) with game
graph G = (Q1, Q2, E,weight), the game graph G′ = (Q′1, Q′2, E′,weight

′) of the
corresponding mean-payoff parity game G′ is defined as follows:

– Q′1 = Q1 and Q′2 = Q2 ∪ Q̄, where Q̄ := {(q, F) | q ∈ Q, ∅ 6= F ⊆ qE};
– E′ is the (disjoint) union of three kinds of transitions:
(1) transitions of the form (q, (q, F)) for each q ∈ Q1 and ∅ 6= F ⊆ qE,
(2) transitions of the form (q, (q, {q′})) for each q ∈ Q2 and q′ ∈ qE,
(3) transitions of the form ((q, F), q′) for each q′ ∈ F ;

– the weight function weight′ assigns 0 to transitions of type (2) and (3), but
weight′(q, (q, F)) = −2

∑
q′∈qE\F weight(q, q′) to transitions of type (1).

Finally, the priority function χ′ of G′ coincides with χ on Q and assigns priority
M := max{χ(q) | q ∈ Q} to all states in Q̄.

Example 9. Fig. 3 depicts the mean-payoff parity game obtained from the mean-
penalty parity game from Example 8, depicted in Fig. 2.

The correspondence between G and G′ is expressed in the following lemma.

Lemma 10. Let G be a mean-penalty parity game, G′ the corresponding mean-
payoff parity game, and q0 ∈ Q.

1. For every multi-strategy σ in G there exists a strategy σ′ for Player 1 in G′
such that val(σ′, q0) ≥ −penalty(σ, q0).

2. For every strategy σ′ for Player 1 in G′ there exists a multi-strategy σ in G
such that penalty(σ, q0) ≤ − val(σ′, q0).

3. valG
′
(q0) = − valG(q0).

It follows from Theorem 2 and Lemma 10 that every mean-penalty parity
game admits an optimal multi-strategy.

Corollary 11. In every mean-penalty parity game, Player 1 has an optimal
multi-strategy.

We now show that Player 2 has a memoryless optimal strategy of a special
kind in the mean-payoff parity game derived from a mean-penalty parity game.
This puts the value problem for mean-penalty parity games into coNP, and is
also a crucial point in the proof of Lemma 14 below.

Lemma 12. Let G be a mean-penalty parity game and G′ the corresponding
mean-payoff parity game. Then in G′ there is a memoryless optimal strategy τ ′
for Player 2 such that for every q ∈ Q there exists a total order ≤q on the set qE
with τ ′((q, F)) = min≤q

F for every state (q, F) ∈ Q̄.

10

Proof (Sketch). Let τ be a memoryless optimal strategy for Player 2 in G′. For a
state q, we consider the set qE and order it in the following way. We inductively
define F1 = qE, qi = τ((q, Fi)) and Fi+1 = Fi \ {qi} for every 1 ≤ i ≤ |qE|.
Note that {q1, . . . , q|qE|} = qE. We set q1 ≤q q2 ≤q · · · ≤q q|qE| and define a new
memoryless strategy τ ′ for Player 2 in G′ by τ ′((q, F)) = min≤q

F for (q, F) ∈ Q̄
and τ ′(q) = τ(q) for all q ∈ Q2. It can be shown that val(τ ′, q0) ≤ val(τ, q0) for
all q0 ∈ Q, which proves that τ ′ is optimal. ut

In order to put the value problem for mean-penalty parity games into
NP ∩ coNP, we propose a more sophisticated reduction from mean-penalty parity
games to mean-payoff parity games, which results in a polynomial-size mean-
payoff parity game. Intuitively, in a state q ∈ Q1 we ask Player 1 consecutively
for each outgoing transition whether he wants to block that transition. If he
allows a transition, then Player 2 has to decide whether she wishes to explore
this transition. Finally, after all transitions have been processed in this way, the
play proceeds along the last transition that Player 2 has desired to explore.

Formally, let us fix a mean-penalty parity game G = (G,χ) with game graph
G = (Q1, Q2, E,weight), and denote by k := max{|qE| | q ∈ Q} the maximal
out-degree of a state. Then the polynomial-size mean-payoff parity game G′′ has
vertices of the form q and (q, a, i,m), where q ∈ Q, a ∈ {choose, allow,block},
i ∈ {1, . . . , k + 1} and m ∈ {0, . . . , k}; vertices of the form q and (q, choose, i,m)
belong to Player 1, while vertices of the form (q, allow, i,m) or (q,block, i,m)
belong to Player 2. To describe the transition structure of G, let q ∈ Q and
assume that qE = {q1, . . . , qk} (a state may occur more than once in this list).
Then the following transitions originate in a state of the form q or (q, a, i,m):

1. a transition from q to (q, choose, 1, 0) with weight 0,
2. for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from (q, choose, i,m) to

(q, allow, i,m) with weight 0,
3. if q ∈ Q1 then for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from

(q, choose, i,m) to (q,block, i,m) with weight 0, except if i = k and m = 0;
4. for all 0 ≤ m ≤ k a transition from (q, choose, k + 1,m) to qm with weight 0

(where q0 can be chosen arbitrarily),
5. for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from (q, allow, i,m) to

(q, choose, i+ 1, i) with weight 0,
6. for all 1 ≤ i ≤ k and 1 ≤ m ≤ k a transition from (q, allow, i,m) to

(q, choose, i+ 1,m) with weight 0,
7. for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from (q,block, i,m) to

(q, choose, i+ 1,m) with weight −2(k + 1) · weight(q, qi).

Finally, the priority of a state q ∈ Q equals the priority of the same state in G,
whereas all states of the form (q, a, i,m) have priority M = max{χ(q) | q ∈ Q}.

Example 13. For the game of Fig. 2, this transformation would yield the game
depicted in Fig. 4. In this picture, a, b and c stand for allow, block and choose,
respectively; zero weights are omitted.

11

1 q1

1

q1 c
1 0

1

q1 a
1 0

1

q1 b
1 0

1

q1 c
2 1

1

q1 c
2 0

1

q1 a
2 0

1

q1 a
2 1

1

q1 b
2 1

1

q1 c
3 1

1
q1 c
3 2

0

q2

1

q2 c
1 0

1

q2 a
1 0

1

q2 c
2 1

1

q2 a
2 1

1

q2 c
3 1

−12

−6

Fig. 4. The game G′′ associated with the game G of Fig. 2

It is easy to see that the game G′′ has polynomial size and can, in fact, be
constructed in polynomial time from the given mean-penalty parity game G.
The following lemma relates the game G′′ to the mean-payoff parity game G′ of
exponential size constructed earlier and to the original game G.

Lemma 14. Let G be a mean-penalty parity game, G′ the corresponding mean-
payoff parity game of exponential size, G′′ the corresponding mean-payoff parity
game of polynomial size, and q0 ∈ Q.

1. For every multi strategy σ in G there exists a strategy σ′ for Player 1 in G′′
such that val(σ′, q0) ≥ −penalty(σ, q0).

2. For every strategy τ for Player 2 in G′ there exists a strategy τ ′ for Player 2
in G′′ such that val(τ ′, q0) ≤ val(τ, q0).

3. valG
′′
(q0) = − valG(q0).

Since the mean-payoff game G′′ can be computed from G in polynomial time,
we obtain a polynomial-time many-one reduction from the value problem for
mean-penalty parity games to the value problem for mean-payoff parity games.
By Corollary 3 and Theorem 4, the latter problem belongs to NP ∩ coNP.

Theorem 15. The value problem for mean-penalty parity games belongs to
NP ∩ coNP.

A deterministic algorithm. Naturally, we can use the polynomial translation
from mean-penalty parity games to mean-payoff parity games to solve mean-
penalty parity games deterministically. Note that the mean-payoff parity game G′′
derived from a mean-penalty parity game has O(|Q| · k2) states and O(|Q| · k2)

12

Algorithm SymbSolveMPP(G)

Input: mean-penalty parity game G = (G,χ)
Output: valG

if Q = ∅ then return ∅
p := min{χ(q) | q ∈ Q}
if p is even then
g := SymbSolveMP(G, 0)
if χ(q) = p for all q ∈ Q then return g
T := Q \AttrG1 (χ−1(p)); f := SymbSolveMPP(G � T)
x := max(f(T) ∪ g(Q)); A := AttrG2 (f−1(x) ∪ g−1(x))
return (Q → R ∪ {∞} : q 7→ x) u SymbSolveMPP(G �Q \A)

else
T := Q \AttrG2 (χ−1(p))
if T = ∅ then return (Q → R ∪ {∞} : q 7→ ∞)
f := SymbSolveMPP(G � T); x := min f(T); A := AttrG1 (f−1(x))
return (Q → R ∪ {∞} : q 7→ x) t SymbSolveMPP(G �Q \A)

end if

edges, where k is the maximum out-degree of a state in G; the number of priorities
remains constant. Moreover, if weights are given in integers and W is the highest
absolute weight in G, then the highest absolute weight in G′′ is O(k ·W). Using
Theorem 7, we thus obtain a deterministic algorithm for solving mean-penalty
parity games that runs in time O(|Q|d+3 · k2d+7 ·W). If k is a constant, the
running time is O(|Q|d+3 ·W), which is acceptable. In the general case however,
the best upper bound on k is the number of states, and we get an algorithm
that runs in time O(|Q|3d+10 ·W). Even if the numbers of priorities is small, this
running time would not be acceptable in practical applications.

The goal of this section is to show that we can do better; namely we will
give an algorithm that runs in time O(|Q|d+3 · |E| ·W), independently of the
maximum out-degree. The idea is as follows: we use Algorithm SolveMPP on
the mean-payoff parity game G′ of exponential size, but we show that we can
run it on G, i.e., by handling the extra states of G′ symbolically during the
computation. As a first step, we adapt the pseudo-polynomial algorithm by Zwick
and Paterson [22] to compute the values of a mean-penalty parity game with a
trivial parity objective.

Lemma 16. The values of a mean-penalty parity game with priority function
χ ≡ 0 can be computed in time O(|Q|4 · |E| ·W).

Algorithm SymbSolveMPP is our algorithm for computing the values of a
mean-penalty parity game. The algorithm employs as a subroutine an algorithm
SymbSolveMP for computing the values of a mean-penalty parity with a trivial
priority function (see Lemma 16). Since SymbSolveMP can be implemented to
run in time O(|Q|4 · |E| ·W), the running time of the procedure SymbSolveMPP
is O(|Q|d+3 · |E| ·W). Notably, the algorithm runs in polynomial time if the

13

number of priorities is bounded and we are only interested in the average number
of edges blocked by a strategy in each step (i.e. if all weights are equal to 1).

Theorem 17. The values of a mean-penalty parity game with d priorities can
be computed in time O(|Q|d+3 · |E| ·W).

Proof (Sketch). From Lemma 16 and with the same runtime analysis as in the
proof of Theorem 7, we get that SymbSolveMPP runs in time O(|Q|d+3 · |E| ·W).
To prove that the algorithm is correct, we show that there is a correspondence
between the values the algorithm computes on a mean-penalty parity game G and
the values computed by Algorithm SolveMPP on the mean-payoff parity game G′.
More precisely, we show that SolveMPP(G′) � Q = −SymbSolveMPP(G). The
correctness of the algorithm thus follows from Lemma 10, which states that
valG

′
�Q = − valG . ut

5 Conclusion

In this paper, we have studied mean-payoff parity games, with an application
to finding permissive strategies in parity games with penalties. In particular,
we have established that mean-penalty parity games are not harder to solve
than mean-payoff parity games: for both kinds of games, the value problem
is in NP ∩ coNP and can be solved by an exponential algorithm that becomes
pseudo-polynomial when the number of priorities is bounded.

One complication with both kinds of games is that optimal strategies for
Player 1 require infinite memory, which makes it hard to synthesise these strategies.
A suitable alternative to optimal strategies are ε-optimal strategies that achieve
the value of the game by at most ε. Since finite-memory ε-optimal strategies are
guaranteed to exist [2], a challenge for future work is to modify our algorithms
so that they compute not only the values of the game but also a finite-memory
ε-optimal (multi-)strategy for Player 1.

Acknowledgement. We thank an anonymous reviewer for pointing out the
polynomial reduction from mean-penalty parity games to mean-payoff parity
games, which has simplified the proof that mean-penalty parity games are in NP.

References

1. J. Bernet, D. Janin, I. Walukiewicz. Permissive strategies: from parity games
to safety games. RAIRO – ITA, 36(3):261–275, 2002.

2. R. Bloem, K. Chatterjee, T. A. Henzinger, B. Jobstmann. Better quality in
synthesis through quantitative objectives. In CAV’09, vol. 5643 of LNCS, pp.
140–156. Springer-Verlag, 2009.

3. P. Bouyer, M. Duflot, N. Markey, G. Renault. Measuring permissivity in finite
games. In CONCUR’09, vol. 5710 of LNCS, pp. 196–210. Springer-Verlag,
2009.

14

4. P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, J. Srba. Infinite runs
in weighted timed automata with energy constraints. In FORMATS’08, vol.
5215 of LNCS, pp. 33–47. Springer-Verlag, 2008.

5. P. Bouyer, N. Markey, J. Olschewski, M. Ummels. Measuring permissiveness
in parity games: Mean-payoff parity games revisited. Research Report LSV-
11-17, Laboratoire Spécification et Vérification, ENS Cachan, France, 2011.

6. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, M. Stoelinga. Resource
interfaces. In EMSOFT’03, vol. 2855 of LNCS, pp. 117–133. Springer-Verlag,
2003.

7. K. Chatterjee, L. Doyen. Energy parity games. In ICALP’10 (2), vol. 6199
of LNCS, pp. 599–610. Springer-Verlag, 2010.

8. K. Chatterjee, L. Doyen, T. A. Henzinger, J.-F. Raskin. Generalized mean-
payoff and energy games. In FSTTCS’10, vol. 8 of LIPIcs, pp. 505–516.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

9. K. Chatterjee, T. A. Henzinger, M. Jurdziński. Mean-payoff parity games.
In LICS’05, pp. 178–187. IEEE Computer Society Press, 2005.

10. K. Chatterjee, T. A. Henzinger, N. Piterman. Generalized parity games. In
FoSSaCS’07, vol. 4423 of LNCS, pp. 153–167. Springer-Verlag, 2007.

11. A. Ehrenfeucht, J. Mycielski. Positional strategies for mean payoff games.
Int. Journal of Game Theory, 8(2):109–113, 1979.

12. E. A. Emerson, C. S. Jutla. Tree automata, mu-calculus and determinacy.
In FOCS’91, pp. 368–377. IEEE Computer Society Press, 1991.

13. M. Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP.
Information Processing Letters, 68(3):119–124, 1998.

14. R. M. Karp. A characterization of the minimum cycle mean in a digraph.
Discrete Mathematics, 23(3):309–311, 1978.

15. E. Kopczyński. Half-positional determinacy of infinite games. In ICALP
2006 (2), vol. 4052 of LNCS, pp. 336–347. Springer-Verlag, 2006.

16. M. Luttenberger. Strategy iteration using non-deterministic strategies for
solving parity games. Research Report cs.GT/0806.2923, arXiv, 2008.

17. D. A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.
18. A. W. Mostowski. Games with forbidden positions. Tech. Rep. 78, Instytut

Matematyki, Uniwersytet Gdański, Poland, 1991.
19. S. Pinchinat, S. Riedweg. You can always compute maximally permissive

controllers under partial observation when they exist. In ACC’05, pp. 2287–
2292. 2005.

20. W. Thomas. Infinite games and verification (extended abstract of a tutorial).
In CAV’04, vol. 2404 of LNCS, pp. 58–64. Springer-Verlag, 2002.

21. W. Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoretical Computer Science, 200(1–2):135–183,
1998.

22. U. Zwick, M. Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158(1&2):343–359, 1996.

15

