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Abstract. A channel machine consists of a finite controller together with several fifo channels; the con-
troller can read messages from the head of a channel and write messages to the tail of a channel. In this
paper we focus on channel machines with insertion errors, i.e., machines in whose channels messages can
spontaneously appear. We consider the invariance problem: does a given insertion channel machine have
an infinite computation all of whose configurations satisfy a given predicate? We show that this problem
is primitive-recursive if the predicate is closed under message losses. We also give a non-elementary lower
bound for the invariance problem under this restriction. Finally, using the previous result, we show that the
satisfiability problem for the safety fragment of Metric Temporal Logic is non-elementary.
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1. Introduction

Many recent developments in the area of automated verification, both theoretical and practical, concern
infinite-state systems. Although such systems are not, in general, amenable to fully algorithmic analysis,
a number of important classes of models with decidable verification problems have been identified. Several
of these classes, such as Petri nets, process algebras, rewrite systems, faulty channel machines, timed au-
tomata, and many more, are instances of well-structured transition systems, for which various problems are
decidable—see [FS01] for a comprehensive survey.

Well-structured transition systems are predicated on the existence of ‘compatible well-quasi orders’, which
guarantee, for example, that certain fixed-point computations terminate. Unfortunately, these properties
are often non-constructive in nature, so that although convergence is guaranteed, the number of steps to
convergence is not necessarily known. Thus, while decidability of a given type of system can be established by
recourse to the general theory of well-structured systems, establishing complexity bounds typically requires
a more specialised analysis of the model at hand. A classic example is the coverability problem for Petri
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nets, which can be shown to be decidable using generic techniques [FS01] but for which optimal complexity
bounds require more specific techniques [Rac78].

In this paper, we are interested in a particular kind of well-structured transition system, known as
faulty channel machines. A channel machine (also known as a queue automaton) consists of a finite-state
controller equipped with several unbounded fifo channels (queues, buffers). Transitions of the machine can
write messages (letters) to the tail of a channel and read messages from the head of a channel. Channel
machines can be used, for example, to model distributed protocols that communicate asynchronously.

Channel machines are easily seen to be Turing powerful [BZ83], and all non-trivial verification problems
concerning them are therefore undecidable. In [AJ93, Fin94, CFPI96, AJ96], Abdulla and Jonsson, and Finkel
et al. independently introduced lossy channel machines as channel machines operating over an unreliable
medium; more precisely, they made the assumption that messages held in channels could at any point vanish
nondeterministically. Not only was this a compelling modelling assumption, enabling the representation of
fault-tolerant protocols, for example, but it also endowed the underlying transition systems of lossy channel
machines with a well-structure, thanks to Higman’s lemma [Hig52]. As a result, several non-trivial problems,
such as control-state reachability, are decidable for lossy channel machines.

Abdulla and Jonsson admitted in [AJ93] that they were unable to determine the complexity of the
various problems they had shown to be decidable. Such questions remained open for almost a decade, despite
considerable research interest in the subject. Finally, Schnoebelen showed in [Sch02] that virtually all non-
trivial decidable problems concerning lossy channel machines have non-primitive recursive complexity. This
result, in turn, settled the complexity of a host of other problems, usually via reduction from reachability
for lossy channel machines. A more precise analysis has been given more recently [CS08, SS11], in which the
complexity of reachability and termination for lossy channel systems is placed at level Fωω in the fast-growing
hierarchy of recursive functions.

Other models of unreliable media in the context of channel machines have also been studied in the liter-
ature. In [CFPI96], for example, the effects of various combinations of insertion, duplication, and lossiness
errors are systematically examined. Although insertion errors are well-motivated (as former users of modems
over telephone lines can attest!), they were surprisingly found in [CFPI96] to be theoretically uninteresting:
in the presence of insertion errors channels become redundant since read- and write-transitions are contin-
uously enabled (the former because of potential insertion errors, the latter by assumption, as channels are
unbounded). Consequently, most verification problems trivially reduce to questions on finite automata.

Recently, however, slightly more powerful models of channel machines with insertion errors have appeared
as key tools in the study of Metric Temporal Logic (MTL), an extension of linear temporal logic for reasoning
about real-time systems [HMP92, Koy90]. In [OW05, OW06a], the authors showed that MTL formulas can
capture the computations of insertion channel machines equipped with primitive operations for testing channel
emptiness. Emptiness testing provides some measure of control over insertion errors, and this new class of
faulty channel machines has non-primitive recursive reachability problem and undecidable recurrent control-
state reachability problem. Consequently, MTL satisfiability and model checking were established to be
non-primitive recursive over finite words [OW05], and undecidable over infinite words [OW06a].

Independently of Metric Temporal Logic, the notion of emptiness testing is very natural. Counter ma-
chines, for instance, are usually assumed to incorporate primitive zero-testing operations on counters, and
likewise pushdown automata are able to detect empty stacks. Variants of Petri nets have also explored
emptiness testing for places, usually resulting in a great leap in computational power.

Our main focus in this paper is on termination and, more generally, invariance for insertion channel
machines. One problem we consider is the termination problem for insertion channel machines with emptiness
tests (ICMETs): given such a machine, are all of its computations finite? We show that termination is
non-elementary, yet primitive recursive. This result is quite surprising, as the closely related problems of
reachability and recurrent reachability are respectively non-primitive recursive and undecidable. Moreover,
the mere decidability of termination for insertion channel machines follows from the theory of well-structured
transition systems, in a manner similar to that for lossy channel machines. In the latter case, however,
termination is non-primitive recursive, as shown in [Sch02].

Emptiness tests are one of a number of possible tests that can be added to insertion channel machines.
A more general notion is absence tests, which allow the machine to check that a certain symbol is not on the
channel [BMO+08]. The key feature of such tests that preserves decidability is their compatibility with the
sub-word order on channel configurations. A framework that subsumes a wide variety of such compatible
tests is to restrict attention to configurations that satisfy a given predicate L, where L downward-closed,
i.e., closed with respect to the sub-word order on channel configurations. Thus we are led to consider the
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invariance problem for insertion channel machines: given an insertion channel machine and downward-closed
predicate L, is there an infinite computation all of whose configurations satisfy L? The invariance problem
for ICMs generalises the termination problem for ICMETs since emptiness tests can be characterised in
terms of downward-closed predicates. Our main result is that the invariance problem is primitive-recursive.

On the practical side, one of the main motivations for studying termination of insertion channel machines
arises from the safety fragment of Metric Temporal Logic. Safety MTL was shown to be decidable in [OW06b],
although no non-trivial bounds on the complexity could be established at the time. In this paper we show
that the satisfiability problem for Safety MTL is non-elementary by reduction from the termination problem
for ICMETs. We note that in a similar vein, an EXPSPACE lower bound for the complexity of satisfiability
of an extension of Linear Temporal Logic on data words was given in [Laz11] via a reduction from the
termination problem for counter machines with incrementation errors.

This paper extends the conference paper [BMO+08] by generalising from the termination problem for
ICMET to the invariance problem for ICM and by including a proof that satisfiability for Safety MTL is
non-elementary.

2. Decision Problems for Faulty Channel Machines

In this section, we briefly review some key decision problems for lossy and insertion channel machines (the
latter equipped with emptiness testing). Apart from the results on termination and invariance for insertion
channel machines, which are presented in the following sections, all results that appear here are either known
or follow easily from known facts. Note that, for lossy channel machines, allowing tests on channel contents
does not make verification harder [BBS06].

The reachability problem asks whether a given control state of a channel machine is reachable. This
problem was shown to be non-primitive recursive for lossy channel machines in [Sch02] and in [CS08] it was
shown not even to be multiply recursive. Decidability of this problem can be established using Higman’s
Lemma [FS01]. Based on an analysis of the length of “bad sequences” in Higman’s lemma the problem was
shown in [SS11] to lie in level Fωω in the fast-growing hierarchy of recursive functions. Reachability for
insertion channel machines is logspace equivalent to reachability for lossy channel machines via a simple
dualisation construction [OW05], so all the above complexity results carry over.

The termination problem asks whether all computations of a channel machine are finite, starting from
the initial control state and empty channel contents. For lossy channel systems termination and reachability
have the same complexity [Sch02, CS08]. However we prove in Section 5 that termination of insertion channel
machines is primitive recursive. In Section 4 we give a non-elementary lower bound for this problem.

The invariance problem asks whether a given channel machine has an infinite computation all of whose
configurations satisfy a given predicate L. (We postpone details about effective representations of infinite
sets of configurations until later.) The invariance problem for lossy channel systems is decidable [AČJT00]
provided that the predicate L is upwards closed with respect to the sub-word order on channel contents.
This last problem generalises (non)termination and is thus non-primitive recursive. Our main result is that
the invariance problem for insertion channel systems is primitive recursive for downward closed predicates.
More generally, we show primitive recursiveness of the associated function problem: compute the set EG(L)
of all configurations from which there is an infinite computation, all of whose configurations satisfy a given
downward closed predicate L. This is not computable for lossy channel systems even for trivial predicates. In
particular, taking L be the set of all configurations, the problem specialises to structural (non)termination:
compute the set of states from which there is an infinite computation. Structural termination was shown to
be undecidable for lossy channel machines in [May03].

Given a channel machine S and two distinguished control states p and q of S, a response property is an
assertion that every p state is always eventually followed by a q state in any infinite computation of S. Note
that a counterexample to a response property is a computation that eventually visits p and forever avoids q
afterwards. The undecidability of response properties for lossy channel machines follows easily from that of
structural termination, as the reader may wish to verify.

In the case of insertion channel machines, response properties are decidable, albeit at non-primitive
recursive cost (by reduction from reachability). For decidability one first shows using the theory of well-
structured transition systems that the set of all reachable configurations, the set of p-configurations, and
the set of configurations that have infinite q-avoiding computations are all effectively computable. It then
suffices to check whether their mutual intersection is empty.
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Lossy Channel Machines Insertion Channel Machines
Reachability non-primitive recursive non-primitive recursive
Termination non-primitive recursive non-elementary / primitive recursive

Invariance (D) non-primitive recursive non-elementary / primitive recursive
Invariance (F) undecidable non-elementary / primitive recursive

Response undecidable non-primitive recursive
Recurrence undecidable undecidable
CTL / LTL undecidable undecidable

Fig. 1. Complexity of decision problems for faulty channel machines.

The recurrence problem asks, given a channel machine and a distinguished control state, whether the
machine has a computation that visits the distinguished state infinitely often. It is undecidable for lossy chan-
nel machines by reduction from response, and was shown to be undecidable for insertion channel machines
in [OW06a].

Finally, CTL and LTL model checking for both lossy and insertion channel machines are undecidable,
which can be established along the same lines as the undecidability of recurrence.

These results are summarised in Figure 1. Here, when we refer to the invariance problem, we consider
upward-closed predicates for lossy channel systems and downward closed predicates for insertion channel
systems (the predicates typically used in practice are the system’s control states, both upward-closed and
downward-closed). The decision and function versions of the invariance problem are indicated with (D) and
(F) respectively.

3. Definitions

A channel machine is a tuple S = (Q,Σ, C,∆), where Q is a finite set of control states, Σ is a finite
channel alphabet, C is a finite set of channel names, and ∆ ⊆ Q×Op ×Q is the transition relation, where
Op = {c!a, c?a, c=ε : c ∈ C, a ∈ Σ} is the set of transition operations. Intuitively, label c!a denotes the
writing of message a to the tail of channel c, label c?a denotes the reading of message a from the head of
channel c, and label c=ε tests channel c for emptiness.

We first define an error-free operational semantics for channel machines. Given S as above, a configuration
of S is a pair (q, U), where q ∈ Q is the control state and U ∈ (Σ∗)C gives the contents of each channel. Let
us write Conf for the set of possible configurations of S. By a slight abuse of notation we sometimes denote
the contents of channel c in a configuration γ by γ(c).

The rules in ∆ induce an Op-labelled transition relation on Conf , as follows:

(1) (q, c!a, q′) ∈ ∆ yields a transition (q, U)
c!a−→ (q′, U ′), where U ′(c) = U(c)·a and U ′(d) = U(d) for d 6= c.

In other words, the channel machine moves from control state q to control state q′, writing message a to
the tail of channel c and leaving all other channels unchanged.

(2) (q, c?a, q′) ∈ ∆ yields a transition (q, U)
c?a−→ (q′, U ′), where U(c) = a·U ′(c) and U ′(d) = U(d) for d 6= c.

In other words, the channel machine reads message a from the head of channel c while moving from
control state q to control state q′, leaving all other channels unchanged.

(3) (q, c=ε, q′) ∈ ∆ yields a transition (q, U)
c=ε−→ (q′, U), provided U(c) is the empty word. In other words,

the transition is only enabled if channel c is empty; all channel contents remain the same.

If the only transitions allowed are those listed above, then we call S an error-free channel machine. This
machine model is easily seen to be Turing powerful [BZ83]. As discussed earlier, however, we are interested
in channel machines with (potential) insertion errors; intuitively, such errors are modelled by postulating
that channels may at any time acquire additional messages interspersed throughout their current contents.

For our purposes, it is convenient to adopt a lazy model of insertion errors, given next. Slightly different
models, such as those of [CFPI96, OW06a], have also appeared in the literature. As the reader may easily
check, all these models are equivalent insofar as reachability and termination properties are concerned.

The lazy operational semantics for channel machines with insertion errors simply augments the transition
relation on Conf with the following rule:
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(4) (q, c?a, q′) ∈ ∆ yields a transition (q, U)
c?a−→ (q′, U). In other words, insertion errors occur ‘just in time’,

immediately prior to a read operation; all channel contents remain unchanged.

The channel machines defined above are called insertion channel machines with emptiness testing, or
ICMET s. A machine that does not feature any transitions following rule (3) above is simply an insertion
channel machine, or ICM.

A run of an insertion channel machine is a finite or infinite sequence of transitions of the form γ0
op0−→

γ1
op1−→ . . . that is consistent with the lazy operational semantics.

3.1. Termination and Invariance

One of our main interests in this paper is the following problem:

Termination Problem for ICMETs. Given an ICMET S and a configuration γ of S, are all runs of S
starting from γ finite?

Note that the same question for ICMs (without emptiness tests) trivially reduces to termination for the
underlying finite automaton. By contrast, we will give a non-elementary lower bound for the termination
problem for ICMETs.

When considering upper bounds we work with a more general problem—the invariance problem for ICMs.
To introduce this we need some preliminary notions.

Let u = u1u2 . . . um and v = v1v2 . . . vn be words in Σ∗. We say that u is a subword of v, written u 4 v, if
there is an order embedding f : {1, . . . ,m} → {1, . . . , n} such that ui = vf(i). Intuitively this just says that
u can be obtained from v by erasing some letters. For example, higman is a subword of highmountain. The
subword ordering naturally extends to the set Conf of configurations of a channel machine S by stipulating
that (q, U) 4 (q′, U ′) iff q = q′ and U(c) 4 U ′(c) for each channel c.

A set of configurations L ⊆ Conf is said to be downward closed or a lower set if γ ∈ L and γ′ 4 γ imply
that γ′ ∈ L. Given a lower set L ⊆ Conf , let M be the set of minimal elements of Conf \ L. It follows from
Higman’s Lemma [Hig52] that M is finite and that every element of Conf \ L is above some member of
M . We call M the cobasis of L. The existence of M implies in particular that L is regular. We henceforth
assume that L is represented by a non-deterministic automaton.

Given a channel machine S = (Q,Σ, C,∆), and a lower set L ⊆ Conf , define EG(L) to be the set of
configurations γ0 from which there is an infinite computation γ0 → γ1 → · · · → γn → · · · with γi ∈ L for
all i ∈ N. Here we have adopted the notation of computation tree logic: EG(L) is read ‘there exists a path
along which L holds globally’. We are interested in the following decision problem:

Invariance Problem for ICMs. Given a channel machine S, a lower set L ⊆ Conf , and a configuration
γ of S, is γ ∈ EG(L)?

Example 1. If, for some location q0 and channel c, we have L = {(q, U) : q = q0 implies U(c) = ε}, then
for any computation that is globally in L channel c must be empty upon entering location q0. Thus we can
encode the termination problem for ICMETs as a special case of the invariance problem for ICMs.

More generally than emptiness tests c = ε one can consider avoidance tests w 64 c, which check that a
given word w is not a subword of the contents channel c. Using the fact that every downward closed set of
configurations has a finite cobasis, one can give polynomial-time translations in both directions between the
termination problem for ICMs with avoidance tests and the invariance problem for ICMs.

4. Termination is Non-Elementary

In this section, we show that the termination problem for ICMETs is non-elementary. More precisely, we
show that the termination problem for ICMETs of size n in the worst case requires time at least 2⇑Ω(log n).
(The expression 2⇑m, known as tetration, denotes an exponential tower of 2s of height m.)

Our proof proceeds by reduction from the termination problem for two-counter machines in which the
counters are tetrationally bounded; the result then follows from standard facts in complexity theory (see,
e.g., [HU79]).
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Procedure Inc(uk+1)
Reset(uk)
repeat
c?x ; d!(1− x) /* Increment counter uk+1 while transferring c to d */
Inc(uk)

until IsZero(uk) or x = 0
while not IsZero(uk) do
c?x ; d!x /* Transfer remainder of c to d */
Inc(uk)

endwhile
test(c=ε) /* Check that there were no insertion errors on c, otherwise halt */
repeat
d?x ; c!x /* Transfer d back to c */
Inc(uk)

until IsZero(uk)
test(d=ε) /* Check that there were no insertion errors on d, otherwise halt */
return

Fig. 2. Procedure to increment counter uk+1. Initially, this procedure assumes that counter uk+1 is encoded in binary on channel
c, with least significant bit at the head of the channel; moreover, c is assumed to comprise exactly 2⇑k bits (using padding 0s
if need be). In addition, channel d is assumed to be initially empty. Upon exiting, channel c will contain the incremented value
of counter uk+1 (modulo 2⇑(k + 1)) in binary, again using 2⇑k bits, and channel d will be empty. We regularly check that no
insertion errors have occurred on channels c or d by making sure that they contain precisely the right number of bits. This is
achieved using counter uk (which can count up to 2⇑k and is assumed to work correctly) together with emptiness tests on c and
d. If an insertion error does occur during execution, the procedure will either halt, or the next procedure to handle channels c
and d (i.e., any command related to counter uk+1) will halt.

Without insertion errors, it is clear that a channel machine can directly simulate a two-counter machine
simply by storing the values of the counters on one of its channels. To simulate a counter machine in the
presence of insertion errors, however, we require periodic integrity checks to ensure that the representation of
the counter values has not been corrupted. Below we give a simulation that follows the ‘yardstick’ construction
of Meyer and Stockmeyer [SM73, LNO+08]: roughly speaking, we use an m-bounded counter to check the
integrity of a 2m-bounded counter.

Theorem 2. The termination problem for ICMETs is non-elementary.

Proof. Let us say that a counter is m-bounded if it can take values in {0, 1, . . . ,m−1}. We assume that such a
counter u comes equipped with procedures Inc(u), Dec(u), Reset(u), and IsZero(u), where Inc and Dec
operate modulo m, and increment, resp. decrement, the counter. We show how to simulate a deterministic
counter machine M of size n equipped with two 2⇑n-bounded counters by an ICMET S of size 2O(n). We
use this simulation to reduce the termination problem for M to the termination problem for S.

By induction, assume that we have constructed an ICMET Sk that can simulate the operations of
a 2⇑k-bounded counter uk. We assume that Sk correctly implements the operations Inc(uk), Dec(uk),
Reset(uk), and IsZero(uk) (in particular, we assume that the simulation of these operations by Sk is
guaranteed to terminate). We describe an ICMET Sk+1 that implements a 2⇑(k+ 1)-bounded counter uk+1.
Sk+1 incorporates Sk, and thus can use the above-mentioned operations on the counter uk as subroutines.
In addition, Sk+1 has two extra channels c and d on which the value of counter uk+1 is stored in binary. We
give a high-level description.

We say that a configuration of Sk+1 is clean if channel c has size 2⇑k and channel d is empty. We ensure
that all procedures on counter uk+1 operate correctly when they are invoked in clean configurations of Sk+1,
and that they also yield clean configurations upon completion. In fact, we only give details for the procedure
Inc(uk+1)—see Figure 2; the others should be clear from this example.

Since the counter uk is assumed to work correctly, the above procedure is guaranteed to terminate,
having produced the correct result, in the absence of any insertion errors on channels c or d. On the other
hand, insertion errors on either of these channels will be detected by one of the two emptiness tests, either
immediately or in the next procedure to act on them.

The initialisation of the induction is handled using an ICMET S1 with no channel (in other words, a
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finite automaton) of size 2, which can simulate a 2-bounded counter (i.e., a single bit). The finite control of
the counter machine, likewise, is duplicated using a further channel-less ICMET.

Using a product construction, it is straightforward to conflate these various ICMETs into a single one,
S, of size exponential in n (more precisely: of size 2O(n)). As the reader can easily check, M has an infinite
computation iff S has an infinite run. The result follows immediately.

5. Invariance is Primitive Recursive

The central result of our paper is the following:

Theorem 3. The invariance problem for ICMs is primitive recursive. More precisely, when restricting to
the class of ICMs that have at most k channels, the invariance problem is in (k+1)-EXPSPACE.

To add some colour to the development below, we consider a slight specialisation of the invariance
problem. Given a channel alphabet Σ we assume a distinguished symbol / 6∈ Σ, akin to the end-of-tape
marker in Turing machines. We suppose that the lower set L in the statement of the invariance problem
specifies, amongst other things, that at most one instance of / be on each channel at any time.

For each channel c we postulate a special operation c?!/ that consists of consecutive read and write
operations of the special symbol / on channel c. We assume that this is the only type of operation mentioning

/ (i.e., there are no operations that just read or just write /). Given a transition γ
c?!/−→ γ′ such that γ, γ′ ∈ L,

it must be that / is on the head of γ(c), is successfully read by the operation and is placed on the tail of
γ′(c), that is, the special operation c?!/ is not subject to insertion errors as long as we remain in L. We call

a transition γ
c?!/−→ γ′ a cycling transition. It is straightforward that, as far as termination and invariance are

concerned, the above conventions are harmless.
Note that given a segment of a computation that begins and ends with cycling transitions on channel c,

γ0
c?!/−→ γ1−→γ2−→· · ·−→γn−1

c?!/−→ γn ,

it must hold that the length of channel c in the initial configuration |γ0(c)| is at most the length n of the
computation.

Observe also that in an infinite computation of an ICM for each channel c, either there are infinitely
many cycling transitions or the machine eventually stops consuming letters from channel c.

5.1. Rank Functions and Equivalence Relations

Throughout this section let S = (Q,Σ, C,∆) be an ICM and L ⊆ Conf a lower set of configurations
with cobasis M . Motivated by Example 1, define a test to be a pair (c, w) consisting of a channel c ∈ C
and word w ∈ Σ∗. Intuitively a configuration (q, U) fails the test if w 4 U(c). Define Test be the set
{(c, w) : ∃γ ∈ M,γ(c) = w}. Next we introduce rank functions to measure how close a configuration is to
failing a test.

Definition 4. Let (c, w) be a test with w = w1 . . . wm ∈ Σ∗. Given a configuration γ of S with γ(c) = x/ y,
where x, y ∈ Σ∗, let w1w2 . . . wl be the longest prefix of w that is a subword of x, and wl+1wl+2 . . . wl+p the
longest prefix of wl+1wl+2 . . . wm that is a subword of y. Then define rank c,w(γ) = w1 . . . wl / wl+1 . . . wl+p.
Note that w1 . . . wl+p is the longest prefix of w that embeds in γ(c).

Example 5. Suppose Σ = {x, y, z}. If w = xyz and γ(c) = yx / zxy, then rank c,w(γ) = x / y.

The following proposition, whose proof is immediate, characterises the different ways in which rank c,w
can change across a transition of S.

Proposition 6. Suppose that γ
op−→ γ′ is a transition of S such that rank c,w(γ) = u / v and rank c,w(γ′) =

u′ / v′. If rank c,w(γ) 6= rank c,w(γ′) then there are three possibilities:

(i) op = c!σ for some σ ∈ Σ, u′ = u, and v′ = vσ

(ii) op = c?σ and |u′| < |u|
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(iii) op = c?!/, u = ε, v′ = ε, and u′ = v.

Lemma 7 (Cycling Lemma). Let ρ = γ0−→γ1−→· · ·−→γm be a computation of S and (c, w) a test such
that there are at least (|w|+ 1)2 transitions γi −→ γi+1 with rank c,w(γi) 6= rank c,w(γi+1). Then ρ contains
a cycling transition on channel c.

Proof. Consider the subsequence of transitions in ρ that change rank c,w, Of every |w|+ 1 consecutive such
transitions at least one must be a read operation since the length of rank c,w(γ) is bounded by |w|+ 1. Thus
ρ contains at least |w| + 1 read operations that change rank c,w. Considering all such read operations we
observe that Case (ii) in Proposition 6 cannot apply to all these operations (due to the condition |u′| < |u|
therein) and that Case (iii) must apply at least once, i.e., there exists a cycling transition.

The proof of our main result, Theorem 9, involves an induction on the number of channels. To set this
up we introduce the following indexed family of equivalence relations. Given a set of channels D ⊆ C, define
the equivalence ≡D on Conf by (q, U) ≡D (q′, U ′) iff q = q′ and U(c) = U ′(c) for all c ∈ D. The coarsest
such equivalence is ≡∅, which represents equality of control locations, and the finest such equivalence is ≡C ,
which denotes complete equality of configurations.

Lemma 8 (Pumping Lemma). Suppose that ρ = γ0 −→ γ1−→· · ·−→γn is a computation of S such that
γi ∈ L for 0 ≤ i ≤ n and γ0 ≡D γn for some set of channels D ⊆ C. If rank c,w is constant along ρ for all
(c, w) ∈ Test such that c 6∈ D then γ0 ∈ EG(L).

Proof. Note that γ0 ≡D γn implies that configurations γ0 and γn have the same underlying control state.
Thus we can extend ρ to an infinite computation ρ′:

γ0−→γ1−→· · ·−→γn−→γn+1−→· · · −→ γ2n −→ γ2n+1 −→ · · ·

by repeatedly firing the finite sequence of transitions that occur along ρ. Moreover, since γ0 ≡D γn, it holds
that γi ≡D γj for all i, j such that i ≡ j (modn). It remains to show that all configurations in the infinite
computation ρ′ lie in the lower set L.

Pick a configuration γ in the cobasis M and a configuration γi appearing in ρ′. We must show that
γ 64 γi. Writing j = i mod n, we have γj ≡D γi, i.e., γj and γi have the same control state and agree on
channels c ∈ D.

Since all configurations in ρ lie in L it holds that γ 64 γj . We now consider three cases. The first case is that
γ and γj have different control states. Then γ and γi also have different control states and γ 64 γi. The second
case is that there exists a channel c ∈ D with γ(c) 64 γj(c). But γi(c) = γj(c) and thus γ(c) 64 γi(c). The
remaining case is that there exists a channel c 6∈ D with γ(c) 64 γj(c). Writing γ(c) = w = w1 . . . wm, there
is by assumption a unique value assumed by rank c,w along ρ. This value has the form w1 . . . wl /wl+1 . . . wk,
where w1w2 . . . wk is the longest prefix of w that is a subword of γj(c). In particular, k < m and wk+1 is not
written on channel c along ρ, nor, therefore, along ρ′. We conclude that w 64 γi(c). This completes the case
analysis, and we conclude that γ 64 γi.

5.2. The Main Argument

Once again, let S = (Q,Σ, C,∆) by an ICM and L ⊆ Conf a lower set with cobasis M .
Given a computation ρ = γ0−→γ1−→· · ·−→γm of S, we say that a set S ⊆ Conf is α-frequent in ρ,

where 0 ≤ α ≤ 1, if ρ visits S at least αm times. We also say that ≡D has index β on S if it partitions S
into β equivalence classes.

Theorem 9. The invariance problem for ICMs is primitive-recursive.

Proof. Let S = (Q,Σ, C,∆) be a channel machine and L ⊆ Conf a lower set with cobasis M . Denote by n
the joint size of S and M (under some reasonable encoding). Clearly we can assume that∑

(c,w)∈Test

(|w|+ 1) ≤ n . (1)

Suppose that γ0 6∈ EG(L). We show that there exist α and β, with β/α primitive-recursive in n, such
that for any run ρ in L originating in γ0, there exists S ⊆ Conf that is α-frequent in ρ and has cardinality β.
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It follows that any such run has length at most β/α; otherwise it would contain two identical configurations,
contradicting the fact that γ0 6∈ EG(L). But then the invariance problem can be decided in primitive-
recursive time just by exploring all runs of length β/α.

We establish the existence of α and β with the desired properties by induction on the set of channels

C. The induction hypothesis is that for any D ⊆ C there exist α and β, with β/α in nn
·n

O(1)

(where the
tower of n’s has height |D|+ 1), such that for any run ρ in L originating in γ0, there exists S ⊆ Conf that
is α-frequent in ρ and such that ≡D has index at most β on S.

For the base case, D = ∅, define α = 1 and β = |Q|. Then given a computation ρ = γ0−→γ1−→· · ·−→γm,
S = {γi : 0 ≤ i ≤ m} is α-frequent in ρ, and ≡∅ has index at most β on S.

The inductive step is given in Lemma 10, below. Roughly speaking, the idea of the proof is as follows.
If for all tests (c, w) ∈ Test with c 6∈ D there is a sufficiently long computation over which rank c,w remains
constant, then applying the Pumping Lemma, Lemma 8, we conclude that γ0 ∈ EG(L), a contradiction. On
the other hand, if rank c,w changes with sufficient frequency along a computation, then the Cycling Lemma,
Lemma 7, gives an upper bound on the frequency of cycling transitions on channel c, and therefore a bound
on the size of channel c.

Lemma 10. Suppose that ρ = γ0−→γ1−→· · ·−→γm is a computation of S, where γi ∈ L for 0 ≤ i ≤ m,
but γ0 6∈ EG(L). Let S ⊆ Conf be a set of configurations that is α-frequent in ρ, and let D be a proper
subset of the set of channels C such that ≡D has index β on S. Then there exists S′ ⊆ S and D′ ) D such
that S′ is α′-frequent in ρ, ≡D′ has index β′ on S′, and

(β′/α′) ≤ nk(β/α) (2)

for some k polynomial in n.

Proof. The run ρ visits S at least αm times, and out of every β such visits two configurations are equivalent

under ≡D. Hence we can identify in ρ a subsequence γ0
∗−→ γi1

+−→ γi′1
∗−→ γi2

+−→ γi′2
∗−→ · · · ∗−→ γik

+−→
γi′k

∗−→ γm, where γijγi′j ∈ S are matching pairs of configurations with γij ≡D γi′j , and k ≥ αm/β.

Next we partition ρ into segments, called blocks, where each block contains 2n2 consecutive matching
pairs. Denoting the number of blocks by p, we have

p ≥ αm

2n2β
. (3)

The p blocks have various lengths, but we are interested in the shortest ones. In particular, the p/2 shortest

blocks must all be shorter than `
def
= 2m/p, otherwise the p/2 longer blocks would not fit in ρ. Now (3) entails

that

` ≤ 4n2β

α
. (4)

Since γ0 6∈ EG(L), Lemma 8 (the Pumping Lemma) tells us that for each matching pair γijγi′j there

exists a test (c, w), c 6∈ D, such that rank c,w is not constant along the segment γij
+−→ γi′j in ρ. But each

block contains 2n2 matching pairs, so by (1) for each block there is a test (c, w) such that rank c,w changes at
least 2(|w|+1)2 times within that block. Then, by Lemma 7, each block must contain two cycling transitions
of some channel c 6∈ D.

Considering again the p/2 shortest blocks, there is a channel d ∈ C \ D such that p
2|C| of these blocks

contains two cycling transitions of channel d. For any configuration γ in such a block, we have |γ(d)| ≤ `
since the block has length at most `.

Now define S′ = {γ ∈ S : |γ(d)| ≤ `} and D′ = D ∪ {d}. Then S′ is α′-frequent in ρ for α′ = p
2|C|m and

≡D′ has index β′ ≤ β|Σ|` on S′. Employing the inequalities (3) and (4), we conclude that

(α′)−1 ≤ 4n3βα−1 and β′ ≤ βn4n
2βα−1

. (5)

Finally, multiplying the two inequalities in (5) yields the desired inequality (2) for a suitable choice of k.
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Remark 11. From the proof of Theorem 9 we see that the invariance problem for an ICM S with at most
k channels is in (k + 1)-EXPSPACE. Indeed the induction hypothesis shows that such a machine has an
infinite computation all of whose configurations are in the given lower set L if and only if it has a finite

computation of length at least nn
·n

O(1)

, where n denotes the size of S and the cobasis of L, and the tower of
n’s has height k + 1.

Corollary 12. Given an ICM and a lower set of configurations L, the problem of computing EG(L) is
primitive recursive. In particular, the structural termination problem—are all computations of the machine
finite, starting from the initial control state but regardless of the initial channel contents?—is primitive
recursive for ICMETs.

Proof. Given a channel system S with set of configurations Conf we define the one-step predecessor operation
by

Pred(S) = {γ ∈ Conf : ∃γ′ ∈ S. γ −→ γ} ,

for S ⊆ Conf . Two key properties of Pred are (i) Pred(S) is downward closed whenever S is downward
closed; (ii) given an automaton representing a downward closed set S, one can compute (in polynomial time)
an automaton representing Pred(S). Property (i) follows immediately from operational semantics of ICM
(in particular, the property that read-transitions are always enabled). Property (ii) can be broken down
into two steps. If we represent lower sets as languages of finite nondeterministic automata, then computing
unions and intersections of lower sets is a straightforward polynomial-time operation. Thus it suffices to show
the effectiveness of Pred for systems with only a single transition. This is straightforward and we omit the
details.

Now the proof of Theorem 9 showed how to compute from a given channel machine S and lower set L a
“threshold” θ such that a configuration γ satisfies EG(L) if and only if it has a computation of length θ, all
of whose configurations satisfy L. Thus, defining, F : Conf → Conf by F (S) = L ∩ Pred(L), we have that
EG(L) = F θ(Conf ). Since θ is primitive-recursive and F can be computed in exponential time, it follows
that EG(L) is primitive-recursive.

6. Metric Temporal Logic

Metric Temporal Logic (MTL) is a real-time extension of linear temporal logic [HMP92, Koy90] that is a
formalism in real-time verification. Prima facie there is no connection between MTL and channel systems,
however in this section we prove that the satisfiability problem for the safety fragment of MTL is non-
elementary by reduction from the termination problem for ICMET.

A time sequence τ = τ1τ2τ3 . . . is an infinite sequence of time values τi ∈ R≥0 that is strictly increasing
and unbounded. A timed word over finite alphabet Σ is a pair ρ = (σ, τ), where σ = σ1σ2 . . . is an infinite
word over Σ and τ is a time sequence.

Definition 13. Given an alphabet Σ of atomic events, the formulas of MTL are built up from Σ by monotone
Boolean connectives and time-constrained versions of the next operator©, until operator U and the always
operator � as follows:

ϕ ::= true | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | a | ©I ϕ | ϕ1 UI ϕ2 | �Iϕ ,

where a ∈ Σ, and I ⊆ R≥0 is an interval with endpoints in N ∪ {∞}. We admit a derived eventually
operator ♦Iϕ := true UI ϕ.

Definition 14. Given a timed word ρ = (σ, τ) and an MTL formula ϕ, the satisfaction relation (ρ, i) |= ϕ
(read ρ satisfies ϕ at position i) is defined by the following clauses (we omit the Boolean operators):

• (ρ, i) |= a iff σi = a

• (ρ, i) |=©I ϕ iff τi+1 − τi ∈ I and (ρ, i+ 1) |= ϕ

• (ρ, i) |= ϕ1 UI ϕ2 iff there exists j > i such that (ρ, j) |= ϕ2, τj − τi ∈ I, and (ρ, k) |= ϕ1 for all k such
that i 6 k < j.

• (ρ, i) |= �Iϕ iff all j > i such that τj − τi ∈ I, (ρ, j) |= ϕ
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We say that ρ satisfies ϕ, denoted ρ |= ϕ, if (ρ, 1) |= ϕ.

Safety MTL is the fragment of MTL obtained by requiring that the interval I in each until operator UI
have finite length, i.e., all that eventualities be bounded. This restriction is quite natural from the point of
view of system verification: it is not good enough to merely know that something will happen; one usually
wants to know that it will happen reasonably soon. We are interested in the following problem.

Safety MTL Satisfiability. Is a given Safety MTL formula ϕ satisfied by some timed word?

The satisfiability problem for MTL over infinite timed words was shown to be undecidable in [OW06a]
by reduction from the recurrence problem for ICMET. Decidability can be recovered either by a semantic
restriction to finite words [OW05] or by a syntactic restriction to Safety MTL. (Observe that the recurrence
property �♦a, “a happens infinitely often”, cannot be expressed in Safety MTL.) Decidability of Safety
MTL was established in [OW06b] using Higman’s lemma, however no upper or lower complexity bounds
were given therein. The complexity of MTL over finite words is equivalent to that of reachability for ICMET,
and therefore non-primitive recursive [OW05].

Below we give a reduction of the termination problem for ICMET to the satisfiability problem for
Safety MTL, showing that the latter is non-elementary. Although this reduction uses ideas that are fa-
miliar from [OW05, OW06b, LW08], we provide details since neither the “backwards” encoding of lossy
channel machines in [LW08] nor the encoding of ICMET in [OW05, OW06b] directly apply to the problem
at hand.

Let S = (Q,C,Σ,∆) be an ICM. We define a timed language LS over the alphabet (C × Σ) ∪∆ whose
words represent non-terminating computations of S. To aid readability we denote a pair (c, a) ∈ C × Σ by
ca. A timed word (σ, τ) is in LS iff

• The sequence of events is σ = w1δ1w2δ2 . . ., where wi ∈ (C ×Σ)∗ and δi ∈ ∆. We require that δ1δ2 . . . be
a legitimate path through the underlying control automaton. The idea is that wi represents the channel
contents of the i-th configuration and δi the ith transition.

• For all i ≥ 1 the time of δi is i (transitions are encoded at integer time points)

• For all i ≥ 1, if opi the operation performed by δi, then:

– For each event ca at time t in the interval (i− 1, i), except possibly the first one, there is a matching
event ca at time t + 1. The exception applies in case the first event is ca and opi = c?a. Thus we
preserve the channel contents by copying events from one time unit to the next, except possibly the
first event in case it is read from the channel. Note that there is nothing in this convention to prevent
insertion errors on the channel.

– If opi = c!a then the last event in the interval (i, i + 1) is ca. If this event happens at time t then
there is no event at time t− 1 (corresponding to writing letter a to channel c).

– If opi is c = ε then there are no events of the form ca, a ∈ Σ, in the interval (i− 1, i).

A slightly subtle point is that the above encoding of ICMET computations corresponds to a more permissive
model of insertion errors than the lazy model adopted in Section 3. Here we allow in addition that extra
symbols may appear on the channel. However computations involving such “eager” insertion errors can
clearly be simulated under the lazy model, so termination is unaffected.

From the description above, it is clear that LS is non-empty if and only if S has a non-terminating
computation. Next we show that there is a Safety MTL formula ϕS such that LS is the set of timed words
satisfying ϕS . ϕS is defined as the conjunction of several formula, each one expressing a requirement in the
definition of LS . We do give not formulas corresponding to the first two bullet points above, but focus on
the third bullet point, which is the most interesting case.

• For each transition δ ∈ ∆, each channel c ∈ C and letter a ∈ Σ, if the operation of δ is not c?a then we
include a formula

�(ca ∧ ♦(0,1)δ → ♦{1}ca) .

This formula ensures that every ca-event at most one time unit before δ is matched by a corresponding
ca-event one time unit later. This corresponds to the fact that δ does not consume any letters from the
channel.
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Otherwise, if the operation of δ is c?a, then we instead include a formula

�(©ca ∧ ♦(0,1)δ →©♦{1}ca) .

This formula ensures that every ca-event at most one time unit before a given δ-event, except possibly
the first such, is matched by a corresponding ca-event one time unit later. This corresponds to the fact
that after executing δ each letter remains on the channel except possibly for the letter at the head of the
channel.

• For each transition δ ∈ ∆ whose operation is c!a we include a formula

�(©δ → ♦{1}© ca) .

This formula ensures that the event immediately preceding δ is followed in one time unit by an event
such that the very next event is ca, i.e., a new letter a is written to the end of the channel.

• For each transition δ ∈ ∆ and each letter a ∈ Σ, if the operation of δ is c = ε then we include a formula

�¬(ca ∧ ♦(0,1)δ) .
This formula says that ca cannot occur less than one time unit before δ, i.e., the channel is empty
immediately prior to a successful zero test.

With ϕS defined as above, it holds that ϕS is satisfiable if and only if S has a non-terminating compu-
tation. From Theorem 2 we deduce that

Theorem 15. The termination problem for ICMET is non-elementary.

7. Conclusion

The main result of this paper is that the invariance problem for insertion channel machines and downward
closed predicates has non-elementary, yet primitive-recursive complexity. As a corollary we have shown
that the termination problem for ICMETs is primitive-recursive. This result is in sharp contrast with the
termination problem for lossy channel machines, which has non-primitive recursive complexity. Another
difference between the two models is that while the function version of the invariance problem of ICMs is
primitive-recursive the analogous problem is undecidable for lossy channel systems.

Another interesting difference with lossy channel machines can be highlighted by quoting a slogan
from [Sch02]: “Lossy systems with k channels can be [polynomially] encoded into lossy systems with one
channel.” We can deduce from Theorems 2 and 3 that any such encoding, in the case of insertion channels
machines, would require non-elementary resources to compute, if it were to preserve termination properties.

Our original motivation for studying ICMs was in connection with Metric Temporal Logic. While Metric
Temporal Logic is undecidable over infinite time words [OW06a], satisfiability for the safety fragment (in
which all eventualities are time-bounded) is decidable [OW06b]. However the decidability proof in [OW06b]
used general results about well-structured systems and yielded no complexity bounds. In this paper we
have given a non-elementary lower bound for the satisfiability problem for Safety Metric Temporal Logic by
reduction from the termination problem for ICMET. We leave open whether the former problem is primitive
recursive.
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[BMO+08] Patricia Bouyer, Nicolas Markey, Joël Ouaknine, Philippe Schnoebelen, and James Worrell. On termination for
faulty channel machines. In Proc. STACS 2008, volume 1 of LIPIcs, pages 121–132. Schloß Dagstuhl - Leibniz-
Zentrum für Informatik, 2008.



On Termination and Invariance for Faulty Channel Machines 13

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of the ACM, 30(2):323–342,
1983.
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