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Abstract. Timed automata follow a mathematical semantics, which as-
sumes perfect precision and synchrony of clocks. Since this hypothesis
does not hold in digital systems, properties proven formally on a timed
automaton may be lost at implementation. In order to ensure imple-
mentability, several approaches have been considered, corresponding to
different hypotheses on the implementation platform. We address two of
these: A timed automaton is samplable if its semantics is preserved under
a discretization of time; it is robust if its semantics is preserved when all
timing constraints are relaxed by some small positive parameter.
We propose a construction which makes timed automata implementable
in the above sense: From any timed automaton A, we build a timed
automaton A′ that exhibits the same behaviour as A, and moreover A′
is both robust and samplable by construction.

1 Introduction

Timed automata [3] extend finite-state automata with real-valued variables which
measure delays between actions. They provide a powerful yet natural way of
modelling real-time systems. They also enjoy decidability of several important
problems, which makes them a model of choice for the verification of real-time
systems. This has been witnessed over the last twenty years by substantial ef-
fort from the verification community to equip timed automata with efficient tool
support, which was accompanied by successful applications.

However, timed automata are governed by a mathematical semantics, which
assumes continuous and infinitely precise measurement of time, while hardware
is digital and imprecise. Hence properties proven at the formal level might be
lost when implementing the abstract model of the automaton as a digital circuit
or as a program on a physical CPU. Several approaches have been proposed
to overcome this discrepancy, with different hypotheses on the implementation
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platform (e.g. [4, 15, 20, 12, 5, 21]). In this work, we address two such approaches,
namely, the sampled semantics and the robustness, which we now detail.

Sampled semantics for timed automata, where all time delays are integer
multiples of a rational sampling rate, have been studied in order to capture, for
example the behaviour of digital circuits (e.g. [4, 8]). In fact, only such instants
are observable in a digital circuit, under the timing of a quartz clock. How-
ever, for some timed automata, any sampling rate may disable some (possibly
required) behaviour [9]. Consequently, a natural problem which has been stud-
ied is that of choosing a sampling rate under which a property is satisfied. For
safety properties, this problem is undecidable for timed automata [9]; but it be-
comes decidable for reachability under a slightly different setting [17]. Recently,
[1] showed the decidability of the existence of a sampling rate under which the
continuous and the sampled semantics recognize the same untimed language.

A prominent approach, originating from [20, 12], for verifying the behavior
of real-time programs executed on CPUs, is robust model-checking. It consists
in studying the enlarged semantics of the timed automaton, where all the con-
straints are enlarged by a small (positive) perturbation �, in order to model the
imprecisions of the clock. In some cases [11], this may allow new behaviours in
the system, regardless of � (See Fig. 2 on page 8). Such automata are said to
be not robust to small perturbations. On the other hand, if no new behaviour is
added to the system, that is, if the system is robust, then implementability on
a fast-enough CPU will be ensured [12]. Since its introduction, robust model-
checking has been solved for safety properties [20, 11], and for richer linear-time
properties [6, 7]. See also [21] for a variant of the implementation model of [12]
and a new approach to obtain implementations.

In this paper, we show that timed automata can always be made imple-
mentable in both senses. More precisely, given a timed automaton A, we build
another timed automaton ℬ whose semantics under enlargement and under sam-
pling is bisimilar to A. We use a quantitative variant of bisimulation from [14]
where the differences between the timings in two systems are bounded above by
a parameter " (see also [16] for a similar quantitative notion of bisimulation).
Our construction is parameterized and provides a bisimilar implementation for
any desired precision " > 0. Moreover, we prove that in timed automata, this
notion of bisimulation preserves, up to an error of ", all properties expressed in
a quantitative extension of CTL, also studied in [14].

2 Timed Models and Specifications

2.1 Timed Transition Systems and Behavioural Relations

A timed transition system (TTS) is a tuple S = (S, s0, �,K,→), where S is the
set of states, s0 ∈ S the initial state, � a finite alphabet, K ⊆ ℝ≥0 the time
domain which contains 0 and is closed under addition, and→ ⊆ S× (�∪K)×S
the transition relation. We write s

�−→ s′ instead of (s, �, s′) ∈ →; we also write

s
d,�−−→ s′ if s

d−→ s′′
�−→ s′ for d ∈ K, � ∈ � and some state s′′, and s

�
==⇒ s′
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if s
d′,�−−→ s′ for some d′ ∈ K. A run � of S is a finite or infinite sequence

q0
�0−→ q′0

�0−→ q1
�1−→ q′1

�1−→ . . ., where qi ∈ S, �i ∈ � and �i ∈ K for all
i. The word �0�1 . . . ∈ �∗ is the trace of �. We denote by Trace(S) the set
of finite and infinite traces of the runs of S. We define the set of reachable
states of S, denoted by Reach(S), as the set of states s′ for which some finite
run of S starts from state s0 and ends in state s′. A run written on the form

 = q0
d0,�0−−−→ q1

d1,�1−−−→ q2 . . . is a timed-action path (or simply path). Each
state q0 ∈ S admits a set P (q0) of paths starting at q0. For any path , the suffix

j is obtained by deleting the first j transitions in , and (j) = qj
dj ,�j−−−→ qj+1

is the j-th transition in ; we also let statej() = qj , (j)� = �j , and (j)d = dj .
We consider a quantitative extension of timed bisimilarity introduced in [22].

This spans the gap between timed and time-abstract bisimulations: while the
former requires time delays to be matched exactly, the latter ignores timing
information altogether. Intuitively, we define two states to be "-bisimilar, for a
given parameter " ≥ 0, if there is a (time-abstract) bisimulation which relates
these states in such a way that, at each step, the difference between the time
delays of corresponding delay transitions is at most ". Thus, this parameter
allows one to quantify the “timing error” made during the bisimulation. A strong
and a weak variant of this notion is given in the following definition.

Definition 1. Given a TTS (S, s0, �,K,→), and " ≥ 0, a symmetric relation
R" ⊆ S × S is a

– strong timed "-bisimulation, if for any (s, t) ∈ R" and � ∈ �, d ∈ K,

∙ s �−→ s′ implies t
�−→ t′ for some t′ ∈ S with (s′, t′) ∈ R",

∙ s d−→ s′ implies t
d′−→ t′ for some t′ ∈ S and d′ ∈ K with ∣d− d′∣ ≤ " and

(s′, t′) ∈ R".
– timed-action "-bisimulation, if for any (s, t) ∈ R", and � ∈ �, d ∈ K,

∙ s d,�−−→ s′ implies t
d′,�−−→ t′ for some t′ ∈ S and d′ ∈ K with ∣d − d′∣ ≤ "

and (s′, t′) ∈ R".

If there exists a strong timed "-bisimulation (resp. timed-action "-bisimulation)
R" such that (s, t) ∈ R", then we write s ∼" t (resp. s ≈" t). Furthermore we
write s ∼"+ t (resp. s ≈"+ t) whenever for every "′ > ", s ∼"′ t (resp. s ≈"′ t).

Observe that s ∼" t implies s ∼"′ t for every "′ > ". Also, s ∼"+ t does not imply
s ∼" t in general (see Fig. 1), and if s ∼"+ t but s ∕∼" t, then " = inf{"′ > 0 ∣
s ∼"′ t}. These observations hold true in the timed-action bisimulation setting
as well. Note also that s ∼" t implies s ≈" t. Finally, for " > 0, strong timed
or timed-action "-bisimilarity relations are not equivalence relations in general,
but they are when " = 0.

Last, we define a variant of ready-simulation [18] for timed transition systems.
For Bad ⊆ �, we will write I ⊑Bad S when I is simulated by S (and time delays
are matched exactly) in such a way that at any time during the simulation,
any failure (i.e., any action in Bad) enabled in S is also enabled in I. So, if
I ⊑Bad S and S is safe w.r.t. Bad (i.e., Bad actions are never enabled), then any
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s s′ t t′
�, x ≤ 1 �, x < 1

Fig. 1. An automaton in which (s, 0) ∼0+ (t, 0) but (s, 0) ∕∼0 (t, 0).

run of I can be executed in S (with exact timings) without enabling any of the
Bad-actions. Fig. 2 will provide an automaton illustrating the importance of this
notion. More formally:

Definition 2. Given a TTS (S, s0, �,K,→), and a set Bad ⊆ �, a relation
R ⊆ S × S is a ready-simulation w.r.t. Bad if, whenever (s, t) ∈ R:

– for all � ∈ � and d ∈ K, s
d,�−−→ s′ implies t

d,�−−→ t′ for some t′ ∈ S with
(s′, t′) ∈ R,

– for all � ∈ Bad, t
�

==⇒ t′ implies s
�

==⇒ s′ for some s′ ∈ S.

We write s ⊑Bad t if (s, t) ∈ R for some ready-simulation R w.r.t. Bad.

2.2 Timed Automata

Given a set of clocks C, the elements of ℝC≥0 are referred to as valuations. For
a subset X ⊆ C, and a valuation v, we define v[X ← 0] as the valuation
v[X ← 0](x) = v(x) for all x ∈ C ∖ X and v[X ← 0](x) = 0 for x ∈ X. For
any d ∈ ℝ≥0, v + d is the valuation defined by (v + d)(x) = v(x) + d for all
x ∈ C. For any � ∈ ℝ, we define �v as the valuation obtained by multiplying
all components of v by �, that is (�v)(x) = �v(x) for all x ∈ C. Given two
valuations v and v′, we denote by v+v′ the valuation that is the componentwise
sum of v and v′, that is (v + v′)(x) = v(x) + v′(x) for all x ∈ C.

Let ℚ∞ = ℚ∪{−∞,∞}. An atomic clock constraint is a formula of the form
k ⪯ x ⪯′ l or k ⪯ x − y ⪯′ l where x, y ∈ C, k, l ∈ ℚ≥0 and ⪯,⪯′ ∈ {<,≤}.
A guard is a conjunction of atomic clock constraints. For M,� ∈ ℚ>0 such that
1
� ∈ ℕ, we denote by �C(�,M) the set of guards on the clock set C, whose con-
stants are either ±∞ or less than or equal to M in absolute value and are integer
multiples of �. Let �C denote the set of all guards on clock set C. A valuation v
satisfies ' ∈ �C if all atomic clock constraints of ' are satisfied when each x ∈ C
is replaced by v(x). Let J'K denote the set of valuations that satisfy '. We define
the enlargement of atomic clock constraints by � ∈ ℚ as

⟨k ⪯ x− y ⪯′ l⟩� = k −� ⪯ x− y ⪯′ l +�,
and ⟨k ⪯ x ⪯′ l⟩� = k −� ⪯ x ⪯′ l +�.

for x, y ∈ C and k, l ∈ ℚ>0. The enlargement of a guard ', denoted by ⟨'⟩�, is
obtained by enlarging all its atomic clock constraints.

Definition 3. A timed automaton A is a tuple (ℒ, C, �, l0, E), consisting of a
finite set ℒ of locations, a finite set C of clocks, a finite alphabet � of labels,
a finite set E ⊆ ℒ× �C ×� × 2C × ℒ of edges, and an initial location l0 ∈ ℒ.
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We write l
',�,R−−−−→ l′ if e = (l, ', �,R, l′) ∈ E, and call ' the guard of e. A is an

integral timed automaton if all constants that appear in its guards are integers.

We call the inverses of positive integers granularities. The granularity of a
timed automaton is the inverse of the least common denominator of the finite
constants in its guards. For any timed automaton A and rational � ≥ 0, let A�
denote the timed automaton obtained from A where each guard ' is replaced
with ⟨'⟩�.

Definition 4. The semantics of a timed automaton A = (ℒ, C, �, l0, E) is a
TTS over alphabet �, denoted JAK, whose state space is ℒ × ℝC≥0. The initial
state is (l0,0), where 0 denotes the valuation where all clocks have value 0. Delay

transitions are defined as (l, v)
�−→ (l, v+�) for any state (l, v) and � ∈ K. Action

transitions are defined as (l, v)
�−→ (l′, v′), for any edge l

g,�,R−−−→ l′ in A such that
v ∣= g and v′ = v[R← 0].

For any k ∈ ℕ>0, we define the sampled semantics of A, denoted by JAK
1
k

as the TTS defined similarly to JAK by taking the time domain as K = 1
kℕ.

We write JAK ∼" JℬK, JAK ≈" JℬK and JAK ⊑Bad JℬK when the initial states
of timed automata A and ℬ are related accordingly in the disjoint union of the
transition systems, defined in the usual way.

We define the usual notion of region equivalence [3]. Let M be the maximum
(rational) constant that appears in the guards of A, let � be the granularity of A.
Multiplying any constant in A by 1

� , we obtain an integral timed automaton.

Given valuations u, v ∈ ℝC≥0 and rationals M,�, define v ≃M� u to hold if, and
only if, for all formulas ' ∈ �C(�,M), u ∣= ' if and only if v ∣= '. The equivalence
class of a valuation u for the relation ≃M� is denoted by reg(u)M� = {v ∣ u ≃M� v}.
Each such class is called an (�,M)-region. In the rest, when constant M is
(resp. M and � are) clear from context, we simply write reg(u)� (resp. reg(u)) and

call these �-regions (resp. regions). We denote by reg(u)M� the topological closure

of reg(u)M� . The number of (�,M)-regions is bounded by O(2∣C∣∣C∣!(M/�)∣C∣) [3].
For a region r, we denote by r[R← 0], the region obtained by resetting clocks

in R. We define tsucc∗(r) as the set of time-successor regions of r, that is, the
set of �-regions r′ such that u+ d ∈ r′ for some u ∈ r and d ∈ ℝ≥0.

We now associate with each (�,M)-region a guard that defines it. Assume
we number the clocks with indices so that C = {x1, . . . , xm}, and fix any (�,M)-
region r. Let us define x0 = 0, and C0 = C ∪ {x0}. Then, for each pair i, j ∈ C0,
there exists a number Ai,j ∈ �ℤ ∩ [−M,M ] ∪ {∞} and ⪯i,j ∈ {<,≤} s.t. 'r,
defined as

'r =
⋀

(xi,xj)∈C0

−Aj,i ⪯j,i xi − xj ⪯i,j Ai,j ,

is such that J'rK = r. Moreover, we assume that for all i, j, k ∈ C0, Ai,i = 0 and
Ai,j ≤ Ai,k +Ak,j . Note that this is a standard definition: the matrix (Ai,j)i,j is
a difference-bound matrix (DBM) that defines region r, and the latter condition
defines its canonical form [13]. Later we will refer to matrix (Ai,j)i,j as the DBM
that defines region r.
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2.3 Quantitative Extension of Computation Tree Logic

In the style of [10, 16, 14] we present a quantitative extension of CTL, which
measures (in a sense that we make clear below) how far a formula is from being
satisfied in a given state.

Definition 5. Let I be the set of closed nonempty intervals of ℝ≥0, and � be a
finite alphabet. We define the set of state- and path-formulas as follows1

	 ::= ⊤ ∣ ⊥ ∣ 	1 ∧ 	2 ∣ 	1 ∨ 	2 ∣ E� ∣ A�
� ::= XIA	 ∣ X̄IA	 ∣ 	1R

I	2 ∣ 	1U
I	2

for I ∈ I and A ⊆ �. We write ℒT (�) or simply ℒT for the set of state formulae.

To define the semantics of ℒT , we introduce the distance between a point and
an interval: ∣z, [x, y]∣ = 0 when z ∈ [x, y], and ∣z, [x, y]∣ = min{∣x − z∣, ∣y − z∣}
otherwise. Now, given a state s, the value of a state formula is defined inductively
as follows: L⊤M(s) = 0, L⊥M(s) =∞, and

L 1 ∨  2M(s) = inf
{
L 1M(s), L 2M(s)

}
LE�M(s) = inf

{
L�M() ∣  ∈ P (s)

}
L 1 ∧  2M(s) = sup

{
L 1M(s), L 2M(s)

}
LA�M(s) = sup

{
L�M() ∣  ∈ P (s)

}
For a path , it is defined as:

LXIA M() = LX̄IA M() = max{∣(0)d, I∣, L M(state1())} if (0)� ∈ A
LXIA M() = +∞ and LX̄IA M() = 0 if (0)� /∈ A

L 1U
I 2M() = inf

k

(
max

{
max
0≤j<k

∣L 1M(statej()), I∣, L 2M(statek())
})

L 1R
I 2M() = sup

k

(
min

{
max
0≤j<k

∣L 1M(statej()), I∣, L 2M(statek())
})

For instance, LEX[2,5]
{a} ⊤M(s) is the lower bound of the set

{
∣∣d, [2, 5]

∣∣ ∣ there is a transition s
d,a−−→ s′}.

Intuitively, this semantics measures the amount of point-wise modifications
(in the timing constraints of the formula) that are needed for this formula to hold
at a given state. Notice that untimed2 formulas of ℒT can only be evaluated to 0
or +∞, and this value reflects the Boolean value of the underlying CTL formula.

It is shown in [22] that ℒT characterizes "-bisimilarity between the states
of weighted Kripke structures. In the following proposition, we generalize one
direction of this result to timed automata, showing that "-bisimilar states have
close satisfaction values for all formulas of ℒT , which implies that these properties
(and their values) are preserved upto " by the constructions we give in Section 4.

1 To establish the relationship to timed-action "-bisimulation, the logic uses actions
on transitions instead of the more usual atomic propositions on states. It is easy to
encode the latter by adding extra transitions to sink states.

2 I.e., when all timing constraints are [0,+∞).
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Proposition 1. For any timed automaton A and states s, s′ of JAK, for all
" ≥ 0, if s ≈"+ s′ then for any  ∈ ℒT either L M(s) = L M(s′) = ∞ or
∣L M(s)− L M(s′)∣ ≤ ".

3 Implementability

As explained in the introduction, even the smallest enlargement of the guards
may yield extra behaviour in timed automata. Similarly, any sampling of the time
domain may remove behaviours. Here, we give several definitions of robustness
and samplability, which distinguish timed automata whose enlargement (resp.
whose sampled semantics) is "-bisimilar to the original automaton, for some ".

3.1 Robustness

Earlier work on robustness based on enlargement, such as [11, 6, 7] concentrated
on deciding the existence of a positive � under which the enlarged automaton is
correct w.r.t. a given property. Here, we consider a stronger notion of robustness,
which requires systems to be "-bisimilar for some ".

Definition 6. A timed automaton A is "-bisimulation-robust (or simply "-
robust), where " ≥ 0, if there exists � > 0 such that JAK ≈" JA�K.

Note that not all timed automata are robust. In fact, in the automaton A of
Fig. 2, location ℓ3 is not reachable in JAK, but it becomes reachable in JA�K for
any � > 0 (see [11]).

We do not know whether a timed automaton that is robust for some � is
still robust for any �′ < �, that is, whether JAK ≈" JA�K implies JAK ≈" JA�′K
for �′ < �, in general. This is the so-called “faster-is-better” property [2, 12],
which means that if a property holds in some platform, it also holds in a faster
or more precise platform. This is known to be satisfied for simpler notions of
robustness mentioned above.

In the next section, we will present our construction which, for any A, pro-
duces an alternative automaton A′ which is robust and satisfies JAK ≈" JA′�K
for all small enough �.

Bisimulation is not always sufficient when one wants to preserve state-based
safety properties proven for A. For instance, removing edges leading to unsafe
states in A may provide us with a trivially safe automaton under any enlarge-
ment. However, edges leading to such states are used to detect failures, so re-
moving these will not necessarily remove the failure (since the states that imme-
diately trigger a failure may still be reachable). Fig. 3 gives such an “incorrect”
construction. To cope with this problem, we rely on ready-simulation and require
A′ to satisfy JA′�K ⊑Bad JA�K, where Bad are distinguished actions leading to
unsafe states in A. This means that any run of JA′�K can be realized in JA�K,
and that no Bad-action is enabled in that run in the latter (and hence no unsafe
state is reached). Thus, intuitively, no state reached in JA′�K corresponds to an
unsafe state in JA�K, and in particular, if A� has unsafe runs (leading to unsafe
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states), then these cannot be realized in A′�. Clearly, the automaton in Fig. 3
does not satisfy this. We formalize this idea here.

ℓ1 ℓ2 ℓ3
x:=1

y:=0

y≥2, B, y:=0

x≤2, A, x:=0
x=0∧y=2

Bad

Fig. 2. A non-robust timed automaton [20].

ℓ1 ℓ2
x:=1

y:=0

y≥2, B, y:=0

x≤2, A, x:=0

Fig. 3. A robust but unsafe alternative.

Definition 7. A timed automaton A is safe w.r.t. a set of actions Bad ⊆ �,
if d∞

(
Reach(JAK),Pre(Bad)

)
> 0, where d∞ is the standard supremum metric,

and Pre(Bad) =
∪
�∈Bad,(l,�,g,R,l′)∈E {l} × JgK is the precondition of Bad-actions

Notice that Pre(Bad) is the set of states from which a Bad action can be done,
and that d∞(ReachJAK,Pre(Bad)) = 0 does not imply that a state of Pre(Bad)
is reachable in A. But we still consider such an automaton as unsafe, since,
intuitively, any enlargement of the guards may lead to a state of Pre(Bad).
It can be seen that automaton of Fig. 2 is safe w.r.t. action Bad. Note that a
closed timed automaton is safe w.r.t. Bad iff Bad is not reachable.

Recall the standard notion of robustness, used e.g. in [11]:

Definition 8. A timed automaton A is safety-robust (w.r.t. Bad) if there exists
� > 0 such that JA�K is safe w.r.t. Bad.

In the rest, Bad will refer to a set of actions given with the timed automaton we
consider. When we say that a timed automaton is safe, or safety-robust, these
actions will be implicit.

We introduce the notion of safety-robust implementation (parameterized by
a bisimilarity relation ≡, which will range over {∼0,∼0+ ,≈0,≈0+}), where we
only require the alternative automaton to preserve a given safety specification.

Definition 9 (Safety-Robust Implementation). Let A be a timed automa-
ton which is safe w.r.t. actions Bad, and ≡ denote any bisimilarity relation. A
safety-robust implementation of A w.r.t ≡ is a timed automaton A′ such that:

(i) A′ is safety-robust;
(ii) JA′K ≡ JAK;

(iii) there exists �0 > 0 s.t. for all 0 < �′ < � < �0, JA′�′K ⊑Bad JA�K.

Now we define the notion of robust implementation. We require such an im-
plementation to be robust and equivalent to the original automaton, and to
preserve safety specifications.

Definition 10 (Robust Implementation). Let A be a timed automaton which
is safe w.r.t.actions Bad, and ≡ denote any bisimilarity. An "-robust implemen-
tation of A w.r.t. ≡ is a timed automaton A′ such that:
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(i) A′ is "-robust;
(ii) JA′K ≡ JAK;

(iii) there exists �0 > 0 s.t. for all 0 < �′ < � < �0, JA′�′K ⊑Bad JA�K.

3.2 Samplability

As we noted in the introduction, some desired behaviours of a given timed au-
tomaton may be removed in the sampled semantics. Preservation of the un-
timed language under some sampling rate was shown decidable in [1]. The proof
is highly technical (it is based on the limitedness problem for a special kind
of counter automata).We are interested in the stronger notion of bisimulation-
samplability, which, in particular, implies the preservation of untimed language.

Definition 11. A timed automaton is said to be "-bisimulation-samplable (or
simply "-samplable) if there exists a granularity � such that JAK ≈" JAK�.

Note that not all timed automata are bisimulation-samplable: [17] describes
timed automata A which are not (time-abstract) bisimilar to their sampled se-
mantics for any granularity �. We define a sampled implementation as follows.

Definition 12 (Sampled Implementation). Let A be a timed automaton,
and ≡ denote any bisimilarity relation. A "-sampled implementation w.r.t. ≡ is
a timed automaton A′ such that

(i) A′ is "-samplable;
(ii) JA′K ≡ JAK.

Note that a similar phenomenon as in Fig. 2 does not occur in sampled semantics
since sampling does not add extra behaviour, but may only remove some.

3.3 Main result of the paper

We will present two constructions which yield an implementation for any timed
automaton. In our first construction, for any timed automaton given with a
safety specification, we construct a safety robust implementation. Our second
construction is stronger: Given any timed automatonA and any desired " > 0, we
construct a timed automaton A′ which is both an "-robust implementation and
an "-sampled implementation of A w.r.t. ≈0+ (we also give a variant w.r.t. ∼0

for robustness).
Since, A and A′� are timed-action "-bisimilar, the satisfaction values of the

formulas in ℒT are preserved up to " (Proposition 1). In particular, all stan-
dard untimed linear- and branching-time properties (e.g. expressible in LTL,
resp. CTL) proven for the original automaton are preserved in the implementa-
tion. An example of such a property is deadlock-freedom, which is an important
property of programs.

Theorem 1. Let A = (ℒ, C, �, l0, E) be an integral timed automaton which is
safe w.r.t. some set Bad ⊆ �. Let W denote the number of regions of A. Then,
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1. There exists a safety robust implementation of A w.r.t ∼0, with ∣ℒ∣ locations,
the same number of clocks and at most ∣E∣ ⋅W edges.

2. For all " > 0, there exists a timed automaton A′ which is a "-robust imple-
mentation w.r.t. ∼0; and a timed automaton A′′ which is both a "-sampled
and "-robust implementation w.r.t. ≈0+ . Both timed automata have the same
number of clocks as A, and the number of their locations and edges is bounded
by O(∣ℒ∣ ⋅W ⋅ ( 1

" )∣C∣).

The rest of the paper is devoted to the proof of this theorem. The two construc-
tions are presented in the next section, and proved thereafter.

4 Making Timed Automata Robust and Samplable

For any timed automaton A and any location l of A, let Reach(JAK)∣l denote
the projection of the set of reachable states at location l to ℝC≥0. For any l,

there exist guards 'l1, . . . , '
l
nl

such that
∪
iJ'

l
iK = Reach(JAK)∣l (in fact, the set

of reachable states at a given location is a union of regions but not necessarily
convex). We use these formulas to construct a new automaton where we restrict
all transitions to be activated only at reachable states.

Definition 13. Let A = (ℒ, C, �, l0, E) be any integral timed automaton. Define

timed automaton safe(A) from A by replacing each edge l
',�,R−−−−→ l′, by edges

l
'∧'l

i,�,R−−−−−−→ l′ for all i ∈ {1, . . . , nl}.

As stated in Theorem 1 the worst-case complexity of this construction is expo-
nential. However, in practice, Reach(JAK)∣l may have a simple shape, which can
be captured by few formulas 'li.

Although the above construction will be enough to obtain a safety-robust
timed automaton w.r.t. a given set Bad, it may not be bisimulation-robust. The
following construction ensures this.

Definition 14. Let A = (ℒ, C, �, l0, E) be an integral timed automaton. Let M
be the largest constant that appears in A, and let � be any granularity. We define
impl�(A) as a timed automaton over the set of locations lr where l is a location
of A and r is an (�,M)-region, and over the same set of clocks. Edges are defined

as follows. Whenever there is an edge l
',�,R−−−−→ l′ in A, we let lr

'∧'s,�,R−−−−−−→ l′s[R←0],

for all (�,M)-regions r and s ∈ tsucc∗(r) such that J'sK ⊆ J'K.
We define impl�(A) as the closed timed automaton obtained from impl�(A)

where each guard is replaced by its closed counterpart3.

Throughout this paper, we always consider integral timed automata as input,
and the only non-integer constants are those added by our construction. Observe
that the size of impl�(A) depends on �, since a smaller granularity yields a greater
number of (�,M)-regions.

3 that is, all < are replaced by ≤, and > by ≥.
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The main theorem is a direct corollary of the following lemma, where we state
our results in detail. The bounds on the size of the constructed implementations
follow by construction.

Lemma 1. Let A = (ℒ, C, �, l0, E) be an integral timed automaton and fix any
" > 0. Assume that A is safe w.r.t. some set Bad ⊆ �. Then,

1. safe(A) is safety-robust, JAK ∼0 Jsafe(A)K and for any � < 1
2∣C∣ ,

Jsafe(A)�K ⊑Bad JA�K.
2. For any granularity � and � > 0 such that 2(� +�) < ", we have JAK ≈0+

Jimpl�(A)K and Jimpl�(A)K ≈" Jimpl�(A)�K. Moreover, for any 0 < �′ <

� < 1
∣C∣ , Jimpl�(A)�′K ⊑Bad JA�K.

3. For any granularity � and � > 0 such that 2(� + �) < ", we have JAK ∼0

Jimpl�(A)K and Jimpl�(A)K ≈" Jimpl�(A)�K. Moreover, whenever � < 1
∣C∣ ,

Jimpl�(A)�K ⊑Bad JA�K.
4. For any granularities � and � such that � = k� for some k ∈ ℕ>0 and

� < "/2, Jimpl�(A)K ≈" Jimpl�(A)K�.

Note that both impl�(A) and impl�(A) provide the relation ≈"+ between the
specification (that is, JAK) and the implementation (that is, JA′�K). However,
the latter has a stronger relation with JAK, so we also study it separately.

Trading precision against complexity. The choice of the granularity in impl�(A)
and impl�(A) allows one to obtain an implementation of A with any desired

precision. However, this comes with a cost since the size of impl�(A) is exponen-
tial in the granularity �. But it is also possible to give up on precision in order
to reduce the size of the implementation. In fact, one could define impl≡(A)
where the regions are replaced by the equivalence classes of any finite time-
abstract bisimulation ≡. Then, we get JAK ≈0 Jimpl≡(A)K and Jimpl≡(A)K is
time-abstract bisimilar to Jimpl≡(A)�K for any � > 0. In order to obtain, say
Jimpl≡(A)K ≈K Jimpl≡(A)�K, for some desired K ≥ 1, one could, roughly, split
these bisimulation classes to sets of delay-width at most O(K), that is the max-
imal delay within a bounded bisimulation class (there is a subtlety with un-
bounded classes, where, moreover, all states must have arbitrarily large time-
successors within the class). Note however that safety specifications are only
guaranteed to be preserved for small enough K (see Lemma 1).

5 Proof of Correctness

This section is devoted to the proof of Lemma 1. We start with general proper-
ties of regions, in subsection 5.1. In subsection 5.2, we prove the robustness of
impl�(A), impl�(A) and safe(A), as stated in points 1 through 3 of Lemma 1.

In subsection 5.3, we prove that impl�(A) is bisimulation-samplable (point 4).
Last, the ready simulation is proved for all the systems in subsection 5.4.
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5.1 Properties of regions

We give several properties of the enlargement of regions. Fixing constants � and
M , we refer to any (�,M)-region simply as a region.

Proposition 2. Let u ∈ ℝC≥0 such that u ∈ J⟨'s⟩�K for some region s. Then
for any subset of clocks R ⊆ C, u[R← 0] ∈ J⟨'s[R←0]⟩�K.

The following proposition shows, intuitively, that enlarged guards cannot dis-
tinguish the points of an “enlarged region”. The proof is straightforward using
difference bound matrices in canonical form. Note that the property does not
hold if 's is not in canonical form.

Proposition 3. Let s denote a region, and ' a guard. If J'sK ⊆ J'K, then
J⟨'s⟩�K ⊆ J⟨'⟩�K.

Proposition 4. Let u ∈ ℝC≥0 such that u ∈ J⟨'s⟩�K for some region s. Then
for all s′ ∈ tsucc∗(s), there exists d ≥ 0 such that u+ d ∈ J⟨'s′⟩�K.

The previous proposition is no longer valid if 's is not canonical. As an
example, take the region defined by x = 1 ∧ y = 0, whose immediate successor
is 1 < x < 2 ∧ 0 < y < 1 ∧ x − y = 1. The enlargement of the former formula
is satisfied by valuation (x = 1−�, y = �) but this has no time-successor that
satisfies the enlargement of the latter.

Last, we need the following proposition which provides a bound on the delay
that it takes to go from a region to another.

Proposition 5. Let r be a region, and s a time-successor region of r, and � ≥ 0.
Suppose that u ∈ J'rK and u + d ∈ J'sK for some d ≥ 0. Then for any v ∈
J⟨'r⟩�K, there exists d′ ≥ 0 such that v + d′ ∈ J⟨'s⟩�K and ∣d′ − d∣ ≤ 2� + 2�.

5.2 Proof of Robustness

We first prove that impl�(A) and impl�(A) are bisimulation-robust, for an ap-
propriate ", that is JA′K ≈" JA′�K where A′ denotes any of these (Lemma 2).
Then we show “faithfulness” results: Lemma 3 shows that JAK ∼0 Jimpl�(A)K
and Jsafe(A)K ∼0 JAK, and Lemma 4 shows that JAK ≈0+ Jimpl�(A)K.

Lemma 2. For any timed automaton A, any granularity �, and any � > 0, we
have Jimpl�(A)K ≈2�+2� Jimpl�(A)�K and Jimpl�(A)K ≈2�+2� Jimpl�(A)�K.

Proof (Sketch). We fix any � and �. Let us consider impl�(A). The case of

impl�(A) is similar. We define relation ℛ ⊆ (ℒ × ℝC) × (ℒ × ℝC) between
Jimpl�(A)K and Jimpl�(A)�K by (lr, u)ℛ(l′r′ , u

′) whenever lr = l′r′ and

∀s ∈ tsucc∗(r),∃d ≥ 0, u+ d ∈ J'sK ⇐⇒ ∃d′ ≥ 0, u′ + d′ ∈ J⟨'s⟩�K. (1)

Intuitively, relation ℛ relates states which can reach, by a delay, the same set of
regions: we require the first system to reach J'sK, while it is sufficient that the
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second one reaches J⟨'s⟩�K, since its guards are enlarged by �. Then, Propo-
sitions 2, 3, and 4 ensure that this relation is maintained after each transition,
proving that ℛ is a timed-action bisimulation. The parameter 2�+ 2� is given
by Proposition 5, applied on relation (1). ⊓⊔

The parameter which we provide for the timed-action bisimilarity is (almost)
tight. In fact, consider the automaton in Figure 2, where the guard of the edge
entering ℓ1 is changed to x ≤ 1. Fix any � and � and consider the following
cycle in impl�(A): (ℓ1,r1) −→ (ℓ2,r2) −→ (ℓ1,r1), where r1 is the region 1 − � <
x < 1 ∧ y = 0, and r2 is the region x = 0 ∧ 1 < y < 1 + �. Suppose Jimpl�(A)�K
first goes to location (ℓ1,r1) with x = 1 + �, y = 0, and that this is matched in
Jimpl�(A)K by (ℓ1,r′1 , (x = 1 − �, y = 0)) where necessarily � ≥ 0. It is shown
in [11] that in any such cycle, the enlarged automaton can reach (by iterating
the cycle) all states of the region r1 at location ℓ1. In particular, Jimpl�(A)�K
can go to state (ℓ1,r1 , (x = 1 − �, y = 0)). However, without enlargement, all
states (ℓ1, r

′
1, (v

′
x, v
′
y)) reached from a state (ℓ1,r1 , (vx, vy)) with vy = 0 satisfy

v′x ≥ vx, that is, the value of the clock x at location ℓ1 cannot decrease along any
run ([11]). Thus, the state (ℓ1,r1 , (x = 1− �, y = 0)) of Jimpl�(A)�K is matched

in Jimpl�(A)K by some state (ℓ1,r′′1 , (v
′
x, 0)) where v′x ≥ 1 − �. Now, from there,

Jimpl�(A)�K can delay 1 +�+ � and go to ℓ2, whereas Jimpl�(A)K can delay at
most 1 +� to take the same transition. The difference between the delays at the
first and the last step is then at least max

(
�+�, 1+�+�−(1+�)

)
≥ �+�/2.

Next, we show that safe(A) and impl�(A) are strongly 0-bisimilar to A. The
proof is omitted.

Lemma 3. For any timed automaton A, we have Jsafe(A)K ∼0 JAK, and JAK ∼0

Jimpl�(A)K for any granularity �. ⊓⊔

The proof of JAK ≈0+ Jimpl�(A)K is trickier. In fact, since all guards are

closed in impl�(A), but not necessarily in A, all time delays may not be matched
exactly. The first part of the proof follows the lines of Proposition 16 of [19],
who, by a similar construction, prove that the finite timed traces of JAK are
dense in those of Jimpl�(A)K, for an appropriate topology. Their result has a
similar flavor, but we consider 0+-bisimulation which cannot be interpreted in
terms of density in an obvious way.

Lemma 4. For any timed automaton A and granularity �, JAK ≈0+ Jimpl�(A)K.

Proof (Sketch). We fix any � and � ∈ (0, 1). We define (l, v)ℛ(lr, v
′) iff

r = reg(v), v′ ∈ reg(v) and ∃v′′ ∈ reg(v), v = �v′′ + (1− �)v′. (2)

We show that ℛ is a timed-action 0+-bisimulation. One direction of the bisimu-
lation follows from convexity of regions, while the other direction is less obvious,
and necessitates the following technical lemma. ⊓⊔

Lemma 5. Let v, v′, v′′ ∈ ℝ≥0 such that v′′ ∈ reg(v) and v′ ∈ reg(v), and
v = "v′′+ (1−")v′ for some " ∈ (0, 1). Then for all d ≥ 0, there exists d′, d′′ ≥ 0
s.t. v+d = "(v′′+d′′)+(1−")(v′+d′), v′′+d′′ ∈ reg(v+d) and v′+d′ ∈ reg(v + d).
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5.3 Proof of Samplability

We now show that impl�(A) is a sampled implementation for any timed automa-
ton A. This result follows from the following lemma and Lemma 4. The proof is
similar to Lemma 2.

Lemma 6. Let A be any integral timed automaton. For any granularities � and
� such that � = k� for some k ∈ ℕ>0, we have Jimpl�(A)K ≈2� Jimpl�(A)K�.

5.4 Proof of Safety Preservation (Ready Simulation)

Lemma 7. We have Jimpl�(A)�′K ⊑Bad JA�K and Jimpl�(A)�K ⊑Bad JA�K for

any 0 < �′ < � < 1
∣C∣ ; and Jsafe(A)�K ⊑Bad JA�K for any � < 1

2∣C∣ .

Proof (Sketch). The simulation can be shown similarly to Lemma 3. We show
that actions Bad are not enabled in any state of the simulating run, whenever A
is safe w.r.t. Bad. Let us consider the first statement. Informally, this is due to
two facts: (1) the set of reachable states in Jimpl�(A)�K have a small distance
(at most �) to the corresponding reachable states in JAK; (2) the states of JAK
have a positive distance to PreA(Bad), which can be bounded from below by 1

∣C∣ .

Thus, choosing 1
∣C∣ −� > 0, we prove that Jimpl�(A)�′K is also safe w.r.t. Bad.

⊓⊔

6 Conclusion

We have presented a way to transform any timed automaton into robust and
samplable ones, while preserving the original semantics with any desired preci-
sion. Such a transformation is interesting if the timed automaton under study
is not robust (or not samplable), or cannot be certified as such. In this case,
one can simply model-check the original automaton for desired properties, then
apply our constructions, which will preserve the specification.

Our constructions also allow one to solve the robust synthesis problem. In the
synthesis problem, the goal is to obtain automatically (i.e. to synthesize) a timed
automaton which satisfies a given property. If one solves this problem for timed
automata and obtain a synthesized system A, then applying our constructions,
we get that impl�(A)� and impl�(A)� satisfy the same (say, untimed) properties.

As a future work, we will be interested in robust controller synthesis. In this
problem, we are given a system S which we cannot change, and we are asked to
synthesize a system C, called controller, such that the parallel composition of the
two satisfies a given property. The robust controller synthesis is the controller
synthesis problem where the behaviour of the controller is C� (the controller has
imprecise clocks), and we need to decide whether there is some � for which the
parallel composition still satisfies the property.

Acknowledgement. We thank David N. Jansen for his detailed and insightful
comments.
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17. P. Krčál and R. Pelánek. On sampled semantics of timed systems. In FSTTCS’05,
LNCS 3821, p. 310–321. Springer, 2005.

18. K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. In POPL’89,
p. 344–352, 1989.

19. J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidability
for timed automata. In LICS’03, p. 198–207. IEEE Computer Society, 2003.

20. A. Puri. Dynamical properties of timed systems. Discrete Event Dynamic Systems,
10(1-2):87–113, 2000.

21. O. Sankur, P. Bouyer, and N. Markey. Shrinking timed automata. Submitted,
2011.

22. C. Thrane, U. Fahrenberg, and K. G. Larsen. Quantitative analysis of weighted
transition systems. Journal Logic and Algebraic Programming, 79(7):689–703, 2010.


