
Lower-Bound Constrained Runs
in Weighted Timed Automata

Patricia Bouyer
LSV – ENS Cachan & CNRS

Email: bouyer@lsv.ens-cachan.fr

Kim G. Larsen
Dept. Computer Science – Aalborg U.

Email:kgl@cs.aau.dk

Nicolas Markey
LSV – ENS Cachan & CNRS

Email: markey@lsv.ens-cachan.fr

Abstract—We investigate a number of problems related to
infinite runs of weighted timed automata, subject to lower-bound
constraints on the accumulated weight. Closing an open problem
from [10], we show that the existence of an infinite lower-bound-
constrained run is—for us somewhat unexpectedly—undecidable
for weighted timed automata with four or more clocks.

This undecidability result assumes a fixed and known initial
credit. We show that the related problem of existence of an
initial credit for which there exists a feasible run is decidable in
PSPACE. We also investigate the variant of these problems where
only bounded-duration runs are considered, showing that this
restriction makes our original problem decidable in NEXPTIME.
Finally, we prove that the universal versions of all those problems
(i.e, checking that all the considered runs satisfy the lower-bound
constraint) are decidable in PSPACE.

I. INTRODUCTION

Weighted (or priced) timed automata [3], [2], [9] have
emerged as a useful formalism for formulating a wide range of
resource-allocation and optimization problems [4], [14], with
applications in areas such as embedded systems [18]. In [10],
a new class of resource-allocation problems was introduced,
namely that of constructing infinite schedules subject to
boundary constraints on the accumulation of resources.

More specifically, we proposed weighted timed automata
with positive as well as negative weight-rates in locations, allow-
ing for the modeling of systems where resources (e.g. energy)
are not only consumed but also possibly produced. As a basic
example, consider the two-clock weighted timed automaton A
in Fig. 1 with infinite behaviours repeatedly delaying in `0,
`1, `2 and `3 for a total duration of two time units, with one
time unit spent in `0 and `3 and one time unit spent in `1
and `2. The weights (+2, +3 and +4) in the four locations
indicate the rate by which energy is produced (or consumed,
when negative), and the weights (−2 and −3) on the edges
indicate instantaneous updates to the energy level. Clearly, the
energy remaining after a given iteration will depend not only
on the initial energy but also highly on the distribution of the
two time units over the four locations.

In this paper we consider a number of problems related
to infinite runs subject to lower-bound constraints on the
accumulated weight, i.e., infinite runs where the energy level
never goes below zero. In the absence of an upper bound,
it suffices to consider runs along which the accumulated weight
is maximized. Fig. 2 illustrates three such energy-maximizing
behaviours of A. For initial energy 8, the maximum energy left

+3

`0

+2

`1

+4

`2

+4

`3

x := 0

−2 −3

x = 1

−3

y = 2, y := 0

Fig. 1. A weighted timed automaton A (with implicit global invariant y ≤ 2)

e

0 1 2

2

4

6

`0
`1

`2 `3

e

0 1 2

2

4

6

`0
`1 `2

e

0 1 2

2

4

6

`0
`1
`2 `3

Fig. 2. Three possible behaviours in A (with initial credits 8, 1 and 2, resp.)

e0

ef

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

A B

C

(a)

e0

t0

0 1 2 3 4 5 6
0

.5

1

e
f
=
2
e
0 +

2
t
0 −

5

ef=e0−t0

A B

C

(b)

Fig. 3. Maximum final energy in `3 and optimal delay t0, depending on
initial energy e0

after one iteration is 8, thus providing an infinite lower-bound
schedule. In contrast, an initial energy-level of 1 does not even
permit a single iteration (let alone an infinite schedule), and
an initial energy-level 2 leaves at maximum 1, for which we
already know that no infinite lower-bound schedule exists.
In fact, from Fig. 3(a)—which gives the maximum final
energy ef as a function of the initial energy-level e0—it follows
that 5 is the minimum initial energy-level which permits a lower-
bounded infinite schedule (notice that the optimal schedule with
initial credit 8 can be played with initial credit 5). Moreover,
Fig. 3(b) indicates optimal schedules (the solid line) in terms
of the optimal delay t0 to be spent in `0 given the initial

energy-level e0. The dashed area corresponds to pairs (e0, t0)
for which no feasible run exists. Inside the feasible area, the
optimal final credit is ef = e0 − t0 on the right of the solid
line, while it is ef = 2e0 + 2t0 − 5 on the left.

For weighted timed automata with a single clock and a single
weight variable, the existence of a lower-bound constrained
infinite run has been shown decidable in polynomial time [10]
with the restriction that no discrete updates of the accumulated
weight occur on transitions. In [8], it is shown that the
problem remains decidable if this restriction is lifted and even
if the accumulated weight grows not only linearly but also
exponentially. In contrast, the existence of interval-constrained
infinite runs—where a simple energy-maximizing strategy
does not suffice—have recently been proven undecidable for
weighted timed automata with varying numbers of clocks and
weight variables: e.g. two clocks and two weight variables [17],
one clock and two weight variables [13], and two clocks and
one weight variable [15]. Also, the interval-constrained problem
is undecidable for weighted timed automata with one clock
and one weight variable in the game setting [10].

Still, the general problem of existence of infinite lower-bound
runs for weighted timed automata has remained unsettled
since [10]. In this paper we close this open problem showing
that it is undecidable for weighted timed automata with four or
more clocks. Given that this problem looks rather simple (it suf-
fices to consider energy-maximizing runs), we find this result
quite surprising and somewhat disappointing. Thus, we consider
a number of related problems for which we show decidability
and settle complexity. In particular, the undecidability result
assumes a fixed and known initial energy-level. We show
that the related problem of existence of an initial energy-level
allowing an infinite lower-bound constrained run is decidable
in PSPACE. We also investigate the variant of these problems,
where only the existence of time-bounded runs is required:
for instance, for the weighted timed automaton in Fig. 1 and
initial energy level of 4, we may want to settle the existence
of a run along which the energy level remains non-negative
during the first 4.7 time-units, say. Note that the time-bounded
paradigm has recently emerged as a pertinent restriction option
for the verification of real-time systems [16] (in quite the same
way as bounded model checking has been used for untimed
systems [6]). We show that this restriction makes our original
problem decidable and NEXPTIME-complete. Our result has
to be compared with rectangular hybrid automata, for which
time-bounded reachability has recently been shown decidable
in EXPSPACE (no matching lower bound is provided, though),
under the hypothesis that all rates are non-negative (if rates
can be negative, the problem is undecidable) [11]. Our model
of weighted timed automata is a special case of rectangular
hybrid automata, in which all variables are clocks (rate 1)
and one variable can have non-negative as well as negative
rates. Therefore none of the two decidability results implies
the other. Finally, we prove that the universal versions of all
the above problems (i.e., checking that all the considered runs
satisfy the lower-bound constraint) are decidable in PSPACE.

All technical details can be found in the Appendix.

II. DEFINITIONS

A. Basic definitions
We assume X is a finite set of variables called clocks. A

valuation v of the clocks is a mapping X → R≥0. If v is a
valuation and t ∈ R≥0, we write v+ t for the valuation which
assigns v(x) + t to clock x. If R ⊆ X , we write v[R → 0]
for the valuation which assigns 0 to clocks in R and v(x) to
x ∈ X\R. We write Φ(X) for the set of formulas (called clock
constraints) defined by φ ::= true | φ∧φ | x ≤ c | x ≥ c
with x ∈ X and c ∈ N. The semantics of such formulas is
given by sets of valuations and defined in a natural one.

A weighted timed automaton is a tuple A = 〈L,L0, X, inv,
E, disc, rate〉 consisting of a finite set L of locations, a finite
set L0 ⊆ L of initial locations, a finite set X of clocks, a
location invariant mapping inv : L→ Φ(X), a finite set E ⊆
L×Φ(X)× 2X ×L of edges, and functions disc : L→ Z and
rate : E → Z which assigns a value to each location and each
edge of A.

The semantics of a weighted timed automaton is defined as
an infinite-state transition system GA = 〈S, T 〉 with
• S = {(`, v, c) ∈ L× (R≥0)X ×R | v |= inv(`)},
• T ⊆ S × S contains two types of transitions:

– delay transitions, which do not involve state change:

{(`, v, c)→ (`, v′, c′) | ∃t ∈ R≥0. v′ = v + t

and c′ = c+ rate(`)× t}

– action transitions:

{(`, v, c)→ (`′, v′, c′) | ∃e = (`, g, R, `′) ∈ E.
v |= g and v′ = v[R→ 0] and c′ = c+ disc(e)}.

The above semantics is that of a timed automaton with an extra
weight variable, which evolves with rate rate(`) in location `
and in a discrete manner (following the disc function) when
firing transitions. Notice that if (`, v, c)→ (`′, v′, c′) ∈ T , then
for all γ, there exists γ′ such that (`, v, γ)→ (`′, v′, γ′) ∈ T .
That is, the weight variable does not constrain the behaviour
of the automaton. A (finite or infinite) run % = (`0, v0, c0)→
(`1, v1, c1) → . . . of GA will be called a weighted run, and
we will sometimes use the underlying standard timed run
(`0, v0) → (`1, v1) → . . . , which abstracts from the weight
information. Since two consecutive delay transitions can be
merged, we require that along any run, delay and action
transitions alternate (by possibly inserting zero-delay transitions
between two consecutive action transitions). We define the
length of a run as its number of action transitions. If (`0, v0, c0)
is the first state of run %, c0 is the initial credit; % is said to be
initial if `0 ∈ L0 and v0 = 0, the valuation which assigns 0
to every clock. If % is a timed run, then for every initial credit
c0 there is a unique corresponding weighted run with initial
credit c0.

B. The lower-bound constrained problems
1) The existential and universal L-problems. Fix an initial
credit c0 ∈ Q≥0. An infinite timed run % = (`0, v0) →

(`1, v1)→ (`2, v2) . . . of A satisfies the lower-bound constraint
L(c0) (which we write % |= L(c0)) if the corresponding
weighted run (`0, v0, c0)→ (`1, v1, c1)→ (`2, v2, c2) . . . with
initial credit c0 has ci ≥ 0 for every i. In that case we say
that the run is feasible with initial credit c0 or simply that the
corresponding weighted run is feasible.

We say that A |= ∃∞L(c0) (resp. A |= ∀∞L(c0)) whenever
there exists an initial infinite run % s.t. % |= L(c0) (resp. for
every initial infinite run % with initial credit c0, it holds % |=
L(c0)). The first (resp. second) problem is called the existential
(resp. universal) L-problem, and denoted with ∃∞L(c0) (resp.
∀∞L(c0)).
2) The time-bounded L-problems. Fix an initial credit c0 ∈
Q≥0 and a time bound T ∈ Q≥0. A timed run % = (`0, v0)→
(`1, v1) → (`2, v2) . . . satisfies the T -time-bounded lower-
bound constraint L(c0) (which we write % |=T L(c0)) whenever
the following holds1:
• the total duration of % is at most T , and can be strictly

less than T only if % is infinite. We let p0 be the number
of transitions along %;

• if (`0, v0, c0) → (`1, v1, c1) → (`2, v2, c2) . . . is the
weighted run corresponding to % with initial credit c0,
then for every i ≤ p0, ci ≥ 0.

We then say that A |= ∃TL(c0) (resp. A |= ∀TL(c0))
whenever there exists an initial run % such that % |=T L(c0)
(resp. for all initial finite run of duration T and for all initial
infinite run of duration at most T , it holds % |=T L(c0)).
The first (resp. second) problem is called the existential (resp.
universal) time-bounded L-problem . In short we write ∃TL(c0)
(resp. ∀TL(c0)).
3) Existence of an initial credit. The above four problems
assume a fixed and known initial credit. We will be interested
also in the existence (and synthesis) of an initial credit for which
the previous problems can be answered positively. Formally,
for Q ∈ {∃,∀} and α ∈ {∞, T}, we write A |= ∃c0.QαL(c0)
whenever there exists an initial credit c0 ∈ Q≥0 such that A |=
QαL(c0). In short we denote this problem by ∃c. QαL(c).

In this paper we solve the various above-mentioned problems.
Our results are summarized in Table I (the previously known
result is displayed in gray). Parameter Q is for existential or
universal problem, whereas parameter α is for unbounded (∞)
or bounded (T) time. In this table, constraints such as ≥ 3
refer to the number of clocks. When unspecified, we mean that
the result holds for arbitrarily many clocks.

III. UNDECIDABILITY OF A |= ∃∞L(e0)

We first prove the undecidability of the existential L-problem.
While its proof is not of the most difficult, the result is quite
surprising (at least to us) as the problem looks rather simple
(it amounts to checking that, by maximizing the accumulated
weight, we can keep it non-negative).

1Various similar definitions could be considered instead of this one, for
instance requiring that the duration is always (at least) T . Such variants could
be handled by our techniques with minor amendments.

Theorem 1. The existential L-problem is undecidable for the
class of weighted timed automata with at least four clocks (and
rates in {0, 1}).

We only give a proof sketch here, which is simple to
understand but requires five clocks. Another proof can be
obtained by using the encoding of the hardness proof in
Section IV-B.
Sketch of proof: Consider the automata depicted on Fig. 4.
Writing x0 for the value of clock x when entering `0, the

0

`0

1

`1

y=1
y:=0

y=1
y:=0

x=1

x:=0

z=0 z=1

1

`0

0

`1

y=1
y:=0

y=1
y:=0

x=1

x:=0

z=0 z=1

Fig. 4. Automata for crediting x0 and 1− x0 respectively

+x +x +(1− y)

+y+(1− x)+(1− x)

−1
−2

Fig. 5. Automaton for checking y ≤ 2x

effect of these automata is to add x0 (resp. 1− x0) to the
weight, while preserving the value of all the clocks (provided
that these values are in [0, 1)). Using these modules, it is then
easy to enforce linear constraints between clocks: Fig. 5 is an
example, in which each box is a copy of one of the automata
of Fig. 4 (after possibly exchanging the role of x and y).
Discrete values between boxes represent a discrete increase or
decrease of the weight variable. It is easily checked that for
any run in this module with initial credit 0 and clock values x0
and y0 for clocks x and y, the final weight is 0 and the
final values of the clocks are unchanged (assuming they are
in [0, 1)). Moreover, such a run exists if, and only if, y0 ≤ 2x0.
One can obviously adapt this module to check any linear
constraint between clocks, which entails undecidability (for
instance by encoding additive constraints in timed automata,
for which reachability is undecidable [5]). This reduction
uses five clocks, but the above automata for checking additive
constraints can also be used to encode Turing machines, using
only four clocks (cf. Section IV-B).

IV. DECIDABILITY OF A |= ∃TL(c0)

In this section, we show that we recover decidability when
we restrict to the time-bounded L-problem. We also characterize
the exact complexity of this problem.

Fixed initial credit Existence of initial credit
PPPPPPα

Q ∃ ∀ ∃ ∀

∞ ≤ 1: decidable [8]
≥ 4: undecidable in PSPACE

≥ 3: PSPACE-c.
in PSPACE

≥ 3: PSPACE-c.
T

in NEXPTIME

≥ 5: NEXPTIME-c.

TABLE I
SUMMARY OF OUR RESULTS

Theorem 2. The existential time-bounded L-problem is
NEXPTIME-complete (resp. NP-complete) for weighted timed
automata with five clocks or more, when the time bound is
given in binary (resp. unary).

A. Upper bound
We sketch the proof of the upper bound. Full details are

given in Appendix A.
We fix a weighted timed automaton A and assume that

it has an extra clock u that is never reset. We fix a time
bound T ∈ Q≥0 and an initial credit c0 ∈ Q≥0. Our approach
consists in building a finite (exponential-size) witness from any
run witnessing A |= ∃TL(c0); our algorithm will then non-
deterministically pick a path and check that it is a witness. As
stated in Lemma 3, the new witness may have the same duration
as the original one, or it may end in a configuration from which
there is a feasible zero-delay cycle with non-negative effect on
the accumulated weight. Such a cycle will be called a profitable
zero-delay cycle (see Appendix A1).

Below, we explain the proof for the case where the initial
run is finite. The case where the witness is infinite reduces to
that case (see Appendix A6).
1) Reduction scheme. Theorem 2 is a consequence of the
following lemma, which we explain below.

Lemma 3. If A has a feasible run % from some (`0, v0, c0)
to some (`, v, c) of duration at most T , then it also contains
a feasible run %′ of length2 N in O(T · |X|3 · |L|2), starting
from (`0, v0, c0) and ending in (`′, v′, c′) such that
• either (`′, v′) = (`, v) and c′ ≥ c and v′(u) = v(u),
• or from (`′, v′, c′) there is a profitable zero-delay cycle.

The general idea for proving this lemma is to split the witness
into a small number of chunks, which we prove (in Lemma 5)
can be made short while (broadly speaking) preserving the
total time elapse and and increasing the accumulated weight.

For the rest of the proof we assume we are given a
finite weighted run % : (`0, v0, c0)

δ(t0)−−−→ (`0, v0 + t0, c
′
0)

e1−→
(`1, v1, c1)

δ(t1)−−−→ (`1, v1 + t1, c
′
1) . . . witnessing the fact that

A |= ∃TL(c0).
The [i..j]-segment of %, denoted %[i..j], is defined as

(`i, vi, ci)→ · · · → (`j , vj , cj). Segment %[i..j] is said flexible
whenever for every clock x ∈ X \ {u}, there exist an integer

2Precisely, N =
(
1 + (|X|+ 1) · (1 + (|L|+ 1) · |L| · (|X|+ 1)2)

)
·

(bT c+ 1), where bT c is the integral part of T .

0 ≤ dx ≤M (where M is the maximal constant of A) and an
index hx > i such that

• clock x is not reset along %[i..hx − 1];
• for every i ≤ k < hx, it holds dx ≤ vk(x) ≤ dx + 1 (we

assume M + 1 =∞),
• and for every hx ≤ k ≤ j, it holds 0 ≤ vk(x) ≤ 1.

The terminology flexible comes from the fact that we can
modify delays along a flexible segments, while keeping the
global time elapsed. The following lemma states that a segment
of duration less than 1 is made of few flexible sub-segments.

Lemma 4. Let %[i..j] be a segment of duration less than 1.
Then %[i..j] can be split into at most |X| + 1 many flexible
segments. The sum of the lengths of the sub-runs which do not
take part in a flexible segment is bounded by |X|.

Consider a flexible segment %[i..j] = (`i, vi, ci)
δ(ti)−−−→

. . .
ej−→ (`j , vj , cj) along which clock u has constant integral

part. We define, for every i < h ≤ j, δj =
∑h−1
k=i tk. For every

clock x that is reset along %[i..j] we write mx (resp. nx) for
the index of the first (resp. last) edge along which x is reset.
The run %[i..j] is depicted on Fig. 6.

We transform %[i..j] into a (shorter) run %′i→j that starts
in (`i, vi, ci) and fires edges ej (resp. emx

, enx
) after exactly

δ (resp. δmx , δnx) time units. Furthermore that run will not
reset clock x before firing emx after δmx time units, and it
will not reset clock x after having fired enx

after δnx
time

units (see Fig. 6). This enforces that the clock constraints are
satisfied along the new run, and that the final state of %′ is
the same as that of %. Edges emx , enx (for x ∈ X) and ej act
as checkpoints. Between two checkpoints we “optimize” the
accumulated weight (which ensures that c′j ≥ cj) and shorten
the path (which proves the existence of a short witness).
2) Transformation of a segment between two checkpoints.
We first focus on one segment between two checkpoints.
It is characterized by a constraint described by a tuple
γ = ((`, v, c), α, e, B,R, c′) where:

(a) (`, v, c) is the initial state of that segment,
(b) the duration α ∈ R>0 of that segment (with the assumption

that frac(v(u)) + α < 1),
(c) the final edge e of that segment,
(d) the set B ⊆ X of clocks that should not be reset along

that segment,
(e) the set R ⊆ X of clocks that should have value 0 at the

end of the segment (when firing e),

emx
emy = eny enx

ej
%[i..j] ×

(`i, vi, ci)
×

(`j , vj , cj)

first reset of x
unique reset of y

last reset of x

δmx

δmy
= δny

δnx

δj

checkpoints
emx

emy
= eny enx

ej
%′i→j ×

(`i, vi, ci)
×

(`j , vj , c
′
j) with c′j ≥ cj

no reset of x no reset of x
no reset of y no reset of y

Fig. 6. A flexible segment

(f) a lower bound c′ ∈ R≥0 for the accumulated weight at
the end of the segment.

We write Rγ(A) for the set of runs satisfying constraint γ
(defined in an obvious way). Intuitively, if we replace a segment
of a feasible run with another segment satisfying the same
constraint γ, then the newly constructed run is still feasible. The
following lemma shows that any constraint γ can be fulfilled
by a short segment.

Lemma 5. Let K = (|L|+ 1) · (|L| · (|X|+ 1)). The following
two properties are equivalent:

(i) there is a finite run % in Rγ(A);
(ii) there is a run of length at most K that either is in Rγ(A)

or reaches a state (`′, v′, c′) from which there is a
profitable zero-delay cycle.

Roughly, the idea is to postpone any delay in a location with
negative rate to the latest appearance of that location along the
run, and to transfer all delays in a location with positive rate
to its first appearance along the run. This transformed run is
in Rγ(A), delays in at most |L| locations, and still satisfies
the lower-bound constraint on the rate. Then we can remove
the zero-delay cycles (unless they are profitable).
3) Completing the study of a flexible segment. We glue runs
we have constructed for all segments between two checkpoints
(this requires some technical details that can be found in
Appendix A5), and we get a run %′i→j , which starts in
(`i, vi, ci), has length at most (2|X| + 1) · K, satisfies the
lower-bound constraint, and
• either it ends in (`j , vj , c

′
j) with c′j ≥ cj , and has duration

that of %[i..j];
• or it ends in a state from which there is a profitable

zero-delay cycle, and its duration is at most that of %[i..j].
4) Conclusion and complexity. We apply the previous con-
structions: we first split the run into segments along which the
integral part of u is constant (there are T such segments). Ap-
plying Lemma 4 we chunk each of these segments into at most
|X|+ 1 flexible segments. We can then change these segments
into short segments of length at most (2|X| + 1) · K each.

The maximal length of the short witness is therefore in
O(T · |X|3 · |L|2).

By guessing a sequence of consecutive edges of that length
in A and then doing some linear programming resolution, we
can check whether there exists a feasible witness along that
sequence of edges. This is an NEXPTIME procedure when T
is given in binary. It runs in NP if T is encoded in unary.

B. Lower bound
We reuse the modules defined in the proof of Theorem 1

for checking linear constraints between clocks. These modules
can be used to check constraints of the form αx+βy+ γ ≥ 0,
for integers α, β and γ. If we allow integer rates (instead of
only 0 and 1), we can assume the total time spent to check
such a linear constraint is constant (2 time units).
1) Encoding a rule of a Turing machine. We encode a (non-
deterministic) Turing machine over alphabet {0, 1} as follows.
Assume the tape content is w1(q, a)w2 where w1, w2 ∈ {0, 1}∗,
q is a state of the Turing machine and a ∈ {0, 1} is the content
of the cell which is being read. We encode this with a location
(q, a) and with the values of two clocks x1 and x2, whose
binary representation will be enc(x1) = 0.w1 (we write w1

for the word obtained from w1 by reading from right to left)
and enc(x2) = 0.w2.

We assume that (b,→, q′) ∈ δ(q, a) is a possible transition
from (q, a) in the Turing machine. In order to be able to mimic
that transition, we want to go to state (q′, c) with two clocks3 y1
and y2 such that enc(y1) = 0.b ·w1 and enc(y2) = 0.w′2 where
w2 = c · w′2. The symbol c ∈ {0, 1} is the content of the new
cell which is pointed. In terms of value, we have to enforce:

y1 =
1

2
x1 +

1

2
b and y2 = 2(x2 −

1

2
c).

The module is depicted on Fig. 7. We write U on a transition
instead of u = 1, u := 0. On every locations, for every clock
x that is not already used in an outgoing transition, there is

3For the sake of readability, our reduction involves six clocks. However,
clock y2 needs not to be fresh, and we will be able to use x1 instead since it
is not used later in the module.

a self-loop x = 1, x := 0, which is omitted on the figure (for
readability). The module works as follows:
(a) in the first part (until module Test(2y1 = x1 + b)),

the automaton non-deterministically resets clock y1, and
checks that the new value has the property that after exactly
two time units (i.e. after the second U -transition), it holds
y1 = (x1 + b)/2.

(b) then, non-deterministically again, the automaton jumps to
one of the two branches:
• the left branch corresponds to the case where c = 1:

this is checked by the module Test(2x2 ≥ 1). We then
have to set y2 accordingly, which is achieved by non-
deterministically resetting y2 and checking that y2 =
2x2 − 1.

• the right branch is for the case where c = 0: the
encoding is similar to that used in the upper branch,
adapted to the fact that c = 0. Notice that we have
to test a strict inequality, namely 2x2 < 1. This is
achieved by crediting the variable with 1− 2x2 and
checking that this value is positive. This in turn can
be tested by the module depicted on Fig. 8: this
module checks positiveness of the weight variable
while preserving the values of the weight and of all
clocks, except z.4

We assume that the total time needed to traverse this
module is the same along both branches (even if it means
adding some more states). We write d1 for that constant.

2) The global reduction. We fix a non-deterministic Turing
machine M and an input u of length n. We use the encoding
of instructions of a non-deterministic Turing machine as in
the previous section, and we glue all modules together to get
automaton A. We add an initialization module which leads to
(q0, u1), set x1 to 0 and x2 to

∑n
i=2 ui2

−(i−1); this can easily
be achieved using module Test(2n−1x2 =

∑n
i=2 ui2

n−i),
in total time d2 = n − 1 (using rates 2n−1, 2n−2).
We parametrize A with an integer K, yielding A[K]. In A[K],
a new clock t is reset when reaching the initial state ofM (after
the initialization phase), and is used in an invariant t ≤ d1K in
all locations (except the initialization phase and the halting loca-
tion). Furthermore from every location (except locations of the
initialization phase and the halting location) we can go to a sink
location with discrete weight −4 when t ≥ d1K (we call these
transitions the bad transitions). Notice that the maximal value
of the accumulated weight within a module while mimicking
the instructions of M never exceeds 3: hence, if this transition
to the sink state is taken, then the lower-bound constraint will
be violated. The halting location has no outgoing transition,
and we can wait there as long as we want, with rate zero.

Note that automaton A has five clocks (four clocks for
simulating the instructions of the Turing machine, and the
extra clock t).

Proposition 6. M halts on input u with a computation of at
most K steps if, and only if, A[K] |= ∃(d1K+d2)+1L(0).

4Similarly as for y2, clock z needs not be fresh, and it can be replaced by
clock x1, which is not re-used later in the module.

q, a

Test(2y1 = x1 + b)

Test(2x2 ≥ 1) Test(2x2 < 1)

Test(y2 = 2x2 − 1) Test(y2 = 2x2)

q′, 1 q′, 0

y1 := 0

U

U

U U
U U

y2 := 0 y2 := 0

U U

U U

u := 0

Fig. 7. Mimicking instruction (b,→, q′) ∈ δ(q, a) (self-loops omitted)

−1 0 1 0
z := 0

u > 0

U Z UU

Fig. 8. Automaton for testing that the energy level is positive

Proof: AssumeM has a halting computation of length k (with
k ≤ K) on u. In A, we can first safely initialize the two
clocks and reach the initial state of the Turing machine. The
initialization phase takes d2 time units. Then all instructions
can also be safely mimicked, and each instruction takes d1
time units. Hence globally the execution takes then d2 + d1k
time units before reaching the halting location, and we can
wait there enough time to meet the requirement.

Assume that A[K] |= ∃(d1K+d2)+1L(0). Then it means that
we have first safely initialized the clocks, and then mimicked
properly instructions. And then as we have not violated the
lower-bound constraint, it means that we have reached a halting
location at the latest when t = pK (since otherwise we should
have taken the bad transition to the sink state, violating the
lower-bound constraint).

If K is exponential (in n), the binary encoding of K, and
therefore the binary encoding of d1K + d2, is polynomial.
The above reduction implies NEXPTIME-hardness for the
existential time-bounded L-problem when the time bound is
given in binary. If K is polynomial in n, the unary encoding of
d1K+d2 is polynomial (since d1 is a constant and d2 = n−1).
This implies NP-hardness for the existential time-bounded L-
problem when the time bound is given in unary.

Remark 7. Notice that if we lift the time bound (hence we
remove clock t), we encode a (generic) non-deterministic Turing
machine. This provides another proof of Theorem 1, which
uses only four clocks.

V. THE UNIVERSAL L-PROBLEMS

In this section we show that the universal L-problems are
much easier to solve than the existential L-problems.

Theorem 8. The universal and the universal time-bounded
L-problems are PSPACE-complete.

The PSPACE lower bounds are straightforward reductions
from the reachability problem in timed automata: if there is a
run reaching the final location, then there is a run of duration
at most T def

= |R(A)|, where R(A) is the region automaton of
A (see [1]). Therefore by giving a negative rate to accepting
locations and rate zero to other locations, the non reachability
problem is equivalent to the universal L-problem, time-bounded
(by T) or not.

The PSPACE upper bound can be proven using the corner-
point abstraction Rcp(A) of A (see [7]). The result then relies
on the following lemma.

Lemma 9. A |= ∀∞L(c0) if, and only if, Rcp(A) |= ∀∞L(c0).

Proof: Pick an infinite run % = (`0, v0, c0) → (`1, v1, c1) . . .
which does not satisfy the lower-bound constraint. Take a prefix
of %, say %[0..n], which violates the lower-bound constraint:
there is 0 ≤ i ≤ n such that ci < 0. Then applying [7, Prop. 3]
we get that there is a finite path π in Rcp(A) with the cost
being smaller: this path violates the constraint as well.

Conversely take an infinite path π in Rcp(A) which violates
the lower-bound constraint, and take a violating prefix. Then
applying [7, Prop. 6], for every ε > 0, we get a real path
whose cost is ε-close to that of π, hence becomes negative
(for ε small enough).

Lemma 10. Rcp(A) 6|= ∀∞L(c0) if, and only if, one of the
following conditions is satisfied:
(1) there is a reachable cycle with a negative effect;
(2) there is an acyclic path from the initial state, which can

be extended into an infinite path, that yields a negative
cost.

Proof: Take a path which violates the lower-bound constraint.
If it contains a cycle with negative effect, then (1) holds.
Otherwise consider a prefix which violates the lower-bound
constraint. We can remove from that prefix all cycles (since they
have non-negative effect), and we still get a counter-example,
which furthermore satisfies (2).

The above conditions can be checked in PSPACE (the size of
Rcp(A) is exponential, and a path in Rcp(A) can be guessed
using polynomial space).

This algorithm can be adapted to handle the time-bounded
problem, by adding a clock u, which is never reset, but is used
in an invariant u ≤ T on every location. From every location we
add a transition constrained by u = T leading to a sink location
where cost remains constant. This yields an automaton B such
that A |= ∀TL(c0) if, and only if, B |= ∀∞L(c0). We apply
the previous algorithm to B. The size of R(B) is exponential
in the size of A and T . This yields a PSPACE algorithm for
deciding A |= ∀∞L(c0).

VI. WHEN THE INITIAL CREDIT IS NOT KNOWN

We prove here that if the initial credit is not known, then all
the problems can be solved in PSPACE. More precisely we
prove the following theorem.

Theorem 11. The existence of an initial credit is PSPACE-
complete for all the L-problems (existential or universal, time-
bounded or not).

The complete proof of this theorem can be found in Ap-
pendix B. The lower bounds are straightforward by reduction
from the reachability problem in timed automata, which is
known to be PSPACE-hard already when there are three
clocks [12].
a) The time-bounded case. In order to prove the upper bounds
for the time-bounded problems, the idea is to reduce the size
of possible witnesses using a construction similar to that in
Lemma 3, which allows to bound the cost variation along
a possible witness and therefore gives information on how
much the initial credit needs be for satisfying the lower-bound
constraint along the witness. We give the details only for the
time-bounded universal problem. It relies on the following
characterisation, which can be checked in polynomial space.

Lemma 12. A 6|= ∃c.∀TL(c) if, and only if, there is a finite
initial timed run of duration at most T , which ends in some
configuration (`, v) s.t. from (`, v), there is a zero-delay cycle
with negative accumulated weight.

Proof: The right-to-left implication is obvious.
Assume A 6|= ∃c.∀TL(c) and fix a timed run % of duration at

most T (those will be the only possible witnesses contradicting
∀TL(c)). We transform % as in the proof of Lemma 3 but
we minimize the weight instead of maximizing it (and we do
not require the lower-bound on the weight be satisfied). This
yields an alternative finite run %′ which satisfies the following
conditions (N s the uniform bound of Lemma 3):
• its duration is at most T and its length is at most N ;
• at any point in time, its accumulated weight is smaller

than that of %;
• additionally, either (i) it reaches a state (`, v), from which

there is a zero-delay cycle with a negative accumulated
weight, or (ii) its duration is that of %.

Assume we are in case (ii). If we start with initial credit 0,
the cost never goes below −(N + T) · R where R is the
maximal absolute value for a rate or a weight decorating a
location or an edge of the automaton. Therefore by setting
c0 = (N + T) · R, we get that %′ |= L(c0). By construction,
%′ has smaller accumulated weight than % at any point in time,
which implies % |= L(c0).

Assume towards a contradiction that case (i) never happens.
Then, for all runs % of duration at most T , % |= L(c0). This
contradicts the assumption that A 6|= ∃c.∀TL(c). Therefore
there is a run % such that its corresponding %′ satisfies (i).
b) The time-unbounded case. For proving the upper bound for
the standard problems, we rely on the corner-point abstraction
Rcp(A) (see [7]). The case of ∃c.∀∞L(c) is not very difficult.

We give the proof for ∃c.∃∞L(c) since it is more involved. It
relies on the following lemma, which immediately yields the
PSPACE upper bound.

Lemma 13. A |= ∃c.∃∞L(c) if, and only if, Rcp(A) |=
∃c.∃∞L(c).

Proof: Let % be a witness for A |= ∃c.∃∞L(c). We project %
on Rcp(A), yielding an infinite weighted tree. For each index
i there is a branch π′i of length i of the tree, with overall
weight better than that of %[0..i] ([7, Prop. 6]). Since the tree
is finitely branching, applying König’s lemma, there is an
infinite branch π of the tree such that π′i coincide with π[0..i].
Let i1, . . . , in, . . . the sequence of such positions i’s. W.l.o.g.
we assume that the accumulated weight along (π[0..i]) for
i→∞ converges, say to γ (which might be infinite). If γ is
finite, this is a stationary sequence (since Rcp(A) is weighted
finite automaton with integral values), and we can therefore
find a cycle with overall weight zero: this yields a witness
for the property (we can then easily compute a bound for
the initial credit). If γ = ∞, then we can find an increasing
sub-sequence, and we therefore exhibit a cycle with positive
weight, yielding a witness.

Assume now that π is a witness for Rcp(A) |= ∃c.∃∞L(c).
As clock constraints are non-strict, π is a real timed run in A,
which witnesses the property.

VII. CONCLUSION

In this paper, we have shown the surprising result that
exhibiting an infinite path in a weighted timed automaton
satisfying a lower-bound constraint on the cost is actually
undecidable when the initial credit is fixed. On the other side,
we have considered different variants of that problem, which
we proved decidable. The most notable one is the existence
of a time-bounded path satisfying the lower-bound constraint,
which we prove can be decided in NEXPTIME.

As further work we want to investigate slightly different
models for energy consumption, where for instance, the cost
can be set to 0 in some places. We think the time-bounded
paradigm makes sense and we would like to push it further
by analyzing the decidability of various problems which are
unfortunately undecidable in general. One of the problems of
interest is the existence of a path that satisfies both a lower-
bound and an upper-bound constraints.

REFERENCES

[1] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[2] R. Alur, S. La Torre, and G. J. Pappas, “Optimal paths in weighted
timed automata,” in HSCC’01, ser. LNCS, vol. 2034. Springer, 2001,
pp. 49–62.

[3] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson,
J. Romijn, and F. Vaandrager, “Minimum-cost reachability for priced
timed automata,” in HSCC’01, ser. LNCS, vol. 2034. Springer, 2001,
pp. 147–161.

[4] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Optimal scheduling
using priced timed automata,” SIGMETRICS Performance Evaluation
Review, vol. 32, no. 4, pp. 34–40, 2005.

[5] B. Bérard and C. Dufourd, “Timed automata and additive clock
constraints,” Information Processing Letters, vol. 75, no. 1-2, pp. 1–
7, 2000.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in TACAS’99, ser. LNCS, vol. 1579. Springer,
1999, pp. 193–207.

[7] P. Bouyer, E. Brinksma, and K. G. Larsen, “Staying alive as cheaply as
possible,” Formal Methods in System Design, vol. 32, no. 1, pp. 2–23,
2008.

[8] P. Bouyer, U. Fahrenberg, K. G. Larsen, and N. Markey, “Timed automata
with observers under energy constraints,” in HSCC’10. ACM Press,
2010, pp. 61–70.

[9] ——, “Quantitative analysis of real-time systems using priced timed
automata,” Communications of the ACM, vol. 54, no. 9, pp. 78–87, 2011.

[10] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba,
“Infinite runs in weighted timed automata with energy constraints,” in
FORMATS’08, ser. LNCS, vol. 5215. Springer, 2008, pp. 33–47.

[11] Th. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, and
J. Worrell, “On reachability for hybrid automata over bounded time,” in
ICALP’11, ser. LNCS, vol. 6756. Springer, 2011, pp. 416–427.

[12] C. Courcoubetis and M. Yannakakis, “Minimum and maximum delay
problems in real-time systems,” Formal Methods in System Design, vol. 1,
no. 4, pp. 385–415, 1992.

[13] U. Fahrenberg, L. Juhl, K. G. Larsen, and J. Srba, “Energy games in
multiweighted automata,” in ICTAC’11, ser. LNCS, vol. 6916. Springer,
2011, pp. 95–115.

[14] K. G. Larsen and J. I. Rasmussen, “Optimal conditional reachability
for multi-priced timed automata,” in FoSSaCS’05, ser. LNCS, vol. 3441.
Springer, 2005, pp. 234–249.

[15] N. Markey, “Verification of embedded systems – algorithms and
complexity,” École Normale Supérieure de Cachan, France, Mémoire
d’habilitation, 2011.

[16] J. Ouaknine and J. Worrell, “Towards a theory of time-bounded
verification,” in ICALP’10, ser. LNCS, vol. 6199. Springer, 2010,
pp. 22–37.

[17] K. Quaas, “On the interval-bound problem for weighted timed automata,”
in LATA’11, ser. LNCS, vol. 6638. Springer, 2011, pp. 452–464.

[18] M. Woehrle, K. Lampka, and L. Thiele, “Segmented state space traversal
for conformance testing of cyber-physical systems,” in FORMATS’11,
ser. LNCS, vol. 6919. Springer, 2011, pp. 193–208.

TECHNICAL APPENDIX

A. Proof of Theorem 2
1) Zero-delay cycles. A zero-delay cycle on state (`, v) is a
path starting and ending in (`, v) in which all delay transitions
are 0-delay. In particular, such a cycle cannot visit a resetting
transition, unless the reset clock already has value 0 in v.

Our first task is to detect those configurations from which
a zero-delay cycle is feasible. For a state (`, v) and a non-
negative real c, we set the Boolean predicate profit((`, v), c)
to true if, and only if, there is a zero-delay cycle from (`, v, c)
back to (`, v, c′) for some c′ ≥ c, along which the lower-
bound constraint is satisfied. Such a cycle is called a profitable
zero-delay cycle. Note that profit((`, v), c) = profit((`, v′), c)
whenever v and v′ belong to the same region r, so that the
region-based predicate profit((`, r), c) is well-defined (in the
obvious way).

Detecting zero-delay cycles can be done efficiently:

Lemma 14. Given (`, r), we can compute in polynomial time
the smallest c such that profit((`, r), c), if any. Furthermore it
is a natural number.

Proof: Consider the sub-graph of the region automaton where
only region r appears. This is a weighted graph whose size
is at most |L|. Using a modified Bellman-Ford algorithm [10],
we can compute the least c for which profit((`, r), c), if any.
This algorithm runs in polynomial time, and returns a natural
number (because discrete weights are integers).

We use this predicate to abstract weighted runs: from a
state (`, v, c) satisfying profit((`, v), c), there is an infinite
(Zeno) run satisfying the lower-bound constraint5. Furthermore
as we shall prove in Section A6, any (Zeno) infinite witness
will visit a state satisfying profit((`, v), c). Hence we have
reduced our problem to that of finding a finite witness, either
with duration T or with duration less than T but ending in a
state which carries a profitable zero-delay cycle.
2) Proof of Lemma 4. Since %[i..j] has duration less than 1,
there are at most |X| many delay transitions along which some
clock reaches the upper bound of the unit interval to which it
belongs (that is, changes integral part with no reset operation).
Each segment between any two consecutive such transitions is
clearly flexible.
3) Equivalence between constraints. We need to know how
the fractional parts of the clocks compare to that of universal
clock u. A valuation v is said Y -small (for some Y ⊆ X) when-
ever for every y ∈ Y , it holds 0 ≤ frac(v(y)) ≤ frac(v(u)).
Notice that for any t < 1− frac(v(u)), any valuation reached
from v within t time units is Y -small. The following lemma
characterizes equivalent constraints:

Lemma 15. Assume that we are given a constraint γ =
((`, v, c), α, e, B,R, c′). Fix Y ⊆ X such that v is Y -small,
and fix another Y -small valuation v̂ that agrees with v on
X \ Y , and s.t. for every x ∈ Y , v(x) = 0 implies v̂(x) = 0.
We define the constraint γ̂ as ((`, v̂, c), α, e, B,R, c′). Then:

1) If Rγ(A) 6= ∅, then Rγ̂(A) 6= ∅. Also, if there is a run
in Rγ(A) with final accumulated weight e, then there is
one in Rγ̂(A) with the same final accumulated weight.

2) If % ∈ Rγ(A) and %̂ ∈ Rγ̂(A), writing v′ (resp. v̂′) for
the valuation at the end of % (resp. %̂), we have that: ∀x ∈ (X \ Y) ∩B, v′(x) = v̂′(x)

∀x ∈ R, v′(x) = v̂′(x) = 0
v′ and v̂′ are ((X \B) ∪ Y)-small

Proof: Pick a flexible run %′ in Rγ(A). We explain why this run
can be mimicked (with the same delay- and action transitions)
from (`, v̂, c), yielding a flexible run in Rγ̂(A). Write %̂′ for
the run (we prove below that all guards are fulfilled, so that this
is really a run in A) obtained by mimicking %′ from (`, v̂, c).
First, all valuations along %′ are Y -small, since v(u) = v̂(u)
and both %′ and %̂′ have duration α. Furthermore, for y ∈ Y ,
if v(y) = 0 then v̂(y) = 0. Therefore for clocks in Y , all
constraints that are satisfied along %′ are satisfied along %̂′.
For clocks not in Y , v and v̂ agree, so that all conditions are
fulfilled for being a flexible run in Rγ̂(A).

We now prove the second point. Along both % and %̂, clocks
in B are not reset (except possibly for those also in R).
Therefore as v and v̂ initially agree on X \ Y , we get the
two first lines. The third point is straightforward.

5Notice that, using similar techniques, we could easily handle different
variants of our time-bounded problem, for instance if it is required that
the witness run must have duration at least T : when a state (`, v, c) with
profit((`, v), c) is visited, the weight variable can be made arbitrarily large, and
the lower-bound constraint is lifted. It just remains to decide the existence of a
run along which a sufficient amount of time elapses, with no weight constraint.

4) Proof of Lemma 5. Pick a finite run % in Rγ(A), and
modify it as follows: for every location `1 in which a positive
delay is spent along %, do the following:
• if rate(`1) ≥ 0, then transfer all delays spent in such a

location to the first occurrence of `1 along % where some
positive delay is already spent;

• if rate(`1) < 0, transfer all delays spent in such a location
to the last occurrence of `1 where some positive delay is
already spent.

We can do so since none of the guards along % is violated
because of this change: indeed, if x ∈ B, from the first positive
delay on, x is in (c; c+ 1) all along % (as % is flexible and x
is not reset along %). If x /∈ B, then v is {x}-small. Assume
that some transition has a guard x = c (with c > 0) along %.
Then no delay is spent before this transition, or no delay is
spent after. Hence there is no transfer of delay from one side
of this transition to the other, so that the guard is still fulfilled
in the new run. Similarly, if there is a guard x = 0 in the
original run, then no time is elapsed since the previous reset
of x (or since the beginning if x is zero at the beginning), and
the guard is still fulfilled in the new run. Finally, if there is a
guard x ∈ [c; c+ 1], then transferring delays to the beginning
of the run (before a reset of x) may increase the value of x,
but as v(x) < v(u) and frac(v(u)) < 1 all along %, then
x ∈ [c; c+ 1] is still fulfilled along the new run. Transferring
delay after a reset of x would still keep x ∈ [0; 1].

The modified run delays in at most |L| locations, the lower-
bound constraint is still satisfied (because the accumulated
weight in any location of the new run is at least as high as in
the original run).

We name %′ the new run, which is a new witness for (i).
Consider a sub-run of %′ that is taken in 0-delay: if a
state (`1, v1) is visited twice along that sub-run and if the
corresponding cycle has a non-positive effect, then we can
remove that part of the run, the overall weight will be larger
and we still have a witness for (i); if a such a cycle has a
positive effect, then profit((`1, v1), c1) is true (c1 is the credit
at the first visit), and the rest of the run can be dropped.

The resulting run delays in at most |L| locations, and is
acyclic in the 0-delay segments. In a 0-delay segment, once a
clock is reset, it remains equal to 0: therefore, the length of such
an acyclic 0-delay segment is at most |L|·(|X|+1). The length
of the resulting run is thus bounded by (|L|+1)·(|L|·(|X|+1)).
This run is a witness for (ii).
5) Flexible segments. We come back to our flexible segments
%[i..j] = (`i, vi, ci)

δ(ti)−−−→ . . .
ej−→ (`j , vj , cj), and consider the

checkpoints defined earlier. We write I = {i, j} ∪ {mx, nx |
x ∈ X} for the indices corresponding to checkpoints, and we
assume that it is ordered as I = {i0 < i2 < · · · < ip}. For
each 0 ≤ h < p, we consider the constraint

γh = ((`ih , vih , cih), δih+1
− δih , eih+1

, Bh, Rh, cih+1
)

where Bh = {x ∈ X | h < mx or h ≥ nx} and
Rh = {x ∈ X | vih+1

(x) = 0}. The set Bh is the set
of clocks that should not be reset. We first argue why this

is a proper constraint. Condition (b) is by assumption on
clock u whereas condition (d) requires some arguments that
we give now. Pick y /∈ Bh: it means that my ≤ h < ny.
We have that vih(y) ≤ δih − δmy since y was reset at edge
my (and also possibly later). In the meantime frac(vih(u)) =
frac(v(u)) + δih ≤ δih . Therefore 0 ≤ vih(y) ≤ frac(vih(u)),
which implies condition (d).

We build a run % solving the constrained problem γ0, then γ′1,
then γ′2, etc. Constraints γ′h will only differ from γh in the initial
valuation (which will still satisfy the hypotheses of Lemma 15).

First note that for every h, vih is
(⋃

k<h(X \Bk)
)
-small.

By induction on h, we prove the following: if v′ih is
related to vih as in the hypotheses of Lemma 15 (with
Yh =

⋃
k<h(X \Bk)). We build a run in Rγ′

h
(A) (γ′h is same

as γh except for the initial valuation which is v′ih instead
of vih). The run %[ih..ih+1] is in Rγh(A). Applying the first
part of Lemma 15 we get that Rγ′

h
(A) is non-empty. Applying

Lemma 5, we select a run %′ih→ih+1
of length bounded by K

in Rγ′
h

(or ending in a state carrying a profitable zero-delay
cycle, which concludes the proof). Applying the second part
of Lemma 15, we get that the final valuation of %′ih→ih+1

,
say v′ih+1

, is ((X \Bh) ∪ Yh)-small. By construction, for all
clocks x such that vih+1

(x) = 0 (this is Rh), v′ih+1
(x) = 0.

Valuation v′ih+1
therefore satisfies the hypotheses of Lemma 15.

Initially we assume v0 = v′0. We have thus constructed by
induction runs %′ih→ih+1

that can be glued together, yielding a
run %′i→j of duration δ. The final state of %′i→j is (`j , vj , c

′
j)

(by construction), and c′j ≥ cj . Furthermore the length of %′i→j
is at most (2|X|+ 1) ·K. We have proved:

Proposition 16. Take a flexible segment %[i..j] of %, such
that clock u has constant integral part along %[i..j]. We can
construct a run %′i→j such that the following holds:
• it starts in (`i, vi, ci);
• its duration is that of %[i..j];
• its length is at most (2|X|+ 1) ·K;
• it satisfies the lower-bound problem;
• if (`j , v

′
j , c
′
j) is its final state, then v′j = vj , and c′j ≥ cj .

6) Case where the witness % is infinite. We now assume that
% = (`0, v0, c0)→ . . . (`n, vn, cn) . . . is an infinite witness of
total duration no more than T . We will show that there is a
finite run which satisfies the lower-bound constraint L(c0) and
which ends in a state from which it is possible to follow a zero-
delay cycle while satisfying the lower-bound constraint and
whose accumulated weight is non-negative (we can define a
predicate profit≥0 similar to profit, but where the accumulated
weight is non-negative instead of positive).

There exists n such that the tail %[n..∞) of the witness
is flexible (and clock u lies within one time unit). For all
locations `1 with rate(`1) > 0 in which some delay is spent
along %[n..∞), we transfer all delays in location `1 to its first
occurrence where some delay is spent. We remove all delays
spent in some location `2 with rate(`2) ≤ 0. This yields a new
witness %′ such that %′m→+∞ is zero-delay: we can extract from
that tail a zero-delay cycle which satisfies the lower-bound
constraint and has a non-negative accumulated weight.

B. Proof of Theorem 11
1) PSPACE upper bound for ∃c.∃TL(c).

Lemma 17. A |= ∃c.∃TL(c) if, and only if, there is a finite
initial. run % s.t.

(i) either its duration is T ;
(ii) or its duration is no more than T , and it ends in

configuration (`, v) s.t. from (`, v), there is a profitable
zero-delay cycle.

Proof: Assume A |= ∃c.∃TL(c), and take a witness run %. If %
is finite, then (i) holds. If % is infinite, we apply a construction
similar to the proof presented in Annex A6, and we get a finite
run which satisfies the condition (ii).

Assume that either (i) or (ii) holds. If (i) holds, then we can
choose a large enough initial credit to compensate any decrease
in the weight along %: if the length of % is `, then if we start
with initial credit 0, the cost never goes below −(`+ T) ·R,
where R is the maximal absolute value for a rate or a weight
decorating a location or an edge of A. Therefore by setting
c0 = (` + T) · R, we get that % |= L(c0). If (ii) holds, then
we easily get an infinite witness for the property. The initial
credit will only be used to compensate any loo along the finite
run. Therefore A |= ∃c.∃TL(c).

Note that in the proof above, by applying a construction to
that of Lemma 3, we can bound the length of the finite paths
by N . Therefore, if there is some initial credit, then there is
one which is bounded by (N + T) ·R.

The two conditions of the lemma can be checked in
polynomial space.
2) PSPACE upper bound for ∃c.∀∞L(c). Write Rcp(A) for
the corner-point abstraction of A (see [7]). Then we show:

Lemma 18. A |= ∃c.∀∞L(c) if, and only if, Rcp(A) |=
∃c.∀∞L(c).

This is an obvious consequence of Lemma 9. This condition
can be easily checked in polynomial space by detecting cycles
with negative cost in Rcp(A).
3) PSPACE lower bound for ∃c.∀αL(c). We fix a timed
automaton A and we build the weighted timed automaton
B by assigning weight and rate zero everywhere in A, and
from the final location of A we go to a sink location, with
a self-loop labelled with weight −1. We define T = |R(A)|.
The following four properties are then equivalent:

(i) the final location of A is reachable
(ii) the final location of A is reachable in no more than T

time units
(iii) B 6|= ∃c.∀∞L(c)
(iv) B 6|= ∃c.∀TL(c)

4) PSPACE lower bound for ∃c.∃αL(c). the argument is
similar to the previous one: automaton B is now obtained
from A by assigning weight and rate −1 everywhere: for any
initial credit the weight of any run will decrease to infinity
unless we allow to escape to a rate-zero location. From the
final location of A we go to a sink location, with a self-loop
of weight zero. The very same equivalent properties can be
stated for this case.

